
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2005

Virtual Sports Stock Exchange Virtual Sports Stock Exchange

Chi-Chih Chen

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Chen, Chi-Chih, "Virtual Sports Stock Exchange" (2005). Theses Digitization Project. 2740.
https://scholarworks.lib.csusb.edu/etd-project/2740

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2740?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

VIRTUAL SPORTS STOCK EXCHANGE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Chi-Chih Chen

June 2005

VIRTUAL SPORTS STOCK EXCHANGE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Chi-Chih Chen

June 2005

Approved by:

Owen Murphy

ABSTRACT

The goal of this project is to provide a learning

environment for the people who want to experience the stock

exchange market and to benefit from the use of this web

based application. It is also an opportunity to experience

the development of the economic model within the development

of a real world application. This application will allow

the users to experiment different economic models and to

practice the stock exchange.

The database used in this project is Oracle 9i

databases standard edition and the web server is Apache

Tomcat Web Server Version 5.5. Virtual Sports Stock

Exchange uses the JDBC driver provided by Oracle to

establish the connection between the frontend web

application and the backend database. Through the user

interface built in Standard HTML and Java Server Page (JSP),

it allows the users to interact with the database

simultaneously. Virtual Sports Stock Exchange (VSSX) uses

HTML and Java Server Page to generate the output and

calculations and it uses Java Servlet to interact with the

Oracle database.

VSSX is in its early stages and much enhancement may be

applied later on. For example, to provide more detailed

iii

information on each player stock with allied web sites which

will make the rating system more efficient or more complex

Al system.

iv

TABLE OF CONTENTS

ABSTRACT ..iii

LIST OF TABLES... ix

LIST OF FIGURES... x

CHAPTER ONE: SOFTWARE REQUIREMENTS SPECIFICATION

Introduction .. 1

Purpose .. 1

Scope ... 1

Definition, Acronyms, and Abbreviations ... 2

Document Overview .. 5

Overall Description ... 5

Virtual Sports Stock Exchange Overview ... 5

Product Perspective ... 8

Product Functions .. 10

User Characteristics... 10

Constraints ... 10

Assumptions and Dependencies 11

Specific Requirements ... 11

External Interfaces ... 11

Functions ... 12

Home.. 12

My Portfolios... 12

Order Status... 13

v

Order History.................................... 13

Trading 13

Stocks 13

User Management 14

Stock Management 14

Transaction Management 14

Virtual Users 14

Performance Requirements 18

Logical Database Requirements 19

Design Constraints 19

Software System Attributes 19

CHAPTER TWO: DESIGN

Database Design 21

Members Table 22

Stocks Table 23

Transaction Table 24

Pending Order Table 24

Share Holders Table............................. 25

Software Architecture 26

Detailed Design 28

Home ... 28

Portfolios....................................... 29

Stocks ... 30

vi

Trading 31

Order Status 32

Order History 33

Admin Pages 34

CHAPTER THREE: SOFTWARE QUALITY ASSURANCE

Create Virtual Stocks 37

Register Users 38

Browse Stock Listings 38

Buying a Stock 38

Verify Scheduled Virtual User Tasks................. 39

CHAPTER FOUR: EXAMPLE SESSIONS 40

CHAPTER FIVE.: MAINTENANCE MANUAL

Source Code... 43

Re-Compile ... 45

Installation Process 46

User Manual... 4 6

Before Using Virtual Sports Stock
Exchange... 47

Overall Description 47

Using Virtual Sports Stock Exchange 47

CHAPTER SIX: CONCLUSION AND FUTURE DIRECTIONS

Conclusion ... 48

Future Directions 50

vii

APPENDIX A: ORACLE TRIGGERS AND PACKAGES

APPENDIX B: JAVA SERVLET SOURCE CODE

APPENDIX C: JAVA SERVER PAGE SOURCE FILES

APPENDIX D: HTML SOURCE FILES

REFERENCES' ..

