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Abstract

This paper will discuss the analogues between Leibniz’s Harmonic Triangle and Pascal’s

Arithmetic Triangle by utilizing mathematical proving techniques like partial sums, com-

mittees, telescoping, mathematical induction and applying George Pólya’s perspective.

The topics presented in this paper will show that Pascal’s triangle and Leibniz’s tri-

angle both have hockey stick type patterns, patterns of sums within shapes, and have

the natural numbers, triangular numbers, tetrahedral numbers, and pentatope numbers

hidden within. In addition, this paper will show how Pascal’s Arithmetic Triangle can

be used to construct Leibniz’s Harmonic Triangle and show how both triangles relate to

combinatorics and arithmetic through the coefficients of the binomial expansion. Fur-

thermore, combinatorics plays an increasingly important role in mathematics, starting

when students enter high school and continuing on into their college years. Students be-

come familiar with the traditional arguments based on classical arithmetic and algebra,

however, methods of combinatorics can vary greatly. In combinatorics, perhaps the most

important concept revolves around the coefficients of the binomial expansion, studying

and proving their properties, and conveying a greater insight into mathematics.
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(n+1)(nr)
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(
n+r−1

r

)
tn = triangular numbers = (n+1)(n+2)
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Chapter 1

Pascal’s Arithmetic Triangle

1.1 Who is Blaise Pascal?

Blaise Pascal, born on June 19, 1623 in Clermont Ferrand, France, was a math-

ematician, physicist, and religious philosopher, who made several contributions in many

of these fields. For example, in 1642 he invented the Pascaline, an early calculator that

could add and subtract, which was used by his dad, a tax commissioner. In addition,

with his collaboration with the Frenchman Pierre de Fermat and the Dutchman Christi-

aan Huygens, in 1654 the foundation of probability theory was formed and in 1657 was

published as Les Provinciales.

Furthermore, Blaise Pascal is widely known for his collection of notes released as

the Pensées published in 1670 after his death in Paris, France, August 19, 1662. However,

in Algebra, Blaise Pascal is most recognized for the arithmetic triangle known as Pascal’s

Triangle, which is a triangular array of numbers that can relate to the coefficients of any
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binomial expansion. Even though this triangular array of numbers was well known before

Pascal’s time, Pascal contributed an elegant proof, plus discovered useful and interesting

patterns among the rows, columns, and diagonals, publishing the work Trait é du triangle

arithmétique in 1653. Note that a binomial is a simple algebraic expression that has only

two terms operated by positive whole number exponents, addition, subtraction, and mul-

tiplication. Moreover, binomial coefficients lie at the heart of combinatorial mathematics,

which is why Pascal’s Arithmetic Triangle has been studied by many civilizations since

ancient times [Kos11, Pol09, JO19].

1.2 Pascal’s Arithmetic Triangle

Let’s denote C (n, r) to represent a term in Pascal’s Arithmetic Triangle, where

n is the row number starting from the apex at n ≥ 0 and r is an entry number in a

row starting from the left at 0 and moving to the right, ending at n (the columns or

diagonals), 0 ≤ r ≤ n and n, r ∈ Z (See Figure 1.1).

C (0,0)
C (1,0) C (1,1)

C (2,0) C (2,1) C (2,2)
C (3,0) C (3,1) C (3,2) C (3,3)

Figure 1.1: Pascal’s Arithemtic Triangle in C (n, r) Form

Pascal’s triangle can be constructed using the following three simple rules. First every row

begins and ends with the number 1 (See Figure 1.2). Second, the triangular arrangement

is symmetric along its central column through the apex. This is the column containing
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the central binomial coefficients, {1, 2, 6, 20, 70, . . .}. Third, to generate the remaining

terms (the inner terms of the triangle arrangement) take the sum of the two numbers

directly above it (the Northwest and Northeast neighbors). For example, 1 + 2 = 3,

4 + 1 = 5, 5 + 10 = 15, 21 + 7 = 28, and 28 + 56 = 84. However, the additional

terms can be generated another way by taking the difference of the left and Southwest

neighbors. For example, 3 − 1 = 2, 5 − 4 = 1, 15 − 5 = 10, and 28 − 21 = 7 (See Figure

1.3) [Sto83, Kos11].

Figure 1.2: Constructing Pascal’s
Triangle Step 1

Figure 1.3: Constructing Pascal’s
Triangle Step 2

Above all, any entry in Pascal’s Arithmetic Triangle can be found by using

the following formula that has provided a fundamental link between combinatorics and

arithmetic,
(
n
r

)
= n!

r!(n−r)! . For combinatorics, r represents the objects selected without

replacement from n distinct objects. Lastly, let’s generalize a way to construct Pascal’s

Arithmetic Triangle. First, the triangular array is symmetric along the vertical axis, then

C (n, r) =
(
n
r

)
= n!

r!(n−r)! =
(

n
n−r
)

= C (n, n − r). Next, the boundary conditions are

formed using C (n, 0) =
(
n
0

)
=
(
n
n

)
= C (n, n) = 1, where n ≥ 0. Lastly, the additional
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terms are formed using C (n − 1, r − 1) + C (n − 1, r) = C (n, r), where n ≥ 2, and

1 ≤ r ≤ n − 1. Now let’s verify that the inner numbers of Pascal’s Arithmetic Triangle

are formed from the sum of the two numbers immediately above it (the Northeast and

Northwest neighbors). Show C (n, r) = C (n − 1, r − 1) + C (n − 1, r) where n ≥ 2,

and 1 ≤ r ≤ n − 1.

C(n− 1, r − 1) + C(n− 1, r) =

(
n− 1

r − 1

)
+

(
n− 1

r

)
=

(n− 1)!

(r − 1)!(n− r)!
+

(n− 1)!

r!(n− r − 1)!

=
r(n− 1)! + (n− r)(n− 1)!

r!(n− r)!

=
n(n− 1)!

r!(n− r)!

=
n!

r!(n− r)!

= C(n, r)

Thus C (n, r) = C (n − 1, r − 1) + C (n − 1, r). Verifying that the sum of the two

numbers directly above (the Northeast and Northwest neighbors) can be used to generate

the internal numbers of Pascal’s triangular array and producing Equation 1.1, which is

just Pascal’s Identity [HP87, Kos11, Sto83].

C (n, r) = C (n − 1 , r − 1 ) + C (n − 1 , r) (1.1)
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1.3 Some Properties and Patterns of Pascal’s Triangle

Without a doubt, Pascal’s Arithmetic Triangle has many interesting and useful

patterns and properties that can be examined and proven. For instance, look at the diag-

onals of Pascal’s triangular array, the first diagonal starting at the apex consists only of

the number 1 and can be found using
(
n
0

)
= C (n, 0) where n ≥ 0 (See Figure 1.4). Next,

look at the second diagonal to the right of the apex these are the natural numbers or

known as the counting numbers {1, 2, 3, 4, 5, . . .} (See Figure 1.5), which can be denoted

as N. Note that the natural numbers just come from the sums of the 1 numbers, 1, 1 +

1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4, and so on. Then the sum of any sequence of 1

numbers can be found using
(
n+1
1

)
= C (n+1, 1) = (n+1).

Figure 1.4: The 1 Numbers in Pascal’s Triangle

Figure 1.5: The Natural Numbers in Pascal’s Triangle

Next let’s examine the sum of any sequence of natural numbers by looking at the sums
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when n = 0, 1, 2, and 3 respectively.

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10

Notice that the sum of the natural numbers yields the numbers {1, 3, 6, 10, . . .}, which

are the triangular numbers. Then the sum of any sequence of natural numbers can be

founded using 1
2(n+1)(n+2), where n ≥ 0 and n ∈ Z.

Likewise, examine the third diagonal to the right of the apex, these are trian-

gular numbers {1, 3, 6, 10, . . .} (See Figure 1.6), which counts objects arranged in an

equilateral triangle and can be denoted as tn . Note that the number of dots in the equi-

lateral triangle has 1
2(n+1)(n+2) numbers of dots on all sides where n is equal to the row

number in Pascal’s triangle (See Figure 1.7). Then any triangular number can be found

using
(
n+2
2

)
= C (n+2, 2) = 1

2(n+1)(n+2).

Figure 1.6: The Triangular Numbers in Pascal’s Triangle
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Figure 1.7: Demonstrating the Triangular Numbers

Next let’s examine the sum of any sequence of triangular numbers by looking at the sums

when n = 0, 1, 2, and 3 respectively.

1 = 1

1 + 3 = 4

1 + 3 + 6 = 10

1 + 3 + 6 + 10 = 20

Notice that the sum of the triangular numbers yields the numbers {1, 4, 10, 20, . . . },

which are the tetrahedral numbers. Then the sum of any sequence of triangular numbers

can be found using 1
6(n+1)(n+2)(n+3), where n ≥ 0 and n ∈ Z.

