
Journal of International Technology and Information Management Journal of International Technology and Information Management

Volume 28 Issue 1 Article 3

5-1-2019

The Use of Generic Scripting in Certain Application Development The Use of Generic Scripting in Certain Application Development

Projects Projects

Vance Allen Etnyre
University of Houston-Clear Lake, etnyre@uhcl.edu

Jian Denny Lin
University of Houston-Clear Lake, linjian@uhcl.edu

Nanfei Sun
University of Houston Clear Lake, sun@uhcl.edu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim

 Part of the Business Intelligence Commons, Computer and Systems Architecture Commons, E-

Commerce Commons, Information Literacy Commons, Management Information Systems Commons,

Management Sciences and Quantitative Methods Commons, Operational Research Commons, Science

and Technology Studies Commons, and the Technology and Innovation Commons

Recommended Citation Recommended Citation
Etnyre, Vance Allen; Lin, Jian Denny; and Sun, Nanfei (2019) "The Use of Generic Scripting in Certain
Application Development Projects," Journal of International Technology and Information Management:
Vol. 28 : Iss. 1 , Article 3.
Available at: https://scholarworks.lib.csusb.edu/jitim/vol28/iss1/3

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion
in Journal of International Technology and Information Management by an authorized editor of CSUSB
ScholarWorks. For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/jitim
https://scholarworks.lib.csusb.edu/jitim/vol28
https://scholarworks.lib.csusb.edu/jitim/vol28/iss1
https://scholarworks.lib.csusb.edu/jitim/vol28/iss1/3
https://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1326?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/624?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/624?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1243?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/jitim/vol28/iss1/3?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 52 ISSN: 1941-6679-On-line Copy

The Use of Generic Scripting in Certain Application

Development Projects

Vance Allen Etnyre

(University of Houston-Clear Lake)

Jian (Denny) Lin

(University of Houston-Clear Lake)

Nanfei Sun

(University of Houston Clear Lake)

ABSTRACT

This article discusses generic scripting, a useful scripting technology for

developing applications. In its simplest use, generic scripting can be used as a

documentation tool to replace flowcharting or pseudocode. in certain situations,

generic scripting can lead directly to a working application without the need to

write, compile and test a new program. Generic scripting is discussed as a tool

which can be used in logical design, detailed design and implementation of a new

application. An example is presented to show how generic scripting can be used by

non-programmers to simplify the development of applications. This example is used

to teach business processes at the authors’ university.

Keywords: Generic Scripting, Application Design, Process Documentation, Data

Analysis, Application Development

INTRODUCTION

Generic scripting is a tool which can be used in several phases of the application

development process. In application development, best practices include at least

three steps: Logical Design; Detailed Design and Implementation of the design.

Sometime these steps are done in purely sequential order starting with logical

design and continuing through detailed design and ending with implementation.

Sometimes these steps are used in an iterative or cyclical fashion where

implementation of one aspect of the system opens questions and options for the

design or implementation of other parts of the system. Agile development methods

follow the iterative development approach. A recent trend in system development

Journal of International Technology and Information Management Volume 28, Number 1 2019

©International Information Management Association, Inc. 2017 53 ISSN: 1941-6679-On-line Copy

is to provide very simple user interfaces which allow non-programming users to

execute common tasks without having to write a program. Generic scripting follows

the trend toward iterative development and the trend toward simplified use by non-

programming end users.

In the logical design phase, generic scripting can be used to identify and document

the logical steps to be followed to complete an application much like the

development of a recipe can lead to the successful introduction of a new meal in a

restaurant. Generic scripting can be used to identify and define components used in

the process just as a list of ingredients would be included in a recipe. Steps in the

development process would be listed to complete the general design of the process

just as steps would be listed in a recipe. Details would be added to convert the

general design to a detailed design for both the application and the recipe. When

the design process is complete, the application can be assigned to teams to complete

the creation and testing of the application (or the new restaurant offering).

