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ABSTRACT 
 

Today, many critical information systems have safety-critical and non-safety-

critical functions executed on the same platform in order to reduce design and 

implementation costs. The set of safety-critical functionality is subject to 

certification requirements and the rest of the functionality does not need to be 

certified, or is certified to a lower level. The resulting mixed-criticality systems 

bring challenges in designing such systems, especially when the critical tasks are 

required to complete with a timing constraint. This paper studies a problem of 

scheduling a mixed-criticality system with fault tolerance. A fault-recovery 

technique called checkpointing is used where a program can go back to a recent 

checkpoint for re-execution when errors are occurred. A novel schedulability test 

is derived to ensure that the safety-critical tasks are completed before their 

deadlines and the theoretical correctness is shown.   

 

KEYWORDS: Safety-critical certification; Mixed-criticality systems; Real-time 

scheduling; Fault-tolerance. 

 

 

INTRODUCTION 

 
Modern computing systems can execute multiple applications of different criticality 

or importance, such as safety-critical and non-safety-critical, on a single platform. 

Criticality is a designation of the level of assurance against failure needed for a 

system component. In a mixed-criticality computing system, there are two or more 

distinct levels of criticality for executions of computing applications. Different 

standards of identifying levels of criticality have been established in different 

industries. ASILs (Automotive Safety and Integrity Levels) is a risk classification 

scheme defined by the ISO 26262 - Functional Safety for Road Vehicles standard. 
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DALs (Design Assurance Levels), which provides five categories of safety 

assurance levels, is determined from the safety assessment process and hazard 

analysis by examining the effects of a failure condition in a software system. SILs 

(Safety Integrity Levels), specifying a target level of risk reduction, is used as a 

measurement of performance required for a safety instrumented function (SIF).  In 

the functional safety standards based on the IEC 61508 standard, four SILs are 

defined. 

 

Systems with safety-critical functionality need to be certified for a permission to 

operate. The authors in [Baruah et al., 2012] discuss such a case for the design and 

validation processes of certain Unmanned Aerial Vesicles (UAV's). The 

functionalities on board such UAV’s may be classified into two levels of criticality: 

 

• Level 1: the mission-critical functionalities, concerning reconnaissance 

and surveillance objectives, like capturing images from the ground, 

transmitting these images to the base station, etc. 

• Level 2: flight-critical functionalities, to be performed by the aircraft to 

ensure its safe operation. 

The executions of these two levels of functionalities are controlled by an on-board 

computer and the tasks are executed continuously. Also, these tasks are real-time 

tasks that are required to provide responsiveness within a timely constraint or before 

a deadline. For examples, flight-control tasks are executed every certain time to 

control an aircraft's direction, altitude and airspeed in flight. If one of these tasks 

takes too long to complete, it may cause problems to control the aircraft. 

 

For permission to operate such UAV’s over civilian airspace (e.g., for border 

surveillance), it is mandatory that its flight-critical functionalities be certified 

correct by civilian Certification Authorities (CA’s) such as the US Federal Aviation 

Authority (FAA), which tend to be very conservative concerning the safety 

requirements. System designers ensure both mission-critical and flight-critical 

functionalities to be correct but the notion of correctness adopted in validating these 

functionalities is typically less rigorous than the one used by civilian CA’s. The 

CA's may require longer timing budgets reserved for the flight-critical tasks to 

execute than the ones used by the system designers, in order to ensure the aircraft's 

safety. A trade-off can be seen in this process. When the designers determine timing 

characteristics or timing budgets for running the functional tasks, they estimate the 

values from extensive experiments. By taking the estimates, all designed 

functionalities are performed successfully in most of the time but exceptions of 

executing over deadlines may not be guaranteed to be excluded. The more 

conservative estimate by the CA's can exclude missing execution deadlines to the 

greatest extent possible but it may cause a shortage of CPU time resource to 
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accommodate all of the flight-critical and mission-critical tasks onto the single 

system. Recently, how to overcome this conflict has become an increasing research 

trend [Burs and Davis, 2018].   

