
Journal of International Technology and Information Management Journal of International Technology and Information Management

Volume 27 Issue 3 Article 5

1-1-2019

Towards a Fault-tolerant, Scheduling Methodology for Safety-Towards a Fault-tolerant, Scheduling Methodology for Safety-

critical Certified Information Systems critical Certified Information Systems

Jian Lin
University of Houston-Clear Lake, linjian@uhcl.edu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim

 Part of the Other Computer Engineering Commons, and the Technology and Innovation Commons

Recommended Citation Recommended Citation
Lin, Jian (2019) "Towards a Fault-tolerant, Scheduling Methodology for Safety-critical Certified
Information Systems," Journal of International Technology and Information Management: Vol. 27 : Iss. 3 ,
Article 5.
Available at: https://scholarworks.lib.csusb.edu/jitim/vol27/iss3/5

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion
in Journal of International Technology and Information Management by an authorized editor of CSUSB
ScholarWorks. For more information, please contact scholarworks@csusb.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CSUSB ScholarWorks

https://core.ac.uk/display/212814533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.lib.csusb.edu/jitim
https://scholarworks.lib.csusb.edu/jitim/vol27
https://scholarworks.lib.csusb.edu/jitim/vol27/iss3
https://scholarworks.lib.csusb.edu/jitim/vol27/iss3/5
https://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol27%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol27%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol27%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/jitim/vol27/iss3/5?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol27%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 84 ISSN: 1941-6679-On-line Copy

Towards a Fault-tolerant, Scheduling Methodology for

Safety-critical Certified Information Systems

Jian (Denny) Lin

Email: LinJian@UHCL.EDU

Department of Management Information Systems

University of Houston - Clear Lake

2700 Bay Area Blvd

Houston, Texas 77058, USA

ABSTRACT

Today, many critical information systems have safety-critical and non-safety-

critical functions executed on the same platform in order to reduce design and

implementation costs. The set of safety-critical functionality is subject to

certification requirements and the rest of the functionality does not need to be

certified, or is certified to a lower level. The resulting mixed-criticality systems

bring challenges in designing such systems, especially when the critical tasks are

required to complete with a timing constraint. This paper studies a problem of

scheduling a mixed-criticality system with fault tolerance. A fault-recovery

technique called checkpointing is used where a program can go back to a recent

checkpoint for re-execution when errors are occurred. A novel schedulability test

is derived to ensure that the safety-critical tasks are completed before their

deadlines and the theoretical correctness is shown.

KEYWORDS: Safety-critical certification; Mixed-criticality systems; Real-time

scheduling; Fault-tolerance.

INTRODUCTION

Modern computing systems can execute multiple applications of different criticality

or importance, such as safety-critical and non-safety-critical, on a single platform.

Criticality is a designation of the level of assurance against failure needed for a

system component. In a mixed-criticality computing system, there are two or more

distinct levels of criticality for executions of computing applications. Different

standards of identifying levels of criticality have been established in different

industries. ASILs (Automotive Safety and Integrity Levels) is a risk classification

scheme defined by the ISO 26262 - Functional Safety for Road Vehicles standard.

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 85 ISSN: 1941-6679-On-line Copy

DALs (Design Assurance Levels), which provides five categories of safety

assurance levels, is determined from the safety assessment process and hazard

analysis by examining the effects of a failure condition in a software system. SILs

(Safety Integrity Levels), specifying a target level of risk reduction, is used as a

measurement of performance required for a safety instrumented function (SIF). In

the functional safety standards based on the IEC 61508 standard, four SILs are

defined.

Systems with safety-critical functionality need to be certified for a permission to

operate. The authors in [Baruah et al., 2012] discuss such a case for the design and

validation processes of certain Unmanned Aerial Vesicles (UAV's). The

functionalities on board such UAV’s may be classified into two levels of criticality:

• Level 1: the mission-critical functionalities, concerning reconnaissance

and surveillance objectives, like capturing images from the ground,

transmitting these images to the base station, etc.

• Level 2: flight-critical functionalities, to be performed by the aircraft to

ensure its safe operation.

The executions of these two levels of functionalities are controlled by an on-board

computer and the tasks are executed continuously. Also, these tasks are real-time

tasks that are required to provide responsiveness within a timely constraint or before

a deadline. For examples, flight-control tasks are executed every certain time to

control an aircraft's direction, altitude and airspeed in flight. If one of these tasks

takes too long to complete, it may cause problems to control the aircraft.