The script interpreter/implementor module must be embedded in or attached to an

execution platform. The designer of the interpreter module should specify which

scripting mechanisms will be handled by that module. Features which should be

supported include: commenting; condition testing; repetition of execution and

interactions with data sources. Details of these features are discussed further in

appendix B of this paper. There must be a feature for defining variables and

procedures. Applications usually contain a mixture of common procedures and

unique procedures. As blocks of script are developed to create and implement

specific steps in a development process, these blocks can be stored and then reused

in other situations.

For reusable scripts to be effective there must be mechanisms to allow the saving

of scripts, insertion of script blocks and the execution of defined procedures. Tested

and stored blocks can be inserted into other script blocks or can be executed on

command to perform common functions. These reusable blocks reduce the time

needed to create detailed designs for each logical design. The script example shown

in appendix A of this paper shows how stored script blocks can be inserted into.

The following section discusses common uses and common features of traditional

scripting languages. An example of a generic scripting application follows that

discussion.

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 54 ISSN: 1941-6679-On-line Copy

OVERVIEW OF TRADITIONAL SCRIPTING LANGUAGES

In computer systems discussions, scripting refers to a command structure which

allows programmers or users to write instructions which can be interpreted and

executed to develop and implement applications. There are several popular

scripting languages used in application development. JavaScript is very popular in

the development of web-based applications. PL-SQL is a scripting language used

to create and modify Oracle databases. Perl provides powerful text processing

facilities to manipulate text files. Python, one of the most popular programming

languages today, is widely used in Data Analysis, Web Designs and other general-

purpose programming.

Scripting languages are designed for different tasks than are general programming

languages or system programming languages, such as Java or C#. System

programming languages are designed for building data structures and algorithms

from scratch, starting from the most primitive computer elements such as words of

memory. In contrast, scripting languages are designed for gluing: They assume the

existence of a set of powerful components and are intended primarily for connecting

components [Ousterhout, 1998]. Because of the existence of the prefabricated

components, scripting languages provide means to build flexible applications

quickly.

Scripting languages are often interpreted rather than compiled. A special program

called an interpreter directly converts the script into execution steps on the

computer, such that the execution of tasks could alternatively be executed one-by-

one by a human operator.

Specific scripting languages have been used to implement specific tasks in a variety

of systems [Beazley, 1996; Beazley and Lomdahl, 1997; Bakker and Jain, 2002;

Arafa et al., 2003; Furr et al., 2009; Williams et al., 2010]. In [Casey et al., 2005],

the researchers are focusing on super node implementations. Also, many of

researches are conducted to reduce or eliminate dynamic type checks in compilers

or virtual machines for dynamically typed languages [Ertl et al., 2002; Biggar et al.,

2009; Gal et al., 2009; Rigo, 2004].

In the business domain, SAP script is the SAP System's own text-processing

system. It is used to print pre-formatted text in pre-formatted forms.

Journal of International Technology and Information Management Volume 28, Number 1 2019

©International Information Management Association, Inc. 2017 55 ISSN: 1941-6679-On-line Copy

WHEN IS GENERIC SCRIPTING USEFUL?

Generic scripting is most effective when it can be quickly transformed into actions.

One way to do this is to have a programmer who is familiar with the scripting

language use his or her programming skills to translate the script into programming

statements. Then the programming statements can be compiled and tested. After

successful testing, the program can be integrated into the existing system to produce

the required output.

When a programmer translates a detailed design script into computer \source code",

then another device (a compiler) must be used to translate (compile) the source code

into executable code and the executable code must be added to the structure of

executable code available for use within the system. To maintain system integrity,

the new scope of executable code must be published (made available) to legitimate

users of the system. If the new application will be reused within the system, the

newly rebuilt system will require additional documentation and maintenance. If

there is very little expectation that the new application will be reused within the

system, then the efforts to rebuild the system and provide additional documentation

and maintenance will not be justified.