 

In executing computing tasks, faults or errors may happen during the process which 

can either produce incorrect results or cause real-time tasks to miss their deadlines. 

Permanent and transient faults are the two categories of errors that happen the most 

frequently. Permanent faults, such as hardware damage and shutdown, cannot be 

recovered. Transient faults, by contrast, can be recovered by re-executing the faulty 

task. A common example of transient fault is the inducing in memory cells of 

spurious values, caused by charged particles (e.g., alpha particles) passing through 

them [Krishna, 2014]. In computer systems transient faults occur much more 

frequently than permanent faults do [Castillo et al., 1982; Iyer and Rossetti, 1986]. 

Generally, there are two major techniques to recover transient faults, primary-

backup execution [Al-Omari et al., 2004] and checkpointing [Punnekkat et al., 

2001]. A backup is an exact copy of an execution of a task. A checkpoint is a 

regularly-saved state of a task, which consists of values of data variables and 

contents of system registers. An acceptance test that ensures the program's 

successful execution must be run before saving the necessary data. In the primary-

backup execution technique, the whole faulty task is re-executed where in the 

checkpointing technique a re-execution of the affected task is performed from the 

most recent checkpoint. 

 

In this work, we solve the certification problem in mixed-criticality systems from a 

perspective of scheduling. We work on a methodology that focuses on executions 

of mixed-criticality, real-time tasks and fault tolerance, particularly in using the 

technique of checkpointing. To the best of the author's knowledge, this is the first 

work that considers using checkpointing in scheduling mixed-criticality tasks. The 

rest of the paper is organized as follows. Next section discusses some preliminary 

and related works. Section 3 formally introduces the system model and problem 

definition. Then, a novel schedulability test condition for a set of mixed-criticality 

tasks with fault tolerance is derived. We also present an example to explain how to 

use the test condition. The last section summarizes and concludes the work. 

 

 

RELATED WORKS 
 

Different task models have been built to characterize an execution of a real-time 

task. In a periodic task, job instances arrive regularly with a fixed inter-interval. A 

job instance of a periodic task in general is required to complete before an arrival 

of the next instance. Tasks with irregular arrival intervals are called aperiodic tasks. 
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Aperiodic tasks that have a minimum inter-arrival time are called sporadic tasks. 

The first real-time scheduling paper was published in [Liu and Layland, 1973]. 

Since then, a tremendous number of works have been done in the field. In primarily, 

there are two types of real-time scheduling algorithms, static-priority and dynamic-

priority. In a scheduling process, tasks are assigned priorities which are used to 

determine their order in execution. In a static-priority algorithm, priorities are 

assigned off-line and do not change during run-time. In contrast, a dynamic-priority 

algorithm schedules the tasks based on their priorities assigned on-line. For 

examples, Earliest Deadline First (EDF) is a classical, dynamic-priority algorithm 

that always selects a task closest to its deadline to run. Rate Monotonic (RM) is a 

static-priority algorithm that assigns priorities to periodic tasks based on the lengths 

of their periods. Since a length of a period of a task does not change, the priority 

stays the same during the task's execution. In practice, static-priority algorithms are 

simpler to implement in an operating system and dynamic-priority algorithms are 

more complex to predict the scheduling outcomes. However, dynamic-priority 

algorithms generally have a better utilization of CPU time. For further information 

about real-time scheduling, please refer to the following texts [Cheng, 2002; Liu, 

2000; Krishna and Shin, 1997]. 

