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We present a configuration-interaction (CI) method based on Sturmian functions. The components of this CI
basis are the solutions of a two-body Sturmian eigenproblem, where the eigenvalues are related to the inter-
acting potential in the two-body equation. Our method accommodates any arbitrary, physically sound, central
potential in the Sturmian equations and different adequate asymptotic conditions. Computation of eigenvalues
and eigenfunctions is performed by direct numerical discretization of the Sturmian equation. We apply this
method to obtain bound states for two-electron systems. We show the convergence of the partial-wave expan-
sion for the ground-states energies of the He atom and the H™ ion, and obtain very accurate results that are

compared with other recent CI calculations.
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I. INTRODUCTION

The configuration-interaction (CI) method has been
widely used to perform ab initio calculations of N-electron
atomic and molecular systems [1-6]. Application of the CI
procedure to atomic systems is based on the expansion of the
solutions of the Schrodinger equation in terms of antisym-
metrized products of atomic orbitals in spherical coordinates
[5]. In most of CI applications, the nucleus is at rest in the
center of the coordinate system and the electrons move in a
central potential. Thus, by means of a a multipole expansion
of the interelectronic repulsion terms, the 3N-dimensional
differential equation (one variable for each electron’s coordi-
nate) can be transformed into a coupled set of N-dimensional
differential equations, involving only the radial electron’s co-
ordinates.

The main advantage of the CI method compared with
other approaches is its simplicity and flexibility, because ab
initio calculations on two or more electron systems are rela-
tively easy. On the other hand, the CI method converges
slowly as a function of the number basis functions in the
expansion. This small convergence rate occurs in the calcu-
lation of the energy as well as other mean values of a given
atomic system, such as the average position of the electrons.

The CI method has been continuously improved along the
years. Several versions of the theory have been proposed
according to the type of basis elements and their asymptotic
behavior [7-9], the optimization of the parameters, and the
technique to solve the algebraic coupled equations.

Many basis sets in spherical coordinates have been pro-
posed within the CI approach. A very effective scheme
among the standard CI for atomic systems is based on
Laguerre-type orbitals [5], also called Coulomb Sturmian
functions (CSFs). These CSFs are discrete solutions of the
radial Schrodinger equation with a pure Coulomb interaction
where the energy is considered as a negative—externally
fixed—parameter, and the Coulomb charge assumes the role
of the eigenvalue.

The parameters of the CSF basis for two-electron CI sys-
tems are numerically optimized to obtain the best values for
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the energies [6]. In the generalized Sturmian (GS) method-
ology of Avery and collaborators [1,2,4,10-12], the param-
eters are optimized by the diagonalization process itself and
associated to the energies of the different states of the sys-
tem. The GS methodology was shown to be efficient in ob-
taining atomic bound states for two- and three-electron at-
oms, as well as in molecular systems.

It has been stated that CSFs have the correct asymptotic
behavior corresponding to the exact two-electron states (a
fact that can substantially improve the convergence of a CI
expansion) [4]. However, as we shall see in Sec. II, this is
not entirely correct. These basis functions do not have all the
same asymptotic behavior because it depends on the charge
eigenvalue.

The main aim of this work is to develop a Sturmian-based
CI method that overcomes most of the drawbacks summa-
rized in the previous paragraphs. Here we present an alterna-
tive CI methodology based on one-electron SFs. These func-
tions satisfy a two-body Sturmian equation which includes
two central potentials: a long-range one modeling the general
physical problem including the asymptotic region, plus a
short-range potential used to describe the dynamics of the
inner region where the chance to find both electrons is more
important. The strength of the short-range potential is the
eigenvalue of the problem. In this way, all the corresponding
eigenfunctions obey the same long-range asymptotic condi-
tion. Based on physical considerations, we select the para-
metric values of the atomic energies in the one-electron Stur-
mian functions to construct a CI basis for two-electron
problems. The asymptotic behavior of the basis is fixed by
setting the long-range potential of the Sturmian equation to
reproduce the asymptotic behavior of the atomic states.
High-precision numerical methods [13,14] are used to solve
the two-body radial Schrodinger equation and allows us to
deal with a great variety of atomic central potentials. We
exhibit the ability of the method by studying the partial-wave
convergence of He and H™ ground states and by comparing
our results with those obtained with CSFs by other authors.

The paper is organized as follows. In Sec. II we present
the theory for the two-particle SFs and the numerical tech-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.79.022507

RANDAZZO et al.

PN A

5 R T |
0 o -
2 ! ‘ | |

R Mﬂ” 7

= ol

o _17 H\M"@‘%A“O,"" b%

. | . | . | .
0 5 10 15 20 25

r(a.u.)