51

66

84

86

88

vm

LIST OF TABLES

Table 1. The Properties of Members Table............. 23

Table 2. The Properties of Stocks Table 23

Table 3. The Properties of Transaction Table 24

Table 4. The Properties of Pending Order Table ... 25

Table 5. The Properties of Share Holders Table ... 26

Table 6. Test Result of Creating Virtual Stocks ... 37

Table 7. Test Result of Register User................. 38

Table 8. Test Result of Stock Listings.............. 38

Table 9. Test Result of Buying a Stock.............. 39

Table 10. Test Result of Verifying Completed
Transaction......... ,......................... 39

ix

LIST OF FIGURES

Figure 1. Database Class Diagram 22

Figure 2. Struture Network Diagram 26

Figure 3. Home Navigation Diagram 28

Figure 4. Screen Shot of Home Page...................... 29

Figure 5. Screen Shot of Portfolios Page............... 30

Figure 6. Screen Shot of Stocks Listing Page.......... 31

Figure 7. Screen Shot of Trading Page................. 32

Figure 8. Screen Shot of Order Status Page............ 33

Figure 9. Screen Shot of Transactions History
Page.............. 34

Figure 10. Admin Navigation Diagram 35

Figure 11. Screen Shot of Admin Stocks Page 35

Figure 12. Screen Shot of Virtual Users Log 36

Figure 13. Screen Shot of User SignUp Page...... 41

Figure 14. Screen Shot of User Portfolios Page 42

x

CHAPTER ONE

SOFTWARE REQUIREMENT SPECIFICATION

Introduction

Purpose

The basic concept for our economic system is the

balance of supply and demand. [3] When the demand is higher

than the supply, the price for the demanding goods goes up;

when the supply is higher than demand, the price for the

goods goes down. This concept also applies to the stock

market'. Virtual Sports Stock Exchange Modeling System is a

web based application designed to simulate the online stock

exchange based on this concept.

The goal of this project is to provide a client-server

learning environment for user to practice their investment

skills and fulfill the Master's Degree requirement for Mr.

Chi-Chih Chen.

Scope

The Virtual Sports Stock Exchange is an application

that incorporates the stock market trading environment into

an easy to use Web-based application. Like other online

trading system, there is no need for brokers as in the real

stock market does. The primary purpose of this model is to

1

II
II
I
i allow end user to buy and sell their virtual stocks, to

track their orders, and to review their Portfolios

performance as what they would do in the real stock

l exchange. The Virtual Sports Stock Exchange also introduces

entertainment factors by using the sports players into the

stock.

This project, Virtual Sports Stock Exchange, will build

an open web application to support different platforms.
i

Because this project is built with Java technology, it is

client dependent. It can be run on Microsoft Windows
I
I machines, UNIX machines, Mac OS machines and more.

1 Definition, Acronyms, and Abbreviations
I

This section defines terms, acronyms, and abbreviations

i used in this SRS.

Apache Web Server. A open source web server that
I
I supports wide range of features and programming languages
i
j such as HTML, PHP, Java, and ASP (With Chili Soft Plug-In).II
[Browser. A graphical display application used to
i
! display world wide web pages. Basic functions include

navigation and printing.

j DBMS. A DBMS (database management system), sometimes

! just called a database manager, is a program that lets one

2

or more computer users create, manage and access data in a

database.

ER diagrams. Diagrams that use Entity-Relation model

to design or describe database.

GUI - Graphical User Interface. Interface system that

relies on graphics as well as text to display and convey

information to the user.

HTML v. 3.2 - Hypertext Markhp Language. HTML

(Hypertext Markup Language) is the set of markup symbols or

codes inserted in a file intended for display on a World

Wide Web browser. The markup tells' the Web browser how to

display a Web page's words and images for the user. HTML v.

3.2 is the first version of HTML to support tables.

Hyperlink. A highlighted portion of text that causes a

browser to take some action such as displaying another page

or graphic when clicked.

