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Abstract

A lot has been said about the Fibonacci Convolution Triangle, but not much

has been said about the Tribonacci Convolution Triangle. There are a few ways to gen-

erate the Fibonacci Convolution Triangle. Proven through generating functions, Koshy

has discovered the Fibonacci Convolution Triangle in Pascal’s Triangle, Pell numbers,

and even Tribonacci numbers[KOS14]. The goal of this project is to find inspiration in

the Fibonacci Convolution Triangle to prove patterns that we observe in the Tribonacci

Convolution Triangle. We start this by bringing in all the information that will be useful

in constructing and solving these convolution triangles and find a way to prove them in

an easy way[KOS14].
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Chapter 1

Introduction

The fun I find in Pascal’s Triangle is that there are many ways to construct the

array. It is a very popular triangle with many applications that go along with it[KOS18].

The same is not said when you mention either the Fibonacci Convolution Triangle or

the Tribonacci Convolution Triangle. The goal of this chapter is to get you to recall the

information you might remember from different arrays and transition into the Convolution

Triangles.

1.1 Different Arrays

We start out with one of the most popular arrays known to date. There have

been many observations of patterns in Pascals Triangle and we will later see how it leads

to the construction of the Fibonacci Convolution Triangle[KOS14]. We lastly follow it to

both the Fibonacci Convolution Triangle, and the Tribonacci Convolution Triangle.

1.1.1 Pascal’s Triangle

Pascal’s Triangle is one of the most recognizable arrays because it is made up

of numbers that are applicable to many areas of mathematics. This array is most rec-

ognizable for its binomial expansion[KOS11]. These numbers are seen in areas of com-

binatorics, statistics, and in the expansion of binomials. These numbers come from the

binomial theorem:

(x + y)n =
n∑

k=1

(
n

k

)
xn−kyk.
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An array can be constructed for each of the entries. For example, we can create a row

of the entries n. The array below shows each of the entries for the first 7 rows of the

binomial theorem. Notice, for each row labeled n has n + 1 entries since we start with

zero[KOS11].

Figure 1.1: Binomial Expansion(
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Recall that
(
n
r

)
= n!

r!·(n−r)! . Following this equation, the result of the triangle above is the

triangle below.

Figure 1.2: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

There is also another way to think of the same triangle. Start with ones on the outside,

then add the two entries above. Following this pattern results in generating Pascal’s

Triangle.

Figure 1.3: Pascal’s Triangle (constructing third row)

1
1 1

1 1+1 1

In this case, the next row would have ones on the outside, and the middle number will

be 1 + 1 giving us 2, as shown below.
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Figure 1.4: Pascal’s Triangle

1
1 1

1 2 1

The next row will be a result of ones on the sides, and each other entry will be made up

of the sum of the two numbers above it.

Figure 1.5: Pascal’s Triangle (constructing fourth row)

1
1 1

1 2 1
1 1+2 1+2 1

In this case, the sums will be 1+2 and 2+1 with ones on the outside.

Figure 1.6: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

The next row is slightly more difficult since there are more entries, but you can see the

pattern starting to form at this point. Again, the next row will be a result of the ones on

the sides, and each other entry will be made up of the sum of the two numbers above it.

Figure 1.7: Pascal’s Triangle (constructing fifth row)

1
1 1

1 2 1
1 3 3 1

1 1+3 3+3 3+1 1

In this case, the fifth row will be made up of a one on the left side, then the sums 1+3

and 3+3 and 3+1 and a one on the right side. The result of this pattern forms the array

on below.
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Figure 1.8: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

If we continue this pattern on for a few more rows, we see that it is the same triangle we

previously saw. Below, we see the same triangle constructed through the sums of the two

numbers directly above each entry.

Figure 1.9: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Note that with this rule, the kth term in the nth row is the sum of the two entries above

it. Those two terms will be on the row that is one less than the term that we speak of.

Those terms will also be the k − 1th and the kth term. With this observation, we have

stumbled upon Pascal’s Identity[KOS11].

Theorem 1.1. Pascal’s Identity

Let n and k be positive integers where k≤n.

Then
(
n
k

)
=
(
n−1
k−1
)
+
(
n−1
k

)
Since we have constructed Pascal’s Triangle by adding the two entries above to create

each entry, we have found Pascal’s Identity[KOS11]. For the sake of this project, we

are going to look at the left justified version of Pascal’s Triangle. Notice in the array

below, the entries of the first column are all ones, the second column is a column of

consecutive numbers, the third column is a column of triangular numbers and so on and

so forth[KOS11].
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Table 1.1: Pascal’s Triangle Left Justified(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

) (
n
6

)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

1.1.2 Fibonacci Convolution Triangle

There are a few things we need to know about the Fibonacci convolution triangle

before we start proving certain results about it. We need to know how to generate the

array which involves the convolution of generating functions[KOS14]. We must first define

generating functions[KOS18], convolutions[KOS18], and also come up with the generating

function for the Fibonacci numbers themselves[KOS14]. We will learn about each of those

parts separately in later chapters. For now, we should see that the following table shows

the first five columns of the left-justified and offset by 1 row version of the Fibonacci

convolution triangle[KOS14].

Table 1.2: Fibonacci Convolution Triangle

F (0) F (1) F (2) F (3) F (4)

1
1 1
2 2 1
3 5 3 1
5 10 9 4 1
8 20 22 14 5
13 38 51 40 20
21 71 111 105 65
34 130 233 256 190
55 235 474 594 511
89 420 942 1324 1295
144 744 1836 2860 3130
233 1308 3522 6020 7285
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1.1.3 Tribonacci Convolution Triangle

The same goes with the Tribonacci convolution triangle. Since we are comparing

this triangle to the Fibonacci convolution triangle[KOS14], we will have to learn about

that triangle first. We need to understand what a generating function is in order to

understand the convolution of generating functions, then find the generating function to

the Tribonacci sequence of numbers. Lastly, use the convolutions of those generating

functions. For now, we should see that the following table shows the first five columns of

the left-justified and offset by one row of the Tribonacci convolution triangle[KOS14].

Table 1.3: Tribonacci Convolution Triangle

T (0) T (1) T (2) T (3) T (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
4 12 25 44 70
7 26 63 125 220
13 56 153 336 646
24 118 359 864 1800
44 244 819 2144 4810
81 499 1830 5174 12430
149 1010 4018 12200 31240
274 2027 8694 28212 76692
504 4040 18582 64168 184530
927 8004 39298 143878 436340
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Chapter 2

Sequences

We see in this chapter the importance of sequences. The main point of this

project is comparing the Fibonacci Convolution Triangle with the Tribonacci Convolution

Triangle. These two triangles are made up of two separate sequences of numbers. It

would only make sense that they follow a certain pattern which we will begin to see in

this chapter.

2.1 Fibonacci Numbers

Fibonacci numbers have been seen in many different occurrences. One of the

most popular of the bunch is the rabbit problem discoverd by Leonardo Fibonacci, which

goes as follows[KOS18].

Suppose there are two new born rabbits, one male and the other female. Find the number

of rabbits produced in a year if:

1) Each pair takes one month to become mature;

2) Each pair produces a female and male every month, from the second month

on; and

3) No rabbits die during the course of the year.

For the sake of the problem, assume that the original pair of rabbits was born on January

1. assume they take a month to mature, so by the time February 1 comes along, there is

still only one pair of rabbits. According to the rules, on March 1, the original pair is now

two months old, and they birthed a new pair of baby rabbits, which results in a total of

two pairs of rabbits. Now, on April 1, we have a total of two mature pairs of rabbits,
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and one new pair of baby rabbits, since the old babies were not mature enough to birth

a new pair, which leaves us with a total of three pair of rabbits. The table below is a

visual version of the situation we are talking about[KOS18].

Table 2.1: Rabbit Problem

Pairs of Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Adults 0 1 1 2 3 5 8 13 21 34 55 89
Babies 1 0 1 1 2 3 5 8 13 21 34 55
Total 1 1 2 3 5 8 13 21 34 55 89 144

The numbers that make up the bottom row are called the Fibonacci numbers. The

sequence of numbers 1, 1, 2, 3, 5, 8, 13, ... is the Fibonacci Sequence[KOS18] that follow

the recursive definition of the nth Fibonacci number,

Fn = Fn−1 + Fn−2 for n ≥ 3 and F1=F2=1.

2.2 Tribonacci Numbers

Sadly there isn’t a famous story to help us come up with the Tribonacci numbers.

However, the Tribonacci numbers[KOS18] are defined by the recurrence relation

Tn = Tn−1 + Tn−2 Tn−3 for n ≥ 4 and T1=T2 = 1 T3 = 2

The first three terms of the sequence are predetermined. The sequence adds the three

consecutive terms to obtain the following term. We can see what they are below. We

start to see the pattern being formed after the fourth term.

T1 = 1

T2 = 1

T3 = 2

T4 = T3 + T2 + T1 = 1 + 1 + 2 = 4

T5 = T4 + T3 + T2 = 1 + 2 + 4 = 7

T6 = T5 + T4 + T3 = 2 + 4 + 7 = 13

T7 = T6 + T5 + T4 = 4 + 7 + 13 = 24

This gives us the sequence of 1, 1, 2, 4, 7, 13, 24, ... , which are the Tribonacci

numbers[KOS18].
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2.3 Pell Numbers

Pell numbers have an interesting recurrence that are similar to a few differ-

ent sequences[KOS11]. For instance, the Pell sequence is very similar to the Pell-Lucas

sequence[KOS11]. The only difference is the first two terms. For this project, we will

focus on the Pell numbers[KOS11]. The sequence follows the following relation

Pn = 2·Pn−1 + Pn−2 for P1 = 1, P2 = 2.