As an alternative, scripting languages might be used in a system with an embedded

interpreter which can execute scripts directly to produce the required output. Such

a system would not require a new program to be written, compiled, tested and then

implemented. This eliminates the need to rebuild or reconfigure the production

system for each new ad hoc application.

It should be noted that interpreters for generic scripts are not optimized for

performance. If performance is important, compiled code should be used. When an

application will be used frequently, the overhead of creating compiled code and

rebuilding the system is often justified by the additional efficiency of the compiled

code.

Data analysis packages can be very useful in discovering anomalies or hidden

patterns in data. Such packages usually require a certain amount of pre-processing

of the data and a certain level of expertise in analyzing data. If such packages are

not available or not configured for analyzing transactional data, a short script and

an embedded interpreter can be very useful to transform data for analysis and

display. The script statements in appendix B can be used for such a purpose.

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 56 ISSN: 1941-6679-On-line Copy

When an application is truly ad hoc with no expectation of repeating and it can be

accomplished using a script plus the tools of a built-in interpreter, a non-

programming manager can save a lot of time and save the overhead expense

involved in changing the existing system to add a new program. This might be true

for ad hoc analyses of sales data. An example of this situation is given below.

AD HOC ANALYSIS OF DATA - AN EXAMPLE

The following example is used to teach business process management in two

graduate level courses. In this example, a sales manager of a small retail store is

concerned that employees are abusing the policy of providing discounts to increase

sales. A policy might allow discounts to sell high-end merchandise, but only up to

a certain limit. The sales manager at a small retail bike shop has set a limit of 20%

discounts to increase sales volume while maintaining an acceptable profit margin

on sales. For a particular week, the manager feels that the overall profit margin for

the store is unusually low and he suspects that sales persons may have been granting

excessive discounts to bolster their sales volumes. He would like to know which

sales persons were involved in improper discounts and which customers were

involved in improper discounts.

The manager does not want to go through the entire set of sales data by hand to

test his suspicions. As a non-programmer, he does not have the skills to create a

new computer program to analyze all of the transactions for the week to test his

suspicions. To start the process, the manager could use simple scripting to

document the process used to prepare a display of sales data by employee and by

customer.

After the manager wrote some simple scripts, he could ask a programmer to use the

scripts as guides to write a program to extract and summarize data and to create

simple charts. This would mean acquiring the services of a programmer,

communicating the nature of the problem to the programmer, waiting for the

programmer to write and test the code necessary to solve the problem and then

waiting for the programmer to communicate the results.

As another possible option, the manager might be able to use an available

interpreter to extract and summarize data and to create simple charts without

needing the intervention of a programmer. Using either option, the results of the

process might look like the next four charts (Figure 1-4).

Journal of International Technology and Information Management Volume 28, Number 1 2019

©International Information Management Association, Inc. 2017 57 ISSN: 1941-6679-On-line Copy

The sales manager was interested in knowing if excess sales discounts were caused

by any employee. The following script could be used to describe the process of

obtaining the results sought by the manager.

Chart Title = Projected (List Price) and Final Sales By Employee

Chart Yvariables = 2 Chartype = Bar

Data select Customer as x1, ListPrices as y1 from ETSL Data where

docType= 213 order by employee

Data select Customer as x2, ActualPrices as y2 from ETSL Data where

docType= 213 order by employee

The results sought by the manager are shown in figure 1.

Figure 1: Projected and Final Sales by Employee

It can be seen in figure 1 that employee 118 had very high sales during the week

in question. The discount percentage for this employee is very close to the 20%

maximum but this chart, by itself, is not conclusive.

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 58 ISSN: 1941-6679-On-line Copy

The sales manager was interested in knowing if excess sales discounts were caused

by any particular customer. The following script could be used to describe the

process of obtaining and displaying the results sought by the manager.

