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ABSTRACT 
 

Machine learning techniques have shown their usefulness in accurately predicting 

greyhound races.  Many of the studies within this domain focus on two things; win-

only wagers and using a very particular combination of race history.  Our study 

investigates altering these properties and studying the results.  In particular we 

found a race history combination that optimizes our S&C Racing system’s 

predictions on seven different wager types.  From this, S&C Racing posted an 

impressive 50.44% accuracy in selecting winning wagers with a payout of $609.34 

and a betting return of $10.06 per dollar wagered. 

 

KEYWORDS: machine learning, support vector regression, data mining, harness 

racing 

 

 

INTRODUCTION 
 

Within the domain of racing, the ability to make accurate predictions has attracted 

gamblers and academics alike.  Even in situations where accurate forecasts are 

possible, it is entirely possible to focus on unimportant aspects which can lead to 

crippled systems relying on unimportant data or worse, not based on sound science 

(e.g., basing predictions on the color of a horse as a performance measurement). 

 

Before making a wager, a bettor will typically gather as much information about 

the horses as possible which may include data concerning a horse’s physical 

condition and how they have performed historically, their breeding and bloodlines, 

who is their trainer or owner, and odds of winning.  Automating this decision 

process using machine learning may yield as equally predictable results as 

greyhound racing, which is considered to be the most consistent and predictable 

form of racing (Chen, Rinde et al., 1994).  Consistency lends itself well to machine 

learning algorithms that can learn patterns from historical data and apply itself to 
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previously unseen racing instances.  The mined data patterns then become a type of 

arbitrage opportunity where an informational inequality exists within the market.  

However, like other market arbitrages, the more it is exploited the less the expected 

returns, until the informational inequality returns the market to parity. 

 

Our research motivation is to create and test a machine learning technique that can 

learn from historical harness race data and leverage a hidden arbitrage through its 

predictions.  In particular, we will focus on varying the amount of race history used 

and its effect on differing wager types.   

 

The rest of this paper is as follows.  Section 2 provides an overview of literature 

concerning prediction techniques, algorithms and common study drawbacks.  

Section 3 presents our research questions.  Section 4 introduces the S&C Racing 

system and explains the various components.  Section 5 sets up the Experimental 

Design.  Section 6 is the Experimental Findings and a discussion of their 

implications.  Finally Section 7 delivers the conclusions and limitations of this 

stream of research. 

 

 

LITERATURE REVIEW 
 

Harness racing can be thought of as a general class of racing problem, along with 

greyhound, thoroughbred, automotive and even human track competition.  While 

each race subset enjoys its own unique aspects, all share a number of similarities in 

both format and goals.  Participants behave independently of one another and are 

largely interchangeable.  These similarities can lead to the successful porting of 

techniques from one race domain to another.   

 

Converting Raw Data into Predictions 

 

All of racing relies on data.  A bettor takes available data and attempts to extract 

knowledge – predicted finishes – by using gut instinct or an algorithm. Automating 

this algorithmic process, the same steps can be applied to computer systems; feed 

data in, extract knowledge and predict finishes.  The question then becomes how 

do we construct such a system to go from raw data to accurate predictions?  The 

answer lays in a two-step transform, data to information and information to 

knowledge (Ackoff, 1989).  Figure 1 demonstrates a taxonomy of data mining 

techniques for converting data into information. 
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Figure 1. Taxonomy of techniques to transform data into information 

 

12 

 

From this figure, data conversion can fall into one of four major areas:  

satisfice/approximate, organization, reinforce/feedback and limit/focus.  In 

Satisfice/Approximate, Helland argues that sometimes good enough is good 

enough and the level of precision should be tempered by the information needed 

(Helland, 2011).  This definition can be traced back to Herb Simon whom argued 

that this decision-making strategy was preferred for finding adequate solutions 

amongst incomplete data or limited resources. 

 

Another technique of data transformation is Organization.  We can partition 

organizational techniques into spacial clustering, where the distance between 

cluster centers provides information about the level of relation between clusters; 

taxonomy, where the organization of data into a hierarchy provides information, 

and visualization techniques, where data is condensed into a visual depiction and 

the distances, shape, color and composition of data becomes information (Pincher, 

2010). 

 

A third technique is that of Reinforce/Feedback.  With this technique, data is fed 

back through the system in the attempt to isolate weak relations and hence 

information (Allan, 1995). 