FIG. 1. First ten Coulomb Sturmian functions (CSFs) (a) and
Sturmian functions (SFs) (b). Both correspond to the choice rV(r)
=exp(—ar) and rU(r)=-Z. In panel (a) we set a=0, Z=0, and E
=—11.52 a.u. (k=4.8), while in (b) we set «=0.375, Z=2, and E
=-1.42385 a.u. We plot S, ;, with n=1,3,5,...,19, for [=0.

nique applied to solve the Sturmian equation. In Sec. III we
develop the method further to solve the two-electron
Schrodinger equation. In Sec. IV we apply the method to the
somewhat simpler S-wave model for the He atom and then to
the real He atom and H™ ion and also discuss the accuracy of
the calculations. In Sec. V we draw some conclusions and
envision other lines of future work.
We employ atomic units (m=fi=e=1) throughout.

II. TWO-BODY STURMIAN FUNCTIONS
A. Theory

The aim of this section is to present the general theory of
two-particle Sturmian functions as well as the method we use
to solve the Sturmian equation (see Fig. 1).

The starting point of the problem is the two-body
Schrodinger equation

[— VU0 - E]wm =BV, ()

where v stands for all quantum numbers. The potential U,
which we shall name auxiliary from now on, is either a long-
range—e.g., Coulomb—potential or a central short-range po-
tential. The potential V plays an important role in our discus-
sion, and it will be referenced as the generating potential. It
is a central short-range potential, which vanishes in the outer
region r>R.

The physical boundary conditions associated with the
Schrodinger equation are

r¥ . (r) -0 forr—0, (2)

rV (r) — bounded for r — . (3)

The Sturmian problem is defined by Eq. (1) and the condi-
tions (2) and (3), taking the energy E as a fixed parameter
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and S, as the eigenvalue. The solutions of this Sturmian
equation represent, in the outer region, a particle of energy E
moving in the outer region of the potential U.

The auxiliary and generating potentials only depend on
the radial coordinate r, and hence Eq. (1) is separable in
spherical coordinates. With a standard notation, we propose
the following definition for W (r):

1
\I’V(r) = ;Sn,l(r) Yl,m(av QD) . (4)

Thus, we only have to solve
[Tr + U(}’) - E]Sn,l(r) =- Bn,lv(r)sn,l(r) (5)
for S, (r), where T, is the radial kinetic energy operator:

14 1(l+1)
=5+ 5.
2dr 2r

(6)

The boundary condition (2) sets the regularity of the Stur-
mian functions at the origin of coordinates, where the poten-
tials V and U might be divergent. The boundary condition (3)
is responsible for the discretization of the eigenvalues 3, ; for
negative values of the energy E, which can be labeled with a
discrete index n=1,2,3,.... Note that the asymptotic behav-
ior of the wave function is controlled by the auxiliary poten-
tial U. For large distances, where the potential V' vanishes,
the radial Sturmian equation (5) reduces to

[T,+U(r) - E]S, (1) =0 for r>R. (7)

Therefore, the solutions S, () of the radial Sturmian equa-
tion will present all the same asymptotic behavior. On the
one hand, if U is also a short-range potential (U=0 for r
> R), the asymptotic solutions of (7) will be proportional to

exp(— kr) for r — o, (8)

where k= V“’M. On the other hand, if U is solely Coulombic
in the region r>R [i.e., with the well defined form U(r)
=-Z/r for r— ], then the solutions of (7) will behave as

[15]
exp(— KT+ % ln(ZKr)) for r — oo, 9)

One can write down the conditions (8) and (9) as

ds
[#(X)+KS”J(X):| =0, r—om, (10)
X=r
ds VA
[%(X)-’-(K_E)S"’Z(X)] =0, r—ow, (11)

respectively. The condition (10) was given by Ovchinnikov
and Macek, but is adapted here to negative energies [16].
The condition (11) is the extension to long-range potentials.
In this work we assume that the energy E is negative.

Note at this point that these Sturmian functions can be
reduced to the Coulomb Sturmian ones setting U=0 and V

=—%€r in the limit € — 0. As described by many authors (see,
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e.g., [16]), the definition of B,; in terms of the negative
energy is f3,,=nk, while the asymptotic behavior of the
CSFs Sc,,/(r) for large r is

Scni(r) — expl— kr+n1n(2kr)] = (2kr)" exp(- ).
(12)

Let us now emphasize the main difference between the set of
Sturmian functions S, ; and the Coulomb Sturmian functions
Sc.n.i(r). Equation (9) is the asymptotic behavior of the solu-
tions of the Sturmian equation with boundary conditions (2)
and (11). These functions have a fixed and well-defined loga-
rithmic factor modifying the exponentially decaying behav-
ior exp(—«r) of the bound states, which is the same for all
basis elements. However, this logarithmic term changes from
one CSF basis element to another; see Eq. (12). This depen-
dence of the asymptotic behavior on the charge itself is an
important issue to be considered in the use of these functions
in many-electron atoms. As we will demonstrate in the fol-
lowing sections, the unique (and adequate) asymptotic be-
havior of the SFs improves the convergence of the basis
respect to the CSFs.

