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Background: The study of hepatitis B virus (HBV) genomic heterogeneity has become a major issue in
investigations aimed at understanding the relationship between HBV mutants and the wide spectrum of
clinical and pathological conditions associated with HBV infection. Although most chronically infected
HBV patients are inactive carriers, several virological aspects of this state remain unclear.

Methods: In order to determine the prevalence and clinical significance of mutations in the basal core

Corresponding Editor: Jane Zuckerman, promoter (BCP) and precore (pC) regions among inactive carriers, the nucleotide sequences from 41

London, UK inactive carriers were analyzed and compared with those from 29 individuals with chronic active
hepatitis.
Keywords: Results: Genotypes A (24.3%), D (37.1%), F1b (12.9%), and F4 (18.6%) were the most prevalent. Mutations

in the BCP/pC regions were observed in most of the inactive carriers (92.7%) and in most of the patients
with chronic active hepatitis (93.1%). The prevalence of mutation 1764* was significantly higher in
patients with chronic active hepatitis (65.5%) than in inactive carriers (36.6%) (p = 0.038), whereas the
prevalences of mutations at the other positions analyzed were not significantly different. Older patients
(>50 years) showed BCP/pC patterns with a higher number of substitutions. Mutations were found to be
biased by genotype: the 1896” mutation was highly prevalent in genotypes D and F4, while alternative
substitutions in the pC region were more prevalent in genotypes A and F1b.
Conclusions: Mutations in the BCP/pC regions are the hallmark of chronic anti-HBe-positive individuals;
nevertheless, the even distribution of mutations in active and inactive carriers suggests that BCP/pC
mutations may occur during HBV infection not strictly related to the HBV infection activity.

© 2011 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
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1. Introduction

Hepatitis B virus (HBV) infection is a challenging global health
problem, affecting an estimated two billon people worldwide.!? Of
those infected, 400 million remain infected chronically and it has
been estimated that one million die annually from HBV-related liver
diseases.>* Infection with HBV causes a wide spectrum of disease
manifestations, ranging from acute self-limiting to chronic infection,
with disease activity varying from an asymptomatic infection to
chronic active hepatitis. Patients infected chronically may eventu-
ally develop liver failure, cirrhosis, or hepatocellular carcinoma.’~’

During the course of chronic infection, a large proportion of HBV
surface antigen (HBsAg) carriers seroconvert from HBV e antigen

* Corresponding author. Tel.: +54 11 4 9648200x8264.
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(HBeAg) to anti-hepatitis B e antibody (anti-HBe)-positive, which
represents a late phase in the natural history of chronic infection.?°
The great majority of anti-HBe-positive patients, who are
characterized by persistently normal alanine aminotransferase
(ALT) levels (<40 U/I), low HBV-DNA levels (<4 log,o copies/ml),
and the absence of histological liver injury (necroinflammation
score <4), are considered inactive carriers'®!! and appear to have
favorable clinical outcomes in the vast majority of cases.'?!® The
inactive HBV carrier state is one of the most intriguing and
common conditions observed in HBsAg carriers.

Mutations reducing or abrogating HBeAg production may occur
either at the transcriptional level, in regulatory elements, or at the
translational level, blocking HBeAg synthesis because of nucleotide
insertions, deletions or mutations that abolish precore region (pC)
expression.!4

The basal core promoter (BCP) region (nucleotides (nt)
1742-1849) plays a central role in both HBV replication and

1201-9712/$36.00 - see front matter © 2011 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

doi:10.1016/j.ijid.2010.12.009


http://dx.doi.org/10.1016/j.ijid.2010.12.009
mailto:dflichman@ffyb.uba.ar
http://www.sciencedirect.com/science/journal/12019712
http://dx.doi.org/10.1016/j.ijid.2010.12.009

M.M.G.L. Ledesma et al./International Journal of Infectious Diseases 15 (2011) e314-e320 e315

morphogenesis,'® directing the transcription of precore RNA (pC-
mRNA) and pre-genome RNA (pg-mRNA) messengers. Mutations
occurring in this region may influence both viral replication and
HBeAg secretion.'®2° On the other hand, the pC region (nt 1814-
1900) contains the encapsidation signal, whose stability is
important for the packaging of pg-RNA and for the priming of
genomic replication.?!