 

In the past several years, mixed-criticality systems became a very popular research 

topic in designing critical information systems. Computing tasks with different 

criticality sharing the same resource on a single hardware platform can reduce 

design and implementation costs. However, as we mentioned earlier, it also brings 

challenges to confirm the schedulability of these tasks. It is well-known that 

conventional scheduling methods cannot satisfactorily address these challenges and 

the mathematical intractability of solving these problems has been proved in 

[Baruah et al., 2012]. In the existing works such as those in [De Niz et al., 2009; 

Lakshmanan et al., 2010; Baruah and Vestal, 2008; Ekberg and Yi, 2012; Guan et 

al., 2011; Baruah et al., 2008; Baruah et al., 2010], tasks running on a mixed-

criticality system are classified into two categories, safety-critical or HI-criticality, 

and non-safety-critical or LO-criticality. A HI-criticality task may have two 

estimated execution times, one from the CA's certification, and another from the 

system designers. At the beginning, both LO-criticality and HI-criticality tasks are 

scheduled by using their shorter estimated timing budgets. Once a HI-criticality 

task uses out its timing budget without a completion, it signals that the execution 

times estimated by the system designers are not trustworthy. At this moment, all 

HI-criticality tasks are assumed to run with their longer execution times required 

by the CA's. Simultaneously, all LO-criticality tasks are dropped in order to keep 

the safety of executing those HI-criticality tasks successfully. 
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Mixed-criticality systems with fault tolerance are also explored in the research 

community. In [Pathan 2014], the authors design a schedulability test for using the 

primary-backup technique. In [Huang et al., 2014], the authors describe a method 

to convert the fault-tolerant problem into a standard scheduling problem in a mixed-

criticality system. In one of our earlier works, the EDF scheduling algorithm and 

the primary-backup technique are used to maximize the number of scheduled LO-

criticality tasks while all of the HI-criticality tasks are schedulable [Lin et al., 2015]. 

 

At the time of writing this paper, none of existing works has engaged in solving the 

problem of using the checkpointing technique. 

 

 

SYSTEM MODEL, PROBLEM DEFINITION AND 

SCHEDULABILITY TEST 

 

System Model and Problem Definition 

 

We consider that a mixed-criticality system consists of a set of N sporadic tasks T 

= {T1, T2, ..., TN} where consecutive instances of a task Ti arrive with a minimum 

inter-interval, denoted by Pi. In order to ensure the schedulability in the worst-case 

scenario, we assume that the instances of each task arrive with their maximum 

frequency. In other words, each task has an instance to complete for every Pi which 

is called a period of Ti. For each task, the value of the worst-case execution time 

(WCET) is significant due to the requirement of having no deadline violations. The 

time between each task instance’s arrival and its deadline is called a relative 

deadline. A relative deadline of Ti is denoted as Di where Di = Pi. There are two 

criticality levels in the system, LO or HI. A task is either a LO-criticality or a HI-

criticality task and its criticality is denoted by Xi, Xi{LO, HI}. For a HI-criticality 

task, it has two WCETs as Ci(LO) and Ci(HI) and a LO-criticality task may have a 

Ci(LO) only. It is assumed that Ci(HI) ≥ Ci(LO). When the system starts, all tasks 

may have an infinite sequence of instances to execute. Initially, all HI-criticality 

and LO-criticality tasks are scheduled using their C(LO)s and this stage is called a 

LO-criticality mode. During the execution, a HI-criticality task may be detected that 

its execution time exceeds its C(LO). At this point, it signals the system that the 

shorter WCETs are not trustworthy so all HI-criticality tasks will switch to use their 

C(HI)s immediately. The system is thus switched into a HI-criticality mode. All of 

the LO-criticality tasks are dropped from the execution in order to maintain the 

feasibility of executing the HI-criticality tasks. 

 

We also define the faults arrival pattern that is used in our analysis. There is no 

difficulty to understand that there is no solution that can accommodate unlimited 
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errors. In this work, we assume that there is a minimum inter-interval of Pf  between 

any two faults' arrival. The faults considered are transient faults which can be 

recovered by re-executing the faulty task. Checkpoints are used in recovering the 

faulty tasks from errors. A HI-criticality task may be checkpointed into mi(LO) 

segments in its Ci(LO)and mi(HI) segments in its Ci(HI), where mi(HI) ≥ mi(LO). 