Finally, we would like to remind the reader that the eigen-
functions W,(r) which are solutions of Eq. (1), with condi-
tions (2) and (3), satisfy potential-weighted orthogonality
conditions. We choose the normalization constant such that
the orthonormality condition

(VW) = f eV OV, ) =6,, (13)
and the closure relation
2 V)W (r)V(r) = 8(r—r1) (14)
are satisfied.

B. Numerical solutions of the radial Sturmian equation

There exists only a small number of interaction potentials
for which analytical solutions of Eq. (5) are known in closed
form [17]. Moreover, in most cases only the /=0 solution is
known. Thus, to be able to generate Sturmian basis sets for
general potentials, it is necessary to develop a numerical
method to solve Eq. (5) for the radial Sturmian functions.

To this end, we propose a discretization of the wave func-
tion S, ,(r):

S,,,/(ri)ESi, i=0,1,...,N,—1, (15)

in the uniform radial grid r;=i Ar (the quantum numbers [
and n are suppressed for brevity). The function S; is then
defined up to a given radius R=N, Ar, such that V(r)=0 for
r>R. Within the finite-difference scheme, we can approxi-
mate the second-order derivative in Eq. (5) up to O(Ar?) by

Sy r) 1

a2 AV‘Z[SHI —28;+ 5,11+ O(Ar) (16)

and Eq. (5) reads
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U I
QAR AR
=- Bn,lv(ri)si+ o(AP). (17)

L (I+1)
! Ar? 272

1

+U(r,)—E Si

We write this finite recurrence relation in matrix form as
[H-EI]s=-B,,Vs, (18)

where s is the vector with elements §;, i=1,...,N,, I is the
identity matrix, and V is the diagonal matrix with elements
V,;;=V(r;). The symmetric tridiagonal matrix H has off-
diagonal elements H;; ;=H;; = while the diagonal
ones are

1t
2 AP2°

I I+1)
i=h; P*‘Z—r?*‘U(h‘)- (19)
The boundary condition given by (2) is applied to the Stur-
mian functions by setting S_;=0 numerically. At r=R, box
boundary conditions can set by the condition SNr+l =0, which
makes the basis useful for bound states whose radial dimen-
sions are considerably smaller than R. Alternatively, the ex-
ponentially decreasing behavior given by Eq. (9) can be im-
posed on the Sturmian functions. To this end, we need a
linear relation between SNr and SN,+1~ Assuming that the
wave functions behave as (9) except maybe for a constant
multiplying factor, we can obtain such a linear relation
through the ratio between § N+1 and S N

11 Svn
Cy=———
TT2AR sy

VA
| exp|:— Kry 41+ — In(2kry +1):|
1 r r

K
2 AP Z
exp| — kry + — 1n(2KrNr)
K
11 Z TNl
=————exp| —kAr+—1In . (20)
2A° K Ty

Thus, an approximate solution with the exact boundary con-
dition can be obtained from Eq. (18), making the replace-
ment

hy — hy +Cy . (21)

If we multiply Eq. (18) from the left by the inverse of the
diagonal potential matrix V!, we obtain a standard tridiago-
nal eigenvalue problem, whose -eigenfunctions have
impenetrable-box boundary conditions at the origin and
impenetrable-box boundary condition or exponentially de-
caying behavior at R given by Eq. (9). These eigenvalues are
obtained by means of iterative algorithms [18], based on se-
quential orthogonal rotations of the tridiagonal matrix. These
procedures concentrate the computational effort on a given
number of eigenvalues in increasing order of magnitude.
Calculation of the corresponding eigenvectors is performed
through inverse iteration algorithms [19]. Once the values of
all eigenvectors have been obtained for each grid point r;, we
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apply a spline interpolation to define the basis function for
any value r in the entire region 0 <r<R.

To obtain more accurate results, we have also developed a
finite-difference scheme of order O(Ar*), which leads to a
pentadiagonal matrix eigenvalue problem [20]. In Sec. III we
will compare the precision of the calculation of the atomic
energies with the basis evaluated with both the O(Ar?) and
O(Ar*) schemes.