Next examine the fourth diagonal to the right of the apex, these are the tetra-

hedral numbers {1, 4, 10, 20, 35, . . .} (See Figure 1.8), which represent a pyramid with

a triangular based, modeled by stacking spheres using 1
6(n+1)(n+2)(n+3) to represent

the total number of spheres found in all the levels, where n is equal to the row number in

Pascal’s triangle. The tetrahedral numbers can be denoted as Tn (See Figure 1.9). Then

any tetrahedral number can be found using
(
n+3
3

)
= C (n+3, 3) = 1

6(n+1)(n+2)(kn+3).
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Figure 1.8: The Tetrahedral Numbers in Pascal’s Triangle

Figure 1.9: Demonstrating the Tetrahedral Numbers

Next let’s examine the sum of any sequence of tetrahedral numbers by looking at the

sums when n = 0, 1, 2, and 3 respectively.

1 = 1

1 + 4 = 5

1 + 4 + 10 = 15

1 + 4 + 10 + 20 = 35

Notice that the sum of the tetrahedral numbers yields the numbers {1,5, 15, 35, . . .},

which are known as the pentatope numbers. Then the sum of any sequence of tetrahedral

numbers can be found using 1
24(n+1)(n+2)(n+3)(n+4), where n ≥ 0 and n ∈ Z.

Lastly, examine the fifth diagonal to the right of the apex. These numbers
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{1, 5, 15, 35, . . .} (See Figure 1.10), are defined as a class of figurative numbers that exist

in 4D space and describe the number of vertices in a 3D configuration of tetrahedrons

joined at the faces. These numbers were given a name by Pascal called the pentatope

numbers. Then any pentatope number can be found using
(
n+4
4

)
= C (n+4, 4) =

1
24(n+1)(n+2)(n+3)(n+4).

Figure 1.10: The Pentatope Numbers in Pascal’s Triangle

Next let’s examine the sum of any sequence of pentatope numbers by looking sums when

n = 0, 1, 2, and 3 respectively.

1 = 1

1 + 5 = 6

1 + 5 + 15 = 21

1 + 5 + 15 + 21 = 42

Notice that the sum of pentatope numbers yields the numbers {1, 6, 21, 42, . . .}, which are

the numbers found in the sixth diagonal from the right of the apex. Then the sum of any

sequence of pentatope numbers can be found using 1
120(n+1)(n+2)(n+3)(n+4)(n+5),

where n ≥ 0 and n ∈ Z [AL91, Kos11, Pol09, Tuc12].
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Chapter 2

Leibniz’s Harmonic Triangle

2.1 Who is Gottfried Leibniz?

Gottfried Leibniz, born July 1, 1646 in Leipzig, Germany was a philosopher,

physicist, mathematician, statesman, and great polymath who knew almost everything

that could be known during his time, about any subject or intellectual enterprise, remain-

ing one of the greatest, most influential thinkers and logicians in history. In addition,

he made many contributions to philosophy, engineering, physics, law, politics, and the-

ology. One of his greatest accomplishments was the discovery of a new mathematical

method of differential and integral calculus, which is a branch in mathematics that fo-

cuses on differentiation, integration, and limits of functions. He published the work in

1684. Simultaneously and independently of Leibniz, Sir Isaac Newton worked on the

same mathematical method, but published his work three years later. In addition, Leib-

niz discovered the binary number system and invented the first calculating machine that
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could add, subtract, multiple, and divide.

Furthermore, from his study on harmonic series, and from taking summations

of infinite series, in 1673, Leibniz’s created a twist to Pascal’s Arithmetic Triangle called

Leibniz’s Harmonic Triangle, that enabled him to work with infinite series and calculate

area. Even though little is known about Leibniz’s Harmonic Triangle, the terms in this

triangular array of numbers that is formed from unit fractions can be denoted by L(n, r)

where n represents the row number starting from the apex where n ≥ 0 and r represents

the entry number in a row where 0 ≤ r ≤ n and n, r ∈ N. Leibniz’s Harmonic Triangle

shares many interesting and similar properties with Pascal’s Arithmetic Triangle and has

been used heavily throughout Leibniz’s many studies and different texts [BL18, Kos11].

2.2 The Harmonic Triangle

Let’s denote L(n, r) to represent a term in Leibniz’s Harmonic Triangle, where

n is the row number starting from the apex at n ≥ 0 and r is an entry number in a row

starting from the left at 0 and moving to the right, ending at n, where 0 ≤ r ≤ n and n,

r ∈ Z (See Figure 2.1).

L(0,0)
L(1,0) L(1,1)

L(2,0) L(2,1) L(2,2)
L(3,0) L(3,1) L(3,2) L(3,3)

L(4,0) L(4,1) L(4,2) L(4,3) L(4,4)

Figure 2.1: Leibniz’s Harmonic Triangle in L(n, r) Form
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Leibniz’s Harmonic triangle can be constructed using the following three simple rules.

First, the nth row begins with L(n, 0) = 1
(n+1)(n0)

= 1
n+1 and ends with L(n, n) =

1
(n+1)(nn)

= 1
n+1 , where n ≥ 0 (See Figure 2.2). Note that the two diagonals forming the

boundary conditions consist of the harmonic sequence numbers
(
1
1 , 1

2 , 1
3 , 1

4 , . . .
)
. Second,

the triangular array is symmetric about the vertical axis through the apex, since

L(n, r) = 1
(n+1)(nr)

= r!(n−r)!
(n+1)n! = 1

(n+1)( n
n−r)

= L(n, n − r). Third, the additional terms

(the internal terms) can be generated by taking the difference of the Northwest and left

neighbors. For example, 1
2 −

1
3 = 1

6 , 1
20 −

1
30 = 1

60 , and 1
105 −

1
280 = 1

168 . Thus to

construct Leibniz’s Harmonic Triangle algebraically, use the formula L(n, 0) = L(n, n),

to find the boundary conditions and to find the additional terms use the equation

L(n, r) = L(n − 1, r − 1) − L(n, r − 1) where n ≥ 1, 1 ≤ r ≤ n − 1, and n, r ∈ Z

(See Figure 2.3) [BJ81, Kos11, Sto83].

Figure 2.2: Constructing Leibniz’s Trian-
gle Step 1

Figure 2.3: Constructing Leibniz’s Trian-
gle Step 2

Next let’s verify that the remaining terms (the internal terms) of Leibniz’s Har-

monic Triangle can be formed from the difference of the number to the Northwest and

the number to the left. That is, show L(n, r) = L(n − 1, r − 1) − L(n, r − 1).
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L(n− 1, r − 1)− L(n, r − 1) =
1

(n− 1 + 1)
(
n−1
r−1
) − 1

(n + 1)
(

n
r−1
)

=
(r − 1)!(n− 1− r + 1)!

n(n− 1)!
− (r − 1)!(n− r + 1)!

(n + 1)n!

=
(n + 1)(r − 1)!(n− r)!− (r − 1)!(n− r + 1)(n− r)!

(n + 1)n!

=
(r − 1)!(n− r)!(n + 1− n + r − 1)

(n + 1)n!

=
r(r − 1)!(n− r)!

(n + 1)n!

=
r!(n− r)!

(n + 1)n!

=
1

(n + 1)
(
n
r

)
= L(n, r)

Thus L(n, r) = L(n − 1, r − 1) − L(n, r − 1).

Then Equation 2.1 can be used to generate the additional terms of Leibniz’s Harmonic

Triangle, which is just Leibniz’s Identity.

L(n, r) = L(n − 1 , r − 1 )− L(n, r − 1 ) (2.1)

2.3 Some Properties and Patterns of Leibniz’s Triangle

Similar to Pascal’s Arithmetic Triangle, patterns and properties can be discov-

ered about Leibniz’s Harmonic Triangle. First let’s examine the diagonals. The first

diagonal, the diagonal along the boundary of the triangular array starting at the apex,
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yields the sequence {11 , 1
2 , 1

3 , 1
4 , 1

5 , . . .}. These numbers are the reciprocals of the natural

numbers 1

(n+1
1 )

, which forms the harmonic sequence. Note the harmonic series,

∞∑
n=0

1
n+1 is divergent. Then the numbers in the first diagonal of Leibniz’s Harmonic Tri-

angle can be found using L(n, 0) = 1
(n+1)(n0)

= 1
n+1 , where n ≥ 0 (See Figure 2.4).