Java. Java is a programming language expressly

designed for use in the distributed environment of the

Internet. It was designed to have the "look and feel" of the

C++ language, but it is simpler to use than C++ and enforces

a completely object-oriented view of programming. Java can

be used to create complete applications that may run on a

single computer or be distributed among servers and clients

3

in a network. It can also be used to build small application

modules or applets for use as part of a Web page. Applets

make it possible for a Web page user to interact with the

page.

Java Servlet. Java servlets are a key component of

serve-side Java development. A servlet is a small,

pluggable extension to a server that enhances the server's

functionality.

Java Server Page. Java Server Pages are similar

technology as the Application Server Page made by Microsoft

as part of the components for serve-side development. It

incorporates Java syntax into the'standard HTML web page.

The server takes the responsibility for compiling them into

the bytes codes when the first request by the web server is

initiated.

JDBC. Java Database Bridge Connectivity is a Java

Application Interface that provides Java programmers with a

uniform interface for accessing and manipulating a wide

range of relational databases.

Oracle 9i Database. An Object database system built by

Oracle which support powerful features as SQL/PLUS,

Packages, Triggers and DBMS Scheduling [10]. There are not

4

many similar database systems in the market that has come

closed to this powerful system.

Document Overview

Section 2 includes product perspective, product

functions, user characteristics, constraints and

assumptions, and dependencies. It provides a background and

requirements for the whole VSSX project.

In Section 3, the specific requirements of the external

interfaces, functions, performance requirements, logical

database requirements, design constraints and software

system attributes will be discussed.

Overall Description

Virtual Sports Stock Exchange Overview

The virtual sports stock exchange system simulates

market trading based on the world of sports. Someone who

registers will be allocated a certain amount of play

dollars. Players accumulate their winning amounts. The

system will have the functionality of buying and selling

stocks. A model will be developed to price the stock in

such a way so that few participants will not be able to

manipulate the price of the market. Now there are several

online sports exchange systems available online but lack of

5

user friendliness and difficult to understand interfaces are

the major drawbacks of their websites, for example,

Marcopoly [9] and Sports Team Stock Market [13] fall into

this category.

Virtual Sports Stock Exchange relies on HTML V.3.2

compliant browsers to provide navigation, display, text and

image rendering, and basic print capabilities. The client

side browser will handle some parts of the form validation

requirements for VSSX and the server will handle the rest.

VSSX will run on any operating system platform containing

browsers that support HTML V.3.2 and JavaScript.

The server side portion of the VSSX requires a Java web

server and a database. The current VSSX is hosted on the

Apache Web Server with JServ engine.

VSSX provides the following basic functionality:

• a user creates one's own account in the database.

• a user buys or trades stocks with the simulation

model.

• a user interacts with one's orders such as cancel

order, view order status.

• a user competes with other users online.

6

• navigation between various,VSSX and and the other

Sports website when researching players'

information.

• Short-Trading as the real world stock exchange.

VSSX is primarily designed for traders that are not

ready to enter the market or do not wish to trade with the

real money. These users are likely to be non-technical

persons but familiar with browser functionality. No special

consideration is given to documenting the use of browser

technology in VSSX. In addition, it is assumed that the

VSSX user is familiar with browsing the Internet, clicking

on the links, filling forms, and other controls common in

web interfaces. No special consideration is given to

documenting browser navigation.

VSSX interfaces are based on HTML V.3.2 and client side

JavaScript supported by the client browser. Because of

this, VSSX does not require any functionality that relies on

client-side executable code outside of the browser

environment.

VSSX relies on tables, and will only run on browser

that is HTML V.3.2 compliant.

The VSSX server relies on Java Server Page, Java

Servlet and Oracle Database. While many companies offer

7

these functionalities, VSSX is currently developed on the

Apache Web Server with JServ Engine. There is no much

adjustment if one would like to move VSSX to another

platform.

While increasingly unlikely, some VSSX users may

connect to the server via modem, consideration has been

given to page sizes, image complexity, and other factors

that effect download speed.