For permission to operate such UAV’s over civilian airspace (e.g., for border

surveillance), it is mandatory that its flight-critical functionalities be certified

correct by civilian Certification Authorities (CA’s) such as the US Federal Aviation

Authority (FAA), which tend to be very conservative concerning the safety

requirements. System designers ensure both mission-critical and flight-critical

functionalities to be correct but the notion of correctness adopted in validating these

functionalities is typically less rigorous than the one used by civilian CA’s. The

CA's may require longer timing budgets reserved for the flight-critical tasks to

execute than the ones used by the system designers, in order to ensure the aircraft's

safety. A trade-off can be seen in this process. When the designers determine timing

characteristics or timing budgets for running the functional tasks, they estimate the

values from extensive experiments. By taking the estimates, all designed

functionalities are performed successfully in most of the time but exceptions of

executing over deadlines may not be guaranteed to be excluded. The more

conservative estimate by the CA's can exclude missing execution deadlines to the

greatest extent possible but it may cause a shortage of CPU time resource to

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 86 ISSN: 1941-6679-On-line Copy

accommodate all of the flight-critical and mission-critical tasks onto the single

system. Recently, how to overcome this conflict has become an increasing research

trend [Burs and Davis, 2018].

In executing computing tasks, faults or errors may happen during the process which

can either produce incorrect results or cause real-time tasks to miss their deadlines.

Permanent and transient faults are the two categories of errors that happen the most

frequently. Permanent faults, such as hardware damage and shutdown, cannot be

recovered. Transient faults, by contrast, can be recovered by re-executing the faulty

task. A common example of transient fault is the inducing in memory cells of

spurious values, caused by charged particles (e.g., alpha particles) passing through

them [Krishna, 2014]. In computer systems transient faults occur much more

frequently than permanent faults do [Castillo et al., 1982; Iyer and Rossetti, 1986].

Generally, there are two major techniques to recover transient faults, primary-

backup execution [Al-Omari et al., 2004] and checkpointing [Punnekkat et al.,

2001]. A backup is an exact copy of an execution of a task. A checkpoint is a

regularly-saved state of a task, which consists of values of data variables and

contents of system registers. An acceptance test that ensures the program's

successful execution must be run before saving the necessary data. In the primary-

backup execution technique, the whole faulty task is re-executed where in the

checkpointing technique a re-execution of the affected task is performed from the

most recent checkpoint.

In this work, we solve the certification problem in mixed-criticality systems from a

perspective of scheduling. We work on a methodology that focuses on executions

of mixed-criticality, real-time tasks and fault tolerance, particularly in using the

technique of checkpointing. To the best of the author's knowledge, this is the first

work that considers using checkpointing in scheduling mixed-criticality tasks. The

rest of the paper is organized as follows. Next section discusses some preliminary

and related works. Section 3 formally introduces the system model and problem

definition. Then, a novel schedulability test condition for a set of mixed-criticality

tasks with fault tolerance is derived. We also present an example to explain how to

use the test condition. The last section summarizes and concludes the work.

RELATED WORKS

Different task models have been built to characterize an execution of a real-time

task. In a periodic task, job instances arrive regularly with a fixed inter-interval. A

job instance of a periodic task in general is required to complete before an arrival

of the next instance. Tasks with irregular arrival intervals are called aperiodic tasks.

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 87 ISSN: 1941-6679-On-line Copy

Aperiodic tasks that have a minimum inter-arrival time are called sporadic tasks.

The first real-time scheduling paper was published in [Liu and Layland, 1973].

Since then, a tremendous number of works have been done in the field. In primarily,

there are two types of real-time scheduling algorithms, static-priority and dynamic-

priority. In a scheduling process, tasks are assigned priorities which are used to

determine their order in execution. In a static-priority algorithm, priorities are

assigned off-line and do not change during run-time. In contrast, a dynamic-priority

algorithm schedules the tasks based on their priorities assigned on-line. For

examples, Earliest Deadline First (EDF) is a classical, dynamic-priority algorithm

that always selects a task closest to its deadline to run. Rate Monotonic (RM) is a

static-priority algorithm that assigns priorities to periodic tasks based on the lengths

of their periods. Since a length of a period of a task does not change, the priority

stays the same during the task's execution. In practice, static-priority algorithms are

simpler to implement in an operating system and dynamic-priority algorithms are

more complex to predict the scheduling outcomes. However, dynamic-priority

algorithms generally have a better utilization of CPU time. For further information

about real-time scheduling, please refer to the following texts [Cheng, 2002; Liu,

2000; Krishna and Shin, 1997].