In order to start this sequence, we are given the first two terms. The sequence doubles

the previous term, then adds the term before that. Below is a more organized version of

the relation.

P1 = 1

P2 = 2

P3 = 2 · P2 + P1 = 2 · 2 + 1 = 5

P4 = 2 · P3 + P2 = 2 · 5 + 2 = 12

P5 = 2 · P4 + P3 = 2 · 12 + 5 = 29

P6 = 2 · P5 + P4 = 2 · 29 + 12 = 70

P7 = 2 · P6 + P5 = 2 · 70 + 29 = 169

P8 = 2 · P7 + P6 = 2 · 169 + 70 = 408

The numbers 1, 2, 5, 12, 29, 70, 169, 408, ... make up the first eight terms of the Pell

sequence[KOS11].



10

Chapter 3

Generating Functions

When it gets to the proving portion of this project, we find it easier to solve the

problems using generating functions[KOS14]. We will start this chapter out with defining

a few terms along with a few examples. This leads to the convolution of generating

functions which we will need to define and also prove the convolution triangles of different

sequences. Lastly, we will find the generating functions for sequences we need to solve

for. Let us first start with an introduction of generating functions[KOS18].

3.1 Introduction to Generating Functions

Generating functions are used for both finite and infinite sequences[KOS18].

Since we are looking at sequences of numbers, we are going to concentrate more on the

infinite forms of generating functions.

Definition 3.1. Let a0, a1, a2, ... be a sequence of real numbers. Then the function

g(x) = a0 + a1x
2 + a2x

3 + ...

is called the generating function for the sequence {an}[KOS18].

One of the most popular examples of generating functions follows the sequence of 1’s[KOS18].

Let us start with the generating function
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g(x) = 1 + x + x2 + x3 + · · ·

=
∞∑
n=0

xn

= 1 +

∞∑
n=1

xn

= 1 + x ·
∞∑
n=1

xn−1

= 1 + x ·
∞∑
n=0

xn

= 1 + x · g(x).

At this point, we have both sides in terms of g(x). Below, we have the steps that will

explicitly solve for g(x).

g(x)− x · g(x) = 1
g(x) · (x− 1) = 1

g(x) = 1
1−x

If we were to extend this out, we see that this generating function creates the same as

previously stated. We can say that this is the generating function for the sequence of

1’s[KOS18]. In this project, we talk about sequences rather than the generating function.

Note that the coefficients of the generating function, a0, a1, a2, ..., are in fact the sequences

of {an}. This will make for a more simple way to prove the arrays.

3.2 Convolutions

Now understanding what a generating function is, and seeing how it can be

applied, we can start applying the convolution to the generating function. After all, this

project is on the Tribonacci Convolution Triangle. Since we are constructing a convolution

triangle based on a sequence of numbers, we must have a solid understanding of the term

convolution and what it brings to the array[KOS14].

Definition 3.2. Let a(x) and b(x) be the generating functions for the sequences {an} and

{bn}, then:

a(x) = a0 + a1x + a2x
2 + a3x

3 + ...

b(x) = b0 + b1x + b2x
2 + b3x

3 + ...

By multiplying the two generating functions together, we get:
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a(x) · b(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x
2 + ...

If we let cn be the coefficients of xn as such, then:

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0
...

cn = a0bn + a1bn−1 + a2bn−2 + ... + an−2b2 + an−1b1 + anb1

Then the product of the sequences {an} and {bn}, {cn} is called the convolution of {an}
and {bn}

Note, when taking the convolution of {an} and {bn}, the coefficients of {cn} are the sum

of the coefficients of specified products of {an} and {bn}[KOS14]. If {ai} = {bi} = 1,

then we are looking at the sum of 1’s as shown below, which means {cn} = n, the natural

numbers. This will become more apparent in the following section.
c0 = a0b0
c1 = a0b1 + a1b0
c2 = a0b2 + a1b1 + a2b0

...
cn = a0bn + a1bn−1 + a2bn−2 + ... + an−2b2 + an−1b1 + anb1

If {ai} = {bi} = 1, then we are looking at the sum of 1’s as shown below, which means

{cn} = n, the natural numbers. This will become more apparent in the following section.
c0 = 1 · 1 = 1
c1 = 1 · 1 + 1 · 1 = 2
c2 = 1 · 1 + 1 · 1 + 1 · 1 = 3

...
cn = 1 · 1 + 1 · 1 + ... + 1 · 1 + 1 · 1 = n

Convolutions have another fascinating characteristic. For generating functions who’s first

few constants are 0, we start to lose starting points as we take convolutions[KOS14]. For

example. if we had the following functions

a(x) = a1x + a2x
2 + a3x

3 + ...

b(x) = b1x + b2x
2 + b3x

3 + ...

Then the convolution of the sequences {an} and {bn}, {cn}, would be

c(x) = a1b1x
2 + (a1b2 + a2b1)x

3 + (a1b3 + a2b2 + a3b1)x
4 + ...

Notice that a0 = a1 = 0 for the terms a0 and a1x. Similar things will happen every

time we start our generating function at a power of x. If we were to start our generating
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function at x2, this would offset our convolutions by two terms. If we were to start our

generating functions at x3, this would offset our convolutions by three terms. Continuing

this pattern, if we were to start our generating functions at xn, this would offset our

convolutions by n terms. This will help us out when it comes to proving our patterns

later in this project.

3.3 Pascal’s Generating Function

Recall Pascal’s Triangle as left justified where each column starts one row lower

than the previous column[KOS11]. Note, the left-most column is made up of all 1’s, the

second column is made up of the natural counting numbers, the third column is made up

of triangular numbers, and so on and so forth. In this section, we will find the generating

function that makes up each column of Pascal’s Triangle. Let us start with a general

generating functions {an} and {bn}.
a(x) = a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + ... and

b(x) = b1x + b2x
2 + b3x

3 + b4x
4 + b5x

5 + ...

If we let ai=bi=1, for i=1, 2, 3, 4, 5, ... , we have

a(x) = x + x2 + x3 + x4 + x5 + ... and

b(x) = x + x2 + x3 + x4 + x5 + ...

It is easy to see a(x) is a great representative of the first column of Pascal’s Triangle as

left justified, and it’s respective generating function is
a(x) = x + x2 + x3 + x4 + x5 + ...

= x
1−x

Now, by definition, the convolution of the first column with itself, let’s say c(x), is
a(x) · b(x) = c(x)

= x2(a1b1) + x3(a1b2 + a2b1) + x4(a1b3 + a2b2 + a3b1) + ...
= x(1) + x2(1 + 1) + x3(1 + 1 + 1) + x4(1 + 1 + 1 + 1) + ...
= x + 2x2 + 3x3 + 4x4 + 5x5 + ...

which makes up the second column of Pascal’s Triangle[KOS18], with generating function

c(x) = x2

(1−x)2 .

The convolution of the first column, a(x), with the second column, c(x), let’s say d(x), is
a(x) · c(x) = d(x)

= x2(a1c1) + x3(a1c2 + a2c1) + x4(a1c3 + a2c2 + a3c1) + ...
= x(1) + x2(1 + 2) + x3(1 + 2 + 3) + x4(1 + 2 + 3 + 4) + ...
= x + 3x2 + 6x3 + 10x4 + 15x5 + ...

which makes up the third column of Pascal’s Triangle[KOS18] with generating function
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d(x) = x3

(1−x)3 .

The convolution for the first column, a(x), with the third column, d(x), let’s say e(x), is
a(x) · d(x) = e(x)

= x2(a1 · d1) + x3(a1 · d2 + a2 · d1) + ...
= x(1) + x2(1 + 3) + x3(1 + 3 + 6) + ...
= x + 4x2 + 10x3 + 20x4 + 35x5 + ...

which makes up the third column of Pascal’s Triangle[KOS18] with generating function

e(x) = x4

(1−x)4 .

At this point it is easy to see that the generating functions that make up the entire array

is

gn(x) = xn

(1−x)n+1

where the input of n makes up the nth column.

3.4 Pell Generating Function

One of the other sequences of numbers that we need to discuss in this chapter

are the Pell Numbers[KOS11]. Note the sequence of Pell Numbers follows the definition

Pn = 2 · Pn−1 + Pn−2 for n ≥ 3 and P1 = 1, P2 = 2.

Let us start with a general generating function[KOS18]. Let

g(x) =
∞∑
n=1

anx
n

= a1x + a2x
2 +

∞∑
n=3

anx
n

= a1x + a2x
2 +

∞∑
n=3

(2 · an−1 + an−2)x
n

= a1x + a2x
2 +

∞∑
n=3

2 · an−1xn +

∞∑
n=3

an−2x
n

= a1x + a2x
2 + 2x ·

∞∑
n=3

an−1x
n−1 + x2 ·

∞∑
n=3

an−2x
n−2

= a1x + a2x
2 + 2x · [g(x)− a1x] + x2 · g(x).

Letting a1 = 1 and a2 = 2, we have

g(x)− 2x · g(x)− x2 · g(x) = a1x + a2x
2 − 2 · a1x2

g(x) · [1− 2x− x2] = x + 2x2 − 2x2

g(x) = x
1−2x−x2

which makes up the generating function for the Pell sequence[KOS11].
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3.5 Fibonacci Generating Function

As previously stated, generating functions are used a lot in this project because

we can easily see them when we start proving the different patterns. In this section, we

will find the generating functions that results in the sequence of Fibonacci numbers. We

start with recalling the definition of Fibonacci numbers[KOS18].