Chart Title = Projected (List Price) and Final Sales By Customer

Chart Yvariables = 2 Chartype = Bar

Data select Customer as x1, ListPrices as y1 from ETSL Data where

docType= 212 order by customer

Data select Customer as x2, ActualPrices as y2 from ETSL Data where

docType= 212 order by customer

The results sought by the manager are shown in figure 2. It can be seen in figure 2

that Customer 27 made very high purchases during the week in question. The

discount percentage for this customer was very close to the 20% maximum, but

again, by themselves, these results are not conclusive.

Figure 2. Projected and Final Sales by Customer

After looking at the two factors individually, the sales manager was interested in

knowing if there was a connection between the sales to customer 27 and sales

made by employee 118. This could be accomplished by taking a careful look at

Journal of International Technology and Information Management Volume 28, Number 1 2019

©International Information Management Association, Inc. 2017 59 ISSN: 1941-6679-On-line Copy

the sales made to customer 27 during the week in question. This was done with a

simple request to analyze the sales records for customer 27. The script for this

request was:

Chart Title = Percent Discount by Employee for Customer 27

Chart Yvariables = 1 Chartype = Bar

select Employee as x1, Pct_Discount as y1 from Sales Data where

docType =21 and Customer = 27

The results of this inquiry are shown in Figure 3.

Figure 3. A Figure of Percent Discount by Employee for Customer

It can be seen in figure 3 that customer 27 had 5 sales within the selected week.

One sale was a sale made by employee 136 with a very small discount. The

remaining four sales were made by employee 118. Each of these sales had discounts

which exceeded the 20% limit.

The last factor to be evaluated by the manager was a detailed analysis of sales by

employee 118. The request to look at the sales made by employee 118 was

accomplished with the simple script:

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 60 ISSN: 1941-6679-On-line Copy

Chart Title = Percent Discount By Customer for Employee 118

Chart Yvariables = 1 Chartype = Bar

select Customer as x1, Pct_Discount as y1 from ETSL Data where

docType =21 and employee = 118

The results of this inquiry are shown in Figure 4.

Figure 4. A Figure of Percent Discount by Customer for Employee

It can be seen in figure 4 that employee 118 had 6 sales within the selected week.

The first two were sales with very small percentage discounts. The remaining four

sales were to customer 27. Each of these sales had a discount which exceeded the

20% limit. The largest discount was 25.6%. Since the analysis was done within an

embedded program in an existing system, the manager could click on this bar in the

bar chart and drill down to the details of this sales transaction. The results of this

drill down process can be presented in the formatted display shown in figure 5.

Journal of International Technology and Information Management Volume 28, Number 1 2019

©International Information Management Association, Inc. 2017 61 ISSN: 1941-6679-On-line Copy

Figure 5. Sales Order Details

Figure 5 shows a sales order for a high-end off-road bicycle, sold at a substantially

discounted price plus a $50.00 helmet which was thrown in for free. The total

discount of $500.00 was 25.6% of $3,450, the total of list prices.

In this example, the sales manager was able to indicate his desire to chart sales

discounts by employee and by customer using simple scripting statements. If the

system used by the manager contained an embedded interpreter to process the script

statements directly, the manager could have gotten his information directly from

the system without requiring a programmer to create and test separate programs.

The program used in this example is named LocalBikes. It was written by graduate

students at the University of Houston - Clear Lake (UHCL). It is used in two courses

within the College of Business at UHCL to teach business processes. It was

specifically designed as a small retail complement to the Global Bikes program

provided by SAP to teach business processes. Students in the College of Business

who are non-programmers use the LocalBikes program and its embedded scripting

capability to see the results of business processes quickly and easily compared to

using SAP's Global Bikes program. As shown in the script segments above, using

generic scripting with an embedded interpreter can provide a very simple option for

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 62 ISSN: 1941-6679-On-line Copy

developing applications in certain situations. This option does not require writing a

new program, compiling and testing the new program and rebuilding the host

system to include the new program.