Several mutations located in these regions have been associated
with the abrogation of HBeAg expression.!* In particular, HBV
variants carrying the double 17627/1764* mutation in the BCP
region and/or the 1896* mutation in the pC region have been
presumed to be strictly associated with forms of progressive liver
disease 20223

The study of the genomic heterogeneity of the BCP/pC regions is
the key to understanding the relationships between major HBV
mutants and the wide spectrum of clinical and pathological
conditions associated with HBV infection.24-2¢

Since most of the studies in this field have been performed in
patients with chronic active hepatitis, there is a paucity of
information about genomic heterogeneity in the inactive carriers.
This aspect is worthy of elucidation considering the apparent
importance of viral variability in the outcome of HBV-related liver
diseases.?°

The purpose of this study was to determine the prevalence and
clinical significance of mutations in the BCP/pC regions among
inactive carriers and to compare them with control anti-HBe-
positive patients with chronic active hepatitis.

2. Patients and methods
2.1. Patients

This retrospective study included 70 untreated HBeAg-nega-
tive/anti-HBe-positive chronic HBsAg carriers (median age 46.8
years, range 21-77; 40 males and 30 females) admitted to the
Hepatology Unit of the Hospital Italiano Buenos Aires and to the
Hospital de Infecciosas “F. Muiiz”, Buenos Aires, Argentina,
between 2004 and 2009. For inclusion, patients had to be:
HBsAg-positive, negative for antibodies against hepatitis C virus
(HCV) and human immunodeficiency virus (HIV), and with no
history of autoimmune liver disease or high alcohol intake (more
than 10 g/day). The patients were examined at least three times a
year and followed for at least 2 years in order to define their
clinico-pathological profiles. At the end monitoring, HBsAg carriers
were classified as inactive or active according to the presence or
absence of the following biochemical and virological profiles:
persistence of ALT serum levels below normal values (<40 U/I) and
persistence of serum HBV-DNA <4 log;o copies/ml. The study was
performed according to the principles of the Declaration of
Helsinki and was approved by the local ethics committee.

2.2. Serology and histology

Liver function tests included the evaluation of aspartate
aminotransferase and ALT, gamma-glutamyl transpeptidase,
alkaline phosphatase, albumin, globulins, total bilirubin, pro-
thrombin time, and a-fetoprotein; tests were routinely performed.
HBsAg, antibody to the hepatitis B core antigen (anti-HBc), HBeAg,
and anti-HBe were detected by commercially available immu-
noassays (MEIA Axsym System; Abbott, Chicago, IL, USA).

Serum HBV DNA levels were quantified by COBAS Amplicor
Monitor 2.0 HBV assay (Roche Diagnostic Systems Inc., Mannheim,
Germany), with a lower detection limit of 2.48 log;o copies/ml and
a linearity range from 2 log;o copies/ml to 7.6 log;o copies/ml
(Roche Diagnostic Systems Inc.). Liver specimens were obtained
with patient informed consent and processed using standard

methods; grading of inflammation and staging of fibrosis were
assessed by METAVIR scoring system.?”

2.3. HBV-DNA amplification

DNA was extracted from serum samples according to the
proteinase K protocol. Briefly, 200 il of serum was added to
450 pl of mix containing 1 mg/ml proteinase K, 5 mM Tris HCI (pH
8.5), 2.0% sodium dodecyl sulfate (SDS) and 25 mM ethylenedia-
minetetraacetic acid (EDTA) and incubated at 37 °C for 4 h. DNA was
precipitated with 1 volume of absolute isopropanol in the presence
of 20 pg of Dextran T500 and 1/10 volume of 3 M NaAc(pH4.7). DNA
was recovered by centrifugation at 20 000 g for 15 min; pellets were
washed with 70% ethanol, dried, and dissolved in 20 .l of water.