Definition 3.3. The sequence of numbers 1, 1, 2, 3, 5, 8, 13, make up the Fibonacci

sequence and follow the recursive definition of the nth Fibonacci number,

Fn = Fn−1 + Fn−2 for n≥3 and F1=F2=1

Now, let us start with a general generating function[KOS18]. Let

g(x) =

∞∑
n=1

anx
n

= a1x + a2x
2 +

∞∑
n=3

anx
n

= a1x + a2x
2 +

∞∑
n=3

(an−1 + an−2)x
n

= a1x + a2x
2 +

∞∑
n=3

an−1x
n +

∞∑
n=3

an−2x
n

= a1x + a2x
2 + x ·

∞∑
n=3

an−1x
n−1 + x2 ·

∞∑
n=3

an−2x
n−2

= a1x + a2x
2 + x · [g(x)− a1x] + x2 · g(x)

= a1x + a2x
2 + x · g(x)− a1x

2 + x2 · g(x)

.

Letting a1 = a2 = 1, we have
g(x) = x + x2 + x · g(x)− x2 + x2 · g(x)

g(x)− x · g(x)− x2 · g(x) = x + x2 − x2

g(x) · [1− x− x2] = x
g(x) = x

1−x−x2

which is the generating function for the Fibonacci sequence[KOS18].

3.6 Fibonacci Convolutions

We are starting to see the array form in this section. We bring together

the sequence of Fibonacci numbers[KOS18], the generating function of the Fibonacci

sequence[KOS18], and convolution of the generating functions[KOS14]. As previously

stated, we know that the function that generates the Fibonacci numbers is the function
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a(x) = x
1−x−x2 .

The convolution of this function with itself, let’s say b(x), would be

a(x) · a(x) = x
1−x−x2 · x

1−x−x2

b(x) = x2

(1−x−x2)2

The convolution of the Fibonacci sequence with b(x), let’s say c(x), would be

a(x) · b(x) = x
1−x−x2 · x2

(1−x−x2)2

c(x) = x3

(1−x−x2)3

The convolution of the Fibonacci sequence with c(x), let’s say d(x), would be

a(x) · c(x) = x
1−x−x2 · x3

(1−x−x2)3

d(x) = x4

(1−x−x2)4

At this point we can see a pattern starting to form. We can now say that

gn(x) = xn

(1−x−x2)n

is the generating function for the nth convolution of the Fibonacci numbers[KOS14].

3.7 Tribonacci Generating Function

The sequence of Tribonacci numbers were discussed in a previous section. Since

this project is finding the similarities in patterns for the different arrays, we need to

find the generating function of the Tribonacci numbers[KOS18]. Following the same

steps as we have been in this chapter, we can start with the definition of Tribonacci

numbers[KOS18]:

Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 4 and T1 = T2 = 1, T3 = 2.

We can start with a general generating function. Let

g(x) =

∞∑
n=1

anx
n

= a1x + a2x
2 + a3x

3 +
∞∑
n=4

anx
n

= a1x + a2x
2 + a3x

3 +
∞∑
n=4

(an−1 + an−2 + an−3)x
n

= a1x + a2x
2 + a3x

3 +

∞∑
n=4

an−1x
n +

∞∑
n=4

an−2x
n +

∞∑
n=4

an−3x
n
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= a1x + a2x
2 + a3x

3 + x
∞∑
n=4

an−1x
n−1

+x2
∞∑
n=4

an−2x
n−2 + x3

∞∑
n=4

an−3x
n−3

= a1x + a2x
2 + a3x

3 + x[g(x)− a1x− a2x
2] + x2[g(x)− a1x] + x3g(x)

Letting a1 = a2 = 1 and a3 = 2, we have

g(x) = x + x2 + x3 + x[g(x)− x− x2]
+x2[g(x)− x] + x3g(x)

g(x)[1− x− x2 − x3] = x
g(x) = x

1−x−x2−x3

which is the generating function for the Tribonacci sequence[KOS18].

3.8 Tribonacci Convolutions

As previously stated, we know that the function that generates the Tribonacci

numbers[KOS18] is the function

a(x) = x
1−x−x2−x3 .

The convolution of this function with itself, let’s say b(x), would be

a(x) · a(x) = x
1−x−x2−x3 · x

1−x−x2−x3

b(x) = x2

(1−x−x2−x3)2

The convolution of the Tribonacci sequence with b(x), let’s say c(x), would be

a(x) · b(x) = x
1−x−x2−x3 · x2

(1−x−x2−x3)2

c(x) = x3

(1−x−x2−x3)3

The convolution of the Tribonacci sequence with c(x), let’s say d(x), would be

a(x) · c(x) = x
1−x−x2−x3 · x3

(1−x−x2−x3)3

d(x) = x4

(1−x−x2−x3)4

At this point we can see a pattern starting to form. We can now say that

gn(x) = xn

(1−x−x2−x3)n

is the generating function for the nth convolution of the Tribonacci numbers[KOS14].
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Chapter 4

Convolution Triangles

At this point, we can start putting all the pieces together to the puzzle that is the

Fibonacci Convolution Triangle, and the Tribonacci Convolution Triangle[KOS14]. We

talked about the sequences of both Fibonacci numbers and Tribonacci numbers[KOS18],

which lead to the generating functions of the sequences[KOS18], lastly the convolution of

each[KOS14]. We can now construct each of the arrays with their respective parts. Let

us start with the Fibonacci Convolution Triangle, along with some of the observations

others before me have discovered[HB72][KOS14].

4.1 Fibonacci Convolution Triangles

The first, left-most column is the entries of Fibonacci Numbers, let’s say F
(0)
n .

The next column results in the convolution of F
(0)
n and F

(0)
n , let’s say F

(1)
n . The third

column results in the convolution of F
(0)
n and F

(1)
n , denoted F

(2)
n . The fourth column

results in the convolution of F
(0)
n and F

(2)
n , denoted F

(3)
n . At this point we start to notice

a pattern. Since we start with the column labled F
(0)
n , each column is labeled one less

than the actual column it is in, and is a convolution of the first column and the previous

column. Here forward, we say that the mth column, donoted F
(m−1)
n , is the convolution

of F
(0)
n and F

(m−2)
n thus giving us the array in Table 1[KOS14].

Notice we have the table left justified and offset by one row. As mentioned in Chapter

3, depending on where the first generating function starts, we will have the tables off-

set by the numerator of the generating function. In this case, we have the generating

function[KOS14] gn(x) = xn

(1−x−x2)n
.
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F (0) F (1) F (2) F (3) F (4)

1
1 1
2 2 1
3 5 3 1
5 10 9 4 1
8 20 22 14 5
13 38 51 40 20
21 71 111 105 65
34 130 233 256 190
55 235 474 594 511
89 420 942 1324 1295
144 744 1836 2860 3130
233 1308 3522 6020 7285

Table 4.1: Fibonacci Convolution Triangle

4.1.1 Sum of Pascal’s Triangle Rows

One of the first observations Koshy talks about in his book is that the sum of

the rows of Pascal’s triangle are the Fibonacci numbers[KOS14]. In order to see this, we

must first see the set up of Pascal’s triangle. Recall from Chapter 1, we have Pascal’s

triangle left justified and offset by one.

Table 4.2: Pascal’s Triangle Left Justified(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Now, if we were to offset the array by two positions we would have the table below. In

order to see the Fibonacci numbers in Pascal’s triangle, we must arrange the array in this

specific way. Notice that the start of each of the columns begins two rows below the start

of the previous column. The right-most column consist of the sums of each of the rows.

As discussed in Chapter 3, the Fibonacci sequence is the recurrence sequence which is
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made up of the sum of the previous two numbers[KOS18]. We have the sequence 1, 1, 2,

3, 5, 8, ... as the first few terms of the sequence[KOS18]. Notice, if we were to continue

the sequence, we would have the same numbers as seen in the right-most column.

Table 4.3: Pascal’s Triangle Left Justified(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

)
Sum

1 1
1 1
1 1 2
1 2 3
1 3 1 5
1 4 3 8
1 5 6 1 13
1 6 10 4 21
1 7 15 10 1 34
1 8 21 20 5 55
1 9 28 35 15 1 89

At this moment, we can see if what we see is true. Recall from Chapter 4, we said that

the generating function for Pascal’s triangle is g(x) = xn−1

(1−x)n−1 . Since gr(x) = x2r

(1−x)r+1 is

the generating function for Pascal’s triangle[KOS18] where each column starts two rows

below the start of the previous column. We can say that
∞∑
r=0

gr(x) =
∞∑
r=0

x2r

(1− x)r+1

= 1
1−x

∞∑
r=0

(
x2

1− x
)r.

Recall that the sum of a geometric series is as follows
∞∑
n=0

a0(r)n = a0
1−r .

Now, applying that same concept to this problem, we can easily see that
∞∑
r=0

x2r

(1−x)r+1 = 1

1− x2

1−x

,

which forces the following
∞∑
r=0

gr(x) = 1
1−x ·

1

1− x2

1−x

= 1
(1−x)−x2

= 1
1−x−x2

Which is the generating function for the Fibonacci numbers as discussed earlier[KOS14].
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4.1.2 Pascal Meets Fibonacci

One of the other proofs Koshy talks about is the convolution of each row of

Pascal’s triangle make up the Fibonacci convolution triangle[KOS14]. Let us start with

Pascal’s triangle left justified. Notice how each of the empty spaces above each column

are filled with zeros.