 

Fourth is to Limit/Focus the data to sift out information.  There are several sub-

techniques such as reduction/subsets, where similar data is isolated or aggregated 

to form information (Rogers, 2002; Burby, 2006), sampling from a larger pool of 

data, statistical tests and clustering for data reduction such as topic classification. 

 

                                                      
1  Clustering for Euclidean distances 
2  Clustering for data reduction 

Transforming data into information 
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While many techniques are possible in converting data into information and most 

are simplistic in nature, the process of converting information into knowledge is 

more complex.  With respect to data mining, this transformation can take one of 

three distinct paths; simulation, artificial intelligence and machine learning 

(Schumaker and Johnson, 2008).  In Simulations, similar data is constructed to test 

various parameters. Applied to thoroughbred racing, simulations have been used to 

test theoretical sire/dame offspring combinations to determine the most potent 

racing colt (Burns, Enns et al., 2006).  In Basketball, simulations can determine 

optimum player substitution patterns (BBall, 2008).  However, simulations do not 

address the complexities amongst a large number of parameters. 

 

In Artificial Intelligence, computers attempt to find solutions by applying iterative 

codified rules or cases.  Heuristic solutions may not be perfect, however, the 

solutions generated are considered adequate (Schumaker, Solieman et al., 2010). 

 

In Machine Learning, a system attempts to identify unknown patterns to add to the 

understanding of the dataset (Chen and Chau, 2004; DataSoftSystems, 2009).  

Examples of algorithms include both supervised and unsupervised learning 

techniques, such as genetic algorithms, neural networks and Bayesian probability.  

Machine learning systems are considered to be better able to generalize data into 

usable patterns (Lazar, 2004). 

 

One of the better suited machine learning algorithms for sports data mining is the 

regression-based variant of the Support Vector Machine (SVM) classifier, called 

Support Vector Regression (SVR) (Vapnik, 1995).  SVM is a classification 

algorithm that seeks to maximally separate high dimension data while minimizing 

fitting error as shown in Figure 2.   

 

Figure 2. Support Vector Machine (SVM) 
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It does so by calculating a multi-dimensional hyperplane of n-1 dimensions, 

optimizing distances between the different classes.  SVR differs from SVM by 

using the hyperplane as a regression estimator to return discrete values rather than 

classes.  The SVR technique was used in a similar context to predict stock prices 

from financial news articles (Schumaker and Chen, 2008), greyhound (Schumaker 

and Johnson, 2008) and harness racing (Schumaker, 2013). 

 

Relevant Prior Studies 

 

To lay the groundwork of a majority of prior machine learning racing studies, we 

first need to discuss Chen et. al. (1994) whose contributions still reverberate 

through many follow-up studies.  In a study of greyhound races, Chen et. al. tested 

an ID3 and Back Propagation Neural Network (BPNN) on ten race performance-

related variables as determined by human domain experts, on 100 races at Tucson 

Greyhound Park (Chen, Rinde et al., 1994).  These ten variables include:  

 

 
 

From their work, the system made binary win/lose decisions on each greyhound, 

independent of the other race participants.  If a greyhound was predicted to finish 

first, the system would make a $2 wager.  The ID3 decision tree that they used was 

accurate 34% of the time with a $69.20 payout while BPNN was 20% accurate with 

a $124.80 payout.  This disparity between accuracy and payout is justified by 

arguing that the BPNN was selecting longshot winners.  By doing so, higher 

payouts were gained at the expense of accuracy because of the higher odds.  

 

With these ten variables, two of them, GradeAverage and UpGrade, are specific to 

greyhound racing and have no equivalence in harness racing.  From the remaining 

eight variables, only one, Fastest Time, is not dependent upon an arbitrary amount 
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of race history.  The percentages of Win, Place and Show plus the Break and finish 

averages all depend on a seven race history.  Time7 and Time3 depend on a seven 

and three race history respectively.  The human domain experts chose these 

variables based on their experience. 

 

In a related study, Johansson and Sonstrod expanded the number of variables 

studied from 10 to 18 and also used a BPNN (Johansson and Sonstrod, 2003).  Their 

study of 100 races at Gulf Greyhound Park in Texas found 24.9% accuracy for Wins 

and a $6.60 payout loss.  This seemingly improved accuracy came at the cost of 

decreased payout and would imply that either the additional variables or too few 

training cases hampered the ability to identify longshots. 