For BCP/pC region amplification, 10 w1 (corresponding to 100 .l
of serum) of extracted DNA was used for PCR in a 100-p.I reaction
volume containing buffer 1 x (67 mM Tris-HCl (pH 8.7), 16 mM
(NH4)»S04), 2.5 mM MgCl,, 0.5 mM dNTPs, 2 U Hot Start Taq
polymerase (Qiagen, Germany) and 0.4 uM of each primer;
HBVpC1 (sense, 5 ATA AGW GGA CTC TTG GAC T 3/, 1654-
1672) and HBVpC2 (antisense, 5’ CGT CTG CGA GGC GAG GGA GT’
3’,2467-2448). Thermal profile amplification: pre-heating at 94 °C
for 15 min, 35 cycles including denaturation at 94 °C for 20s,
annealing at 60 °C for 20 s, and extension at 72 °C for 30 s, followed
by 5 min at 72 °C. Five microliters of PCR product was analyzed by
ultraviolet fluorescence after ethidium bromide staining in a 2%
agarose gel. A nested PCR was performed with primers HBVpC3
(sense, 5 AAT GTC AAC GAC CGA CCT TG 3, 1677-1696) and
HBVpC4 (antisense, 5' TGA GCA ATG CTC AGG AGA CTY TAA 3/,
2452-2429) using the same thermal profile and reaction condi-
tions as those of the first PCR round. The same protocol was
followed to amplify the S region with the primers HBVS1 (sense, 5
CTG CTG GTG GCT CCA GTT C 3, 57-75) and HBVS2 (antisense, 5’
AGA AAATTG GTA ACA GMG GYA 3, 814-794) for the first round,
and HBVS3 (sense, 5" GCG GKG TKT TTC TTG TTG ACA A 3/, 205-
226) and HBVS4 (antisense, 5 GGG ACT CAA GAT GYT GYA CAG 3/,
789-769) for the second round.

2.4. HBV-DNA sequencing

PCR products covering the BCP/pC and S regions were purified
using Qiagen columns (Qiagen, Germany), and direct sequencing
was carried out using a 3730x1 DNA Analyzer (Applied Biosystems,
USA) in both amplification senses by Macrogen Inc. (Seoul, Korea).

2.5. HBV-DNA typing

After amplification, nucleotide sequences of the PreS/S region
were compared with reference strains representing each of the
genotypes A-H, obtained from GenBank. Genotyping of HBV was
then determined by phylogenetic analysis, and full genome
sequences representing the different HBV genotypes were used
as references. The HBV sequences were aligned with ClustalX v1.83
software.’® The model of nucleotide substitution and the
parameters that best fit the data (GTR+I+G) were estimated by
the Modeltest 3.7 program?® according to the Akaike information
criterion (AIC). Using this model, a maximum likelihood tree was
inferred with PAUP* software version 4.0b10.3° The numbers at
each node correspond to neighbor-joining bootstrap values
obtained with 10 000 replicates, using the same model.

2.6. Statistical analysis
Fisher’s two-tailed exact test and the corrected Chi-square test

were used to compare qualitative data. Analysis of variance
(ANOVA) and non-parametric tests (Mann-Whitney U and
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Kruskal-Wallis H) were used to compare quantitative variables.
Results are expressed as mean =+ standard error of the mean (SEM).
Data analysis was performed using SPSS software (version 10.0; SPSS
Inc., Chicago, IL, USA). Significance was set at a p-value of less than
0.05. For statistical comparisons, an arbitrary value of 7.6 log, ¢ copies/
ml was assigned to samples with HBV-DNA levels higher than the
upper limit.

3. Results

A total of 70 anti-HBe-positive HBsAg chronic carriers, none of
whom had previously been on antiviral therapy, were included in
this study. Based on biochemical and virological markers, 41 of
them (22 females and 19 males), all of whom had persistently
normal ALT levels and HBV-DNA titers below 4 log,o copies/ml,
were defined as inactive carriers. Liver biopsy specimens were
available for 21 of these 41 individuals, and all of them showed a
histological activity index of <4 and a fibrosis stage of <1 (Table 1).

Twenty-nine carriers (eight females and 21 males) with
abnormal ALT levels and HBV-DNA higher than 4 log;o copies/
ml, were defined as having HBV-related ongoing disease with
chronic active hepatitis and were included as the control group. Six
out of these 29 individuals (20.7%) had clinical signs of cirrhosis;
the liver biopsy specimens of the remaining 23 patients indicated
that 19 had chronic hepatitis and four had cirrhosis.

The demographic, clinical, and serological data of the patients
included in the study are shown in Table 1. There were no
significant differences in age between the two groups, however the
gender distribution was uneven (p = 0.019).