III. METHOD FOR TWO-ELECTRON SYSTEMS

The Schrodinger equation for two-electron atomic sys-
tems is

z 7Z 1
———+—-F \I’(rl,rz)=0.
ry r TInp

oo 1w
— VI -oVi -
(22)

We make use of a Cl-style expansion to obtain the solution,
where an eigenstate of the total angular momentum operator
is written as a superposition of independent electron func-
tions. The solution of this three-body Schrodinger equation is
written as

N
\Pé‘M(rl,rz) = 2 aﬁ’M’Sq)ﬁj?(rl,rz), (23)
14

where v={l,,1,,n,,n,} represents the angular momentum
and radial quantum numbers of the electronic configurations
a and b. The coefficients of the expansion a""** depend on
the quantum numbers v, as well as on the total spin S, angu-
lar momentum L, and its projection M along a fixed axis Z.
The basis elements CDﬁ:g” (ry,r,) are written in terms of our
Sturmian functions:

n l( 1) ”hll

Vs(l'l,l'z) As——— yL (1'1,1'2) (24)

r

The operator Ayg is defined as

1
AgF(ry,r;) = E[F(rl’rz) + (= 1)5F(rpr))] (25)

and introduces the symmetry of the Pauli exclusion principle
according to the spin state considered (S=0 for singlets and
§=1 for triplets). The functions S, , (r;) and S, ;(r;) (i
=1,2) are one-electron radial solutions of Eq. (5) with pa-
rameters {n,,l,,E,,Z,} and {n,,l,,E,,Z,}, respectively.

Note that since the parameters involved in the radial equa-
tion (5) can be different for each atomic configuration a or b,
also the potentials U and V can have different functional
behaviors. In such a case we should label them as U; and V,,
where i=a, b. For the atomic systems considered in this re-
port (see next sections), it is convenient to assume the same
functional behavior for each electronic configuration, while
U is a pure Coulomb potential—i.e., Z,=Z,=Z and U,=U,
==Z/r.

The angular terms of Eq. (24) are bispherical harmonic
functions [21], which can be written as a linear combination
of products of the spherical harmonics Y,,,. For a given L,
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the indices 1, (,) run over the values that satisfy the trian-
gular selection rule |L—1,|<[,<|L+1,] (|L=1,|<l,<|L+1}))
and parity conservation (—1)"=(=1)l*% where I1=1,0. To
avoid redundancies in the expansion (which can produce in-
stabilities in the linear system to be solved), we let n, and n,
run from 1 to their numerical limits N, and N,,, except when
l,=1,, where n, starts at ny=n,+[1-(=1)5]/2. N is the num-
ber of basis elements employed in the expansion of Eq. (23),
and the basis achieves theoretical completeness in the limit
N — oo,

Inserting Eq. (23) into Eq. (22) and making use of Eq. (5),
we get

1
2 au[r_ - Ve(rl,rz)]q)ﬁjﬁd(rl,rz)
12

14

=X a(E-E,~ E)®"¥(r 1)), (26)

where V, is the operator which acts over Q’,ng'l as

Ve(rl’rZ)(DIIZ.[S"/I(rl?rZ) = AS(ﬁn wla V(rl) + Bn[ A, V(rZ))

'1 Sn
St S »yL ier

r
(27)

One can see from (26) that the kinetic energy operators are
removed from (22) because they are exactly diagonalized by
the Sturmian functions. Besides, we recall that the auxiliary
potentials were defined as Coulomb potentials —Z/r; and are
also removed from Eq. (22).

Projecting from the left onto the basis elements ® ,N;, we

end up with the N X N generalized eigenvalue problem

[V,,—V,]Ja=EOa, (28)

which can be cast into the standard eigenvalue problem

Ha=FEa. (29)

where H=0" 1[V12—Ve]. V., is the matrix with elements
|—|<I> &), the matrix V, has elements (®%;"|V, /D54

T2
and "0 is the overlap matrix, whose elements are

(@5% @ﬁ:ﬁy). From the eigenvalues E we extract the un-

known eigenenergies as E=E+Ea+Eb.