Product Perspective

User Interface. The user interface for this project is
I

the web front. It is used for the users to navigate the

entire application. VSSX is composed of five major

components: HTML pages and forms, JSP Scripts, Java Servlet,

JDBC and Oracle Database. HTML pages and forms, JSP

Scripts, and partial of Java Servlet creates the User

Interface for VSSX.

Hardware Interfaces. The client-side browser and

operating system manage hardware interface issues. There is

no known hardware related hardware interface issues.

Software Interfaces. VSSX relies on HTML 3.2 compliant

browsers for the client-side to provide navigation, display,

text and image rendering, and basic print capability. The

client-side browsers will handle all GUI requirements for

8

VSSX. Popular browsers like.Internet Explorer, Netscape,

Mozallia, and Safari will work with VSSX. On the server

side, VSSX requires a Java web server that supports JSP 1.0+

and JDK 1.3+. The current iteration of VSSX is designed to

run on the Apache Tomcat Web Server 5.5.

Communication Interfaces. VSSX relies on the client

browser and operating system, and Java web server, JSP, Java

servlet, JDBC, DBMS and operating system, to manage

communication issues.

Memory and Hardware Constrains. There is no known VSSX

client-side memory constraint issue but as more users sign

up with VSSX, we may need more memory on the server.

Additionally, the server requires the following

components for optimal content generation in a multi-user

environment.

• 256 MB additional memory on top of the minimum

memory requirement of the operating system (For both

database and Java web server).

• Fast architecture machine, something along the lines

of a PII 450 or greater.

Adaptation Requirements. This project has no known

site adaptation at this time.

9

Product Functions

VSSX provides the following basic functionality:

• A user creates one's own account in the database.

• A user buys or trades stocks with the simulation

model.

• A user interacts with one's orders such as cancel

order, view order status.

• A user to compete with other users online.

• Navigation between various VSSX and and the other

Sports website when researching players'

information.

• Short-Trading as the real world stock exchange.

User Characteristics

VSSX is primarily designed for end users. These users

are likely to have experience on browsing the Internet with

mouse and keyboard. No special consideration is given to

documenting the use of browser.

Constraints

VSSX relies on HTML v.3.2 compliant browser on the

client-side and it does not require any client-side

executable code. Therefore VSSX does not require any

functionality that relies on client-side executable code.

10

Assumptions and Dependencies

This proposal makes the following assumptions:

• Assume that all virtual stocks are owned by one

computer user who is characterized as the central

bank in this model.

• Additionally, Current VSSX has the following product

dependencies:

• It is assumed that the web server supports Java

with the following components installed and

working properly:

• Apache Tomcat 5.5 or other web server system

• JServ Module for Apache 1.3.12 for . jsp

redirection

• Oracle 9i Database.

. JDK 1.3

Specific Requirements

External Interfaces

VSSX allows users to navigate through web pages via the

following browser related actions:

• Clicking on hyperlinks.

• Using the forward and back buttons on the browsers'

navigation toolbar.

11

• Any additional operations supported by the browser

for general HTML navigation.

VSSX has navigation tabs on the upper portion of each page.

Functions

VSSX shall perform all standard navigational functions

supported by HTML and web browsers. All pages will be

accessible via HTML hyperlinks.

Home

The main access to VSSX is through the Home Page, which

will provide login field for already registered users or an

URL to signup for VSSX. The Home page introduces the

default rules for playing VSSX. On the upper portion of the

page, there are different tabs for the navigation. Users

will be allowed to 'navigate to their portfolios, trading

stocks and view current available stocks.

My Portfolios

Once a user login to VSSX, he/she will be directed to

the portfolios page which contains his/her stock portfolios.

On the top of the page, it shows the total worth of the

virtual stocks. Below it are the basic information needed

to play VSSX such as current available cash, current

ranking, stock performance and interests earned.

12

Order Status

There are two sub-links in the portfolios page. One is

order status which contains current pending orders. The

order will remain pending if there is no buyer/seller that

is willing to trade with your offer.