The interval of each segment in the same task, denoted by Ii, is assumed to be the 

same except of the last segment (a WCET may not be divisible by an I). Also, we 

assume that there is no error happened during a creation of a checkpoint and an 

acceptance test. 

 

The problem we target to solve is formally defined as follows. Given a task-set of 

T, each task is defined as Ti = {Pi, Di, ri, Xi, Ci(LO), Ci(HI), mi(LO), mi(HI), Ii} in 

which ri is a unique integer that indicates a static priority of Ti. The smaller the 

integer, the higher priority it indicates. The tasks are scheduled using each task's 

static priority. Assuming that faults arrive between a minimum interval of Pf, 

determine the task-set's schedulability that all tasks are schedulable in a LO-

criticality mode and all HI-criticality tasks are schedulable when the system is 

switched to and in a HI-criticality mode. 

 

Schedulability Test 

 

Scheduling without Fault Tolerance 

In real-time scheduling, a standard response-time analysis is used to determine 

schedulability of a set of tasks using static priorities [Joseph and Pandya, 1986]. In 

a response-time analysis, each task's worst-case response time is calculated. A 

response time is defined as the time between a task’s arrival and its completion. If 

the worst-case response time of a task is smaller than or equal to the task's relative 

deadline, the task is schedulable. When calculating a task's response time, only the 

tasks with higher priority have impacts to it. The response time value Ri is obtained 

from the following formula (where C denotes the WCET and hpi denotes the set of 

tasks with priority higher than that of task Ti): 

 

 𝑅𝑖 = 𝐶𝑖 + ∑ (
𝑗ℎ𝑝𝑖

⌈
𝑅𝑖
𝑃𝑗

⌉ × 𝐶𝑗) 
(1) 

 

 

 

This is solved using standard techniques for solving recurrence relations. The 

recurrence calculation stops when Ri on both sides are equal. To determine a task 

set's schedulability, it can be done by calculating all tasks' response times in the set. 
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In [Baruah et al., 2011], the authors define three conditions that need to be satisfied 

in order to decide the schedulability for a mixed-criticality system: 

i. All tasks' response times are not larger than their relative deadlines by using 

their C(LO). 

ii. All HI-criticality tasks' response times are not larger than their relative 

deadlines by using their C(HI). 

iii. No HI-criticality tasks miss their deadlines during a switch from a LO-

criticality mode to a HI-criticality mode. 

In practice, it is possible that conditions i and ii are satisfied and condition iii is 

failed. This is because when a system switches its mode, some of the LO-criticality 

tasks may have been executed for a certain amount of time. As a result, it may cause 

some HI-criticality tasks to miss deadlines due to a lack of enough CPU time for 

the execution of C(HI) before their deadlines. We explain such a failure possibility 

by considering an example of a task-set as in Table 1. 

 

 

Table 1. Example of a set of three mixed-criticality tasks 

 
Ti Xi ri Pi Di Ci(LO) Ci(HI) 

T1 LO 1 5 5 2  

T2 HI 2 6 6 2 3 

T3 HI 3 10 10 2 3 

 

By verifying the schedulability of the LO-criticality mode, it can replace the Ci in 

(1) by Ci(LO). That is: 

 

 𝑅𝑖
𝐿𝑂 =  𝐶𝑖(𝐿𝑂) + ∑ (⌈

𝑅𝑖
𝐿𝑂

𝑃𝑗
⌉ × 𝐶𝑗(𝐿𝑂))

𝑗ℎ𝑝𝑖 
 (2) 

 

Similarly, by verifying the schedulability of the HI-criticality mode, it can replace 

the Ci in (1) by Ci(HI) and exclude all LO-criticality tasks (hpiH denotes the set of 

HI-criticality tasks with priority higher than that of task Ti). 