3.1. HBV-DNA typing
The prevalence of HBV genotypes was determined by phyloge-

netic analysis of preS/S nucleotide sequences (GenBank accession
numbers HM216215 to HM216257, HM216259 to HM216276 and

Table 1
Epidemiological biochemical, virological, and histological characteristics of the
anti-HBe-positive patients studied

Inactive carriers Active carriers p-Value

n 41 29
Age (years)

Mean 48.4 48.4 NS

SD 11.6 11.6

Median 48.2 45.2

Gender (M/F) 19/22 21/8 0.019
ALT (U/1)

Mean 21.8 125.0

SD 7.2 68.2

Minimum 7.0 48

Maximum 39.0 299
HBV-DNA (log( copies/ml)

Mean 3.1 59

SD 0.6 1.3

Minimum 25 3.5

Maximum 4.0 7.6

Histology (n) 21 23
HAI

Mean 2.6 5.8

SD 13 35

Minimum 0 1.0

Maximum 4 16.0
Fibrosis stage

Mean 0.6 2.2

SD 0.5 1.7

Minimum 0 0

Maximum 1 5

anti-HBe, antibody to the hepatitis B e antigen; SD, standard deviation; M/F, male/
female; ALT, alanine aminotransferase; HBV, hepatitis B virus; HAI, histological
activity index.
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Figure 1. Prevalence of HBV genotypes in active and inactive anti-HBe-positive
patients.

HM216278 to HM216286). Six out of the eight genotypes
described were found in the population studied. The overall
prevalences of these genotypes were: A 24.3%, B 4.3%, C 1.4%, D
37.1%, F1b 12.9%, F4 18.6%, and H 1.4%. Although genotype A was
more slightly prone to be present on the inactive carriers group as
compared to genotype D, F1b, and F4, there were no significant
differences in the prevalence of HBV genotypes between the
inactive carriers and the chronic active hepatitis group (Figure 1).

3.2. Correlation between BCP and pC mutations and active/inactive
state

BCP/pC sequences were characterized by direct sequencing in
70 HBsAg carriers in whom HBV-DNA was successfully amplified
by PCR (GenBank accession numbers HM216287 to HM216329,
HM216331 to HM216348 and HM216350 to HM216358). Muta-
tions modulating HBeAg expression were observed in most of the
inactive carriers (92.7%) and in most of the patients with chronic
active hepatitis (93.1%). The mutations most frequently observed
were: 1753%in 26 cases (37.1%), 17627 in 30 cases (42.9%), 1764" in
34 cases (48.6%), 1766" in seven cases (10%), and 1896” in 39 cases
(55.7%). The prevalence of mutation 1764” was significantly higher
in patients with chronic active hepatitis than in inactive carriers
(65.5% and 36.6%, respectively; p = 0.038), whereas the prevalences
of mutations at the other positions analyzed were not significantly
different (Figure 2).

With regard to the less frequent substitutions in the pC region,
mutations in the precore initiation codon (PIC) were present in eight
out of the 70 cases (11.4%) in a polymorphic manner, involving the
three positions of the codon (1814€, 1815, 1816%, and 1816").
Interestingly, we observed a two-fold difference in the mutation
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Figure 2. Correlation between BCP/pC mutants and active or inactive HBV infection.
Other includes: 18177 (n=1), 1847 (n=2), 1897” (n = 1), nucleotide insertion in
1846 (n=4),1939(n=3),1839(n=1),1847 (n=1),and deletion in nucleotide 1845
(n=1); *p <0.05.
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Figure 3. Relationship between nucleotides affecting HBeAg expression. Each bar represents the frequency of mutation of a given nucleotide according to the status of another
nucleotide. Other means mutants in the precore region excluding nucleotide 1896; **p < 0.01.

frequency between inactive carriers and patients with chronic active
hepatitis (14.6% vs. 6.7%, respectively). The PIC variants were biased
by genotype, being more prevalent in genotype A (23.5%) than in
genotypes D (11.5%), F1b (0%), and F4 (0%). Furthermore, the PIC
variants were frequently associated with a wild-type background in
positions 17624, 1764, and 1896C.

In addition, other mutations creating stop codons or frame
shifting were observed: 18177 in one case (1.4%), 1847* in two
cases (2.9%), 1897 in one case (1.4%), a one-base-pair insertion in
nine cases (12.9%), and a one-base-pair deletion in one case (1.4%).

HBeAg expression was mostly affected either by a 17627/1764*
double-mutation in the BCP region or mutations in the pC region;
nevertheless, there were 30 (42.9%) patients who presented more
than one mutation justifying the anti-HBe-positive phenotype.