In the past several years, mixed-criticality systems became a very popular research

topic in designing critical information systems. Computing tasks with different

criticality sharing the same resource on a single hardware platform can reduce

design and implementation costs. However, as we mentioned earlier, it also brings

challenges to confirm the schedulability of these tasks. It is well-known that

conventional scheduling methods cannot satisfactorily address these challenges and

the mathematical intractability of solving these problems has been proved in

[Baruah et al., 2012]. In the existing works such as those in [De Niz et al., 2009;

Lakshmanan et al., 2010; Baruah and Vestal, 2008; Ekberg and Yi, 2012; Guan et

al., 2011; Baruah et al., 2008; Baruah et al., 2010], tasks running on a mixed-

criticality system are classified into two categories, safety-critical or HI-criticality,

and non-safety-critical or LO-criticality. A HI-criticality task may have two

estimated execution times, one from the CA's certification, and another from the

system designers. At the beginning, both LO-criticality and HI-criticality tasks are

scheduled by using their shorter estimated timing budgets. Once a HI-criticality

task uses out its timing budget without a completion, it signals that the execution

times estimated by the system designers are not trustworthy. At this moment, all

HI-criticality tasks are assumed to run with their longer execution times required

by the CA's. Simultaneously, all LO-criticality tasks are dropped in order to keep

the safety of executing those HI-criticality tasks successfully.

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 88 ISSN: 1941-6679-On-line Copy

Mixed-criticality systems with fault tolerance are also explored in the research

community. In [Pathan 2014], the authors design a schedulability test for using the

primary-backup technique. In [Huang et al., 2014], the authors describe a method

to convert the fault-tolerant problem into a standard scheduling problem in a mixed-

criticality system. In one of our earlier works, the EDF scheduling algorithm and

the primary-backup technique are used to maximize the number of scheduled LO-

criticality tasks while all of the HI-criticality tasks are schedulable [Lin et al., 2015].

At the time of writing this paper, none of existing works has engaged in solving the

problem of using the checkpointing technique.

SYSTEM MODEL, PROBLEM DEFINITION AND

SCHEDULABILITY TEST

System Model and Problem Definition

We consider that a mixed-criticality system consists of a set of N sporadic tasks T

= {T1, T2, ..., TN} where consecutive instances of a task Ti arrive with a minimum

inter-interval, denoted by Pi. In order to ensure the schedulability in the worst-case

scenario, we assume that the instances of each task arrive with their maximum

frequency. In other words, each task has an instance to complete for every Pi which

is called a period of Ti. For each task, the value of the worst-case execution time

(WCET) is significant due to the requirement of having no deadline violations. The

time between each task instance’s arrival and its deadline is called a relative

deadline. A relative deadline of Ti is denoted as Di where Di = Pi. There are two

criticality levels in the system, LO or HI. A task is either a LO-criticality or a HI-

criticality task and its criticality is denoted by Xi, Xi{LO, HI}. For a HI-criticality

task, it has two WCETs as Ci(LO) and Ci(HI) and a LO-criticality task may have a

Ci(LO) only. It is assumed that Ci(HI) ≥ Ci(LO). When the system starts, all tasks

may have an infinite sequence of instances to execute. Initially, all HI-criticality

and LO-criticality tasks are scheduled using their C(LO)s and this stage is called a

LO-criticality mode. During the execution, a HI-criticality task may be detected that

its execution time exceeds its C(LO). At this point, it signals the system that the

shorter WCETs are not trustworthy so all HI-criticality tasks will switch to use their

C(HI)s immediately. The system is thus switched into a HI-criticality mode. All of

the LO-criticality tasks are dropped from the execution in order to maintain the

feasibility of executing the HI-criticality tasks.

We also define the faults arrival pattern that is used in our analysis. There is no

difficulty to understand that there is no solution that can accommodate unlimited

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 89 ISSN: 1941-6679-On-line Copy

errors. In this work, we assume that there is a minimum inter-interval of Pf between

any two faults' arrival. The faults considered are transient faults which can be

recovered by re-executing the faulty task. Checkpoints are used in recovering the

faulty tasks from errors. A HI-criticality task may be checkpointed into mi(LO)

segments in its Ci(LO)and mi(HI) segments in its Ci(HI), where mi(HI) ≥ mi(LO).

The interval of each segment in the same task, denoted by Ii, is assumed to be the

same except of the last segment (a WCET may not be divisible by an I). Also, we

assume that there is no error happened during a creation of a checkpoint and an

acceptance test.

The problem we target to solve is formally defined as follows. Given a task-set of

T, each task is defined as Ti = {Pi, Di, ri, Xi, Ci(LO), Ci(HI), mi(LO), mi(HI), Ii} in

which ri is a unique integer that indicates a static priority of Ti. The smaller the

integer, the higher priority it indicates. The tasks are scheduled using each task's

static priority. Assuming that faults arrive between a minimum interval of Pf,

determine the task-set's schedulability that all tasks are schedulable in a LO-

criticality mode and all HI-criticality tasks are schedulable when the system is

switched to and in a HI-criticality mode.