Since the matrix elements of V, and O are separable in
the coordinate, the six-dimensional integrals involved in
these calculations can be reduced to 2 three-dimensional
ones. Besides, the angular part of each of these three-
dimensional integrals can be performed analytically. Calcu-
lation of the matrix elements V, involves a six-dimensional
integral, which can be separated by means of a multipole
decomposition of the interelectronic repulsion term %12 [22].
The angular part of the V, matrix elements has an analytical
expression in terms of the Clebsch-Gordan coefficients. The
two-dimensional radial integrals can be split into 2 one-
dimensional integrals through a numerically stable decompo-
sition [23]. All remaining radial integrals are computed nu-
merically by means of Gauss-Legendre quadratures.
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FIG. 2. (a) Ground-state energy obtained for He in the S-wave model, as a function of the parameter a of the Yukawa potential V
=exp(—ar)/r, which generates the Sturmian basis. The calculations were done with 20 Sturmian functions for each radial coordinate. (b)
Behavior of the ground-state wave function of the He atom in the S-wave model, as a function of one of the coordinates, when the other one
is fixed at 0.1 a.u. The figure also shows the behavior of the Yukawa potential with @=0.375 [a value close to the minimum in the curve

shown in (a)]. See text for details.

IV. APPLICATIONS TO THE He AND H™ SYSTEMS

In this section we apply the methodology described above
to the study of two-electron atomic systems. We will focus
the discussion on the role of the basis parameters in the cal-
culation of the ground states of He and H™ systems.

A. Choice of basis parameters

There are a few basis parameters to be defined before
performing any calculation. The range of the generating po-
tential V, e.g., is set according to the system to be studied. As
we shall see below, the introduction of this finite-range po-
tential is mainly responsible for the improvement of the con-
vergence rate of the method. Other basis parameters to be set
are the asymptotic charges, included in the basis through the
auxiliary potential U, and the energies. For symmetric states
such as the He ground state, we may find adequate a sym-
metric basis with E,=E,=E,/2 and Z,=Z,=2, where E| is
an a priori estimate of the energy. For asymmetric states, the
choice E,#E, and/or Z,# Z, obtained from physical as-
sumptions could be more adequate.

Note that the value E, can be redefined after the diago-
nalization procedure and fed back in again iteratively until
convergence. It is not the aim of this work to perform these
kinds of calculations because we found that better absolute
accuracy can always be reached increasing the basis size.
Therefore, we study here the optimization of the range of the
potential, the number of basis elements, and the grid size. We
make use of a simple S-wave model of two-electron atoms to
show the flexibility of the basis set and the convergence
properties of our method.

Let us start our analysis with the choice of the parameters
for the basis generation. Any simple model can be used to set
up the initial values of the basis parameters. The GS expan-
sion with only one basis element given in Ref. [10] could be
considered as a good starting point. Within this approach, the

approximate solution for the ground state of a two-electron
atom is

k3
¢V(r1’r2) = _:e_k#(r1+r2)7 (30)

where k# is found to be

Po 5
k,="==7-—. 31
LT\ 16 G

The energy of the system is E,,,=—5

—5 . For He atoms, Z=2
and the model gives ng;) =-2.8477 a.u., while kELHe)
=1.6875 a.u. For the H™ ion, Z=1, the energy E(a}p’;)
=-0.4726 a.u., and k,=0.6875 a.u. We set our Sturmian ba-
sis to have energies E;=E,=E,,,/2 as the starting point of
the calculations.

It should be noticed that not only does the energy of the
basis have to be set to an initially optimized value, but also
the range of the potential V of Eq. (1). The generating po-
tential has to go to zero at large distances fast enough so that
the asymptotic behavior of the SFs corresponds to the behav-
ior of the atomic state—i.e., an electron moving in a purely
Coulomb potential of optimal charge. After some tests, the
short-range potential that we found most adequate is the
Yukawa potential V(r)=exp(—ar)/r. The parameter a de-
fines the range of the potential and can be varied according
to the state in study. All Sturmian functions obtained with
this potential have the same asymptotic behavior, which is
determined by the auxiliary potential.

The effect of the use of a short-range potential to generate
the eigenfunctions is shown in Fig. 2(a). It displays the result
of a calculation of the ground-state energy of the He atom in
the S-wave model, as a function of the parameter « of the
Yukawa potential [remember that in our case V,=V,
=exp(—ar)/r] and where the value of the individual-electron
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FIG. 3. Performance of the different numerical finite-difference schemes as a function of the basis size N for various grid sizes Ar. We
define OE as the difference between the computed S-wave He ground-state energy and E,..=-2.879028767 a.u., a very accurate result
obtained by Goldman [24]. (a) O(Ar?) scheme [Eq. (17)] and (b) O(Ar*) scheme (Ref. [20]). The best value obtained was

—2.8790287655 a.u., with N=5565.

energies is E,,,/2. We can see that the curve has a minimum
close to @=0.375. For any value of the eigenvalue 3, all the
SFs reach their asymptotic behavior at approximately r
=6 a.u., where V=0.018 a.u. This is consistent with the size
of the He ground state in the S-wave model [see Fig. 2(b)].