By analyzing the relationships between the different nucleo-
tides that affect HBeAg expression, it was possible to observe that
mutations in the BCP region did not affect the prevalence of
substitutions in the pC region and vice versa (Figure 3). The
substitution at position 17627 was usually present concurrently
with the substitution at position 1764* and vice versa.

In contrast, the 1896” mutation seemed to circumvent other
substitutions affecting HBeAg expression in the pC region. In
addition, the prevalences of substitutions at positions 1762, 1764,
and 1896 among patients carrying PIC mutations were remarkably
lower than in those carrying wild-type PIC.
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Figure 4. Mean number of mutations in the BCP/pC regions by age group.

Finally, the analysis of mutations affecting HBeAg expression by
age showed an increasing prevalence of multiple mutated profiles
in carriers older than 50 years as compared to carriers younger
than 50 years old. The overall number of mutations affecting
HBeAg expression increased across the decades, both in inactive
carriers and patients with chronic active hepatitis (Figure 4). The
mean number of mutations in patients younger than 40 years of
age (n=16) was 2.1, whereas that for patients aged between 40
and 50 years (n = 26) was 2.3 and for patients older than 50 years
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Figure 5. Prevalence of BCP/pC mutants by genotype. Other includes: precore initiation codon (PIC) mutations (n = 8), 18177 (n=1), 1847" (n = 2), 1897% (n = 1), nucleotide
insertion in 1846 (n=4), 1939 (n=3), 1839 (n=1), 1845 (n=1), 1847 (n=1), and deletion in nucleotide 1845 (n=1); *p < 0.05.
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(n=28) was 3.0, although the differences were not significant
(p=0.558).

3.3. Correlation between genotypes and mutations in the BCP/pC
regions

Since it has previously been described that mutations in the
BCP/pC region are biased by the genotype,®'>* we analyzed the
frequencies of substitutions in the most prevalent genotypes (A, D,
F1b, and F4).

The prevalence of substitutions in the BCP region was
comparable in genotypes A, D, and F4, being slightly higher in
genotype F1b (~40% vs. 78%, respectively) (Figure 5).

Overall, mutations in the pC region abrogating HBeAg synthesis
were present in genotypes A (64.4%), D (100%), F1b (77.8%), and F4
(92.3%). However, the frequencies in different positions were
unevenly distributed: substitution 1896” was rare in genotype A
(11.8%), intermediate in genotype F1b (33.3%), and relatively high
in genotypes D (84.6%) and F4 (76.9%) (p < 0.001); whereas other
substitutions, insertions and deletions affecting HBeAg expression
were more prevalent in genotypes A (52.9%) and F1b (44.4%), as
compared to genotypes D (23.1%) and F4 (15.4%), although the
differences were not significant.

Position 1858 was a thymidine in all nucleotide sequences
corresponding to genotypes D, F1b, and F4, whereas in genotype A,
1858 was observed in all but two cases, in which it was thymidine
and coupled to 1896%.

4. Discussion

Over the last decades, many studies focusing on HBV
heterogeneity have aimed to correlate HBV mutants and the wide
spectrum of clinical and pathological conditions associated with
HBV infection; nevertheless, few of them have been centered on
inactive carriers. Although most of the HBV patients infected
chronically are inactive carriers, several virological aspects of this
state remain unclear.

In this study, the prevalence of BCP/pC variants affecting the
expression of HBeAg was characterized in 70 anti-HBe-positive
patients, 41 of whom were inactive carriers and 29 of whom were
control patients with chronic hepatitis.

We found genotypes A, D, F1b, and F4 to be the most prevalent,
as previously described in Buenos Aires.>*3° Several attempts have
been made to link a particular genotype to more severe liver
disease, but results have been controversial.*®~38 In most regions of
the world only two or three HBV genotypes are found, thereby
limiting genotype comparisons; nevertheless, genotypes C and F
have been referred to as having a worse evolution than other
genotypes.3940

Nonetheless, there were no significant differences in the
genotype distribution between inactive carriers and chronic active
hepatitis patients, perhaps because the cohort was not large
enough to infer a relationship between genotype and pathogenesis.