Schedulability Test

Scheduling without Fault Tolerance

In real-time scheduling, a standard response-time analysis is used to determine

schedulability of a set of tasks using static priorities [Joseph and Pandya, 1986]. In

a response-time analysis, each task's worst-case response time is calculated. A

response time is defined as the time between a task’s arrival and its completion. If

the worst-case response time of a task is smaller than or equal to the task's relative

deadline, the task is schedulable. When calculating a task's response time, only the

tasks with higher priority have impacts to it. The response time value Ri is obtained

from the following formula (where C denotes the WCET and hpi denotes the set of

tasks with priority higher than that of task Ti):

 𝑅𝑖 = 𝐶𝑖 + ∑ (
𝑗ℎ𝑝𝑖

⌈
𝑅𝑖
𝑃𝑗

⌉ × 𝐶𝑗)
(1)

This is solved using standard techniques for solving recurrence relations. The

recurrence calculation stops when Ri on both sides are equal. To determine a task

set's schedulability, it can be done by calculating all tasks' response times in the set.

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 90 ISSN: 1941-6679-On-line Copy

In [Baruah et al., 2011], the authors define three conditions that need to be satisfied

in order to decide the schedulability for a mixed-criticality system:

i. All tasks' response times are not larger than their relative deadlines by using

their C(LO).

ii. All HI-criticality tasks' response times are not larger than their relative

deadlines by using their C(HI).

iii. No HI-criticality tasks miss their deadlines during a switch from a LO-

criticality mode to a HI-criticality mode.

In practice, it is possible that conditions i and ii are satisfied and condition iii is

failed. This is because when a system switches its mode, some of the LO-criticality

tasks may have been executed for a certain amount of time. As a result, it may cause

some HI-criticality tasks to miss deadlines due to a lack of enough CPU time for

the execution of C(HI) before their deadlines. We explain such a failure possibility

by considering an example of a task-set as in Table 1.

Table 1. Example of a set of three mixed-criticality tasks

Ti Xi ri Pi Di Ci(LO) Ci(HI)

T1 LO 1 5 5 2

T2 HI 2 6 6 2 3

T3 HI 3 10 10 2 3

By verifying the schedulability of the LO-criticality mode, it can replace the Ci in

(1) by Ci(LO). That is:

 𝑅𝑖
𝐿𝑂 = 𝐶𝑖(𝐿𝑂) + ∑ (⌈

𝑅𝑖
𝐿𝑂

𝑃𝑗
⌉ × 𝐶𝑗(𝐿𝑂))

𝑗ℎ𝑝𝑖
 (2)

Similarly, by verifying the schedulability of the HI-criticality mode, it can replace

the Ci in (1) by Ci(HI) and exclude all LO-criticality tasks (hpiH denotes the set of

HI-criticality tasks with priority higher than that of task Ti).

 𝑅𝑖
𝐻𝐼 = 𝐶𝑖(𝐻𝐼) + ∑ (⌈

𝑅𝑖
𝐻𝐼

𝑃𝑗
⌉ × 𝐶𝑗(𝐻𝐼))

𝑗ℎ𝑝𝑖𝐻
 (3)

By using (2) and (3), the following can be obtained:

𝑅1
𝐿𝑂 = 2, 𝑅2

𝐿𝑂 = 4 and 𝑅3
𝐿𝑂 = 10;

𝑅2
𝐻𝐼 = 3 and 𝑅3

𝐻𝐼 = 6

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 91 ISSN: 1941-6679-On-line Copy

Both conditions i and ii are satisfied. However, the schedule in Figure 1 shows that

condition iii is violated. At time instant 10, T3 has used 2 time units as its C(LO)

without a completion. It signals the system and the system is switched to a HI-

criticality mode. T1 is dropped and both T2 and T3 increase their WCETs to 3

immediately. It can be seen that T3 misses its deadline during the mode switching.

In [Baruah et al., 2011], it is shown that verifying the schedulability for condition

iii is unlikely to be tractable in that all release patterns of all sporadic tasks would

need to be tested. A sufficient but not necessary condition is proposed in the work

(The response time used in condition iii is denoted as 𝑅𝑖
∗):

𝑅𝑖
∗ = 𝐶𝑖(𝐻𝐼) + ∑ (⌈

𝑅𝑖
∗

𝑃𝑗
⌉ × 𝐶𝑗(𝐻𝐼))

𝑗ℎ𝑝𝑖𝐻

+ ∑ (⌈
𝑅𝑖

𝐿𝑂

𝑃𝑘
⌉ × 𝐶𝑘(𝐿𝑂))

𝑘ℎ𝑝𝑖𝐿

(4)

The equation (4) not only counts the computation impact from the HI-criticality

tasks with higher priority than the one of Ti, it also "caps" the interference from the

LO-criticality tasks (the set of hpiL) because a mode switching must happen before

𝑅𝑖
𝐿𝑂.