Figure 2.4: The 1st Diagonal in Leibniz’s Triangle

Next look at the second diagonal to the right of the apex, which yields the

sequence {12 , 1
6 , 1

12 , 1
20 , 1

30 , . . .}. These numbers are twice the reciprocal of the triangular

numbers, which can be denoted as 1
2tn

. In addition, Christiaan Huygens proposed this

following problem to Leibniz in Paris, France, 1665. Find the sum (S ) of the reciprocals of

the triangular numbers, so find S =
∞∑
n=0

(
1
tn

)
. At first Leibniz recognized that each term

of this series was actually twice the difference of the successive terms of the harmonic

sequence. He found that 1
1 −

1
2 = 1

2 , 1
2 −

1
3 = 1

6 , and 1
3 −

1
4 = 1

12 . Thus Leibniz

constructed the following proof.

Proof. Find S = 1
1 + 1

3 + 1
6 + 1

10 + . . .

Use partial sums and let Sn = 1
2 + 1

6 + 1
12 + 1

20 + . . . + 1
2tn

.

Next use the telescoping method, Sn =
(
1
1 - 1

2

)
+
(
1
2 - 1

3

)
+ . . . +

(
1

n+1 - 1
(n+1)(n+2)

)
.
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Then eliminate the additive inverses to get Sn = 1
1 - 1

(n+1)(n+2) .

Now take the limit as n approaches ∞ of Sn .

S = lim
n→∞

2Sn = lim
n→∞

2
(
1
1 - 1

(n+1)(n+2)

)
= 2. Thus S = 2.

Then Leibniz was able to find the sum of the reciprocals of the triangular number, which

was 2. This also concluded that the numbers in the second diagonal of Leibniz’s Harmonic

Triangle are one-half the reciprocal of the triangular numbers and can be found using

1
2(n+2

2 )
= L(n + 1, 1) = 1

(n+2)(n+1
1 )

= 1
(n+1)(n+2) , where n ≥ 0 (See Figure 2.5).

Figure 2.5: The 2nd Diagonal in Leibniz’s Triangle

Next look at the third diagonal from the right of the apex, which yields the

sequence {13 , 1
12 , 1

30 , 1
60 , . . .}. These numbers are one-third the reciprocals of the tetra-

hedral numbers {1, 4, 10, 20, . . . }, which can be denoted as 1
3Tn

. Notice that each term

is the difference of one-half the reciprocal of two successive triangular numbers.

For example, 1
2 −

1
6 = 1

3 , 1
6 −

1
12 = 1

12 , and 1
12 −

1
20 = 1

30 . Then the numbers in third diag-

onal of Leibniz’s Harmonic Triangle can be denoted as 1
3(n+3

3 )
= L(n + 2, 2) = 1

(n+3)(n+2
2 )

= 2
(n+1)(n+2)(n+3) , where n ≥ 0 (See Figure 2.6).
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Figure 2.6: The 3rd Diagonal in Leibniz’s Triangle

Next look at the fourth diagonal from the right of the apex, which yields the

sequence {14 , 1
20 , 1

60 , 1
140 , . . .}. These numbers are one-fourth the reciprocals of the pen-

tatope numbers {1, 5, 15, 35, . . . }. Notice that each term is the difference of one-third

the reciprocal of two successive tetrahedral numbers.

For example, 1
3 −

1
12 = 1

4 , 1
12 −

1
30 = 1

20 , and 1
30 −

1
60 = 1

60 . Then the numbers in the fourth

diagonal can be denoted as 1
4(n+4

4 )
= L(n + 3, 3) = 1

(n+4)(n+3
3 )

= 6
(n+1)(n+2)(n+3)(n+4) ,

where n ≥ 0 (See Figure 2.7) [Kos11, Sto83, BJ81].

Figure 2.7: The 4th Diagonal in Leibniz’s Triangle
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Chapter 3

Discoveries Between The Two

Number Triangles

3.1 Pólya’s Problems

As a result from Section 1.4 and Section 2.4, similarities and patterns can be

discovered and proven between Leibniz’s Harmonic Triangle and Pascal’s Arithmetic Tri-

angle. To illustrate, let’s examine problems from George Pólya’s Mathematical Induction

[Pol09].

3.1.1 Who is George Pólya?

George Pólya, originally named Pólya Györg, was a Hungarian mathematician

born in Budapest on December 13, 1887. He became a professor of mathematics in 1914

and later immigrated to America in 1940. Soon after arriving in America he became a
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mathematics professor at Brown University then at Stanford University two years later.

He retired in 1953, yet continued to write and teach. Passing down his knowledge until

his death in 1985, at the age of 97.

In addition, Pólya wrote How to Solve It, perhaps the most famous book in

mathematics ever written. Interestingly, the book was not particularly a mathematics

book, yet it was about how to solve problems of any kind. Pólya implied that the

same method and techniques discussed in the text could fundamentally be used to solve

any problems encountered in life. The method was developed for solving problems aimed

towards mathematics students, to help teach them how to become better problem solvers.

George Pólya’s method is displayed below:

Step 1: Understanding the Problem

This may be obvious but one is not a good problem solver unless they can answer

the following questions that are taken from another one of Pólya’s great pieces

of work, Mathematical Discovery Volume One.

• Do you understand all the words used in the problem?

• Can you restate the problem in your own words?

• Can you think of a picture or a diagram that might help you understand

the problem?

• Is there enough information to enable you to find a solution?

Step 2: Devise a Plan

Step 3: Carry out your Plan
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Step 4: Look back and Generalize

If steps two and three fail try to think of a smaller simpler problem that contains

the original problem, rethink your plan, and carry out the new plan. Once the

solution is found, Pólya believes a good problem solver should attempt the same

problem in as many ways as possible to prove, prove, and prove again.

With this method in mind, let’s look at Problem 3.1, which is example 3.52 in George

Pólya’s Mathematical Discovery , to find any associations between Pascal’s Arithmetic

Triangle and Leibniz’s Harmonic Triangle [Pol09].

Problem 3.1 (Example 3.52 [Pol09]). Try to recognize a connection between correspond-

ing numbers of the two triangles and, having recognized it, prove it.

Solution. First let’s examine both Pascal’s Arithmetic Triangle (See Figure 3.1) and

Leibniz’s Harmonic Triangle (See Figure 3.2). Plus let’s use the information that was

found from Section 1.2, Section 1.3, Section 2.2, and Section 2.3.

Figure 3.1: Pascal’s Arithmetic Triangle Figure 3.2: Leibniz’s Harmonic Triangle

After analyzing both Pascal’s Arithmetic Triangle and Leibniz’s Harmonic Tri-

angle some of the similarities discovered are that both triangles are symmetric about the

vertical axis through the apex, both contain the natural numbers, triangular numbers,
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tetrahedral numbers, pentatope numbers, etc. hidden within, and both relate to binomial

coefficients using combinatorics ideas and properties.

Furthermore, in Pascal’s Arithmetic Triangle every term can be found using the

formula
(
n
r

)
= n!

r!(n−r)! , where n, r ∈ Z and 0 ≤ r ≤ n and Leibniz’s Harmonic Triangle

can be constructed using Pascal’s Arithmetic Triangle. First take the reciprocal of each

term in Pascal’s triangle to get 1

(nr)
. Next multiple the denominator by (n + 1), to get

1
(n+1)(nr)

. Then 1
(n+1)(nr)

is the formula that can be used to find every term in Leibniz’s

Harmonic Triangle. Thus L(n, r) = 1
(n+1)(nr)

can denote a term in the Leibniz’s Harmonic

Triangle where n ≥ 0 and 0 ≤ r ≤ n. Now let’s verify this.

Notice that L(n, 0) = 1
(n+1)(n0)

= 1
n+1 and that L(n, n) = 1

(n+1)(nn)
= 1

n+1 .

Thus L(n, n) = L(n, 0). Then for r = 0, the boundary condition of Leibniz’s Harmonic

Triangle holds for all n ≥ 0 and n,r ∈ Z. Next the internal numbers of Leibniz’s Har-

monic Triangle can be found using L(n, r) = L(n − 1, r − 1) − L(n, r − 1), which is

Equation 2.1 that had been proven previously. However, the additional terms of Leibniz’s

Harmonic Triangle can be generated another way. Similar to how the additional terms of

Pascal’s Arithmetic Triangle are generated by taking the sum of the two terms directly

above it, the Northwest and Northeast neighbors (See figure 3.3). Instead take the sum

of the two terms directly below, the Southwest and Southeast neighbors to generate the

additional terms of Leibniz’s Harmonic Triangle (See Figure 3.4). To create the equation,

first use the recursion formula, then the explicit form of the binomial coefficients to get

L(n, r − 1) + L(n, r) = L(n − 1, r − 1). Now let’s verify this.
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L(n, r − 1) + L(n, r) =
1

(n + 1)
(

n
r−1
) +

1

(n + 1)
(
n
r

)
=

(r − 1)!(n− r + 1)!

(n + 1)n!
+

r!(n− r)!