 

 𝑅𝑖
𝐻𝐼 =  𝐶𝑖(𝐻𝐼) + ∑ (⌈

𝑅𝑖
𝐻𝐼

𝑃𝑗
⌉ × 𝐶𝑗(𝐻𝐼))

𝑗ℎ𝑝𝑖𝐻 
 (3) 

 

By using (2) and (3), the following can be obtained:  

𝑅1
𝐿𝑂 = 2, 𝑅2

𝐿𝑂 = 4 and 𝑅3
𝐿𝑂 = 10;  

𝑅2
𝐻𝐼 = 3 and 𝑅3

𝐻𝐼 = 6 



Journal of International Technology and Information Management  Volume 27, Number 3 2018 

©International Information Management Association, Inc. 2017 91         ISSN: 1941-6679-On-line Copy 

 

 

Both conditions i and ii are satisfied. However, the schedule in Figure 1 shows that 

condition iii is violated. At time instant 10, T3 has used 2 time units as its C(LO) 

without a completion. It signals the system and the system is switched to a HI-

criticality mode. T1 is dropped and both T2 and T3 increase their WCETs to 3 

immediately. It can be seen that T3 misses its deadline during the mode switching. 

 

In [Baruah et al., 2011], it is shown that verifying the schedulability for condition 

iii is unlikely to be tractable in that all release patterns of all sporadic tasks would 

need to be tested. A sufficient but not necessary condition is proposed in the work 

(The response time used in condition iii is denoted as 𝑅𝑖
∗): 

 

 

𝑅𝑖
∗ =  𝐶𝑖(𝐻𝐼) + ∑ (⌈

𝑅𝑖
∗

𝑃𝑗
⌉ × 𝐶𝑗(𝐻𝐼))

𝑗ℎ𝑝𝑖𝐻 

+ ∑ (⌈
𝑅𝑖

𝐿𝑂

𝑃𝑘
⌉ × 𝐶𝑘(𝐿𝑂)) 

𝑘ℎ𝑝𝑖𝐿 
 

(4) 

 

The equation (4) not only counts the computation impact from the HI-criticality 

tasks with higher priority than the one of Ti, it also "caps" the interference from the 

LO-criticality tasks (the set of hpiL) because a mode switching must happen before 

𝑅𝑖
𝐿𝑂. 

 

Figure 1. A Schedule of three mixed-criticality task 

 
 



Towards a Fault–tolerant, Scheduling Methodology for Safety-critical Certified Information Systems                J. Lin 

©International Information Management Association, Inc. 2017         92       ISSN: 1941-6679-On-line Copy 

Scheduling with Checkpoints 

We extend the work described in section 3.2.1 to recover faults by using 

checkpoints. Checkpoints separate an execution of a task into segments. It reduces 

the time required for a re-execution for errors, up to the length of each segment's 

interval. By using checkpoints, additional overhead has to be considered and it is 

not trivial [Punnekkat et al., 2001]. Before a checkpoint is created, an acceptance 

needs to be performed to ensure the result of the execution in the current segment 

to be correct. Then, the variable states and registers values are saved before it starts 

an execution for the next segment. We use O to denote the overhead of one 

acceptance test and one saving of the program states. For a WCET with m segments, 

the total overhead is m × O. This is from m - 1 times of creating the checkpoints 

plus one time of saving states at the beginning and one time of acceptance test at 

the final completion. When errors are detected in an acceptance test, it will bring 

an additional I + O time units to the execution time. The I is the segment interval 

for a re-execution and the O is for another time of saving states and acceptance test. 

Please note that we assume that two consecutive faults arrive with at least a 

separation of Pf  time units.   

 

To verify the LO-criticality schedulability with checkpoints: 

 

 

𝑅𝑖
𝐿𝑂 =  𝐶𝑖(𝐿𝑂) + 𝑂𝑖 × 𝑚𝑖(𝐿𝑂) 

              + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑗
⌉ × (𝐶𝑗(𝐿𝑂) + 𝑂𝑗 × 𝑚𝑗(𝐿𝑂))

 𝑗  ℎ𝑝𝑖

 

             + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘  ℎ𝑝𝑖   {𝑖} (𝑂𝑘 + 𝐼𝑘) 

 

(5) 

 