Order History

The other sub-link in the portfolios page is order

history which contains the trading record completed with the

current user account.
I

Trading

The main buy/sell function in VSSX is located at

trading page. Users can buy or sell their virtual stocks in

this page. If the user does not have the virtual stock in

their portfolios, they can still buy or sell that stock.

This is equivalent to buy short or sell short in the real

stock market. Currently there is no rule of 'limitation on

buy short or sell short the virtual stocks but it can be

applied for more realistic simulation.

Stocks

The stocks page contains listing of available stocks in

VSSX. There is a "Quick Trade" link to trading page for

each virtual stock. Under each stock name, it links to the

13

players' information which are hosted at external source

such as NBA.com.

User Management

VSSX has three main administrator pages, user

management, stock management and transaction management.

The user management will allow admin user to create, modify

and delete users. This includes creating virtual users in

the system. i

Stock Management 1

The stock management page wild allow admin user to

create, modify and delete stocks. , Administrator can

temporary inactive a stock from here.

Transaction Management

The transaction management page will allow admin user

to create, modify and delete user transactions. This will

include orders that are pending as well.

Virtual Users

Virtual Sports Stock Exchange is driven by two forces.

One is by the registered VSSX users and the other is by the

virtual users. The virtual users are computer generated

users that simulate the trading of virtual stocks. These

virtual users are assigned with the same parameters as the

regular users which include the same amount of playing money

14

NBA.com

and the option to buy and sell stocks at anytime. In

addition, each virtual user is assigned with a percentage

number as its behavior parameter and a maximum quantity

parameter. The behavior parameter determines whether a

virtual user will purchase or sell the stock at the asked

price. This design makes VSSX more interactive, and less

prone to stock manipulation by individuals or group of

individuals, especially during the initial launch when the

numbers of registered VSSX users are limited.

Virtual users can be created in the Administrator

Panel. The administrator can create as many virtual users

as he or she wants to keep the market balanced. Each

created virtual users will begin in the "sleep" state.

During the sleep state, the virtual users are not allowed to

trade any virtual stocks. At a random time, randomly

selected virtual users will be waken by the system and the

state will be changed to "active". During the active state,

the virtual users will look at the transaction pool which

contains all pending transactions and compare it with their

portfolios to decide whether to buy or to sell. First

activated virtual users will try to purchase the stocks that

are available in the transaction pool but not in their

portfolios. If the given price is different from the market

15

price, virtual users will decide whether the price is within

the behavior parameters. If the given price is considered

"reasonable" to the virtual user, then it will decide to buy

or sell.' For example, if a virtual user is given a 30%

behavior parameter, the current price for a particular stock

is $10.00, and the given price in the transaction pool is

$13.00.. Then the virtual user will issue an order of $13.00

and submit it to the transaction pool. The amount of stocks

that will be purchased is determined by the maximum quantity

parameter. The number of quantity purchased or sold can not

be more than the maximum quantity parameter. For example,

if a virtual user is given 5000 shares of maximum quantity

parameter, it can not submit an order of purchase or sell at

more than 5000 shares.

Other than the configurable behavior parameter and the

maximum quantity parameter, the numbers of virtual users

trading in the system also create randomness to the system.

When fewer virtual users are trading in the system, the

market will be more likely to move toward regular users'

preference; when more virtual users are trading in the

system, the market will be more likely to move toward

virtual users' preference. In a scenario of one virtual

user trading in the system and five regular users registered

16

in the system. The virtual user is given a 10% percentage

of behavior parameter. The price for one particular stock

is $10.00. Virtual user will acquire its initial ownership

of this stock and wait for its 10% profit or loss to begin

.selling the stock. The virtual user's influence to the

market becomes minimum especially when regular users are
I

trading in a larger quantity than the virtual user's maximum

quantity parameter. In another scenario of five virtual

users trading in the system and one regular user registered

in the system. The virtual users are given a range of 10%

to 50% percentage of behavior parameter. The price for one

particular stock is $10.00. The virtual users will acquire

its initial ownership of this stock and wait for its return.

During its initial acquisition, the stock price already

increases and the virtual users have began trading within

virtual users regardless of the regular user's action.