(n + 1)n!

=
(r − 1)!(n− r)!(n + 1)

(n + 1)n!

=
(r − 1)!(n− r)!

n(n− 1)!

=
1

n
(
n−1
r−1
)

= L(n− 1, r − 1)

Then L(n, r − 1) + L(n, r) = L(n-1, r -1) can be used to generate the additional terms

of Leibniz’s Harmonic Triangle and Equation 3.1 is formed.

L(n, r − 1) + L(n, r) = L(n− 1, r − 1) (3.1)

Figure 3.3: Generating Terms in
Pascal’s Triangle

Figure 3.4: Generating Terms in
Leibniz’s Triangle
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Thus Leibniz’s Harmonic Triangle can be constructed using Pascal’s Arithmetic Triangle,

showing a relationship between these two triangles [Sto83, Kos11].

3.1.2 The Hockey Stick Pattern

First, recall Equation 1.1 that was discussed and proven previously, it will be

helpful in Problem 3.3. Next, restate Equation 1.1 as a theorem and prove it again using

committee forming.

Theorem 3.2. (Pascal’s Identity)
(
n
r

)
=
(
n−1
r−1
)

+
(
n−1
r

)
for any positive integer r and n.

Proof. By committee forming

Consider choosing a committee of r members from n people. One way to do this is to

just
(
n
r

)
. Another way, is to first decide whether or not to choose a specific person to join

the committee or not. If a person is chosen to be on the committee then there are still

r − 1 members left to select from now n − 1 people, which can be done
(
n−1
r−1
)

ways. If

that person is not chosen then there are still r members to be selected from now n − 1

people, which can be done
(
n−1
r

)
ways. Then the total choices are

(
n−1
r−1
)

+
(
n−1
r

)
.

Thus
(
n
r

)
=
(
n−1
r−1
)

+
(
n−1
r

)
Now, let’s look at Problem 3.3, which is example 3.34 in George Pólya Mathematical

Discovery [Pol09], to find a specific pattern within Pascal’s Arithmetic Triangle

Problem 3.3 (Example 3.34 [Pol09]). Consider the sum of the first six numbers along

the third avenue of the Pascal’s triangle, 1 + 4 + 10 + 20 + 35 + 56 = 126. Locate this

sum in the Pascal triangle, try to observe analogous facts, generalize, and prove.
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Figure 3.5: Hockey Stick Pattern in Pascal’s Triangle Problem 3.3

Solution. Notice that 1 + 4 + 10 + 20 + 35 + 56 = 126 in Figure 3.5 forms a hockey

stick shape pattern, where the handle of the hockey stick is the series of numbers

(1 + 4 + 10 + 20 + 35 + 56) and the head of the hockey stick is the sum of the series

(126). Next let’s examine similar examples (Figure 3.6 and Figure 3.7) to see if the pat-

tern continues.

Figure 3.6: Hockey Stick Pattern in Pascal’s Triangle Example 1

Figure 3.7: Hockey Stick Pattern in Pascal’s Triangle Example 2

First examine Figure 3.6 where the series of numbers 1 + 5 + 15 + 35 + 70

has a sum of 126, which forms the same hockey stick shape pattern with the handle of
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the hockey stick as the series of numbers and the head of the hockey stick as the sum.

Now examine Figure 3.7 where the series of numbers 1 + 6 + 21 + 56 has a sum of 84,

which forms the same hockey stick shape pattern with the handle of the hockey stick as

the series of numbers and the head of the hockey stick as the sum.

After observing Figure 3.5, Figure 3.6, and Figure 3.7, a pattern is formed in a

hockey stick shape pattern, where the handle of the hockey stick must begin at an entry

on the edge of the triangle, then continue down diagonally away from the edge forming

the stick, which can be of any length. Then ending at the head of the hockey stick,

which is the entry either Southeast or Southwest of the last entry of the stick. Thus a

generalized formula for the hockey stick pattern in Pascal’s Arithmetic Triangle can be

formed.

Theorem 3.4. The Hockey Stick Pattern in Pascal’s Arithmetic Triangle:

Let C(n, r) =
(
n
r

)
, denote the entry r in row n of Pascal’s Arithmetic Triangle, then(

n
r

)
=
(
n−1
r−1
)

+
(
n−2
r−1
)

+ . . . +
(
r−1
r−1
)
, for any integer n ≥ 1 and 1 ≤ r ≤ n. Where the

left hand side represents the head of the hockey stick and the right hand side represents

the stick of the hockey stick.

Proof. Use mathematical induction.

Let Pn :
(
n
r

)
=
(
n−1
r−1
)

+
(
n−2
r−1
)

+ . . . +
(
r−1
r−1
)
, where n ≥ 1 and 0 ≤ r ≤ n.
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1. Verify P1 is true when r = n.

(
n

r

)
=

(
n− 1

r − 1

)
(
n

n

)
=

(
n− 1

n− 1

)
(

1

1

)
=

(
1− 1

1− 1

)
1 =

(
0

0

)
1 = 1

2. Assume Pk is true when k ≥ r .

Then Pk :
(
k
r

)
=
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
r−1
r−1
)
.

3. Show Pk+1 is true.

That is prove Pk+1 :
(
k+1
r

)
=
(

k
r−1
)

+
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
r−1
r−1
)
.

First take the assumption Pk and add
(

k
r−1
)

to both sides to get(
k
r

)
+
(

k
r−1
)

=
(

k
r−1
)

+
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
r−1
r−1
)
.

Next apply Theorem 3.2 (Pascal’s Identity) to the left hand side of the equation to

get
(
k+1
r

)
=
(

k
r−1
)

+
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
r−1
r−1
)
.

Then Pk+1 is true.

Thus Theorem 3.4, the Hockey Stick Theorem has been proven for Pascal’s Arithmetic

Triangle using mathematical induction [HP87, Kos11, Sto83].

Now let’s looks at Problem 3.5, which is example 3.53 in Pólya’s Mathematical

Discovery [Pol09], to explore a pattern within Leibniz’s Harmonic Triangle.
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Problem 3.5 (Example 3.53 [Pol09]). Prove:

1. 1
1 = 1

2 + 1
6 + 1

12 + 1
20 + 1

30 + . . .

2. 1
2 = 1

3 + 1
12 + 1

30 + 1
60 + 1

105 + . . .

3. 1
3 = 1

4 + 1
20 + 1

60 + 1
140 + 1

280 + . . .

Solution. (Problem 3.5 Question 1) Use partial sums and the telescoping method to

prove the infinite series, 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . = 1

1 .

Proof. The series 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . has the following partial sums.

• S0 = 1
2

• S1 = 1
2 + 1

6 = 2
3

• S2 = 1
2 + 1

6 + 1
12 = 3

4

• S3 = 1
2 + 1

6 + 1
12 + 1

20 = 4
5

• S4 = 1
2 + 1

6 + 1
12 + 1

20 + 1
30 = 5

6

• S5 = 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + 1

42 = 6
7

• S6 = 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + 1

42 + 1
56 = 7

8

Notice by partial sums, as the number of terms increase the infinite series converges to

1
1 , leading to the assumption that 1

1 = 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . ..

Now let Sn = 1
2 + 1

6 + 1
12 + 1

20 + . . . + 1
(n+1)(n+2) , where n ≥ 0 represents the nth partial

sum of the series.
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Next apply the telescoping method to Sn to get

Sn =
(
1
1 −

1
2

)
+
(
1
2 −

1
3

)
+
(
1
3 −

1
4

)
+
(
1
4 −

1
5

)
+ . . . +

(
1

n+1 −
1

n+2

)
.

Then cancel the additive inverses to get Sn = 1
1 −

1
n+2 .

Next take the limit as n approaches infinity to Sn .

lim
n→∞

Sn = lim
n→∞

(1

1
− 1

n + 2

)
S∞ = lim

n→∞

(1

1

)
− lim

n→∞

( 1

n + 2

)
S∞ =

(1

1
− 1

∞

)
S∞ =

(1

1
− 0
)

S∞ =
1

1

Thus 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . = 1

1 is proven by partial sums and the telescoping

method.

Solution. (Problem 3.5 Question 1) Use mathematical induction to prove the infinite

series, 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . = 1

1 .

Proof. Let Sn = 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . + 1

(n+1)(n+2) , where n ≥ 0 represents the

nth partial sum of the series.

From the telescoping method Sn = 1
1 −

1
n+2 = n+1

n+2 .

Then prove 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . + 1

(n+1)(n+2) = n+1
n+2 .
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1. Verify S0 holds.

Sn =
n + 1

n + 2

S0 =
0 + 1

0 + 2

1

2
=

1

2

2. Assume Sk holds.

Then Sk = 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . + 1

(k+1)(k+2) = k+1
k+2 .