 

In a third study that focused on using discrete numeric prediction rather than a 

binary (win/loss) assignment, Schumaker and Johnson used Support Vector 

Regregression (SVR) on the same 10 performance-related variables from Chen’s 

study (Schumaker and Johnson, 2008).  Their study of 1,953 greyhound races 

across the United States demonstrated a 45.35% Win accuracy with a $75.20 

payout.  To maximize payout, they had 23.00% Win accuracy with a $1,248.40 

payout.  They found the same tradeoff between accuracy and payout as Chen’s 

work. 

 

In a fourth study that examined crowdsourcing on harness race wagering, 

Schumaker varied the primary race variable, Time7, to maximize its impact on 

system accuracy and payout (Schumaker, 2013).  From this study, a four-race 

history was found to have better accuracy than a seven-race history.  In terms of 

wagering payout the Win and Place wagers lost money while Show, Exacta, 

Quiniela, Trifecta and Trifecta Box had positive returns.  This study also required 

apriori knowledge of racing events (e.g., identified maximized values within the 

entire dataset and not just training) and was not systematic in treatment of both 

primary and secondary time variables. 

 

Common Study Drawbacks 

 

Much of the prior work used 10 race performance variables derived from greyhound 

track experts.  These variables include a precise combination of race history to use; 

namely the primary race history variable uses the most recent seven races and the 

secondary race history variable uses the most recent three races.  While this expert-

derived race history may be appropriate to greyhound racing, none of the prior 

literature explored varying both history variables to optimize race prediction.   
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Second, the one harness racing study that did evaluate varying primary race history, 

was not thorough enough and maximized vales within the entire dataset.  For the 

purposes of robustness, we seek to break the dataset into distinct partitions; 

maximize the values in one set and observe the results in the other.  This treatment 

will not only lead to better robustness, but also be better at generalizing our 

observations. 

 

 

RESEARCH QUESTIONS 
 

From our analysis we propose the following research questions. 

 

 What is the impact of race history on various wagers? 

 

Previous studies have all relied on using a Time 7-3 setup where the primary race 

history uses the prior seven races and the secondary race history uses the most 

recent three races and a win-only wagering system.  Subsequent studies used this 

race history and wagering combination without question.  We plan to investigate 

the manipulation of primary and secondary race history with respect to different 

wager types and study its effect on race prediction.  In particular we are interested 

in how the different race histories and wagers perform and whether any patterns or 

similarities exist between them. 

 

 What is the optimal amount of race history for a machine learning 

system? 

 

Following up on the previous research question, we would like to further investigate 

whether Time 7-3 is optimal for the harness track, or whether other race history 

combinations might prove better.  We suspect that if Time 7-3 is optimum it is for 

greyhound racing and possibly not for harness racing. 

 

 What wager combinations work best and why? 

 

Most prior studies only examined Win wagers.  We plan to expand this to other 

traditional and exotic wager types.  By looking at performance data between several 

potential models, the results should provide some predictive clarity. 
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SYSTEM DESIGN 
 

To address these research questions, we built the S&C Racing system shown in 

figure 3.  

 

 

Figure 3. The S&C Racing System 

 

 
 

The S&C Racing system consists of several major components: the data gathering 

module, the machine learning aspect, a rudimentary betting engine and evaluation 

metrics.  Odds data is composed of the individual race odds for each wager type 

(e.g., Win, Place and Show).  Race data is then gathered from a race program. 

 

Each race program contains a wealth of data.  There are generally 14 races per 

program where each race averages 8 or 9 entries.  Each horse has specific data such 

as name, driver and trainer.  Race-specific information includes the gait, race date, 

track, fastest time, break position, quarter-mile position, stretch position, finish 

position, lengths won or lost by, average run time and track condition. 

 

Models are then built depending upon the amount of race history to be tested.  Once 

the system has been trained on the data provided, the results are tested along three 

dimensions of evaluation: accuracy, payout and efficiency.  Accuracy is the number 

of winning bets divided by the number of bets made.  Payout is the monetary gain 

or loss derived from the wager.  Efficiency is the payout divided by the number of 

bets. 