Table 4.4: Pascal’s Triangle Left Justified(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

)
1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
1 5 10 10 5 1

Each of these columns are going to be the multipliers to Pascal’s triangle offset by two

rows[KOS14]. Notice each of the columns start two entries below the start of the previous

column. We can see the fixed Pascal’s triangle that will be used to multiply each of the

entries of the columns.

Table 4.5: Pascal’s Triangle Left Justified and Offset by Two Entries(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

)
1
1
1 1
1 2
1 3 1
1 4 3
1 5 6 1
1 6 10 4
1 7 15 10 1
1 8 21 20 5
1 9 28 35 15 1

Using this fixed array, let us multiply each entry by the first column of Pascals triangle

then add the rows to a single entry. This will make up the first column of the Fibonacci

convolution triangle[KOS14].
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Table 4.6: Pascal’s Triangel Offset by Two Entries

1 1 1 1 1 1

1
1
1 1
1 2
1 3 1
1 4 3
1 5 6 1
1 6 10 4
1 7 15 10 1
1 8 21 20 5
1 9 28 35 15 1

As you see here the first entry in the first column will be multiplied with all the entries in

the first column, the second entry in the first column will be multiplied to all the entries

in the second column, the third entry in the first column will be multiplied to every entry

in the third column, ..., the nth entry in the first column will be multiplied to every entry

in the nth column, ... , then all entries in each row will be added together. This will make

up the first column of the Fibonacci convolution triangle[KOS14].

Table 4.7: First Column of Fibonacci Convolution Triangle

1 1 1 1 1 sum

1·1 1
1·1 1
1·1 + 1·1 2
1·1 + 1·2 3
1·1 + 1·3 + 1·1 5
1·1 + 1·4 + 1·3 8
1·1 + 1·5 + 1·6 + 1·1 13
1·1 + 1·6 + 1·10 + 1·4 21
1·1 + 1·7 + 1·15 + 1·10 + 1·1 34

Notice the right-most column above. Those are the numbers of the Fibonacci sequence[KOS18].

Which is what we were looking for. This is very similar to the first observation Koshy

mentioned in his book[KOS14]. Since we were using a column of all 1’s, we were looking

at the sum of Pascal’s triangle rows. Fascinating, but we are looking for the Fibonacci

convolution triangle. Let us see if we are on the right track with the next column. We
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are going to apply the same steps as the previous table to the next table, but this time

we will use the second column of Pascal’s triangle. We are going to use the first entry in

the second column to multiply with all the entries in the first column, the second entry

in the second column will be multiplied to all the entries in the second column, the third

entry in the second column will be multiplied to every entry in the third column, ..., the

nth entry in the second column will be multiplied to every entry in the nth column, ... ,

then all entries in each row will be added together. This will make up the second column

of the Fibonacci convolution triangle[KOS14].

Table 4.8: Second Column of Fibonacci Convolution Triangle

0 1 2 3 4 sum

0·1 0
0·1 0
0·1 + 1·1 1
0·1 + 1·2 2
0·1 + 1·3 + 2·1 5
0·1 + 1·4 + 2·3 10
0·1 + 1·5 + 2·6 + 3·1 20
0·1 + 1·6 + 2·10 + 3·4 38
0·1 + 1·7 + 2·15 + 3·10 + 4·1 71

Notice the first two entries of the second column are zeros. This tells us we are offset-

ting the second column of the Fibonacci convolution triangle[KOS14] by two rows, which

means that we are going to start the second column two rows below the start of the first

column. If this pattern continues, we will have the start of each of the columns starting

two rows below the start of the previous column. I also see that these are indeed the same

entries of the second row of the Fibonacci convolution triangle[KOS14]. If we continue

the pattern we should get the third column of the Fibonacci convolution triangle[KOS14].

We start with using the first entry in the third column to multiply with all the entries

in the first column, the second entry in the third column will be multiplied to all the

entries in the second column, the third entry in the third column will be multiplied to

every entry in the third column, ..., the nth entry in the third column will be multiplied

to every entry in the nth column, ... , then all entries in each row will be added together.

This will make up the third column of the Fibonacci convolution triangle[KOS14].
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Table 4.9: Third Column of Fibonacci Convolution Triangle

0 0 1 3 6 sum

0·1 0
0·1 0
0·1 + 0·1 0
0·1 + 0·2 0
0·1 + 0·3 + 1·1 1
0·1 + 0·4 + 1·3 3
0·1 + 0·5 + 1·6 + 3·1 9
0·1 + 0·6 + 1·10 + 3·4 22
0·1 + 0·7 + 1·15 + 3·10 + 6·1 51

The first four entries of this column are made up of zeros. This gives us more evidence

that each of the columns generated in this way are offset by two rows. The other entries

are the same entries of the third column of the Fibonacci convolution triangle[KOS14].

Let us try this one last time to truly see the pattern. Let us use the first entry in the

fourth column to multiply with all the entries in the first column, the second entry in the

fourth column will be multiplied to all the entries in the second column, the third entry

in the fourth column will be multiplied to every entry in the third column, ..., the nth

entry in the fourth column will be multiplied to every entry in the nth column, ... , then

all entries in each row will be added together. This will make up the fourth column of

the Fibonacci convolution triangle[KOS14].

Table 4.10: Fourth Column of Fibonacci Convolution Triangle

0 0 0 1 4 sum

0·1 0
0·1 0
0·1 + 0·1 0
0·1 + 0·2 0
0·1 + 0·3 + 0·1 0
0·1 + 0·4 + 0·3 0
0·1 + 0·5 + 0·6 + 1·1 1
0·1 + 0·6 + 0·10 + 1·4 4
0·1 + 0·7 + 0·15 + 1·10 + 4·1 14

At this point, we can gather the information we have to see if what we have is indeed

the Fibonacci convolution triangle[KOS14]. The table below is made up of the columns
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we just created by the multipliers and sums of the rows. This table is the Fibonacci

convolution triangle offset by two rows[KOS14].

Table 4.11: Fibonacci Convolution Triangle

F (0) F (1) F (2) F (3)

1 0 0 0
1 0 0 0
2 1 0 0
3 2 0 0
5 5 1 0
8 10 3 0
13 20 9 1
21 38 22 4
34 71 51 14

It seems as if we have constructed the Fibonacci convolution triangle[KOS14] in this

way, however, we need to prove this to be true. Since gr(x) = xr

(1−x)r+1 is the generating

function for Pascal’s triangle where each column starts two rows below the start of the

previous column, and we input x2

1−x we get the following

gr(
x2

1−x) =
( x2

1−x
)r

(1− x2

1−x
)r+1

=
( x2

1−x
)r

(1− x2

1−x
)r+1
· (1−x)

r+1

(1−x)r+1

= (1−x)x2r

((1−x)−x2)r+1

= (1−x)x2r

(1−x−x2)r+1 .

Lastly, by dividing both sides by (1− x), we have

1
1−x ·gr(

x2

1−x) = x2r

(1−x−x2)r+1

Which is the generating function for the rth column of the Fibonacci convolution triangle[KOS14].

4.1.3 Fibonacci Meets Pell

In his book, Koshy talks about a discovery where the sum of the rows in the

Fibonacci convolution triangle make up the Pell sequence[KOS14]. Recall the sequence

of Pell numbers[KOS11] as the sequence of 1, 2, 5, 12, 29, 70, ... The table below gives a

visual of the situation.

This pattern seems to work with the Fibonacci convolution triangle being left justified

and offset by one row[KOS14]. This will be helpful when proving the conjecture. Since the
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Table 4.12: Sums of Fibonacci Convolution Triangle Result in Pell Numbers

F (0) F (1) F (2) F (3) F (4) F (5) F (6) F (7) Row Sums

1 1
1 1 2
2 2 1 5
3 5 3 1 12
5 10 9 4 1 29
8 20 22 14 5 1 70
13 38 51 40 20 6 1 169
21 71 111 105 65 27 7 1 408

rth column of the Fibonacci convolution triangle is modeled by the generating function

gr(x) = xr

(1−x−x2)r+1 then the sum of the rows of the Fibonacci convolution triangle is

modeled by[KOS14]
∞∑
r=0

gr(x) =
∞∑
r=0

xr

(1− x− x2)r+1

= 1
1−x−x2

∞∑
r=0

xr

(1− x− x2)r

= 1
1−x−x2

∞∑
r=0

(
x

1− x− x2
)r.

Recall that the sum of a geometric series is as follows
∞∑
n=0

a0(r)n = a0
1−r .

Which means we have the following equivalence
∞∑
r=0

( x
1−x−x2 )r = 1

1− x
1−x−x2

and thus we have the following
∞∑
r=0

gr(x) = 1
1−x−x2 · 1

1− x
1−x−x2

= 1
(1−x−x2)−x

= 1
1−2x−x2

which is the generating function of the Pell numbers[KOS14].