Because of different behavior parameter, the price for this

stock has been going up and down by trading within virtual

users only. Therefore the numbers of virtual users trading

in the system and the parameters given to the virtual users

are a challenge to the administrator to keep the market

balanced.

17

This virtual user schema is designed from my experience

of stock trading. By listening to some of the brokers'

advice, a conservative trader will sell a stock when the

profit reaches 30% of its purchased value but not more. A

conservative trader will also sell a stock when the loss

reaches 30% of its purchased value but not more. This will

lower the risk factor of the whole portfolios. By

controlling these two parameters and limiting the virtual

users to trade under these rules, the market will not go

extremely high or low just by trading between virtual users

themselves. There are many other factors that affects the

users' decision of choosing their stocks, accumulate more

stocks or sell short of stocks. There can be even more

complicated artificial intelligent schema, installed in this

model such as whether the virtual .users decide to accumulate

more stocks or sell short of stocks after analyzing the

market. It requires a larger knowledge base which allows

each virtual user to analyze each stock and the market in

general.

Performance Requirements

The performance of VSSX depends on the bandwidth of the

connection, web server performance and database performance.

Depends on the size of users that will be using VSSX, the

18

speed of CPU, size of system memory, speed of the hard drive

may affect the performance of VSSX. Another measurement

would be to separate the database server and the web server

to achieve better transaction throughput.

Logical Database Requirements

VSSX stores all data in a DBMS, such as Oracle

Database. The class diagram and ER diagram of the database

system for VSSX is shown as follows:

Design Constraints

There are no design constraints at this time.

Software System Attributes

Security and Reliability. JDBC support safe

programming practices on a number of levels. Because they

are written in Java, JDBCs inherit the strong type safety of

the Java language.

Portability and Availability. Because Java is platform

dependence and it is conformed to a well-defined and widely

used language, they are highly portable across operating

systems and across server implementations. You can use them

on a Windows machine running any type of Java Web Server and

later deploy it effortlessly on a high-end Unix server

running different Java Web Server.

19

Maintainability. The majority of VSSX is implemented

as script-based .jsp pages and they are easily maintained

using a web development tools such as Frontpage or

Dreamweaver. They can also be edited with any text editor

utility. Java Servlet can also be edited with any text

editor utility but they will have to be compiled with JDK

1.3 or above. ,

20

CHAPTER TWO

DESIGN

Database Design

VSSX database uses Oracle as its database management

system (DBMS), which will store all the data needed for

VSSX. VSSX database accepts the connection from the JDBC

class, which executes SQL statements via the JDBC driver.

VSSX contains four major parts: HTML forms, JSP Script

Pages, Java Servlet based classes, and Oracle Database.

This section concentrates on the architecture representation

that leads to the VSSX Oracle database class diagram.

In order to store and process the information of VSSX,

there are five tables, two PL/SQL packages and two triggers

used in this project. The following E-R diagram represents

the relationships among these five tables:

21

Table 1. The Properties of Members Table
Field Name Field Type

MEMBER ID NUMBER(5)
EMAIL VARCHAR2(50) UNIQUE
TYPE CHAR(1)
PASSWORD VARCHAR2(15)
FIRST NAME VARCHAR2(25)
LAST NAME VARCHAR2(25)
MAX PERCENTAGE NUMBER(11,2)
MAX QUANTITY NUMBER(11,2)
BALANCE NUMBER(11,2)
STATUS VARCHAR2(6)

Stocks Table

The stocks table contains stock information. It stores

information of virtual stocks, which contains symbol,

virtual stock name, last, high, low, close, shares, stock

issue date, sports exchange, url to player information, and

status. The primary key is SYMBOL,.