3. Show Sk+1 holds.

That is prove Sk+1 = 1
2 + 1

6 + 1
12 + . . . + 1

(k+1)(k+2) + 1
(k+2)(k+3) = k+2

k+3 .

First take the assumption Sk and add 1
(k+2)(k+3) to both sides to get

1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . + 1

(k+1)(k+2) + 1
(k+2)(k+3) = k+1

k+2 + 1
(k+2)(k+3) .

Next simplify the right hand side of the equation, k+1
k+2 + 1

(k+2)(k+3)

=
(k + 1)(k + 3) + 1

(k + 2)(k + 3)

=
k2 + 4k + 4

(k + 2)(k + 3)

=
(k + 2)(k + 2)

(k + 2)(k + 3)

=
k + 2

k + 3

Then Sk+1 holds.

Thus 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . = 1

1 is proven by mathematical induction.
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Solution. (Problem 3.5 Question 2) Use partial sums and the telescoping method to

prove the infinite series, 1
3 + 1

12 + 1
30 + 1

60 + 1
105 + . . . = 1

2 .

Proof. The series 1
3 + 1

12 + 1
30 + 1

60 + 1
105 + . . . has the following partial sums.

• S0 = 1
3

• S1 = 1
3 + 1

12 = 5
12

• S2 = 1
3 + 1

12 + 1
30 = 9

20

• S3 = 1
3 + 1

12 + 1
30 + 1

60 = 7
15

• S4 = 1
3 + 1

12 + 1
30 + 1

60 + 1
105 = 10

21

• S5 = 1
3 + 1

12 + 1
30 + 1

60 + 1
105 + 1

168 = 27
56

Notice by partial sums, as the number of terms increase the infinite series converges to

1
2 , leading to the assumption that 1

2 = 1
3 + 1

12 + 1
30 + 1

60 + 1
105 + . . ..

Now let Sn = 1
3 + 1

12 + 1
30 + 1

60 + 1
105 + . . . + 2

(n+1)(n+2)(n+3) , where n ≥ 0 represents

the nth partial sum of the series.

Next apply the telescoping method to Sn to get

Sn =
(
1
2 −

1
6

)
+
(
1
6 −

1
12

)
+
(

1
12 −

1
20

)
+
(

1
20 −

1
30

)
+ . . . +

(
1

(n+1)(n+2) −
1

(n+2)(n+3)

)
.

Then cancel the additive inverses to get Sn = 1
2 −

1
(n+2)(n+3) .
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Next take the limit as n approaches infinity to Sn .

lim
n→∞

Sn = lim
n→∞

(1

2
− 1

(n + 2)(n + 3)

)
S∞ = lim

n→∞

(1

2

)
− lim

n→∞

( 1

n2 + 5n + 6

)
S∞ =

(1

2
− 1

∞

)
S∞ =

(1

2
− 0
)

S∞ =
1

2

Thus 1
3 + 1

12 + 1
30 + 1

60 + 1
105 + . . . = 1

2 is proven by partial sums and the telescoping

method.

Solution. (Problem 3.5 Question 2) Use mathematical induction to prove the infinite

series, 1
3 + 1

12 + 1
30 + 1

60 + . . . = 1
2 .

Proof. Let Sn = 1
3 + 1

12 + 1
30 + 1

60 + . . . + 2
(n+1)(n+2)(n+3) , where n ≥ 0 represents the

nth partial sum of the series.

From the telescoping method Sn = 1
2 −

1
(n+2)(n+3) = (n+4)(n+1)

2(n+2)(n+3) .

Then prove 1
3 + 1

12 + 1
30 + 1

60 + . . . + 2
(n+1)(n+2)(n+3) = (n+4)(n+1)

2(n+2)(n+3) .
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1. Verify S0 holds.

Sn =
(n + 4)(n + 1)

2(n + 2)(n + 3)

S0 =
(0 + 4)(0 + 1)

2(0 + 2)(0 + 3)

1

3
=

4

12

1

3
=

1

3

2. Assume Sk holds.

Then Sk = 1
3 + 1

12 + 1
30 + 1

60 + . . . + 2
(k+1)(k+2)(k+3) = (k+1)(k+4)

2(k+2)(k+3) .

3. Show Sk+1 holds.

That is prove Sk+1 = 1
3 + 1

12 + 1
30 + 1

60 + . . . + 2
(k+1)(k+2)(k+3) + 2

(k+2)(k+3)(k+4)

= (k+2)(k+5)
2(k+3)(k+4) .

First take the assumptions Sk and add 2
(k+2)(k+3)(k+4) to both sides to get

1
3 + 1

12 + 1
30 + 1

60 + . . . + 2
(k+1)(k+2)(k+3) + 2

(k+2)(k+3)(k+4) = (k+1)(k+4)
2(k+2)(k+3) +

2
(k+2)(k+3)(k+4) .

Next simplify the right hand side of the equation, (k+1)(k+4)
2(k+2)(k+3) + 2

(k+2)(k+3)(k+4)

=
(k + 1)(k + 4)2 + 4

2(k + 2)(k + 3)(k + 4)

=
k3 + 9k2 + 24k + 20

2(k + 2)(k + 3)(k + 4)

=
(k + 2)(k + 2)(k + 3)

2(k + 2)(k + 3)(k + 4)

=
(k + 2)(k + 5)

2(k + 3)(k + 4)
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Then Sk+1 holds.

Thus 1
3 + 1

12 + 1
30 + 1

60 + 1
105 + . . . = 1

2 is proven by mathematical induction.

Solution. (Problem 3.5 Question 3) Use partial sums and the telescoping method to

prove the infinite series, 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . . = 1

3 .

Proof. The series 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . . has the following partial sums.

• S0 = 1
4

• S1 = 1
4 + 1

20 = 3
10

• S2 = 1
4 + 1

20 + 1
60 = 19

60

• S3 = 1
4 + 1

20 + 1
60 + 1

140 = 34
105

• S4 = 1
4 + 1

20 + 1
60 + 1

140 + 1
280 = 55

168

Notice by partial sums, as the number of terms increase the infinite series converges to

1
3 , leading to the assumption that 1

3 = 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . ..

Now let Sn = 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . . + 6

(n+1)(n+2)(n+3)(n+4) , where n ≥ 0

represents the nth partial sum of the series.

Next apply the telescoping method to Sn to get

Sn =
(
1
3 −

1
12

)
+
(

1
12 −

1
30

)
+
(

1
30 −

1
60

)
+ . . . +

(
2

(n+1)(n+2)(n+3) −
2

(n+2)(n+3)(n+4)

)
.

Then cancel the additive inverses to get Sn = 1
3 −

2
(n+2)(n+3)(n+4) .
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Next take the limit as n approaches infinity to Sn .

lim
n→∞

Sn = lim
n→∞

(1

3
− 2

(n + 2)(n + 3)(n + 4)

)
S∞ = lim

n→∞

(1

3

)
− lim

n→∞

( 2

n3 + 9n2 + 26n + 24

)
S∞ =

(1

3
− 2

∞

)
S∞ =

(1

3
− 0
)

S∞ =
1

3

Thus 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . . = 1

3 is proven by partial sums and the telescoping

method.

Solution. (Problem 3.5 Question 3) Use mathematical induction to prove the infinite

series, 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . . = 1

3 .

Proof. Let Sn = 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . . + 6

(n+1)(n+2)(n+3)(n+4) , where n ≥ 0

represents the nth partial sum of the series.

From the telescoping method Sn = 1
3 + 1

(n+2)(n+3)(n+4) = (n+1)(n2+8n+18)
3(n+2)(n+3)(n+4) .

Then prove 1
4 + 1

20 + 1
60 + 1

140 + . . . + 6
(n+1)(n+2)(n+3)(n+4) = (n+1)(n2+8n+18)

3(n+2)(n+3)(n+4) .
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1. Verify S0 holds.

Sn =
(n + 1)(n2 + 8n + 18)

3(n + 2)(n + 3)(n + 4)

S0 =
(0 + 1)((0)2 + 8(0) + 18)

3(0 + 2)(0 + 3)(0 + 4)

1

4
=

18

72

1

4
=

1

4

2. Assume Sk holds.

Then Sk = 1
4 + 1

20 + 1
60 + 1

140 + . . . + 6
(k+1)(k+2)(k+3)(k+4) = (k+1)(k2+8k+18)

3(k+2)(k+3)(k+4) .

3. Show Sk+1 holds.

That is prove Sk+1 = 1
4 + 1

20 + 1
60 + . . . + 6

(k+1)(k+2)(k+3)(k+4) + 6
(k+2)(k+3)(k+4)(k+5)

= (k+2)((k+1)2+8(k+1)+18)
3(k+3)(k+4)(k+5) = (k+2)(k2+10k+27)

3(k+3)(k+4)(k+5) .