The sum consists of three inclusions for the response time: Ti's computation time 

and checkpointing overhead, all higher-priority tasks' computation times and 

checkpointing overhead and the maximum re-execution time of the number of 

faults that can occur within 𝑅𝑖
𝐿𝑂.  
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Similarly, the following is derived to verify the HI-criticality schedulability with 

checkpoints: 

 

 𝑅𝑖
𝐻𝐼 =  𝐶𝑖(𝐻𝐼) + 𝑂𝑖 × 𝑚𝑖(𝐻𝐼) 

             + ∑ ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗 × 𝑚𝑗(𝐻𝐼))

 𝑗  ℎ𝑝𝑖𝐻
 

            + ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘  ℎ𝑝𝑖𝐻  {𝑖} (𝑂𝑘 + 𝐼𝑘) 

 

(6) 

 

In order to verify the schedulability during a mode switching, we need to include 

the checkpointing overhead and total re-execution time for the faults from the HI-

criticality tasks and from the LO-criticality tasks before the switching. 

 

 𝑅𝑖
∗ =  𝐶𝑖(𝐻𝐼) + 𝑂𝑖 × 𝑚𝑖(𝐻𝐼) 

           + ∑ ⌈
𝑅𝑖

∗

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗 × 𝑚𝑗(𝐻𝐼))

 𝑗  ℎ𝑝𝑖𝐻
 

          + ⌈
𝑅𝑖

∗

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘  ℎ𝑝𝑖𝐻  {𝑖} (𝑂𝑘 + 𝐼𝑘) 

          + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑞
⌉ × (𝐶𝑞(𝐿𝑂) + 𝑂𝑞 × 𝑚𝑞(𝐿𝑂)) 𝑞  ℎ𝑝𝑖𝐿  

          + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑠  ℎ𝑝𝑖𝐿  {𝑖} (𝑂𝑠 + 𝐼𝑠) 

 

(7) 

 

By a more thorough analysis, it can be seen that there is an overlap in (7) between 

𝑅𝑖
∗ and 𝑅𝑖

𝐿𝑂. Because 𝑅𝑖
∗ includes 𝑅𝑖

𝐿𝑂 and 𝑅𝑖
∗ must be greater than 𝑅𝑖

𝐿𝑂, the number 

of faults that may occur by 𝑅𝑖
𝐿𝑂 counts two times. In fact, by 𝑅𝑖

𝐿𝑂, errors may occur 

in any task with higher priority, and after 𝑅𝑖
𝐿𝑂 we only need to count the faults from 

the HI-criticality tasks with higher priority. Thus, (7) can be revised and improved 

as: 
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 𝑅𝑖
∗ =  𝐶𝑖(𝐻𝐼) + 𝑂𝑖 

× 𝑚𝑖(𝐻𝐼) 

            + ∑ (⌈
𝑅𝑖

∗

𝑃𝑗
⌉ × 𝐶𝑗(𝐻𝐼) + 𝑂𝑗 × 𝑚𝑗(𝐻𝐼))

 𝑗  ℎ𝑝𝑖𝐻
 

           +  ⌊
𝑅𝑖

∗−𝑅𝑖
𝐿𝑂

𝑃𝑓
⌋ 𝑚𝑎𝑥 𝑘  ℎ𝑝𝑖𝐻  {𝑖} (𝑂𝑘 + 𝐼𝑘) 

           + ∑ (⌈
𝑅𝑖

𝐿𝑂

𝑃𝑞
⌉ × 𝐶𝑞(𝐿𝑂) + 𝑂𝑞 × 𝑚𝑞(𝐿𝑂)) 𝑞  ℎ𝑝𝑖𝐿  

           + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑠  ℎ𝑝𝑖𝐿  {𝑖} (𝑂𝑠 + 𝐼𝑠) 

 

(8) 

 

The equations (5), (6) and (8) can be also used to determine the schedulability for 

using the primary-backup technique because the primary-backup technique is a 

special case of the checkpointing technique. In the primary-backup technique, the 

number of segments can be taken as 1 and the additional overhead for saving states 

and acceptance test is just one time of O. Each re-execution after errors are detected 

is equal to the length of the faulty task's WCET. There is another one time of O 

associated with each time of the re-execution. Thus, the equations (5), (6) and (8) 

can be modified to be using with the primary-backup technique as follows. 