 

The Betting Engine examines seven different types of wagers: Win, Place, Show 

for the traditional wagers and Exacta, Quinella, Trifecta and Trifecta Box for the 
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exotic wagers.  If betting on a Win, the bettor receives a payout only if the selected 

horse comes in first place.  If betting on Place, the bettor receives differing payouts 

if the selected horse comes in either first or second place.  If betting on Show, the 

bettor receives differing payouts if the selected horse comes in first, second or third 

place.  These differing payouts are dependent upon the odds of each finish.  Wagers 

on Exacta mean that the bettor is predicting the first two horses to cross the finish 

line in order.  Quinella is a similar two horse wager except the order of finish does 

not matter, as long as the predicted two horses finish within the top two positions.  

Trifecta is a three horse wager in order whereas Trifecta Box is picking the first 

three horses in any order. 

 

 

EXPERIMENTAL DESIGN 
 

To perform our experiment, we gathered data from Northfield Park; a USTA 

sanctioned harness track outside of Cleveland, Ohio.  After data has been gathered, 

it is parsed for specific race variables before it is sent to S&C Racing for prediction.   

 

For our collection we chose a study period of October 1, 2009 through December 

31, 2010.  The data was partitioned into a twelve month training set (October 1, 

2009 – September 30, 2010) and a three month testing set (October 1, 2010 – 

December 31, 2010).  Prior studies focused on only one racetrack, manually input 

their data, used 10-fold cross-validation rather than separate training/testing sets 

and had small datasets.  Chen et. al. (1994) used 1600 training cases from Tucson 

Greyhound Park, Johansson and Sonstrod (2003) used 449 training cases from Gulf 

Greyhound Park in Texas and Schumaker and Johnson used 41,473 training cases 

from across the US.  Our study is comparable with between 1,136 and 14,503 

training cases depending upon the model and amount of race history that model 

requires.   

 

From the data, we built 55 models, varying the primary and secondary race history 

variables between 1 (uses only the variables from the most recent race) to 10 (uses 

the most recent 10 races); hence race histories take the form of Time 1-1 for one-

race primary and secondary history, to Time 10-10 for ten-race primary and 

secondary history respectively.  Since the primary race history is always greater 

than or equal to the secondary race history, it dictates the amount of data used.  The 

reason we chose the primary/secondary approach was to maintain consistency with 

prior studies.  Table 1 illustrates the amount of training/testing races/cases for each 

of the ten primary race histories. 

 

 



Journal of International Technology and Information Management  Volume 27, Number 2 2018 

©International Information Management Association, Inc. 2017 11      ISSN: 1941-6679-On-line Copy 

 

Table 1. Training/Testing Races/Cases for the ten primary race histories 

 

Time 1-x Time 2-x Time 3-x Time 4-x

Training Races 1,744 1,223 914 698

Training Cases 14,503 10,154 7,568 5,777

Test ing Races 519 370 263 194
 

 

We chose to have differing training/testing cases between the primary race history 

models rather than a stable set.  This is because our focus is on the betting engine 

to select which races to wager upon and reflects how the system would be 

implemented under real-world conditions – where a one-race history is easier to 

obtain than a ten-race history.  This will be further explained in detail shortly. 

 

For the Time 10-x models, we gathered 1,136 useable training cases for 138 races.  

The reason for so few usable races over a year’s time is because we adopted a 

stringent requirement that every horse within a useable race needs to have that 

minimum amount of race history.  In this model’s case, we required a ten-race 

history for each horse.  Since new entries would arrive in the Northfield market 

frequently and consequently would lack a ten-race history, only 138 races could 

meet this requirement. 

 

Using the work of Chen et. al. (1994) as a guide, we built our models using the 

following eight variables: Fastest Time, Win Percentage, Place Percentage, Show 

Percentage, Break Average, Finish Average, Average Time of the Primary race 

history and Average Time of the Secondary race history.  Two variables from Chen 

et. al. (1994) were not applicable to harness racing and not used; Grade Average 

and Upgrade.  Both of these variables refer to the competitiveness of the race and 

have no equivalent in Harness racing. 