Mutations in the BCP/pC regions are the hallmark of chronic
HBeAg-negative and anti-HBe-positive HBV infection. In this
study, mutations affecting HBeAg expression occurred in the great
majority of individuals (92.9%). The prevalence of mutations was
widely distributed, with no significant differences between
inactive carriers and patients with chronic active hepatitis, except
for position 1764, which was more prevalent in patients with
chronic active hepatitis (p=0.038). The correlation between
disease severity and the presence or absence of mutations is
controversial. In this study none of the variants was exclusively
associated with a single clinical profile.

Interestingly, no mutations associated with the modulation of
HBeAg expression were found in five cases (7.1%). This result

suggests that the serological shift in some patients may result from
a reduction in HBeAg production due to a sustained inhibition of
HBV replication with persistence of wild-type virus.#1~43

It is well established that mutations are biased by the
genotype.®'33 The 1896" mutation is commonly found in
genotype D since it stabilizes the encapsidation signal and
potentially stimulates viral replication, whereas substitutions in
the BCP region are frequently found in genotype A. In line with
these findings, we found that the 1896* mutation was predomi-
nant in genotype D (84.6%). Nevertheless, other compensatory
substitutions in the pC region, such as alternative mutations,
insertions or deletions, were observed in genotype A (52.9%). There
is a paucity of information regarding the effect of genotype F on pC
substitutions. Interestingly, the two subtypes of genotype F
showed an uneven pattern of mutation; subtype F1b behaved
like genotype A, while F4 resembled genotype D, although both
subtypes have the 1858T.

Therefore, the mechanism that a given genotype selects to
regulate HBeAg expression is not fully explained by the structure of
the encapsidation signal.

Other mutations affecting HBeAg expression were observed; in
particular, mutations in the PIC were more prevalent among the
inactive carriers (14.6%) than among the patients with chronic
hepatitis (6.7%). These findings agree with the study carried out in
a Spanish population, where PIC mutations were found in 12.1% of
the cases and particularly associated with genotype A.**

In contrast to other single-point mutations, the PIC variants
involved the three nucleotides of the codon and the substitutions
behaved in a polymorphic manner (1816” or 18167), suggesting
that they are targeted to avoid the initiation of protein translation.
Since different mutations affecting HBeAg translation, such as
18177, 1865 T or 1896, have shown different impacts regarding
biological properties,*® it should be interesting to characterize the
phenotypic effect of the PIC variants.

Although the BCP/pC regions have been intensively character-
ized in recent decades, the PIC variants have been poorly
studied.!*446-51 We attribute this to the fact that most of these
studies have exclusively analyzed the mutations at positions 1762,
1764, 1896, and 1899, overlooking possible mutations in other
BCP/pC positions.

Interestingly, 42.9% of the individuals studied had more than
one mutation that justified the anti-HBe-positive phenotype. The
emergence of HBV variants harboring two mutations that
independently prevent HBeAg expression poses several questions
regarding their selection and biological significance during the
natural history of chronic HBV infection, since the selection of
mutations with redundant goals is unlikely.

The analysis of the relationships between different positions
showed that mutations at positions 1762 and 1764 usually coexist
and do not affect mutations in the pC region, whereas 1896
prevents other substitutions in the pC region. Interestingly,
mutations in the PIC seem to circumvent mutations in both the
BCP and pC regions. This observation suggests that the selection of
a mutation may influence the subsequent selection of another
substitution, thus conditioning the evolutionary pathway of the
virus.

There have been many studies involving viral mutations
associated with clinical features,?>>2->4 but most previous studies
have either ignored age or HBV genotype/subgenotype. Studies
where patients have been matched by age have shown that most of
these mutations are highly frequent in older HBV carriers (>50
years) regardless of their clinical status.>>=>7

In conclusion, mutations in the BCP/pC regions are the hallmark
of chronic anti-HBe-positive individuals; nevertheless, the even
distribution of mutations in active and inactive carriers suggests
that BCP/pC mutations may occur during HBV infection not strictly



M.M.G.L. Ledesma et al./International Journal of Infectious Diseases 15 (2011) e314-e320

related to the HBV infection activity. Furthermore, the uneven
distribution of mutations in the pC region observed among the
genotype F subtypes suggests that the mechanism to regulate
HBeAg expression hinges on a finely poised and complex interplay
of several factors and is not fully explained by the structure of the
encapsidation signal.

These findings prompt long-term prospective studies in large

cohorts of patients.
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