 

 𝑅𝑖
𝐿𝑂 =  𝐶𝑖(𝐿𝑂) + 𝑂𝑖 

              + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑗
⌉ × (𝐶𝑗(𝐿𝑂) + 𝑂𝑗)

 𝑗  ℎ𝑝𝑖

 

             + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘  ℎ𝑝𝑖   {𝑖} (𝐶𝑘(𝐿𝑂) + 𝑂𝑘 ) 

(9) 

 

 

 𝑅𝑖
𝐻𝐼 =  𝐶𝑖(𝐻𝐼) + 𝑂𝑖 

              + ∑ ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗)

 𝑗  ℎ𝑝𝑖𝐻
 

             + ⌈
𝑅𝑖

𝐻𝐼

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑘  ℎ𝑝𝑖𝐻  {𝑖} ((𝐶𝑗(𝐻𝐼) + 𝑂𝑘 ) 

(10) 
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𝑅𝑖
∗ =  𝐶𝑖(𝐻𝐼) + 𝑂𝑖 

           + ∑ ⌈
𝑅𝑖

∗

𝑃𝑗
⌉ × (𝐶𝑗(𝐻𝐼) + 𝑂𝑗)

 𝑗  ℎ𝑝𝑖𝐻
 

          +  ⌊
𝑅𝑖

∗−𝑅𝑖
𝐿𝑂

𝑃𝑓
⌋ 𝑚𝑎𝑥 𝑘  ℎ𝑝𝑖𝐻  {𝑖} (𝐶𝑘(𝐻𝐼) + 𝑂𝑘 ) 

          + ∑ ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑞
⌉ × (𝐶𝑞(𝐿𝑂) + 𝑂𝑞) 𝑞  ℎ𝑝𝑖𝐿  

          + ⌈
𝑅𝑖

𝐿𝑂

𝑃𝑓
⌉ 𝑚𝑎𝑥 𝑠  ℎ𝑝𝑖𝐿  {𝑖} (𝐶𝑠(𝐻𝐼) + 𝑂𝑠 ) 

 

(11) 

 

A Demonstrative Example 

We demonstrate an example to show how to use the schedulability test condition 

we derived in this paper. Consider another task-set with three mixed-criticality tasks 

in Table 2. We show how to calculate the response-time for T3. 

 

Table 2. Example of a set of three mixed-criticality tasks with using 

checkpoints, Pf = 20. 

 
Ti Xi ri Pi Di Ci(LO) Ci(HI) mi(LO) mi(HI) Oi Ii 

T1 LO 1 100 100 15  3  1 5 

T2 HI 2 120 120 10 15 2 3 1 5 

T3 HI 3 140 140 25 40 5 8 1 5 

 

The following calculation is to determine whether or not T3 is schedulable in the 

LO-criticality mode (verifying condition i). 

 

𝑅3
𝐿𝑂 = 25 + 5 + 15 + 3 + 10 + 2 = 60  

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

60

100
⌉ × 18 + + ⌈

60

120
⌉ ×12 + + ⌈

60

20
⌉ × 6 = 78 

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

78

100
⌉ × 18 + + ⌈

78

120
⌉ ×12 + + ⌈

78

20
⌉ × 6 = 84  

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

84

100
⌉ × 18 + + ⌈

84

120
⌉ ×12 + + ⌈

84

20
⌉ × 6 = 90  

𝑅3
𝐿𝑂 = 25 + 5 + ⌈

90

100
⌉ × 18 + + ⌈

90

120
⌉ ×12 + + ⌈

90

20
⌉ × 6 = 90  

𝑅3
𝐿𝑂 = 90 
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The calculation above is explained as follows. Because T1's and T2's priorities are 