Figure 1. A Schedule of three mixed-criticality task

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 92 ISSN: 1941-6679-On-line Copy

Scheduling with Checkpoints

We extend the work described in section 3.2.1 to recover faults by using

checkpoints. Checkpoints separate an execution of a task into segments. It reduces

the time required for a re-execution for errors, up to the length of each segment's

interval. By using checkpoints, additional overhead has to be considered and it is

not trivial [Punnekkat et al., 2001]. Before a checkpoint is created, an acceptance

needs to be performed to ensure the result of the execution in the current segment

to be correct. Then, the variable states and registers values are saved before it starts

an execution for the next segment. We use O to denote the overhead of one

acceptance test and one saving of the program states. For a WCET with m segments,

the total overhead is m × O. This is from m - 1 times of creating the checkpoints

plus one time of saving states at the beginning and one time of acceptance test at

the final completion. When errors are detected in an acceptance test, it will bring

an additional I + O time units to the execution time. The I is the segment interval

for a re-execution and the O is for another time of saving states and acceptance test.

Please note that we assume that two consecutive faults arrive with at least a

separation of Pf time units.

To verify the LO-criticality schedulability with checkpoints:

𝑅𝑖
𝐿𝑂 = 𝐶𝑖(𝐿𝑂) + 𝑂𝑖 × 𝑚𝑖(𝐿𝑂)

 + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑗
⌉ × (𝐶𝑗(𝐿𝑂) + 𝑂𝑗 × 𝑚𝑗(𝐿𝑂))

 𝑗 ℎ𝑝𝑖

 + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘 ℎ𝑝𝑖 {𝑖} (𝑂𝑘 + 𝐼𝑘)

(5)

The sum consists of three inclusions for the response time: Ti's computation time

and checkpointing overhead, all higher-priority tasks' computation times and

checkpointing overhead and the maximum re-execution time of the number of

faults that can occur within 𝑅𝑖
𝐿𝑂.

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 93 ISSN: 1941-6679-On-line Copy

Similarly, the following is derived to verify the HI-criticality schedulability with

checkpoints:

 𝑅𝑖
𝐻𝐼 = 𝐶𝑖(𝐻𝐼) + 𝑂𝑖 × 𝑚𝑖(𝐻𝐼)

 + ∑ ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗 × 𝑚𝑗(𝐻𝐼))

 𝑗 ℎ𝑝𝑖𝐻

 + ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘 ℎ𝑝𝑖𝐻 {𝑖} (𝑂𝑘 + 𝐼𝑘)

(6)

In order to verify the schedulability during a mode switching, we need to include

the checkpointing overhead and total re-execution time for the faults from the HI-

criticality tasks and from the LO-criticality tasks before the switching.

 𝑅𝑖
∗ = 𝐶𝑖(𝐻𝐼) + 𝑂𝑖 × 𝑚𝑖(𝐻𝐼)

 + ∑ ⌈
𝑅𝑖

∗

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗 × 𝑚𝑗(𝐻𝐼))

 𝑗 ℎ𝑝𝑖𝐻

 + ⌈
𝑅𝑖

∗

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘 ℎ𝑝𝑖𝐻 {𝑖} (𝑂𝑘 + 𝐼𝑘)

 + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑞
⌉ × (𝐶𝑞(𝐿𝑂) + 𝑂𝑞 × 𝑚𝑞(𝐿𝑂)) 𝑞 ℎ𝑝𝑖𝐿

 + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑠 ℎ𝑝𝑖𝐿 {𝑖} (𝑂𝑠 + 𝐼𝑠)

(7)

By a more thorough analysis, it can be seen that there is an overlap in (7) between

𝑅𝑖
∗ and 𝑅𝑖

𝐿𝑂. Because 𝑅𝑖
∗ includes 𝑅𝑖

𝐿𝑂 and 𝑅𝑖
∗ must be greater than 𝑅𝑖

𝐿𝑂, the number

of faults that may occur by 𝑅𝑖
𝐿𝑂 counts two times. In fact, by 𝑅𝑖

𝐿𝑂, errors may occur

in any task with higher priority, and after 𝑅𝑖
𝐿𝑂 we only need to count the faults from

the HI-criticality tasks with higher priority. Thus, (7) can be revised and improved

as:

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 94 ISSN: 1941-6679-On-line Copy

 𝑅𝑖
∗ = 𝐶𝑖(𝐻𝐼) + 𝑂𝑖

× 𝑚𝑖(𝐻𝐼)

 + ∑ (⌈
𝑅𝑖

∗

𝑃𝑗
⌉ × 𝐶𝑗(𝐻𝐼) + 𝑂𝑗 × 𝑚𝑗(𝐻𝐼))

 𝑗 ℎ𝑝𝑖𝐻

 + ⌊
𝑅𝑖

∗−𝑅𝑖
𝐿𝑂

𝑃𝑓
⌋ 𝑚𝑎𝑥 𝑘 ℎ𝑝𝑖𝐻 {𝑖} (𝑂𝑘 + 𝐼𝑘)

 + ∑ (⌈
𝑅𝑖

𝐿𝑂

𝑃𝑞
⌉ × 𝐶𝑞(𝐿𝑂) + 𝑂𝑞 × 𝑚𝑞(𝐿𝑂)) 𝑞 ℎ𝑝𝑖𝐿

 + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑠 ℎ𝑝𝑖𝐿 {𝑖} (𝑂𝑠 + 𝐼𝑠)

(8)

The equations (5), (6) and (8) can be also used to determine the schedulability for

using the primary-backup technique because the primary-backup technique is a

special case of the checkpointing technique. In the primary-backup technique, the

number of segments can be taken as 1 and the additional overhead for saving states

and acceptance test is just one time of O. Each re-execution after errors are detected

is equal to the length of the faulty task's WCET. There is another one time of O

associated with each time of the re-execution. Thus, the equations (5), (6) and (8)

can be modified to be using with the primary-backup technique as follows.

 𝑅𝑖
𝐿𝑂 = 𝐶𝑖(𝐿𝑂) + 𝑂𝑖

 + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑗
⌉ × (𝐶𝑗(𝐿𝑂) + 𝑂𝑗)

 𝑗 ℎ𝑝𝑖

 + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘 ℎ𝑝𝑖 {𝑖} (𝐶𝑘(𝐿𝑂) + 𝑂𝑘)

(9)

 𝑅𝑖
𝐻𝐼 = 𝐶𝑖(𝐻𝐼) + 𝑂𝑖

 + ∑ ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗)

 𝑗 ℎ𝑝𝑖𝐻

 + ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘 ℎ𝑝𝑖𝐻 {𝑖} ((𝐶𝑗(𝐻𝐼) + 𝑂𝑘)

(10)

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 95 ISSN: 1941-6679-On-line Copy

𝑅𝑖
∗ = 𝐶𝑖(𝐻𝐼) + 𝑂𝑖

 + ∑ ⌈
𝑅𝑖

∗

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗)

 𝑗 ℎ𝑝𝑖𝐻

 + ⌊
𝑅𝑖

∗−𝑅𝑖
𝐿𝑂

𝑃𝑓
⌋ 𝑚𝑎𝑥 𝑘 ℎ𝑝𝑖𝐻 {𝑖} (𝐶𝑘(𝐻𝐼) + 𝑂𝑘)

 + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑞
⌉ × (𝐶𝑞(𝐿𝑂) + 𝑂𝑞) 𝑞 ℎ𝑝𝑖𝐿

 + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑠 ℎ𝑝𝑖𝐿 {𝑖} (𝐶𝑠(𝐻𝐼) + 𝑂𝑠)

(11)

A Demonstrative Example

We demonstrate an example to show how to use the schedulability test condition

we derived in this paper. Consider another task-set with three mixed-criticality tasks

in Table 2. We show how to calculate the response-time for T3.

Table 2. Example of a set of three mixed-criticality tasks with using

checkpoints, Pf = 20.

Ti Xi ri Pi Di Ci(LO) Ci(HI) mi(LO) mi(HI) Oi Ii

T1 LO 1 100 100 15 3 1 5

T2 HI 2 120 120 10 15 2 3 1 5

T3 HI 3 140 140 25 40 5 8 1 5

The following calculation is to determine whether or not T3 is schedulable in the

LO-criticality mode (verifying condition i).