One way to demonstrate the usefulness of generic scripting is to use a generic \meta

script". In situations where an interpreter does not exist for application scripts, the

services of a programmer must be used. A generic \meta script" for this process of

designing and implementing a new application might be written as:

Manager produce logical design for application

Manager give logical design for application to developer

Developer convert logical design into detailed design

Developer give logical design for application to programmer

Programmer write new program to implement detailed design

Programmer compile and test new program

Programmer rebuild system to include new program

Manager use new program to implement application

In situations where an interpreter exists for application scripts, a generic meta script

for the process of designing and implementing a new application might be written

as:

Manager produce logical design for application

Manager convert logical design into detailed design generic script

If application can be executed directly from a script

Manager or programmer modify the generic script to _t the

interpreter

Manager or programmer run the modified script to implement the

application

Else //do it the old way if interpreter not available

produce logical design for application

Manager give logical design for application to developer

Developer convert logical design into detailed design

 give logical design for application to programmer

Programmer write new program to implement detailed design

Programmer compile and test new program

Programmer rebuild system to include new program

Manager use new program to implement application

Journal of International Technology and Information Management Volume 28, Number 1 2019

©International Information Management Association, Inc. 2017 63 ISSN: 1941-6679-On-line Copy

REFERENCES

Ousterhout, J. K. (1998). Scripting: Higher Level Programming for the 21st

Century. IEEE Journal Computer, Vol. 31, Issue 3, pages 23-30.

Beazley, D. M. (1996). SWIG: An Easy to Use Tool for Integrating Scripting

Languages with C and C++. Proceedings of the USENIX Fourth Annual

Tcl/Tk Workshop.

Beazley, D.M. and Lomdahl, P.S. (1997). Building Flexible Large-Scale Scientific

Computing Applications with Scripting Languages. Proceedings of the 8th

SIAM Conference on Parallel Processing for Scientific Computing.

Bakker, J L. and Jain, R. (2002). Next generation service creation using XML

scripting languages. Proceedings of The IEEE International Conference on

Communications.

Arafa, Y. and Kamyab, K. and Mamdani, E. (2003). Character animation scripting

languages: a comparison. Proceedings of the second international joint

conference on Autonomous agents and multiagent systems

Furr, M., An, J. D. and Foster, J. S. (2009). Profile-guided static typing for dynamic

scripting languages. Proceedings of the 24th ACM SIGPLAN conference

on Object oriented programming systems languages and applications.

Williams, K., McCandless, J. and Gregg, D. (2010). Dynamic interpretation for

dynamic scripting languages. Proceedings of the 8th annual IEEE/ACM

international symposium on Code generation and optimization.

Ertl, M. A., Gregg, D., Krall, A. and Paysan, B. V. (2002). A generator of efficient

virtual machine interpreters. Journal of Software: Practice and Experience.,

Vol. 32, Issue 3, pages 265-294.

Casey, K., Gregg, D. and Ertl, M. A. (2005). Tiger - an interpreter generation tool.

Proceedings of the 14th international conference on Compiler Construction.

Biggar, P., deVries, E., and Gregg, D. (2009). A practical solution for scripting

language compilers. Proceedings of the 2009 ACM symposium on Applied

computing.

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 64 ISSN: 1941-6679-On-line Copy

Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M. R.,

Kaplan, B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E.

W., Reitmaier, R., Bebenita, M., Change, M., and Franz, M. (2009). Trace-

based just-in-time type specialization for dynamic languages. Proceedings

of the 2009 ACM SIGPLAN conference on Programming language design

and implementation.

Rigo, A. (2004) Representation-based just-in-time specialization and the psyco

prototype for python. Proceedings of the 2004 ACM SIGPLAN Workshop

on Partial Evaluation and Semantics-based Program Manipulation.

APPENDIX A.