First take the assumption Sk and add 6
(k+2)(k+3)(k+4)(k+5) to both side to get

1
4 + 1

20 + 1
60 + 1

140 + . . . + 6
(k+1)(k+2)(k+3)(k+4) + 6

(k+2)(k+3)(k+4)(k+5) = (k+1)(k2+8k+18)
3(k+2)(k+3)(k+4)

+ 6
(k+2)(k+3)(k+4)(k+5) .

Next simplify the right hand side of the equation, (k+1)(k2+8k+18)
3(k+2)(k+3)(k+4) + 6

(k+2)(k+3)(k+4)(k+5)

=
(k + 1)(k2 + 8k + 18)(k + 5) + 18

3(k + 2)(k + 3)(k + 4)(k + 5)

=
k4 + 14k3 + 71k2 + 148k + 108

3(k + 2)(k + 3)(k + 4)(k + 5)

=
(k + 2)(k + 2)(k2 + 10k + 27)

3(k + 2)(k + 3)(k + 4)(k + 5)

=
(k + 2)(k2 + 10k + 27)

3(k + 3)(k + 4)(k + 5)
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Then Sk+1 holds.

Thus 1
4 + 1

20 + 1
60 + 1

140 + 1
280 + . . . = 1

3 is proven by mathematical induction.

After proving the three infinite series in Problem 3.5, look at the problems within

Leibniz’s Harmonic triangle to see if a pattern can be recognized (See Figure 3.8, Figure

3.9, and Figure 3.10) [Kos11, Tuc12].

Figure 3.8: Problem 3.5 Question 1 Figure 3.9: Problem 3.5 Question 2

Figure 3.10: Problem 3.5 Question 3

Notice that a hockey stick type pattern is formed. However, let’s see if this

pattern continues. Now examine Problem 3.6, which is example 3.54 and the last example

that will be used from George Pólya’s Mathematical Discovery [Pol09].
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Problem 3.6 (Example 3.54 [Pol09]). Find the sum 1
12 + 1

30 + 1
60 + 1

105 + . . . and

generalize.

First by partial sums and telescoping let’s find the sum of Problem 3.6, then try

to generalize a formula and prove it.

Solution. Let’s find the sum of 1
12 + 1

30 + 1
60 + 1

105 + . . . by examining the partial sums.

• S0 = 1
12

• S1 = 1
12 + 1

30 = 7
60

• S2 = 1
12 + 1

30 + 1
60 = 2

15

• S3 = 1
12 + 1

30 + 1
60 + 1

105 = 1
7

• S4 = 1
12 + 1

30 + 1
60 + 1

105 + 1
168 = 25

168

• S5 = 1
12 + 1

30 + 1
60 + 1

105 + 1
168 + 1

252 = 11
72

• S6 = 1
12 + 1

30 + 1
60 + 1

105 + 1
168 + 1

252 + 1
360 = 7

45

Notice as the number of terms increase the infinite series converges to 1
6 , leading to the

assumption that 1
6 = 1

12 + 1
30 + 1

60 + 1
105 + 1

168 + . . ..

Now let Sn = 1
12 + 1

30 + 1
60 + 1

105 + 1
168 + . . . + 2

(n+2)(n+3)(n+4) , where n ≥ 0 represent

the nth partial sum of the series.

Next apply the telescoping method to Sn to get

Sn =
(
1
6 −

1
12

)
+
(

1
12 −

1
20

)
+
(

1
20 −

1
30

)
+
(

1
30 −

1
42

)
+ . . . +

(
1

(n+2)(n+3) −
1

(n+3)(n+4)

)
.

Then cancel the additive inverses to get Sn = 1
6 - 1

(n+3)(n+4) .
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Next take the limit as n approaches infinity to Sn .

lim
n→∞

Sn = lim
n→∞

(1

6
− 1

(n + 3)(n + 4)

)
S∞ = lim

n→∞

(1

6

)
− lim

n→∞

( 1

n2 + 7n + 12

)
S∞ =

(1

6
− 1

∞

)
S∞ =

(1

6
− 0
)

S∞ =
1

6

Thus by partial sums and the telescoping method 1
12 + 1

30 + 1
60 + 1

105 + 1
168 + . . . = 1

6 .

Now look at the sum found in Problem 3.6 within Leibniz’s Harmonic Triangle

to see if the hockey stick type pattern continues (See Figure 3.11).

Figure 3.11: Problem 3.6

After observing Figure 3.8, Figure 3.9, Figure 3.10, and Figure 3.11 the hockey

stick type pattern continues. Now let’s break down what was found to construct a gen-

eralized equation and prove it.
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• From Problem 3.5 Question 1, it was proven that 1
1 = 1

2 + 1
6 + 1

12 + 1
20 + 1

30 + . . .,

which can be rewritten as L(0, 0) = L(1, 1) + L(2, 1) + L(3, 1) + L(4, 1) + . . ..

• From Problem 3.5 Question 2, it was proven that 1
2 = 1

3 + 1
12 + 1

30 + 1
60 + . . .,

which can be rewritten as L(1, 1) = L(2, 2) + L(3, 2) + L(4, 2) + L(5, 2) + . . ..

• From Problem 3.5 Question 3, it was proven that 1
3 = 1

4 + 1
20 + 1

60 + 1
140 + . . .,

which can be rewritten as L(2, 2) = L(3, 3) + L(4, 3) + L(5, 3) + L(6, 3) + . . ..

• From Problem 3.6 it was proven that 1
6 = 1

12 + 1
30 + 1

60 + 1
105 + . . ., which can be

rewritten as L(2, 1) = L(3, 2) + L(4, 2) + L(5, 2) + L(6, 2) + . . ..

Notice that the shape formed in the figures above is similar to the hockey stick pattern

in Pascal’s Arithmetic Triangle (See Problem 3.3). However, the hockey stick design in

Figure 3.8, Figure 3.9, Figure 3.10 and Figure 3.11 has the head of the stick located at

the top of the triangle either on a boundary entry or an internal entry of the triangle

with the handle of the stick headed towards the bottom of the triangle infinitely. Thus

using the information from Problem 3.5 and Problem 3.6, a generalized formula for the

hockey stick type pattern in Leibniz’s Harmonic Triangle can be developed.

Theorem 3.7. The Hockey Stick Pattern in Leibniz’s Harmonic Triangle:

L(n, r) = L(n+1, r+1) + L(n+2, r+1) + L(n+3, r+1) + . . ., where n ≥ 0, 0 ≤ r ≤ n,

and n, r ∈ Z. In other words
∞∑
n=k

L(n+1, r+1) = L(k, r), where k ≥ 0, 0 ≤ r ≤ k, and

k, r ∈ Z.

Proof. Use mathematical induction.

Let Pn : L(n, r) = L(n+1, r+1) + L(n+2, r+1) + L(n+3, r+1) + L(n+4, r+1) + . . .,
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where n ≥ 0, 0 ≤ r ≤ n, and n, r ∈ Z.

1. Verify P0 is true when r = 0.

L(n, r) = L(n + 1, r + 1) + L(n + 2, r + 1) + L(n + 3, r + 1) + . . .

L(0, 0) = L(0 + 1, 0 + 1) + L(0 + 2, 0 + 1) + L(0 + 3, 0 + 1) + . . .

1

1
= L(1, 1) + L(2, 1) + L(3, 1) + . . .

1

1
=

1

2
+

1

6
+

1

12
+ . . .

From Problem 3.3.1 P0 is true.

2. Assume Pk is true.

Then Pk : L(k , r) = L(k+1, r+1) + L(k+2, r+1) + L(k+3, r+1) + . . ..

3. Show Pk+1 is true.

That is prove Pk+1 : L(k+1, r) = L(k+2, r+1) + L(k+3, r+1) + . . ..

First take the assumption Pk and subtract L(k+1, r+1) from both sides to get L(k ,

r) − L(k+1, r+1) = L(k+1, r+1) − L(k+1, r+1) + L(k+2, r+1) + . . ..

Simplify to get L(k , r) − L(k+1, r+1) = L(k+2, r+1) + L(k+3, r+1) + . . ..

Next apply Equation 2.1 (Leibniz’s Identity) to the left hand side of the equation

to get L(k+1, r) = L(k+2, r+1) + L(k+3, r+1) + . . ..

Then Pk+1 is true.

Thus Theorem 3.7 is proven by mathematical induction [Kos11, Tuc12].
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3.2 Other Patterns

Lastly, let’s explore other patterns within Pascal’s Arithmetic Triangle and Leib-

niz’s Harmonic Triangle dealing with sums and shapes.