higher than T3's, T1 and T2 are executed before T3 when all of them start at time 

instant 0. The calculation starts by adding all of the three tasks' C(LO)s and the time 

overhead used to create the checkpoints, which is equal to 60. The recurrence 

calculation continues by including the higher priority tasks' C(LO)s, checkpointing 

costs and the execution time for the maximum number of re-execution segments, 

until at time instant 90 the total execution demand does not increase (both sides are 

equal). According to the formula (5), 𝑅3
𝐿𝑂 = 90. 𝑅3

𝐻𝐼 is calculated similarly by 

considering HI-criticality tasks only as defined in the formula (6). 

 

𝑅3
𝐻𝐼 = 40 + 8 + 15 + 3 = 66  

𝑅3
𝐻𝐼 = 40 + 8 + ⌈

66

120
⌉ × 18 + ⌈

66

20
⌉ × 6 = 90 

𝑅3
𝐻𝐼 = 40 + 8 + ⌈

90

120
⌉ × 18 + ⌈

90

20
⌉ × 6 = 96 

𝑅3
𝐻𝐼 = 40 + 8 + ⌈

96

120
⌉ × 18 + ⌈

96

20
⌉ × 6 = 96 

𝑅3
𝐻𝐼 = 96 

 

Since 𝑅3
∗ must be greater than 𝑅3

𝐿𝑂and 𝑅3
𝐻𝐼, 𝑅3

∗  is initialized to be the greater one 

between 𝑅3
𝐿𝑂and 𝑅3

𝐻𝐼, so 𝑅3
∗ starts at 96. The following shows the calculation 

process of 𝑅3
∗ based on the formula (8). 

 

𝑅3
∗ = 40 + 8 + ⌈

96

120
⌉ × 18 +  ⌊

96−90

20
⌋ × 6 + ⌈

90

100
⌉ × 18 +  ⌊

90

20
⌋ × 6 = 114 

𝑅3
∗ = 40 + 8 + ⌈

114

120
⌉ × 18 +  ⌊

114−90

20
⌋ × 6 + ⌈

90

100
⌉ × 18 +  ⌊

90

20
⌋ × 6 = 120 

𝑅3
∗ = 40 + 8 + ⌈

120

120
⌉ × 18 +  ⌊

120−90

20
⌋ × 6 + ⌈

90

100
⌉ × 18 +  ⌊

90

20
⌋ × 6 = 120 

𝑅3
∗ = 120 

 

By the above calculation, all of the calculated 𝑅3
𝐿𝑂, 𝑅3

𝐻𝐼 and 𝑅3
∗ are not larger than 

T3's relative deadline D3 which is 140, so T3 is schedulable. The schedulability tests 

of T1 and T2 use the same technique and we omit the details for the sake of avoiding 

a lengthy paragraph. In fact, both T1 and T2 are schedulable and hence the task-set 

is schedulable. 

 

 

SUMMARY AND FUTURE WORKS 
 

Checkpointing is a widely used technique for fault-tolerant computing. This paper 

solves the problem of applying checkpointing for scheduling mixed-criticality 



Journal of International Technology and Information Management  Volume 27, Number 3 2018 

©International Information Management Association, Inc. 2017 97         ISSN: 1941-6679-On-line Copy 

 

tasks. A new sufficient schedulability test condition is derived and its theoretical 

correctness is shown along with the derivation.  

 

In the example shown in section 3.2.3, it is apparently that T3 is not schedulable by 

using the primary-backup technique. This is because when Pf = 20, errors can occur 

in every execution of T3. In the worst case there are two errors occurred in every 

instance of T3. Considering that every time T3 needs to restart the whole execution 

for an error, a T3 instance will never complete its execution by its deadline. It is 

seen that for tasks un-schedulable upon using a complete re-execution, it is possible 

to make the tasks schedulable by using checkpoints. Our future works include 

optimization techniques for the placement of checkpoints in scheduling mixed-

criticality tasks. 
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