4.1.4 Fibonacci meets Tribonacci

Another proven pattern Koshy talks about is the sum of the rows adding to the

Tribonacci sequence of numbers[KOS14]. In this case, we must first get the Fibonacci

convolution triangle as left justified and offset by three rows as seen in the table below
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Table 4.13: Sum of Rows in Fibonacci Convolution Triangle are Tribonacci Numbers

F (0) F (1) F (2) Row Sums

1 1
1 1
2 2
3 1 4
5 2 7
8 5 13
13 10 1 24
21 20 3 44

Notice that the columns are offset by 3 rows. Even though the pattern looks to be this

exact pattern, we must prove the conjecture. Since the rth column of the Fibonacci

convolution triangle is generated by the function gr(x) = xr

(1−x−x2)r+1 , then we can easily

use the function gr(x) = x3r

(1−x−x2)r+1 to generate the Fibonacci convolution triangle where

each column starts three rows below the the start of the previous column[KOS14]. Now,

the sum of each of the rows.
∞∑
r=0

gr(x) =
∞∑
r=0

x3r

(1− x− x2)r+1

= 1
1−x−x2

∞∑
r=0

x3r

(1− x− x2)r

= 1
1−x−x2

∞∑
r=0

(
x3

1− x− x2
)r

= 1

1− x3

1−x−x2

= 1
1−x−x2 · 1

1− x3

1−x−x2

= 1
(1−x−x2)−x3

= 1
1−x−x2−x3

which is the generating function of the Tribonacci numbers[KOS14].

4.2 Tribonacci Convolution Triangles

Tribonacci convolution triangle is first set as left justified, and aligned at the

top to where the first row of numbers all result in 1. The first, left-most column is the

sequence of Tribonacci numbers[KOS18], we say T
(0)
n . The next column results in the

convolution of T
(0)
n and T

(0)
n , let’s say T

(1)
n . The third column results in the convolution
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of T
(0)
n and T

(1)
n , we say T

(2)
n . The fourth column results in the convolution of T

(0)
n and

T
(2)
n , we say T

(3)
n . Noticing the same symmetry from the Fibonacci convolution triangle,

we see that each column is labeled one less than the actual column it is in, and is a

convolution of the first column and its previous column. Here forward, we say that the

mth column, denoted T
(m−1)
n , is the convolution of T

(0)
n ·T (m−2)

n , thus forming the array

in the Table below[KOS14].

Table 4.14: Tribonacci Convolution Triangle

T (0) T (1) T (2) T (3) T (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
4 12 25 44 70
7 26 63 125 220
13 56 153 336 646
24 118 359 864 1800
44 244 819 2144 4810
81 499 1830 5174 12430
149 1010 4018 12200 31240

4.2.1 Tribonacci Meets Fibonacci

In his book, Koshy got the Tribonacci sequence from the Fibonacci convolu-

tion triangle fairly easily[KOS14]. He wanted to know if there was a way to get to the

Fibonacci sequence out of the Tribonacci convolution triangle. Recall the Pascal Meets

Fibonacci proof from section 4.1.2. In that section, we used columns in Pascal’s triangle

as multipliers to get us the Fibonacci convolution triangle[KOS14]. We can use a sim-

ilar process to get the Fibonacci convolution triangle from the Tribonacci convolution

triangle[KOS14]. The main difference is in the columns we use as multipliers and the

array we use. Rather than using all positive multipliers, as we did in the other example,

we will alternate from positive to negative multipliers. This will help us get the numbers

we wish for the Fibonacci convolution triangle[KOS14]. Below we see the convolution of

the first column that makes up Pascal’s triangle and the Tribonacci convolution triangle

to make up the first row of the Fibonacci convolution triangle[KOS14].
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Table 4.15: First Column of Fibonacci Convolution Triangle

1 -1 1 Sums

1 · 1 1
1 · 1 1
1 · 2 2
1 · 4 - 1 · 1 3
1 · 7 - 1 · 2 5
1 · 13 - 1 · 5 8
1 · 24 - 1 · 12 + 1 · 1 13
1 · 44 - 1 · 26 + 1 · 3 21

This makes up the first column in the Fibonacci convolution triangle[KOS14]. Doing the

same action using the second column of Pascal’s triangle, we have the table below.

Table 4.16: Second Column of Fibonacci Convolution Triangle

0 1 -2 Sums

0 · 1 0
0 · 1 0
0 · 2 0
0 · 4 + 1 · 1 1
0 · 7 + 1 · 2 2
0 · 13 + 1 · 5 5
0 · 24 + 1 · 12 - 2 · 1 10
0 · 44 + 1 · 26 - 2 · 3 20

This makes up the second column of the Fibonacci convolution triangle[KOS14]. Again,

we construct the third column in the same way.

Table 4.17: Third Column of Fibonacci Convolution Triangle

0 0 1 Sums

0 · 1 0
0 · 1 0
0 · 2 0
0 · 4 + 0 · 1 0
0 · 7 + 0 · 2 0
0 · 13 + 0 · 5 0
0 · 24 + 0 · 12 + 1 · 1 1
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At this point we can say we have enough evidence to gather the columns and call it the

Fibonacci convolution triangle[KOS14]. The table below is the columns we constructed

in the previous steps and gathered in their respective order.

Table 4.18: Fibonacci Convolution Triangle

F (0) F (1) F (2)

1 0 0
1 0 0
2 0 0
3 1 0
5 2 0
8 5 0
13 10 1
21 20 3

Here, we can visually see the pattern forming, but we have to rule out the fact that it

was just coincidence. We start with Pascal’s generating function[KOS18]. Since gr(x) =

xr

(1−x)r+1 is the generating function for Pascal’s triangle where each column starts one row

below the start of the previous column. Since we are alternating between positive and

negative numbers, we must look at the negative input of x.

gr(−x) = (−x)r
(1−(−x))r+1

= (−1)rxr

(1+x)r+1

Recall that the generating function for the Tribonacci sequence[KOS18] in this problem is

g(x) = x3

(1−x−x2−x3)
. Let us input the Tribonacci sequence into Pascal’s triangle generating

function[KOS14].

gn( x3

(1−x−x2−x3)
) =

( x3

(1−x−x2−x3)
)n

(1+ x3

(1−x−x2−x3)
)n+1

=
( x3

1−x−x2−x3
)n

(1+ x3

(1−x−x2−x3
)n+1
· (1−x−x

2−x3)n+1

(1−x−x2−x3)n+1

= (1−x−x2−x3)x3n

(1−x−x2−x3+x3)n+1

= (1−x−x2−x3)(−1)nx3n

(1−x−x2)n+1

By dividing both sides by (−1)n(1− x− x2 − x3) we get

gn(x) = x3n

(1−x−x2)n+1

Which represents the generating function where n is the column of the Fibonacci convo-

lution triangle[KOS14].
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Chapter 5

Our Findings

One of the most difficult parts after finding a pattern was finding a way to prove

what I had found. The book I had been looking at worked with the column generating

functions[KOS14]. Then I came across a journal article from Hoggat and Bicknell that

found the convolution triangles in row generating functions[HB72]. Hoggat and Bicknell

proved their finding in a different way, however, I believe I have made the process more

simple. Let us start with a brief explanation of what we need in order to find the terms

themselves. We need a way to write the rows so that we can find the individual terms.

The way Hoggat and Bicknel[HB72] found it was through the function g(x) = 1
(1−x)n .

Writing the function in this way will open the opportunity to find the mth term in that

row. Later in this chapter, we will prove the relation Rn = Nn
(1−x)n , where Nn is the

numerator of the row generating function[HB72]. This table comes from the generating

function expansion since the mth term of a generating function comes from
g(x) = 1

(1−x)n

= (1 + x + x2 + · · ·+ xm + · · · )n
= (1 +

(
1+n−1

1

)
x +

(
2+n−1

2

)
x2 + · · ·+

(
m+n−1

m

)
xm + · · · )

Therefore, the term itself is the coefficent C
(m)
n =

(
m+n−1

m

)
Nn

Notice that in this way, we are able to find each individual coefficient. Table 5.1 is a

visual of what each of those terms would look like[MER03].
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Table 5.1: Term Coefficients for Row Generating Functions

C(0) C(1) C(2) · · · C(m)

R1 1 ·N1

(
1+1−1

1

)
·N1

(
2+1−1

2

)
·N1 · · ·

(
m+1−1

m

)
·N1

R2 1 ·N2

(
1+2−1

1

)
·N2

(
2+2−1

2

)
·N2 · · ·

(
m+2−1

m

)
·N2

R3 1 ·N3

(
1+3−1

1

)
·N3

(
2+3−1

2

)
·N3 · · ·

(
m+3−1

m

)
·N3

...
...

...
...

. . .
...

Rn 1 ·Nn

(
1+n−1

1

)
·Nn

(
2+n−1

2

)
·Nn · · ·

(
m+n−1

m

)
·Nn

5.1 Fibonacci Convolution Triangle

The first thing we need to show is that there exists row generating functions

rather than column generating functions. This is easily proved through st induction[POL81].

5.1.1 Row Generators

We can start the process by seeing the difference and similarities in rows. We

can start with the very first row. Notice it is a row of ones. Since we have proven this

relation in a previous chapter[KOS18], we can say R1 = 1
1−x . The second row is a row

of the natural numbers, which is similar to the second row of Pascal’s triangle[KOS18],

which would make R2 = 1
(1−x)2 . We start to notice a pattern in the third row[HB72]. If

we were to offset the third row by one column, and add it to the previous two, we would

get the third row as shown below[HB72].

R1 1 1 1 1 1
R2 1 2 3 4 5

+ R3 2 5 9 14

R3 2 5 9 14 20

This pattern worked for the third row, let us see if it works out for the fourth row[HB72].

R2 1 2 3 4 5
R3 2 5 9 14 20

+ R4 3 10 22 40

R4 3 10 22 40 65

Continuing this for the following row would yield
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R3 2 5 9 14 20
R4 3 10 22 40 65

+ R5 5 20 51 105

R5 5 20 51 105 190

.