Problem 3.8. Examine the results of taking the sum of the terms within a rhombus

shape of any size in Pascal’s Arithmetic Triangle. Look for a pattern, generalize it, then

prove it.

Figure 3.12: Problem 3.8 Example 1

Figure 3.13: Problem 3.8 Example 2

Figure 3.14: Problem 3.8 Example 3

First, let’s find a pattern
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• Look at Figure 3.12 and take the sum of the terms within the rhombus shape

1 + 1 + 1 + 2 = 5, which is the number directly below the bottom vertex of the

rhombus shape 6 − 1.

Notice that the sums within the rhombus shape are just hockey stick patterns

discussed in Problem 3.3.

1 + 1 = 2 =⇒
(
0
0

)
+
(
1
0

)
=
(
2
1

)
.

1 + 2 = 3 =⇒
(
1
1

)
+
(
2
1

)
=
(
3
2

)
.

Next, observe that the sum 2 + 3 = 5 is the same as 2 + 3 = 6 − 1, which is just

part of another hockey stick, 1 + 2 + 3 = 6.

=⇒
(
1
1

)
+
(
2
1

)
+
(
3
1

)
=
(
4
2

)
.

However, the term 1 =
(
1
1

)
is part of the handle of the hockey stick not needed and

can be subtracted from both sides to get
(
2
1

)
+
(
3
2

)
=
(
4
2

)
−
(
1
1

)
.

=⇒ 2 + 3 = 6 − 1.

=⇒ 2 + 3 = 5.

Then the sum of the rhombus shape is just the sum of the hockey sticks within the

rhombus shape (1 + 1 = 2 and 1 + 2 = 3) equal to the difference of two other

hockey sticks (1 + 2 + 3 = 6 and 1 = 1).

• Next, look at Figure 3.13 and take the sum of the terms within the rhombus shape

1 + 1 + 1 + 4 + 5 + 6 + 10 + 15 + 21 = 64, which is the number directly below

the bottom vertex of the rhombus shape 84 − 20.

Notice that the sums within the rhombus shape are just hockey stick patterns

discussed in Problem 3.3.
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1 + 4 + 10 = 15 =⇒
(
3
0

)
+
(
4
1

)
+
(
5
2

)
=
(
6
2

)
.

1 + 5 + 15 = 21 =⇒
(
4
0

)
+
(
5
1

)
+
(
6
2

)
=
(
7
2

)
.

1 + 6 + 21 = 28 =⇒
(
5
0

)
+
(
6
1

)
+
(
7
2

)
=
(
8
2

)
.

Next, observe that the sum 15 + 21 + 28 = 64 is the same as 15 + 21 + 28 = 84

− 20, which is just part of another hockey stick, 1 + 3 + 6 + 10 + 15 + 21 + 28

= 84.

=⇒
(
2
2

)
+
(
3
2

)
+
(
4
2

)
+
(
5
2

)
+
(
6
2

)
+
(
7
2

)
+
(
8
2

)
=
(
9
3

)
.

However, the terms 1 =
(
2
2

)
, 3 =

(
3
2

)
, 6 =

(
4
2

)
, and 10 =

(
5
2

)
are part of the handle

of the hockey stick not needed and can be subtracted from both sides to get(
6
2

)
+
(
7
2

)
+
(
8
2

)
=
(
9
3

)
−
[(

2
2

)
+
(
3
2

)
+
(
4
2

)
+
(
5
2

)]
.

=⇒ 15 + 21 + 28 = 84 − (1 + 3 + 6 + 10).

=⇒ 15 + 21 + 28 = 84 − 20.

=⇒
(
6
2

)
+
(
7
2

)
+
(
8
2

)
=
(
9
3

)
−
(
6
3

)
.

Then the sum of the rhombus shape is just the sum of the hockey sticks within the

rhombus shape (1 + 4 + 10 = 15, 1 + 5 + 15 = 21, and 1 + 6 + 21 = 28) equal

to the difference of two other hockey sticks (1 + 3 + 6 + 10 + 15 + 21 + 28 = 84

and 1 + 3 + 6 + 10 = 20).

• Lastly, look at Figure 3.14 and take the sum of the terms within the rhombus shape

1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 3 + 3 + 4 + 6 + 4 + 10 + 10 + 20 = 69, which

is the number directly below the bottom vertex of the rhombus shape 70 − 1.

Notice that the sums within the rhombus shape are just hockey stick patterns

discussed in Problem 3.3.
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1 + 1 + 1 + 1 = 4 =⇒
(
0
0

)
+
(
1
0

)
+
(
2
0

)
+
(
3
0

)
=
(
4
1

)
.

1 + 2 + 3 + 4 = 10 =⇒
(
1
1

)
+
(
2
1

)
+
(
3
1

)
+
(
4
1

)
=
(
5
2

)
.

1 + 3 + 6 + 10 = 20 =⇒
(
2
2

)
+
(
3
2

)
+
(
4
2

)
+
(
5
2

)
=
(
6
3

)
.

1 + 4 + 10 + 20 = 35 =⇒
(
3
3

)
+
(
4
3

)
+
(
5
3

)
+
(
6
3

)
=
(
7
4

)
.

Next observe that the sum 4 + 10 + 20 + 35 = 69 is the same as 4 + 10 + 20 + 35

= 70 − 1, which is just part of another hockey stick 1 + 4 + 10 + 20 + 35 = 70.

=⇒
(
3
3

)
+
(
4
3

)
+
(
5
3

)
+
(
6
3

)
+
(
7
3

)
=
(
8
4

)
.

However, the term 1 =
(
3
3

)
is part of the handle of the hockey stick not needed and

can be subtracted from both sides to get
(
4
3

)
+
(
5
3

)
+
(
6
3

)
+
(
7
3

)
=
(
8
4

)
−
(
3
3

)
.

=⇒ 10 + 20 + 35 = 70 − 1.

=⇒ 10 + 20 + 35 = 69.

Then the sum of the rhombus shape is just the sum of the hockey sticks within the

rhombus shape (1 + 4 + 10 = 15, 1 + 5 + 15 = 21, and 1 + 6 + 21 = 28) equal

to the difference of two other hockey sticks (1 + 3 + 6 + 10 + 15 + 21 + 28 = 84

and 1 + 3 + 6 + 10 = 20).

After observing Figure 3.12, Figure 3.13, and Figure 3.14 notice that these rhom-

bus shape patterns have similar properties and restrictions that are found in the hockey

stick pattern within Pascal’s Arithmetic Triangle. The rhombus shape has to include the

boundary terms of the triangular array, it can not contain only the internal terms. Then

the rhombus shape must continue downwards to any size. Thus a generalized equation

can be discovered to represent a rhombus shape pattern within Pascal’s Arithmetic Tri-

angle with a side length of any number of terms.
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First, to construct the general equation to the sum of terms inside a rhombus

shape within Pascal’s Arithmetic Triangle reference Figure 3.15, which shows Pascal’s

Arithmetic Triangle in the form of binomial coefficients using combinations. Then, let

k∑
n=k−m+1

[(
n−2
r−1
)

+
(
n−3
r−2
)

+ . . . +
(
n−m−1

0

)]
represent the sum of the terms within the

rhombus shape, where m is the number of terms in one side length of the rhombus shape

and k is the nth position in Pascal’s Arithmetic Triangle representing the term below

the bottom vertex of the rhombus shape. Notice that the sum of the terms inside the

rhombus shape creates a hockey stick pattern, where the handle of the hockey stick is

as long as m. Then the sum of the terms inside a rhombus shape with m number of

terms can be represented by another hockey stick. Thus
k∑

n=k−m+1

[(
n−2
r−1
)

+
(
n−3
r−2
)

+ . . .

+
(
n−m−1

0

)]
=
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
k−m
r−1
)
.

n = 0:
(
0
0

)
n = 1:

(
1
0

) (
1
1

)
n = 2:

(
2
0

) (
2
1

) (
2
2

)
n = 3:

(
3
0

) (
3
1

) (
3
2

) (
3
3

)
n = 4:

(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
n = 5:

(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
n = 6:

(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
Figure 3.15: Pascal’s Triangle in Combination Form

Theorem 3.9. The Rhombus Shape Pattern in Pascal’s Arithmetic Triangle:

0 Let
k∑

n=k−m+1

[(
n−2
r−1
)

+
(
n−3
r−2
)

+ . . . +
(
n−m−1

0

)]
=
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
k−m
r−1
)

represent

the sum of terms within the rhombus shape, where m represents the length of terms for

one side of the rhombus, and k represents the nth position in Pascal’s triangle. Then the
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sum of terms inside a rhombus shape within Pascal’s Arithmetic Triangle can be found

using
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
k−m
r−1
)

=
(
k
r

)
−
(
k−m
r

)
, for all k ≥ 4, r ≥ 1, 1 ≤ m ≤ k,

and k, m, r ∈ Z.