 

Because of the system complexity with the different models, usage of training and 

testing data, sensitivity analysis and wager optimization, we present the following 

pseudo-code and describe the key aspects afterwards. 
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While complex, the sensitivity analysis allows us to interrogate the data to optimize 

wagering, rather than treating it as a blackbox as previous studies have done.  We 

increment a Cutoff value from 1 (wagering on races where the lowest predicted 

finish value is ≤ 13) to 8 (wagering on races where the lowest predicted finish value 

is ≤ 84), incrementing the Cutoff value by 0.1.  Our first aim is to maximize the 

metrics in the Training data for each wager type.  As an example using Win and 

betting efficiency, we identify the Cutoff associated with the maximized betting 

efficiency value.  Then using that Cutoff we turn to the Testing set and look up the 

betting efficiency for that particular Cutoff value as shown in Figure 4. 

 

 

 

 

 

 

 

 

                                                      
3 While unlikely, the possibility for this situation exists depending upon the inputs given to  

               the system. 
4 In practicality this wagers on all races. 
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Figure 4. Finding and Using Cutoff values between Training and Testing sets 

 

 
 

The premise is that if a hidden pattern is within the data, then a system should be 

able to identify it in the training set and also observe it in the testing set.  In other 

words, the pattern discovered could be successfully arbitraged for the purposes of 

improved accuracy, abnormal positive payouts or increased betting efficiency. 

 

As an example of how the system works, each horse in each race is given a predicted 

finish position by the SVR algorithm.  Looking at Miss HKB for the Time 7-3 

model, we compute the variables for the prior seven and three races as shown in 

Table 2, send them to S&C Racing’s SVR algorithm and receive the predicted finish 

(2.93) from SVR. 

 

 

Table 2. Miss HKB variable data 

 
Fastest Time 119.56

Win Percentage 14.29%

Place Percentage 42.86%

Show Percentage 14.29%

Break Average 5.14

Finish Average 2.71

Time7 Average 120.19

Time3 Average 119.90

Predicted Finish 2.93  
 

For this particular race, Race 4 on October 8, 2010, S&C Racing predicts that Miss 

HKB should finish 2.93 which is a good finish, but cannot be fully interpreted until 

compared with the predicted finishes of other horses in the race.  The lower the 

predicted finish number, the stronger the horse is expected to be and the predicted 

finish value is independent of the other horses in the race.  For context, Table 3 

shows the race output for Northfield Park’s Race 4 on October 8, 2010. 
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Table 3. Predicted Values for Race 4 on October 8, 2010 

 
Horse Name Predicted Finish

Miss HKB 2.93

B B Big Girl 3.90

Friendly Kathy 4.30

ShadyPlace 5.27

St Jated Strike 5.72

Honey Creek Abby 5.78

Mad Cap 5.93

Pamela Lou 6.51

Winning Yankee 6.86  
 

From this table, we can establish a rank-order of expected finishes.  The information 

at this stage will give us wagering opportunities.  However, S&C Racing goes a 

step further in isolating maximized metrics and then selectively wagering on the 

strongest races. This is where the knowledge component comes in with the 

sensitivity analysis derived cutoffs. 

 

For each time combination and metric, we identify the maximum value in the 

training set and save the corresponding Cutoff value.  In this case we take Cutoff 

value of 3.1 for Win,5 3.1 for Place and 3.1 for Show.  We then take that Cutoff 

value to the testing set and retrieve the corresponding metric.  Which in this case is 

16.67% accuracy for Win, 58.33% for Place and 75.0% for Show. 

 

So by identifying the Cutoffs in the training set representing the maximum metric 

across all time combinations, we can tune the S&C Racing system to focus on 

specific time combinations for each wager type.  This means that not every race 

will be wagered upon.  In essence, S&C Racing is given the ability to be selective 

in choosing races, as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

                                                      
5  While Cutoff 2.7 represents the maximum Win accuracy of 50.0%, it only represented 16 

races; short of our 30 race limit. 
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Figure 5. S&C Racing chooses which races to wager upon 

 

 
 

 

EXPERIMENTAL FINDINGS AND DISCUSSION 
 

To answer our research questions we constructed the S&C Racing system.  We first 

analyze the impact of race history on the seven wager types by analyzing the betting 

efficiency metric.  Once we have narrowed down the best performing race history 

combinations we will constrain ourselves to a more detailed study of the impact it 

has on the different wager types, which answers our second research question.  For 

the third research question we open up the constraints and look towards maximizing 

accuracy and wagering payout for specific time combinations. 