At this point, we can say that each row, starting with the third row comes from the

pattern Rn = x · Rn + Rn−1 + Rn−2 which would give us Rn = Rn−1+Rn−2

1−x . Let us find

the first few rows[HB72].

R1 = 1
1−x

R2 = 1
(1−x)2

R3 = R2+R1
1−x

=
1

(1−x)2
+ 1

1−x

1−x
= 1+(1−x)

(1−x)(1−x)2

= 2−x
(1−x)3

R4 = R3+R2
1−x

=
2−x

(1−x)3
+ 1

(1−x)2

1−x
= (2−x)+(1−x)

(1−x)(1−x)3

= 3−2x
(1−x)4

R5 = R4+R3
1−x

=
3−2x

(1−x)4
+ 2−x

(1−x)3

1−x
= (3−2x)+(2−x)(1−x)

(1−x)(1−x)4

= 3−2x+2−3x+x2

(1−x)5

= 5−5x+x2

(1−x)5

Notice that the degree of the denominator of the nth row is n. If we were to separate the

numerator from the denominator, we would have Rn = Nn
(1−x)n for some numerator Nn. If

we were to take the numerator as the sum of the two numerators of the rows, we notice

that we have the sum of two quotients with different degrees in their denominator[HB72].

This seems to follow the relation of Rn = Nn
(1−x)n = Nn−1+(1−x)Nn−2

(1−x)n where the numerator

of the nth row is Nn = Nn−1 + (1− x)Nn−2. We will use this relation to help prove our

findings.

5.1.2 Sum of Rows for the mth Term

In this section, we talked about the findings Hoggat and Bicknell talked about

in their journal article[HB72]. They originally found this relation, however, I found a way

to make it a little easier to prove. Notice the highlighted entries in the table below.
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.

Table 5.2: Sum of Rows

F (0) F (1) F (2) F (3) F (4)

R1 1 1 1 1 1
R2 1 2 3 4 5
R3 2 5 9 14 20
R4 3 10 22 40 65
R5 5 20 51 105 190
R6 8 38 111 256 511

For each entry in the mth column, we have the sum of the two rows above it, up the

the mth entry of their respective columns resulting in the mth term that we speak of.

For example, notice in table 5.2, we have the sum of the two rows above the entry 40

resulting in 40. We can prove this with induction. Recall table 5.1 which shows the mth

term in the nth column through the coefficients of the generating functions. Using those

coefficients, we can solve this relation by induction. In order to prove this by induction,

we must prove the two different shifts. A horizontal shift in terms and a vertical shift in

terms. Before we start, let’s note the following equivalence:

C
(m)
n =

(
m+n−1

m

)
Nn

=
(
m+n−1

m

)
· [Nn−1 + (1− x)Nn−2]

=
(
m+n−1

m

)
Nn−1 +

(
m−1+n−1

m

)
Nn−2

=
(
m+n−1

m

)
Nn−1 +

(
m+n−2

m

)
Nn−2

We know by the table that C
(4)
3 = 20. The following is an example of the relation above:

C
(4)
3 =

(
4+3−1

4

)
N3

=
(
4+3−1

4

)
· [N3−1 + (1− x)N3−2]

=
(
4+3−1

4

)
N2 +

(
4−1+3−1

4

)
N1

=
(
6
4

)
N2 +

(
5
4

)
N1

= 15N2 + 5N1

= 15+5
= 20

We want to prove the mth term in the nth row is the sum of the two rows above it. We

will first prove the horizontal shift in terms.

Step 1: Prove the first term of the series. In this case the first term we can apply the

rule to is C
(0)
3 .
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C
(0)
3 =

(
0+3−1

0

)
·N3

=
(
2
0

)
·N3

= 1 ·N3

Now that we have the LHS, let us see what the result of the RHS is.(
0+1−1

0

)
·N1 +

(
0+2−1

0

)
·N2 =

(
0+2−1

0

)
·N3

= 1 ·N3

Since we got the same results for the two sides, we have proven the first term to be true.

Now, we have to check the entire rule.

Step 2: Assume C
(k)
n is true, prove C

(k+1)
n

We take the following to be true.
(1 +

(
1+n−2−1

1

)
+
(
2+n−2−1

2

)
+ · · ·+

(
k+n−2−1

k

)
) ·Nn−2

+ =
(
k+n−1

k

)
·Nn

(1 +
(
1+n−1−1

1

)
+
(
2+n−1−1

2

)
+ · · ·+

(
k+n−1−1

k

)
) ·Nn−1

If we simplify, we get

(1 +
(
n−2
1

)
+
(
n−1
2

)
+ · · ·+

(
k+n−3

k

)
) ·Nn−2

+ =
(
k+n−1

k

)
·Nn

(1 +
(
n−1
1

)
+
(
n
2

)
+ · · ·+

(
k+n−2

k

)
) ·Nn−1

We must now prove for the term C
(k+1)
n . The RHS is fairly easy to prove.

C
(k+1)
n =

(
k+1+n−1

k+1

)
·Nn

=
(
k+n
k+1

)
·Nn

Now we prove that the sum of the two rows above C
(k+1)
n results in C

(k+1)
n .

(1 +
(
1+n−2−1

1

)
+
(
2+n−2−1

2

)
+ · · ·+

(
k+n−2−1

k

)
+
(
k+1+n−2−1

k+1

)
) ·Nn−2+

(1 +
(
1+n−1−1

1

)
+
(
2+n−1−1

2

)
+ · · ·+

(
k+n−1−1

k

)
+
(
k+1+n−1−1

k+1

)
) ·Nn−1

When we simplify we get

(1 +
(
n−2
1

)
+
(
n−1
2

)
+ · · ·+

(
k+n−3

k

)
+
(
k+n−2
k+1

)
) ·Nn−2+

(1 +
(
n−1
1

)
+
(
n
2

)
+ · · ·+

(
k+n−2

k

)
+
(
k+n−1
k+1

)
) ·Nn−1

By the rule of induction, we substitute and get

(
k+n
k

)
·Nn +

(
k+n−1
k+1

)
·Nn−1 +

(
k+n−2
k+1

)
·Nn−2

By the rule of the nth term, we have
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(
k+n−1

k

)
·Nn +

(
k+n−1
k+1

)
·Nn

Lastly, by Pascal’s identity, we have(
k+n
k+1

)
·Nn

Since
(
k+n
k+1

)
· Nn =

(
k+n
k+1

)
· Nn we can say that the sum of the two rows above the C

(m)
n

term results in C
(m)
n for a horizontal shift in terms.

Now that we proved this relation to be true in the rows, let’s see the proof by

induction for the shifts in columns. In this case, we will prove the first column to be true.

Note that the first column is the Fibonacci sequence. Knowing that every entry is the

sum of the two entries above it in the first column, we can shift horizontally to prove this

conjecture works for every entry in the Fibonacci convolution triangle.

Step 1: Prove the first term of the series. In this case the first term we can apply the rule

to is C
(0)
3 . We know this to be true since we have proved this for the horizontal shifts in

the array. Let’s move on to step 2.

Step 2: Assume C
(0)
k is true, prove C

(0)
k+1

We take the following to be true.(
0+k−1

0

)
Nn =

(
0+k−1−1

0

)
Nk−1 +

(
0+k−2−1

0

)
Nk−2

When we simplify we get

(
k−1
0

)
Nk =

(
0+k−2

0

)
Nk−1 +

(
0+k−3

0

)
Nk−2

Now we prove C
(0)
k+1 to be the sum of the two numbers above it. Let’s start with

the LHS.

C
(0)
k+1 =

(
0+k+1−1

0

)
Nk+1

When we simplify we get

(
k
0

)
Nk+1

By the relation of the Nn, we get the following
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(
k
0

)
· [Nk + (1− x)Nk−1]

=
(
k
0

)
Nk +

(
k−1
0

)
Nk−1

When we simplify we get

1 ·Nk + 1 ·Nk−1
= Nk + Nk−1

Now that we have the result for the LHS, lets see the result of the RHS.

C
(0)
k+1 =

(
0+k−1

0

)
Nk +

(
0+k−1−1

0

)
Nk−1

=
(
k−1
0

)
Nk +

(
k−2
0

)
Nk−1

= 1 ·Nk + 1 ·Nk−1
= Nk + Nk−1

Since we proved the horizontal shift to be true, and since the LHS=RHS, we know that we

can use this conjecture to generate the entire Fibonacci convolution triangle. Therefore,

the sum of the two rows up to the mth entry above C
(m)
n is C

(m)
n .

5.1.3 The Sum of Distinct Term for the mth Term

If you were to offset the columns by two rows, we would have the following table.

Table 5.3: Sum of Terms Offset by Two Rows

F (0) F (1) F (2) F (3)

1
1
2 1
3 2
5 5 1
8 10 3
13 20 9 1
21 38 22 4
34 71 51 14
55 130 111 40
89 235 233 105

Notice that in this table, we have a few cells highlighted. The sum of 105 = 40+14+51.

More importantly, each term is the sum of the two entries above it, and the entry to the

left of the highest one. It might be a little hard to see this one, so we have the table
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below to show us where those numbers came from.

Table 5.4: Sum of Terms

F (0) F (1) F (2) F (3) F (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
3 10 22 40 65
5 20 51 105 190
8 38 111 256 511

Here we can see that it generates the first few entries, but does it generate the entire

array? We can prove this through induction in two cases. First for the horizontal shift,

then for the vertical shift.