Proof. Use mathematical induction.

Let Pn :
(
n−1
r−1
)

+
(
n−2
r−1
)

+ . . . +
(
n−m
r−1
)

=
(
n
r

)
−
(
n−m
r

)
, where n ≥ 4, r ≥ 2,

and 2 ≤ m ≤ n.

• Verify P4 is true when r = 2 and m = 2.

(
n− 1

r − 1

)
+

(
n− 2

r − 1

)
+ . . . +

(
n−m

r − 1

)
=

(
n

r

)
−
(
n−m

r

)
(

3

1

)
+

(
2

1

)
=

(
4

2

)
−
(

2

2

)
3 + 2 = 6− 1

3 + 2 = 5

• Assume Pk is true.

Then
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
k−m
r−1
)

=
(
k
r

)
−
(
k−m
r

)
.

• Show Pk+1 holds.

That is prove
(

k
r−1
)

+
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
k−m+1
r−1

)
=
(
k+1
r

)
−
(
k−m+1

r

)
.

First take the assumption Pk and add
(

k
r−1
)

and subtract
(
k−m
r−1
)

to both sides of the

equation to get
(

k
r−1
)

+
(
k−1
r−1
)

+
(
k−2
r−1
)

+ . . . +
(
k−m+1
r−1

)
=
(
k
r

)
−
(
k−m
r

)
+
(

k
r−1
)
−
(
k−m
r−1
)
.

Next rearrange the right hand side of the equation,
(
k
r

)
−
(
k−m
r

)
+
(

k
r−1
)
−
(
k−m
r−1
)

to get[(
k
r

)
+
(

k
r−1
)]
−
[(

k−m
r

)
+
(
k−m
r−1
)]

.



46

Then apply Theorem 3.2 (Pascal’s Identity) to get
[(

k
r

)
+
(

k
r−1
)]
−
[(

k−m
r

)
+
(
k−m
r−1
)]

=(
k+1
r

)
−
(
k−m+1

r

)
.

Then Pk+1 is true.

Thus Theorem 3.9 is proven by mathematical induction.

Through similarities between Pascal’s Arithmetic Triangle and Leibniz’s Har-

monic Triangle, the rhombus shape pattern paves the way to explore similar sum patterns

within Leibniz’s Harmonic Triangle. Finally, let’s look at Problem 3.10, which will explore

the sum of the terms in a triangular shape found within Leibniz’s Harmonic Triangle.

Problem 3.10. Examine what happens when the sum of an infinite triangular design is

taken within Leibniz’s Harmonic Triangle. Look for a pattern, generalize it, then prove it.

Figure 3.16: Problem 3.10 Example 1 Figure 3.17: Problem 3.10 Example 2
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Figure 3.18: Problem 3.10 Example 3 Figure 3.19: Problem 3.10 Example 4

First let’s find a pattern.

• Look at Figure 3.16 and take the infinite sums

1
6 + 1

12 + 1
20 + 1

30 + 1
42 + 1

56 + . . .

+ 1
12 + 1

30 + 1
60 + 1

105 + 1
168 + . . .

+ 1
20 + 1

60 + 1
140 + 1

280 + . . .

+ 1
30 + 1

105 + 1
280 + . . .

+ 1
42 + 1

168 + . . .

+ 1
56 + . . .

First take the sum of the diagonals to get

1

2
=

1

6
+

1

12
+

1

20
+

1

30
+

1

42
+

1

56
+ . . .

1

6
=

1

12
+

1

30
+

1

60
+

1

105
+

1

168
+ . . .

1

12
=

1

20
+

1

60
+

1

140
+

1

280
+ . . .

1

20
=

1

30
+

1

105
+

1

280
+ . . .

1

30
=

1

42
+

1

168
+ . . .
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The sums form hockey stick patterns discussed in Problem 3.5 and Problem 3.6.

Next take the sum of the numbers found for each diagonal to get

1
2 + 1

6 + 1
12 + 1

20 + 1
30 + . . . = 1

1 (shown in Problem 3.5 question 1). Notice that

taking the sum of hockey stick patterns is just another hockey stick pattern.

• Look at Figure 3.17 and take the infinite sums

1
30 + 1

60 + 1
105 + 1

168 + . . .

+ 1
60 + 1

140 + 1
280 + . . .

+ 1
105 + 1

280 + . . .

+ 1
168 + . . .

First take the sum of the diagonals to get

1

12
=

1

30
+

1

60
+

1

105
+

1

168
+ . . .

1

30
=

1

60
+

1

140
+

1

280
+ . . .

1

60
=

1

105
+

1

280
+ . . .

The sums form hockey stick patterns discussed in Problem 3.5 and Problem 3.6.

Next take the sum of the numbers found for each diagonal to get

1
12 + 1

30 + 1
60 + 1

105 + . . . = 1
6 (shown in Problem 3.6). Notice that taking the sum

of hockey stick patterns is just another hockey stick pattern.

• Look at Figure 3.18 and take the infinite sums

1
30 + 1

105 + 1
280 + . . .

+ 1
42 + 1

168 + . . .
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+ 1
56 + . . .

First take the sum of the diagonals to get

1

20
=

1

30
+

1

105
+

1

280
+ . . .

1

30
=

1

42
+

1

168
+ . . .

1

42
=

1

56
+ . . .

The sums form hockey stick patterns discussed in Problem 3.5 and Problem 3.6.

Next take the sum of the numbers found for each diagonal to get

1
20 + 1

30 + 1
42 + 1

56 + . . . = 1
4 . Notice that taking the sum of hockey stick patterns

is just another hockey stick pattern.

• Look at Figure 3.19 and take the infinite sums

1
105 + 1

168 + . . .

+ 1
280 + . . .

First take the sum of the diagonals to get

1

30
=

1

105
+

1

168
+ . . .

1

105
=

1

280
+ . . .

The sums form hockey stick patterns discussed in Problem 3.5 and Problem 3.6.

Next take the sum of the numbers found for each diagonal to get

1
30 + 1

105 + 1
280 + . . . = 1

20 . Notice that taking the sum of hockey stick patterns is
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just another hockey stick pattern.

Now based on what has been discovered, let’s construct a generalized formula for the

infinite triangular design in Leibniz’s Harmonic Triangle. First, it was found that the sum

of the terms in an infinite triangular design is just the sum of hockey sticks. However,

the sum of hockey sticks is just another hockey stick.

Then
∞∑

n=m

[
L(n, r) + L(n + 1, r + 1) + . . .

]
=

∞∑
n=m

L(n - 1, r) can simplify to

∞∑
n=m

L(n - 1, r) = L(m - 2, r - 1), where m ≥ 2, 1 ≤ r ≤ m, and m, r ∈ N.

Theorem 3.11. An infinite triangular design in Leibniz’s Harmonic Triangle:

L(m − 1, r) + L(m, r) + L(m + 1, r) + L(m + 2, r) + . . . = L(m − 2, r − 1). In other

words,
∞∑

n=m
L(n − 1, r) = L(m − 2, r − 1), where m ≥ 2, 1 ≤ r ≤ m, and m, r ∈ N.

Proof. Use mathematical induction

Let Pm : L(m − 2, r − 1) = L(m − 1, r) + L(m, r) + L(m + 1, r)+ L(m + 2, r) + . . .

1. Show P2 is true when r = 1.

L(m− 2, r − 1) = L(m− 1, r) + L(m, r) + L(m + 1, r) + . . .

L(2− 2, 1− 1) = L(2− 1, 1) + L(2, 1) + L(2 + 1, 1) + . . .

L(0, 0) = L(1, 1) + L(2, 1) + L(3, 1) + . . .

1

1
=

1

2
+

1

6
+

1

12
+ . . .X

From Problem 3.3.1 P2 is true.

2. Assume Pk is true.
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Then Pk : L(k − 2, r − 1) = L(k − 1, r) + L(k , r) + L(k + 1, r) + . . .

3. Show Pk+1 is true.

That is prove Pk+1 : L(k − 1, r − 1) = L(k , r) + L(k + 1, r) + L(k + 2, r) + . . .

First take the assumption Pk and subtract L(k − 1, r) from both sides to get

L(k − 2, r − 1) − L(k − 1, r) = L(k − 1, r) − L(k − 1, r) + L(k , r) + . . .

Then simplify to get L(k − 2, r − 1) − L(k − 1, r) = L(k , r) + L(k + 1, r) + . . ..

Next apply Equation 2.1 (Leibniz’s Identity) to the left hand side of the equation

to get L(k − 1, r − 1) = L(n, r) + L(k + 1, r) + L(k + 2, r) + . . .

Then Pk+1 holds

Thus Theorem 3.11 is proven by mathematical induction.
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