 

We present Table 4 that looks at the averaged betting efficiencies of all seven 

wagers with respect to differing primary and secondary race histories. 

 

 

Table 4. Averaged Betting Efficiencies across all Seven Wagers 

 

 
 

From this table, Time 4-3 had the best return per wager at $1.27 followed by Time 

8-5 at $0.58 and Time 8-7 at $0.27.  Compared to the betting efficiency of Time 7-

3 (which has been the defacto standard for race combination history in prior results) 
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at -$0.11, it would appear that different time combinations do work better with 

harness racing. 

To determine the effect of race history on prediction, we performed a single factor 

Anova on both the Primary and Secondary race histories as shown in Table 5a and 

5b. 

 

 

Table 5a. Anova of Primary Race Histories    

Table 5b. Anova of Secondary Race Histories 

 

 
 

From Table 5a, we have an f-measure of 9.94 and a between groups p-value < 0.001 

indicating statistically significant differences between primary race histories.  From 

the descriptive stats, a four race primary history performed best with an average of 

$8.70.  Comparing this result to the second best primary race history of two ($5.80) 

using a t-test, we found a statistically significant difference (p-value < 0.001).  By 

comparison, the seven race history, which has been the de facto standard in several 

other race studies, had a meager $1.61 return.  While a seven race primary history 

may be important in other racing domains such as greyhounds, it did not capture 

the essence of predicted harness performance.  This leads us to believe that too 

much time elapses where the history starts to become irrelevant and actually harms 

the predicted results. 

 

Table 5b looks at manipulating the secondary race histories.  From this Anova, we 

had an f-measure of 0.72 and found no statistical difference between the groups.  

This means that varying the second time variable by itself does not make much 

difference, statistically. 

 

If we instead concentrate on Time 4 as the primary time variable, Table 6 looks at 

the accuracy, payout and betting efficiency of each time Time 4-x combination. 
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Table 6. Time 4-x Accuracy, Payout and Efficiency 

 

Time4

Accuracy Payout Ef ficiency

Time1 50.81% $508.17 $7.33 

Time2 38.14% $568.47 $8.44 
 

 

From this table, Time 4-1 had the best accuracy at 50.81%, however, it was found 

to be statistically equivalent to Time 4-3 (50.44%).  Comparing Time 4-3 to Time 

4-2 in accuracy (50.44% to 38.14%) we did achieve statistical significance (p-value 

< 0.001).  For Payout, Time 4-3 had the best Payout at $609.34 and was found to 

be statistically different from the second-best payout of Time 4-2 at $568.47 (p-

value < 0.001).  Efficiency of Time 4-3 was also the highest at $10.06 and was 

statistically different from its nearest competitor of Time 4-4 at $8.96 (p-value < 

0.001). 

 

From this analysis, it would appear that Time 4-3 maximizes the most metrics.  For 

payout and efficiency Time 4-3 had the statistically superior values of all seven 

wager types.  Time 7-3 did not fare so well with a 35.42% accuracy, $43.39 payout 

and $0.32 betting efficiency.  While Time 7-3 may be appropriate to Greyhound 

racing, it is again clearly not optimal for harness.  For accuracy, Time 4-3 and Time 

4-1 were statistically equivalent in terms of average accuracy across all seven wager 

types.  However, Time 4-1 payout and efficiency was not a good as that of Time 4-

3. 
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Figure 6. Betting Efficiencies of Traditional Wagers 

 

 
 

From this data, Win had a maximum betting efficiency of $0.95 at Time 5-3.  From 

this maximum betting efficiency, the $0.95 represents the excess return per dollar 

wagered.  Place had a maximum betting efficiency of $1.70 at Time 9-8.  Place 

showed much more uniformity across the models as opposed to Win with an 

average return of -$0.57 and $0.50 standard deviation.  Show had a maximum 

betting efficiency of $1.84 at Time 10-9 with an average excess return of $1.06 and 

$0.39 standard deviation.  Given the much more uniform returns of the Show wager, 

it would seem that the amount of race history appears less important to Show 

wagers. 
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Figure 7. Betting Efficiencies of Exotic Wagers 

 

 
 

Looking at the betting efficiencies of the exotic wagers in Figure 7, Exacta had a 

maximum betting efficiency of $5.85 at Time 4-3, an average excess return of -

$0.61 with $0.99 standard deviation.  Quiniela fared similarly well with $1.06 

maximum betting efficiency at Time 4-3, and average excess return of -$0.16 with 

$0.47 standard deviation.  The results for Exacta and Quiniela would indicate that 

a four race primary variable may be ideal for 2 horse wagering.  Trifecta had no 

positive returns, average -$0.38 loss with $0.44 standard deviation.  Trifecta Box 

maxed out at Time 8-5 with a $1.68 excess return, average -$0.31 with $0.65 

standard deviation. 