We want to prove that C
(m)
n = C

(m−1)
n + C

(m)
n−1 + C

(m)
n−2. Let us first see the case

of the horizontal shift.

Step 1: Prove the first term which, in this case is C
(1)
3

We can start by seeing the result of the LHS.

C
(1)
3 =

(
1+3−1

1

)
·N3

=
(
3
1

)
·N3

Now, let us see the result for the RHS.

C
(0)
3 + C

(1)
2 + C

(2)
1 =

(
0+3−1

0

)
·N3 +

(
1+2−1

1

)
·N2 +

(
2+1−1

2

)
·N1

=
(
2
0

)
·N3 +

(
1+2−1

1

)
·N3

=
(
2
0

)
·N3 +

(
2
1

)
·N3

=
(
3
1

)
·N3

Since
(
3
1

)
·N3=

(
3
1

)
·N3, we can say that the relation works for the first term. Now that

we have finished the first step, we can now move on to step two.

Step 2: Assume C
(k)
n is true, prove C

(k+1)
n

We take the following to be true.

C
(k)
n = C

(k−1)
n + C

(k)
n−1 + C

(k)
n−2(

k+n−1
k

)
·Nn =

(
k−1+n−1

k−1
)
·Nn +

(
k+n−1−1

k

)
·Nn−1 +

(
k+n−2−1

k

)
·Nn−2(

k+n−1
k

)
·Nn =

(
k+n−2
k−1

)
·Nn +

(
k+n−2

k

)
·Nn−1 +

(
k+n−3

k

)
·Nn−2

Next we prove the relation for the C
(k+1)
n term. Let us first start with the LHS.
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C
(k+1)
n =

(
k+1+n−1

k+1

)
·Nn

=
(
k+n
k+1

)
·Nn

Now that we have the LHS, the next thing we do is see if we get the same result for the

RHS.

C
(k−1)
n + C

(k)
n−1 + C

(k)
n−2

=
(
k+1+n−2

k

)
·Nn +

(
k+1+n−2

k+1

)
·Nn−1 +

(
k+1+n−3

k+1

)
·Nn−2

When we simplify we get

=
(
k+n−1

k

)
·Nn +

(
k+n−1
k+1

)
·Nn−1 +

(
k+n−2
k+1

)
·Nn−2

By substituting the nth numerator we get

=
(
k+n−1

k

)
·Nn +

(
k+n−1
k+1

)
·Nn

When we simplify we get

=
(
k+n
k+1

)
·Nn

Since
(
k+n
k+1

)
·Nn=

(
k+n
k+1

)
·Nn, we can say the relation holds true for the horizontal shift.

If we were to do the proof for the vertical shift, we can see that if we prove this relation

for the first column, we can prove it for the entire array. Notice, if we were to take the

two terms above the first term in the nth row, we have the exact proof we proved in the

previous section. Note, that the entry to the left of any term in the first column is zero.

Therefore, we have already proven the relation to be true for the vertical shift. Therefore,

each term in the array can be made up of the two numbers above it and the one to the

left of it.

5.2 Tribonacci Convolution Triangle

The Tribonacci convolution triangle is very similar to the Fibonacci convolution

triangle in that it is made up of column generating functions of Tribonacci numbers[KOS14].

Again, Hoggat and Bicknell proved the following proof, but they did it in such a way that
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made it more difficult to understand[HB72]. I used the row generating function they

found and used induction to prove both their findings, and my own. We can start with

the row generating function[HB72].

5.2.1 Row Generators

Picking up parts from the Fibonacci row generating function[HB72], we can see that the

first three rows of the Tribonacci convolution triangle are the same as the ones we found

in the Fibonacci convolution triangle. We start seeing a difference in the 4th row. Similar

to the Fibonacci convolution triangle, if we were to offset the fourth row by one column,

and add it to the previous three, we would get the third row[HB72]. Below is a visual of

what I am stating.
R1 1 1 1 1 1
R2 1 2 3 4 5
R3 2 5 9 14 20

+ R4 4 12 25 44

R4 4 12 25 44 70
This pattern gives us the fourth row. Let’s see if this works for the fifth row.

R2 1 2 3 4 5
R3 2 5 9 14 20
R4 4 12 25 44 70

+ R5 7 26 63 125

R5 7 26 63 125 220
This gives us the fifth row of the Tribonacci convolution triangle[HB72]. Let’s give it one

more try before we see the pattern.
R3 2 5 9 14 20
R4 4 12 25 44 70
R5 7 26 63 125 220

+ R6 13 56 153 336

R6 13 56 153 336 646
At this point, it is safe to see the pattern[HB72] we have found to being Rn = x · Rn +

Rn−1+Rn−2+Rn−3 which would give us Rn = Rn−1+Rn−2+Rn−3

(1−x) . Similar to the Fibonacci

convolution triangle we can say that Rn = Nn
(1−x)n for some numerator Nn. This will allow

us to use the coefficient chart in the beginning of the chapter. It also seems to follow the

relation Rn = Nn
(1−x)n = Nn−1+(1−x)Nn−2+(1−x)2Nn−3

(1−x)n where the numerator of the nth row

is Nn = Nn−1 + (1− x)Nn−2 + (1− x)2Nn−3.
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5.2.2 Sum of the Rows for the mth Term

Each of the terms in the Tribonacci convolution triangle are the result of the sum of the

three rows above it up to the that term[HB72]. The table below is a good representation

of the situation.

Table 5.5: Sum of Rows

T (0) T (1) T (2) T (3) T (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
4 12 25 44 70
7 26 63 125 220
13 56 153 336 646

Notice that 125 = (1+2+3+4)+(2+5+9+14)+(4+12+25+44), which is the sum of the

three rows above 125. This generates the entire Tribonacci convolution triangle. This

can be easily proven by induction as shown below[HB72]. Before we start, let’s note the

following equivialence:

C
(m)
n =

(
m+n−1

m

)
Nn

=
(
m+n−1

m

)
· [Nn−1 + (1− x)Nn−2 + (1− x)2Nn−3]

=
(
m+n−1

m

)
Nn−1 +

(
m−1+n−1

m

)
Nn−2 +

(
m−2+n−1

m

)
Nn−3

=
(
m+n−1

m

)
Nn−1 +

(
m+n−2

m

)
Nn−2 +

(
m+n−3

m

)
Nn−3

We want to prove the mth term in the nth row is the sum of the three rows above it.

Step 1: Prove the first term of the series. In this case, the first term we can apply will

be C
(0)
4 . Let’s start with finding the LHS.

C
(0)
4 =

(
0+4−1

0

)
·N4

=
(
3
0

)
·N4

= 1 ·N4

Now that we have the result for the LHS, let’s see what we get for the RHS.

C
(0)
1 + C

(0)
2 + C

(0)
3 =

(
0+1−1

0

)
N1 +

(
0+2−1

0

)
N2 +

(
0+3−1

0

)
N3

=
(
0+1−1

0

)
N4

= 1 ·N4

Since N4 = N4, we can say that the conjecture is true for the first term. The next thing

we have to do is prove the general case.

Step 2: Assume C
(k)
n is true, prove C

(k+1)
n

We take the following to be true.
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(1 +
(
1+n−3−1

1

)
+
(
2+n−3−1

2

)
+ · · ·+

(
k+n−3−1

k

)
) ·Nn−3+(

k+n−1
k

)
Nn = (1 +

(
1+n−2−1

1

)
+
(
2+n−2−1

2

)
+ · · ·+

(
k+n−2−1

k

)
) ·Nn−2+

(1 +
(
1+n−1−1

1

)
+
(
2+n−1−1

2

)
+ · · ·+

(
k+n−1−1

k

)
) ·Nn−1

By simplifying, we get

(1 +
(
n−3
1

)
+
(
n−2
2

)
+ · · ·+

(
k+n−4

k

)
) ·Nn−3+(

k+n−1
k

)
Nn = (1 +

(
n−2
1

)
+
(
n−1
2

)
+ · · ·+

(
k+n−3

k

)
) ·Nn−2+

(1 +
(
n−1
1

)
+
(
n
2

)
+ · · ·+

(
k+n−2

k

)
) ·Nn−1

The next thing we do is prove the following term. Let us start with the LHS.

C
(k+1)
n =

(
k+1+n−1

k+1

)
·Nn

=
(
k+n
k+1

)
·Nn

Now that we have the LHS, let’s see what the result of the RHS is.
(1 +

(
1+n−3−1

1

)
+
(
2+n−3−1

2

)
+ · · ·+

(
k+n−3−1

k

)
+
(
k+1+n−3−1

k+1

)
) ·Nn−3+

(1 +
(
1+n−2−1

1

)
+
(
2+n−2−1

2

)
+ · · ·+

(
k+n−2−1

k

)
+
(
k+1+n−2−1

k+1

)
) ·Nn−2+

(1 +
(
1+n−1−1

1

)
+
(
2+n−1−1

2

)
+ · · ·+

(
k+n−1−1

k

)
+
(
k+1+n−1−1

k+1

)
) ·Nn−1

After simplifying, we get

(1 +
(
n−3
1

)
+
(
n−2
2

)
+ · · ·+

(
k+n−4

k

)
+
(
k+n−3
k+1

)
) ·Nn−3+

(1 +
(
n−2
1

)
+
(
n−1
2

)
+ · · ·+

(
k+n−3

k

)
+
(
k+n−2
k+1

)
) ·Nn−2+

(1 +
(
n−1
1

)
+
(
n
2

)
+ · · ·+

(
k+n−2

k

)
+
(
k+n−1
k+1

)
) ·Nn−1

By the induction hypothesis, we substitute and get

(
k+n−1

k

)
Nn +

(
k+n−1
k+1

)
Nn−1 +

(
k+n−2
k+1

)
Nn−2 +

(
k+n−3
k+1

)
Nn−3

By the definition of the nth numerator, we substitute and get

(
k+n−1

k

)
Nn +

(
k+n−1
k+1

)
Nn

Lastly, by Pascal’s identity, we have

(
k+n
k+1

)
Nn

Since
(
k+n
k+1

)
Nn=

(
k+n
k+1

)
Nn, we have proven the sum of three rows above any given term

makes up the entry in the case of a horizontal shift.
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Now let’s prove the relation for a vertical shift.