Note that the energy increases rapidly when « increases,
because the basis is not efficient to describe large regions of
the space. In that case, the ground state cannot be efficiently
represented and the basis becomes formally inadequate. On
the other hand, as a«— 0 the potential becomes Coulombic
(long range) and the basis range is much larger. This is re-
flected by the fact that the energy reaches a well-defined
value, which corresponds to that obtained with CSFs.

B. Numerical precision

As already mentioned, we obtain the basis by numerical
methods, so that their inaccuracy is a source of error in ap-
plications for two-electron wave function calculations.

We first note that the calculation of the two-body basis
elements involves the diagonalization of a tridiagonal or pen-
tadiagonal matrix. The eigenvalue problem consumes small
memory resources, and it can be solved using very large
grids, of the order of N,~ 10°, in present personal computers.
If we choose, for example, a radial domain of 50 atomic
units and we set N,=5 X 10°, the grid step size is Ar=107%,
This means that the second derivative term of Eq. (16) has a
local error of order 1078, This error decreases if we represent
states with spatial dimensions smaller than 50 a.u. or in-
creases for highly excited states. However, values of Ar too
small often lead to a loss of numerical precision, due to the
iterative eigenvalue and eigenvector algorithm, as illustrated
in the next paragraphs.

A practical test to study the precision of a two-electron
calculation is the evaluation of the He ground-state energy in
the S-wave model, with different radial grid sizes Ar. We
first recall that the numerical error g, implicit in the finite-

difference method depends on Ar. The matrix elements of
Eq. (28) involve the integration of the basis functions and
their implicit error. We use Gauss-Legendre quadrature,
which by far exceeds the precision of the numerical SFs. It
immediately follows the error in the matrix elements of Eq.
(29) is also of order €,, and then our eigenvalue problem can
be written as

(H+R)a=Fa, (32)

where R is an error matrix with elements of order ¢,. If a’
are the exact eigenvectors (those that would be obtained if
£,=0), it can be shown [8,23] that they satisfy the condition

N
laHa-a''Ha'| < v/ >, R} +max(|R;)
j=1

< max(|Rjj|)(\W+ 1)
=&, (\N+1), (33)

where N is the size of the matrix H. Figure 3 shows the
differences between the calculated S-wave energy and the 21
digits of absolute accuracy value given by Goldman [24],
versus the order of the matrix H.

Figure 3(a) shows the results evaluated with the finite-
difference method of Eq. (17). We see that all eigenvalues
are below the limit imposed by inequality (33) and that all
curves tend to a stationary value which decreases as Ar de-
creases. In the curve corresponding to Ar=0.01 in Fig. 3(b),
the decreasing behavior is interrupted for N=1000 and it
increases from there onward. Curves for small Ar do not
present such behavior, and the discrepancies from the Gold-
man’s value are smaller than those of Fig. 3(a). However, we
have to point out, unlike the results found in Fig. 3(a), cal-
culations with Ar=0.0005 and a O(Ar*) scheme reach the
smallest discrepancy for N=5050 and then increase as Ar
decreases [Fig. 3(b)]. This anomalous behavior could be
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TABLE 1. Partial-wave analysis of the He ground state. L; (i=a,b) is the maximum angular momentum
quantum numbers considered for each electron. The second and third columns show calculations with 20 SFs
and CSFs per L;, respectively, while the fourth column uses 40 CSFs. We also show our best variational value

(BVV) (see text).

He ground-state energy (in atomic units)

L; Present work Ref. [6] Ref. [23]

0 -2.879 028 654 —-2.879 028 507 (A=4.8) -2.879 027 97
1 -2.900 515957 -2.900515 873 (A=7.8) -2.900513 86
2 -2.902 766 371 -2.902 766 378 (A=10.1) -2.902 762 09
3 -2.903 320 378 -2.903 320 527 (\=12.1) -2.903 31321
4 -2.903 517 659 -2.903 517973 (A=14.0) —2.903 506 82
5 -2.903 604 533 —2.903 605 022 (A=15.5) -2.903 589 25
6 -2.903 648 475 -2.903 649 142 (\=17.1) -2.903 628 16
7 -2.903 672975 -2.903 673 821 (A=18.7) -2.903 661 00
8 -2.903 687 656 —2.903 688 677 (A=20.1)

9 -2.903 696 951 —2.903 698 142 (A=21.5)

10 -2.903 703 098 —2.903704 451 (A=22.9)

11 -2.903 707 307 —2.903708 815 (A=24.2)

12 -2.903 710272 -2.903 711927 (\=25.5)

BVV (L;=12) -2.903 712 009

Exact [25] -2.903 724 377

Exact, L;=0 [24] —2.879 028 767

traced back in the inverse-iteration algorithms which are
used to evaluate the eigenfunctions, whose performance
worsens when Ar is too small.