𝑅3
𝐿𝑂 = 25 + 5 + 15 + 3 + 10 + 2 = 60

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

60

100
⌉ × 18 + + ⌈

60

120
⌉ ×12 + + ⌈

60

20
⌉ × 6 = 78

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

78

100
⌉ × 18 + + ⌈

78

120
⌉ ×12 + + ⌈

78

20
⌉ × 6 = 84

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

84

100
⌉ × 18 + + ⌈

84

120
⌉ ×12 + + ⌈

84

20
⌉ × 6 = 90

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

90

100
⌉ × 18 + + ⌈

90

120
⌉ ×12 + + ⌈

90

20
⌉ × 6 = 90

𝑅3
𝐿𝑂 = 90

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 96 ISSN: 1941-6679-On-line Copy

The calculation above is explained as follows. Because T1's and T2's priorities are

higher than T3's, T1 and T2 are executed before T3 when all of them start at time

instant 0. The calculation starts by adding all of the three tasks' C(LO)s and the time

overhead used to create the checkpoints, which is equal to 60. The recurrence

calculation continues by including the higher priority tasks' C(LO)s, checkpointing

costs and the execution time for the maximum number of re-execution segments,

until at time instant 90 the total execution demand does not increase (both sides are

equal). According to the formula (5), 𝑅3
𝐿𝑂 = 90. 𝑅3

𝐻𝐼 is calculated similarly by

considering HI-criticality tasks only as defined in the formula (6).

𝑅3
𝐻𝐼 = 40 + 8 + 15 + 3 = 66

𝑅3
𝐻𝐼 = 40 + 8 + ⌈

66

120
⌉ × 18 + ⌈

66

20
⌉ × 6 = 90

𝑅3
𝐻𝐼 = 40 + 8 + ⌈

90

120
⌉ × 18 + ⌈

90

20
⌉ × 6 = 96

𝑅3
𝐻𝐼 = 40 + 8 + ⌈

96

120
⌉ × 18 + ⌈

96

20
⌉ × 6 = 96

𝑅3
𝐻𝐼 = 96

Since 𝑅3
∗ must be greater than 𝑅3

𝐿𝑂and 𝑅3
𝐻𝐼, 𝑅3

∗ is initialized to be the greater one

between 𝑅3
𝐿𝑂and 𝑅3

𝐻𝐼, so 𝑅3
∗ starts at 96. The following shows the calculation

process of 𝑅3
∗ based on the formula (8).

𝑅3
∗ = 40 + 8 + ⌈

96

120
⌉ × 18 + ⌊

96−90

20
⌋ × 6 + ⌈

90

100
⌉ × 18 + ⌊

90

20
⌋ × 6 = 114

𝑅3
∗ = 40 + 8 + ⌈

114

120
⌉ × 18 + ⌊

114−90

20
⌋ × 6 + ⌈

90

100
⌉ × 18 + ⌊

90

20
⌋ × 6 = 120

𝑅3
∗ = 40 + 8 + ⌈

120

120
⌉ × 18 + ⌊

120−90

20
⌋ × 6 + ⌈

90

100
⌉ × 18 + ⌊

90

20
⌋ × 6 = 120

𝑅3
∗ = 120

By the above calculation, all of the calculated 𝑅3
𝐿𝑂, 𝑅3

𝐻𝐼 and 𝑅3
∗ are not larger than

T3's relative deadline D3 which is 140, so T3 is schedulable. The schedulability tests

of T1 and T2 use the same technique and we omit the details for the sake of avoiding

a lengthy paragraph. In fact, both T1 and T2 are schedulable and hence the task-set

is schedulable.

SUMMARY AND FUTURE WORKS

Checkpointing is a widely used technique for fault-tolerant computing. This paper

solves the problem of applying checkpointing for scheduling mixed-criticality

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 97 ISSN: 1941-6679-On-line Copy

tasks. A new sufficient schedulability test condition is derived and its theoretical

correctness is shown along with the derivation.

In the example shown in section 3.2.3, it is apparently that T3 is not schedulable by

using the primary-backup technique. This is because when Pf = 20, errors can occur

in every execution of T3. In the worst case there are two errors occurred in every

instance of T3. Considering that every time T3 needs to restart the whole execution

for an error, a T3 instance will never complete its execution by its deadline. It is

seen that for tasks un-schedulable upon using a complete re-execution, it is possible

to make the tasks schedulable by using checkpoints. Our future works include

optimization techniques for the placement of checkpoints in scheduling mixed-

criticality tasks.

REFERENCES

Burns, A., Davis, R. I., (2018). A Survey of Research into Mixed Criticality

Systems, ACM Computing Surveys, Vol. 50, Issue 6, Article No. 82.

Baruah, S., Bonifaci, V., D'Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow,

N. and Stougie, L., (2012). Scheduling Real-Time Mixed-Criticality Jobs,

IEEE Transactions on Computers, Vol. 61, Issue 8, Pages 1140-1152.

Krishna, C. M., (2014). Fault-Tolerant Scheduling in Homogeneous Real-Time

Systems, ACM Computing Surveys, Vol. 46 Issue 4, Article No. 48.