Definition of the pretested block of script ETSL Summarize

1 //ETSL Summarize

2 Begin Summarize

3 select * from inputFile order by Group

4 copy data1 row 1 to targetrow

5 ForEach row in data1

6 copy currentrow to testrow

7 If sameGroup (Group in testrow = Group in targetrow)

8 Begin sameGroup.true

9 sum data1 column 8 into targetrow column 8

10 sum data1 column 9 into targetrow column 9

11 End sameGroup.true

12 Else

13 Begin sameGroup.false

14 set column 0 in targetrow = Group in targetrow

15 set column 1 in targetrow = dataType

16 clean targetRow

17 copy targetrow into data4

18 copy testrow to targetrow

19 End sameGroup.false

20 End sameGroup

21 next row in data 1

22 End ForEach //row in data 1

23 End Summarize

Journal of International Technology and Information Management Volume 28, Number 1 2019

©International Information Management Association, Inc. 2017 65 ISSN: 1941-6679-On-line Copy

This pre-tested script module defines the basic logic of the summarize transform. It

works within the script interpreter embedded in the LocalBikes program. This script

segment requires the following data components: inputFile, outputFile, data1,

data4, dataType, currentRow, targetRow, testRow and Group which are defined

within the LocalBikes program.

The logic shown above can be customized by inserting it into a script block which

sets the values of the required parameters (inputFile and Group). The script file

below customizes the previous script block to summarize a file called SalesData by

Customer.

Transform Sales Details as data1 into data4 as ETSL Data with datatype

212

Group by Customer data1 column 2

Summarize columns 8 and 9

Load Script ETSL Summarize from ETSL Scripts //insert all lines here

Save daa4 as outputFile

End Transform

APPENDIX B.

Components of a Generic Scripting Language

Features which should be supported in a generic scripting language include:

commenting; condition testing; repetition of execution and interactions with data

sources. For reusable scripts to be effective there must be mechanisms to allow the

saving of scripts, insertion of script blocks and the execution of defined procedures.

It should be noted that line numbers are not required but are added to this example

to facilitate explanation of the script syntax and components. In this example, line

numbers refer to the line numbers shown in the script block ETSL Summarize.

These statements will be interpreted and executed within a module of the

LocalBikes program described in Appendix C.

Statement syntax: Statements begin with command words or declarative words and

continue for the remainder of the line. Words such as select (line 3), copy (line 4)

or set (lines 14 and 15) are command words. Words such as Begin (lines 2, 8 and

13), End (lines 19, 20 and 22), ForEach (line 5) and If (line 7) define the structure

and connectivity of the syntax.

The Use of Generic Scripting in Certain Application Development Projects Etnyre et al

©International Information Management Association, Inc. 2017 66 ISSN: 1941-6679-On-line Copy

Commenting: Non-executable comments should be encouraged to promote

common understanding of the script's intended function. This example uses // to

start a comment as shown in lines 1 and 22.

Condition testing: Conditions must be tested (as in line 7) and alternate paths

should be followed depending on the state of the condition (as in lines 8-11 and 13-

19).

Repetition of execution: Blocks of statements may be executed repeatedly

depending on certain conditions. Lines 5-22 show repetition of statements until all

rows have been processed.

Interaction with data sources: Line 3 defines a data selection to be implemented

by the interpreter/implementor program or module (in this example, a module

within the LocalBikes program).

APPENDIX C.

The Local Bikes program

The LocalBikes program is a business processing program which was designed,

programmed and implemented by graduate students at University of Houston -

Clear Lake. LocalBikes was designed to complement the SAP GlobalBikes

program used to support teaching of business processes. The LocalBikes program

was written in C# and compiled on the Microsoft Visual Studio platform by

students in the MS-MIS program at University of Houston - Clear Lake. The

program has been modified as a learning platform by many student teams.

The scripting portion of the LocalBikes program features an interpreter which reads

each line of script and acts on the "command word", the first word of each line. The

lines of script are routed to various modules by a switch command which acts on

the first word of the script line. The quality of the code is very inconsistent, but the

program has served well as an instructional tool. Generic scripting has been part of

the system design courses for the last six semesters at University of Houston - Clear

Lake.

	The Use of Generic Scripting in Certain Application Development Projects
	Recommended Citation

	The Use of Generic Scripting in Certain Application Development Projects