In summary, the theoretical limit of our calculation is
Ar4(\rw+ 1), which for Ar=0.0005 and N=5050 corresponds
to the very small value of 4.5 X 1072, However, by incidence
of the iterative methods, the absolute accuracy reduces fi-
nally to about 1X 107

C. Partial-wave results

In Table I we show the ground-state energy of the He as a
function of the maximum angular momentum L; (0=,
<L,;) (i=a,b) for each configuration. These results were ob-
tained with 20 SFs per angular momentum quantum number
l;, generated by the Yukawa potential with «=0.375, the ab-
scissa of the minimum of the curve shown in Fig. 2. Also, we
set the parametric energy in the Sturmian equation (1) E;
=E,,,/2=-1.433 85 a.u. for both electrons, obtained from
Avery’s model. The calculation was performed up to L;=12,
for which the maximum (symmetrized) basis size was N
=2520. We use 30 000 equally spaced radial grid points to
generate the basis, starting from r=0 and ending at r
=15 a.u., which corresponds to Ar=0.0005. According to the
discussion of the previous section, we can estimate an abso-
lute accuracy of 1 X 10~ for the total energies. We compare
our results with those of Foumouo and collaborators [23],
which were obtained with 40 radial CSFs per [; for each
electron, and also with those of Bromley and Mitroy [6],
who used 20 radial functions per /; for each electron. Those
authors used a symmetric basis composed of products of
Laguerre-type orbitals (CSFs) with special choices of the

scaling parameter \. In the work of Foumouo er al., that
parameter is fixed to a particular value, while in the work of
Bromley and Mitroy it is varied separately for each [; [6] (12
variational parameters for the best value obtained with 20
single-electron orbitals per [; for L;=12). In both cases the
use of Laguerre basis functions implies that the asymptotic
behavior of the basis is not the one associated with the state
that they are expanding, since the Coulombic logarithmic
phase associated with the CSFs changes from one basis ele-
ment to the other (see Sec. II A). This is not the case of our
basis set where all the elements have the same asymptotic
behavior, an exponential factor times a logarithmic phase.
Note that we obtain better results for L;=0 than those of
Bromley and Mitroy (for the L;=0 and L;=1 partial-wave
terms) and than those of Foumouo er al. (for all partial
waves), even though we have just only one optimal param-
eter (). To obtain better values for L; up to 12, we have to
perform a new optimization over « and/or other parameters.
We found that a new optimization over a was not sufficient
to reproduce the accuracy of Bromley and Mitroy, so that we
also vary the energy of the SF basis. We found that by setting
a=0.795 and E=1.05 a.u., the energy for the 12 partial-wave
energy terms is —2.903 712 009 a.u., which is in better agree-
ment with the exact value than all the calculations we are
comparing with. It should also be noted that this last calcu-
lation was performed adjusting both the asymptotic behavior
of the basis set (E) and the region where it is applied through
a. The optimization of these two physical basis parameters is
enough to avoid the complete optimization procedure imple-
mented by Bromley and Mitroy. Moreover, this optimization
is possible within our method also by taking the charge of U
as an optimization parameter. To exactly reproduce the re-
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TABLE II. Partial-wave analysis of the H™ ground state. L; (i
=a,b) is the maximum angular momentum quantum numbers con-
sidered for each electron. The numerically exact value is taken from
Ref. [26]. See text for discussion.

H~ ground-state energy (in atomic units)

L; E; a Present work Ref. [23]

0 -1.25 0425 —0.514 496 258 —-0.514 496 14
1 -1.15 0.425 —0.526 584 655 —-0.526 584 10
2 -1.05 045 —-0.527 438 491 —0.527 437 44
3 -1.05 0.9 —-0.527 625 592 -0.527 623 91
4 -1.05 0.9 —-0.527 688 280 —-0.527 686 18
5 -1.05 0.9 -0.527 715 221 -0.527712 15

Exact [26] -0.527 751 016 35

sults of Bromley and Mitroy (and those of Foumouo also) we
should set a=0, Z=0,' and E=—\?/2 in the Sturmian equa-
tion for each partial wave. However, according the values
of N given in Table I, the best choices of the basis ener-
gies would range from E=-11.52 au. for [;j=0 to E
=-325.125 a.u. for [;=12, values that are not related to the
asymptotic behavior of the He ground state at all.