Castillo, X., McConnel, S. R. and Siewiorek, D. P., (1982). Derivation and

Caliberation of a Transient Error Reliability Model, IEEE Transactions on

Computers, Vol. 31 Issue 7, Pages 658-671.

Iyer, R. K. and Rossetti, D. J., (1986). A Measurement-Based Model for Workload

Dependence of CPU Errors, IEEE Transactions on Computers, Vol. 35

Issue 6, Pages 511-519.

Al-Omari, R., Somani, A. K. and Manimaran, G., (2004). Efficient Overloading

Techniques for Primary backup Scheduling in Real-Time Systems, Journal

of Parallel Distributed Computing, Vol. 64 Issue 5, Pages 629-648.

Punnekkat, S., Burns, A. and Davis, R., (2001). Analysis of Checkpointing for

Real-Time Systems, Real-Time Systems, Vol. 20 Issue 1, Pages 83-102.

Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems J. Lin

©International Information Management Association, Inc. 2017 98 ISSN: 1941-6679-On-line Copy

Liu, C. and Layland, J., (1973). Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment, Journal of the ACM, Vol. 20 Issue 1, Pages

46-61.

Cheng, A., (2002). Real-Time Systems: Scheduling, Analysis and Verification,

Wiley Interscience, 1st Edition.

Liu, J., (2000). Real-Time Systems, Wiley, 1st Edition.

Krishna, C. and Shin, K., (1997). Real-Time Systems, McGraw-Hill, 1st Edition.

De Niz, D., Lakshmanan, K., and Rajkumar, R., (2009). On the Scheduling of

Mixed-Criticality Real-Time Task Sets, Proc. of The IEEE Real-Time

Systems Symposium.

Lakshmanan, K., De Niz, D., Rajkumar, R. and Moreno, G., (2010). Resource

Allocation in Distributed Mixed-Criticality Cyber-Physical Systems, Proc.

of The IEEE International Conference on Distributed Computing Systems.

Baruah, S. K. and Vestal, S., (2008). Schedulability Analysis of Sporadic Tasks

with Multiple Criticality Specifications, Proc. of The IEEE Euromicro

Conference on Real-Time Systems.

Ekberg, P. and Yi, W., (2012). Bounding and Shaping The Demand of Generalized

Mixed-Criticality Sporadic Task Systems, Proc. of The IEEE Euromicro

Conference on Real-Time Systems.

Guan, N., Ekberg, P., Stigge, M. and Yi, W., (2011). Effective And Efficient

Scheduling of Certifiable Mixed-Criticality Sporadic Task Systems, Proc.

of The IEEE Real-Time Systems Symposium.

Baruah, S., Bonifaci, V., D'Angelo, G., Li, H., Marchetti-Spaccamela, A., van der

Ster, S. and Stougie, L., (2008). The Preemptive Uniprocessor Scheduling

of Mixed-Criticality Implicit-Deadline Sporadic Task Systems, Proc. of The

IEEE Euromicro Conference on Real-Time Systems.

Baruah, S., Li, H., and Stougie, L., (2010). Towards the design of certifiable mixed-

criticality systems, Proc. of The IEEE Real-Time and Embedded

Technology and Applications Symposium.

Journal of International Technology and Information Management Volume 27, Number 3 2018

©International Information Management Association, Inc. 2017 99 ISSN: 1941-6679-On-line Copy

Pathan, R. M., (2014). Fault-tolerant and real-time scheduling for mixed-criticality

systems, Real-Time Systems, Vol. 50 Issue 4, Pages 509-547.

Huang, P., Yang, H. and Thiele, L., (2014). On the Scheduling of Fault-Tolerant

Mixed-Criticality Systems, Proc. of The ACM Design Automation

Conference.

Lin, J., Cheng, A., Steel, D., Wu, M. and Sun, N., (2015). Scheduling Mixed-

Criticality Real-Time Tasks in a Fault-Tolerant System, International

Journal of Embedded and Real-Time Communication Systems, Vol. 6 Issue

2, Pages 65-86.

Baruah, S. K., Burns, A. and Davis, R. I., (2011). Response-Time Analysis for

Mixed Criticality Systems, Proc. of The IEEE 32nd Real-Time Systems

Symposium.

Joseph, M. and Pandya, P., (1986). Finding response times in a real-time system,

BCS Computer Journal, Vol. 29 Issue 5, Pages 390-395.

	Towards a Fault-tolerant, Scheduling Methodology for Safety-critical Certified Information Systems
	Recommended Citation

	Towards a Fault-tolerant, Scheduling Methodology for Safety-critical Certified Information Systems