Step 1: Prove the first term of the series. In this case the first term we can apply the rule

to is C
(0)
4 . We know this to be true since we have proved this for the horizontal shifts in

array. Let’s move on to step 2.

Step 2: Assume C
(0)
k is true, prove C

(0)
k+1

We take the following to be true.(
0+k−1

0

)
Nk =

(
0+k−1−1

0

)
Nk−1 +

(
0+k−2−1

0

)
Nk−2 +

(
0+k−3−1

0

)
Nk−3(

k−1
0

)
Nk =

(
k−2
0

)
Nk−1 +

(
k−3
0

)
Nk−2 +

(
k−4
0

)
Nk−3

Now we prove C
(0)
k+1 to be the sum of the two numbers above it. Let’s start with the LHS.

C
(0)
k+1 =

(
0+k+1−1

0

)
Nk+1

By simplifying, we get

(
k
0

)
Nk+1

By substituting the nth numerator, we get

(
k
0

)
· [Nk + (1− x)Nk−1 + (1− x)2Nk−2]

By distributing, we get

(
k
0

)
Nk +

(
k−1
0

)
Nk−1 +

(
k−2
0

)
Nk−2

By simplifying, we get

1 ·Nk + 1 ·Nk−1 + 1 ·Nk−2
= Nk + Nk−1 + Nk−2

Now that we have the result for the LHS, lets see the result of the RHS.

C
(0)
k+1 =

(
0+k−1

0

)
Nk +

(
0+k−1−1

0

)
Nk−1 +

(
0+k−2−1

0

)
Nk−2

By simplifying, we get
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(
k−1
0

)
Nk +

(
k−2
0

)
Nk−1 +

(
k−3
0

)
Nk−2

= 1 ·Nk + 1 ·Nk−1 + 1 ·Nk−2
= Nk + Nk−1 + Nk−2

Since the LHS=RHS, and since we proved the horizontal shift, we know the sum of the

three rows up to the mth entry above C
(m)
n is C

(m)
n .

5.2.3 The Sum Distinct Terms for the mth Term

In order to see the actual pattern, we must first see the Tribonacci convolution

triangle as left justified, and offset by three rows as in the table below. This allows us to

see the distinct terms that make up the mth term in the nth row.

Table 5.6: Sum of Terms Offset by Three Rows

T (0) T (1) T (2) T (3) T (4)

1
1
2
4 1
7 2
13 5
24 12 1
44 26 3
81 56 9
149 118 25 1
274 244 63 4
504 499 153 14
927 1010 359 44 1
1705 2027 819 125 5

In this case, we see 125 = 44 + 14 + 4 + 63. It is easy to see the pattern forming, but

we should see these numbers on the simply left justified Tribonacci convolution triangle

as show below.

At this point, we want to prove C
(m)
n = C

(m−1)
n + C

(m)
n−1 + C

(m)
n−2 + C

(m)
n−3. Let’s prove this

by form of induction. We want to prove the mth term in the nth row is the sum of the

three entries above it, and the one to the left.

Step 1: Prove the first term of the series. In this case, the first term we can apply will
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Table 5.7: Sum of Distinct Terms

T (0) T (1) T (2) T (3) T (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
4 12 25 44 70
7 26 63 125 220

be C
(0)
4 . Let’s start by finding the LHS of the equation.

C
(0)
4 =

(
0+4−1

0

)
N4

=
(
5
0

)
N4

= 1 ·N4

Now that we have the LHS, let’s see if the result of the RHS is the same. Note

that the term to the left of C
(0)
4 =0.

0 + C
(1)
3 + C

(1)
2 + C

(1)
1

=
(
1+3−1

1

)
N3 +

(
1+2−1

1

)
N2 +

(
1+1−1

1

)
N1

=
(
3
1

)
N3 +

(
2
1

)
N2 +

(
1
1

)
N1

=
(
4
0

)
N4

= 1 ·N4

= N4

Since N4=N4, then we have proven the first term to follow the conjecture. Next, we have

to prove the pattern for the general term.

Step 2: Assume C
(k)
n is true, prove C

(k+1)
n

Take the following to be true.

C
(k)
n = C

(k−1)
n + C

(k)
n−1 + C

(k)
n−2 + C

(k)
n−3(

k+n−1
k

)
Nn =

(
k+n−2
k−1

)
Nn +

(
k+n−2

k

)
Nn−1 +

(
k+n−3

k

)
Nn−2 +

(
k+n−4

k

)
Nn−3

Using the above statement, we need to prove C
(k+1)
n . Let’s start with the LHS.

C
(k+1)
n =

(
k+1+n−1

k+1

)
Nn

=
(
k+n
k+1

)
Nn

Now that we have the result for the LHS, let’s see if the RHS matches.

C
(k)
n + C

(k+1)
n−1 + C

(k+1)
n−2 + C

(k+1)
n−3

=
(
k+n−1

k

)
Nn +

(
k+1+n−2

k+1

)
Nn−1 +

(
k+1+n−3

k+1

)
Nn−2 +

(
k+1+n−4

k+1

)
Nn−3

=
(
k+n−1

k

)
Nn +

(
k+n−1
k+1

)
Nn−1 +

(
k+n−2
k+1

)
Nn−2 +

(
k+n−3
k+1

)
Nn−3

=
(
k+n−1

k

)
Nn +

(
k+n−1
k+1

)
Nn

=
(
k+n
k+1

)
Nn

Since the LHS=RHS, we have proven the relation to be true for the case of the horizontal
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shift. If we were to do the proof for the vertical shift, we can see that if we prove this

relation for the first column, we can prove it for the entire array. Notice, if we were to

take the three terms above the first term in the nth row, we have the exact proof we

proved in the previous section. Note, that the entry to the left of any term in the first

column is zero. Therefore, we have already proven the relation to be true for the vertical

shift. Therefore, each term in the array can be made up of the two numbers above it and

the one to the left of it.
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Chapter 6

Conclusion

Finding the patterns in Chapter 5 about the Fibonacci and Tribonacci con-

volution triangles was one of the most thrilling parts of this project. I found them

early on and was really excited to prove them. I had been using the column generating

functions[KOS14] which helped prove the conjectures for the early observations. I real-

ized that there was a way to find row generating functions[HB72] I could use to prove

our findings. While proving our findings I noticed something worth stating.

6.1 Fibonacci Convolution Triangle

As I was proving my findings for the Fibonacci convolution triangle[HB72], I

noticed that they looked very similar to the second step of induction of the sum of the

rows. Notice that each of the entries is the sum of the previous term in the row and the

two new terms of that pattern as shown below.

Table 6.1: Sum of Two Rows

F (0) F (1) F (2) F (3) F (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
3 10 22 40 65
5 20 51 105 190
8 38 111 256 511
13 71 233 594 1295
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Notice that 233 is already the sum of the entries of the two rows above it. When we look

for the entries of 594, rather than taking the sum of the entire two rows above it, we

simply take the sum of the 233, which is the term next to it, and add it to the other two

missing entries of that column. We can see that in the table below.

Table 6.2: Sum of Terms

F (0) F (1) F (2) F (3) F (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
3 10 22 40 65
5 20 51 105 190
8 38 111 256 511
13 71 233 594 1295

6.2 Tribonacci Convolution Triangle

Similarly to the Tribonacci convolution triangle, I noticed a similar pattern in

the Tribonacci convolution triangle[HB72]. The sum of the four distinct terms was similar

to the second step of induction of the sum of the rows. Noticing that the same relation

was found I wanted to see a visual of what was going on. Below, we have the Tribonacci

convolution triangle.

Table 6.3: Sum of Three Rows

T (0) T (1) T (2) T (3) T (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
4 12 25 44 70
7 26 63 125 220
13 56 153 336 646
24 118 359 864 1800
44 244 819 2144 4810

Notice that 359 is already the sum of the entries of the two rows above it. Then we look

for the entries of 864, rather than taking the sum of the entire rows above it, we can add
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the entry to the left of it, and the two entries above it. Offsetting the array by 3 rows

make it easier to see the sum of the entries. This pattern, as we proved, generates the

entire Tribonacci convolution triangle.

Table 6.4: Sum of Terms

T (0) T (1) T (2) T (3) T (4)

1 1 1 1 1
1 2 3 4 5
2 5 9 14 20
4 12 25 44 70
7 26 63 125 220
13 56 153 336 646
24 118 359 864 1800

Notice that 359 is already the sum of the entries of the two rows above it. Then we look

for the entries of 864, rather than taking the sum of the entire rows above it, we can add

the entry to the left of it, and the two entries above it. Offsetting the array by 3 rows

make it easier to see the sum of the entries. This pattern, as we proved, generates the

entire Tribonacci convolution triangle.
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