 

To answer our research question of what wager combinations work best and why, 

we compare Time 4-3 against the de facto standard of Time 7-3 and also an average 

time (which is the average of all 55 models) as shown in Figure 8. 
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Figure 8b. Comparing Payout across Wager Types and p-values 

 

 
 

 

Figure 8c. Comparing Efficiency across Wager Types and p-values 

 

 
 

From Figure 8a, while it looks like Time 4-3 outperformed in many wager types, 

statistical significance could only be obtained in a few wager combinations.  This 

had to do with the maximized accuracy coming at the expense of a lower number 
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of wagering opportunities.  This lower number of wagering opportunities, with 

lower degrees of freedom, raises the threshold of statistical significance.  In many 

cases, the comparisons were unable to exceed this threshold. 

 

In Figure 8b, where the focus is on maximizing Payouts, a larger amount of 

wagering opportunities exist and from this we found that Time 4-3 had the highest 

Payouts in all seven wager types.  It was also interesting to note that all comparisons 

had p-values < 0.001 except for the comparison of Time 7-3 and the Average Time 

with a p-value of 0.153. 

 

From Figure 8c, all Time 4-3 wagers except Place and Show outperformed both 

Time 7-3 and the Average Time with statistical significance.  For Place, the 

Average Time was highest at a $2.45 return compared to Time 4-3 at $2.30.  For 

Show, the Average Time was the highest at a $2.98 return compared to Time 4-3 at 

$2.55. 

 

Taking all of these results together, Time 4-3 was superior.  Comparing it to both 

Time 7-3 and the Average Time, Time 4-3 appeared to have better accuracy results, 

but did not achieve a statistical significance in most cases due to a low number of 

wagering opportunities with the highest accuracy.  Time 4-3 outperformed in 

Payouts in all seven wager types and outperformed in Betting Efficiency in five of 

the seven wagers.  This indicates that a four race primary history coupled with a 

three race secondary history was best able to predict future finishes.  Quantitatively, 

this could be considered the sweet spot of the amount of race history needed to 

optimize predictions. 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

From our investigation we found that S&C Racing was able to predict harness races 

fairly well depending upon the wager desired and the amount of race history input 

to the system.  When looking at the Betting Efficiency of wagers, both Exacta and 

Quinella were uniform in their returns whereas Trifecta and Trifecta Box were not.  

It would appear that picking the first two horses was easier for the S&C Racing 

system than picking the third.  In looking at what amount of race history works best, 

Time 4-3 maximized the most metrics.  In Payout and Betting Efficiency Time 4-3 

was superior to Time 4-x.  For Accuracy, Time 4-3 and Time 4-1 were both superior 

and statistically equivalent.  When comparing Time 4-3 against the de facto 

standard of Time 7-3 and the Average Time, Time 4-3 again maximized most of 

the metrics.  In Payout and Efficiency, Time 4-3 was superior in a majority of 

wagers.   
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Future directions for this stream of research include an analysis of training 

frequency, fraud detection and expanding these techniques into other domains.  For 

all of the prior race studies, this one included, a static model of prediction was built 

and tested.  In the case of this paper, the model was built over one year worth of 

data and applied to a three month testing set.  We feel that a potential research area 

includes determining how often the model should be refreshed.  Would every day 

fresh be appropriate, coming from the information retrieval domain when dealing 

with critical data, or would the model still be valid for a certain period of time, thus 

decreasing the amount of computation necessary.  Another potential research area 

is to build a fraud detection framework.  Now that a prediction model can be built, 

we have the potential to look for a pattern of outlier data that may indicate either an 

undisclosed injury or race misconduct occurring.  A third potential research area 

includes expanding these techniques to other domains such as thoroughbred, track 

and field and Nascar racing.  The techniques used here could be a baseline for 

further investigation of other racing domains. 
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