We can see from the results presented in Table I that our
method achieves better He ground-state energy values than
Foumouo and collaborators, even when we are using half of
the basis elements per electron than they use. This improve-
ment in the convergence respect to their basis is not evident
in the H™ case shown in Table II, where we used also 40 SFs
for each electron per L; to obtain comparable results, al-
though our method provides another significant figure. This
is because the spatial extension of the fundamental H™ state
is larger than in the case of He. Then, the best choice of « for
the Sturmian energy parameter given by Avery’s model
(0.2363) is very small (we used a=0.05 to obtain the results
of Table II). Hence the basis of Foumouo and collaborators
does not differ too much from our Sturmian set. They use a A
parameter (which they call k) of 1.0, which can be associated
with an energy of 0.5, twice our value. We also remark that
Avery’s model for the H™ system is not very realistic, be-
cause it does not give an adequate model for the bound state
of the H™ ion [10]. Through an optimization procedure we
found the best energy value for L;=0 to be
—0.514 496 301 1 a.u. with an energy basis parameter equal
to —0.0075.

Excited-state energies can also be obtained easily with the
diagonalization procedure presented here. However, we note
that the region used to evaluate these states has to be large
enough. With a larger R both ground and excited states are
properly obtained. An optimization of the basis energy as
suggested by Avery can be easily implemented, leading to a
very good energies and states [4]. Although in the calcula-
tions presented in this report we always use symmetric basis
sets, it could be better for other states and systems to choose

1Actually, if a=0, the value of Z has no effect, since in that case
it will always be related to E and 3 through 8+Z=v-2E.
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different sets of parameters for each electron, especially in
the case of asymmetric states such as the highly excited
states of two-electron atoms or even also for the H™ bound
state. We emphasize that our method can easily accommo-
date these asymmetric conditions, and its application to the
study of excited and scattering states will be soon presented
elsewhere.

V. CONCLUDING REMARKS

We have proposed a method to deal with two-electron
atomic systems based on Sturmian functions. Although in
this paper we centered our attention on bound states, our
theoretical approach is also valid for continuum ones. To the
best of our knowledge, a method to generate Sturmian func-
tions for any type of central potentials both for positive and
negative energies has not been presented before; this consti-
tutes one of the main results of our paper.

We presented the set of Sturmian functions and the meth-
odology developed to generate them. The method allowed us
to generate Sturmian functions for any type of central poten-
tial. In particular, the system of functions proposed in this
report is the solution of a Schrédinger equation with an in-
teraction potential written as a sum of two terms. The first
term (the auxiliary potential) includes either short- or long-
range potentials. The second term (the generating potential),
which is a short-range potential, is specifically used to gen-
erate the set of Sturmian eigenvalues and eigenvectors. The
asymptotic behavior of the functions is defined by the auxil-
iary potential. Different types of boundary conditions can be
fixed at large distances, which is another advantage of our
method. The well-known Coulomb Sturmian functions con-
stitute just one particular case and can be easily obtained
within our approach.

A properly symmetrized product of one-electron Sturmian
functions was used to generate the basis of the configuration
space for two-electron systems. The three-body problem was
then reduced to a standard eigenvalue problem for the coef-
ficients of the expansion.

To exhibit the benefits of a CI scheme with these Stur-
mian functions, we explored different ground states common
in atomic physics. First, since our method enables us to set
the range of the generating potential freely, we analyzed the
optimization of this parameter in the context of the spheri-
cally symmetric S-wave model He. The accuracy of the basis
set was also analyzed in this particular system for different
numerical schemes. We have clearly shown that the optimi-
zation of this potential leads to an enhancement of the rate of
convergence of the energies and wave functions. This was
verified by comparing our results obtained with those of Fou-
mouo ef al. [23] and Bromley and Mitroy [6].

To perform a partial-wave analysis, we studied the bound
states of the He atom and the H™ ion. We showed that using
a much smaller basis than Foumouo et al. [23], we could get
better energies for the He case. Besides, our energies were
more accurate than those presented by Bromley and Mitroy
[6] for the same basis size, even when they used different
variational parameters for each partial wave. Our optimized
result for the H™ ground-state energy is in excellent agree-
ment with the exact result, beyond the standard CSFs of
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Foumouo and co-workers. However, the improvement was
not as significant as in the case of the He system, because the
optimal Sturmian functions are similar to the CSFs.

Calculations with different Sturmian basis for each elec-
tron’s coordinate (asymmetric basis sets) require further
studies and will be presented elsewhere. Furthermore, the use
of other generating potentials could be more convenient for
those purposes, and that will be a matter of future investiga-
tions.
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