Table 2. The Properties of Stocks Table
Field Name Field Type

SYMBOL VARCHAR2(5)
NAME VARCHAR2(50)
LAST NUMBER(6,2)
HIGH NUMBER(6,2)
LOW NUMBER(6,2)
CLOSE NUMBER(6,2)
SHARES NUMBER(9)
ISSUE DATE DATE
EXCHANGE VARCHAR2(5)
URL VARCHAR2(500)
STATUS VARCHAR2(6)

I
23

Transaction Table

The transaction table contains all users' virtual stock

transaction history. Each transaction contains transaction

id, member id, stocks symbol, buy or sell, price of purchase

or sell, quantity of buy or sell, total amount, completed

transaction date, and status. The primary key is TRANS_ID.

The foreign keys are MEMBER_ID of members table and SYMBOL

of stock table. <

Table 3. The Properties of Transaction Table
Field Name Field Type

TRANS ID NUMBER(5)
MEMBER ID NUMBER(5)
SYMBOL VARCHAR2(5)
ACTION VARCHAR2(6)
PRICE NUMBER(6,2)
QUANTITY NUMBER(9)
TOTAL NUMBER(11,2)
TRANS DATE DATE
STATUS VARCHAR2(8)

Pending Order Table

The pending order table contains all users' virtual

stock pending orders. Each record contains transaction id,

member id, virtual stocks symbol, buy or sell, price of

purchase or sell, quantity of buy or sell, total amount, and

order date. This table is used as a temporary storage for

24

all users' order placed. When a user places an order,

either buy or sell, the information will be store in this

table. When this transaction is completed, the data from

this table will be moved to the transaction table. The

foreign keys are TRANS_ID of transaction table, MEMBER_ID of

members table, SYMBO1 of stock table.

Table 4. The Properties of Pending Order Table
Field Name Field Type

TRANS ID NUMBER(5)
ORDER DATE DATE
MEMBER ID NUMBER(5)
SYMBOL VARCHAR2(5)
ACTION VARCHAR2(6)
PRICE NUMBER(6,2)
QUANTITY NUMBER(9)

Share Holders Table

The share holders table contains the ownership

information of the virtual stocks. Each record contains

member_id, symbol, price, quantity, and total amount fields.

When an user buys a virtual stock, he or she will be the

owner of that stock. When a user purchases the same stock

more than once, the record for the same stock will be

combined into one. The primary key is MEMBER_ID and SYMBOL

of members table and stock table.

25

Table 5. The Properties of Share Holders Table
Field Name Field Type

MEMBER ID NUMBER(5)
SYMBOL VARCHAR2(5)
PRICE NUMBER(6, 2)
QUANTITY NUMBER(9)
TOTAL NUMBER(11,2)

Software Architecture

The-user interface of VSSX is developed using Java

programming language and the connection bridge is developed

by using JDBC class, which is a member of Java programming

language family. The basic network diagram for the VSSX is

shown as following:

Figure 2. Structure Network Diagram

As shown in the diagram above, VSSX relies on JDBC to

communicate with the database server. This is also called a

26

3-tier system which is widely used in the business world

nowadays. When the numbers of client users grow, database

clustering may be implemented to avoid bottleneck on

retrieving data from the database and load balancing on

multiple web servers can also be placed as consideration.

The JDBC driver that is used comes with the Oracle

Database Server. We are using Oracle JDBC type 4 thin

driver to access the Oracle database. The alternative way

to connect to the Oracle Database is to use Oracle OCI

Driver.
I

Connection pool is used with Oracle JDBC thin driver.

Every request for the database must use the connection pool.

In other words, each request for database does not establish

its own connection. This way it can reduce the number of

connections established to the database and make the system

more efficient. The max number of connections can be opened

at the same time is ten as default. Once the eleventh

request comes in, it has to wait until one of those three

connections has handed back to the connection pool.

Each JSP or servlet will call the JDBC class,

manipulate the received data and represented to the web

client. This method has been widely used in the web

application architecture.

27

Detailed Design

This section will concentrate with VSSX's main pages.

At the end of the each sub-session, it describes the

functionality for each page. The following diagram shows

the main pages for VSSX:

Figure 3. Home Navigation Diagram

Home

The home page contains the navigation bars to go to

Portfolios, stocks, and trading pages. It also contains the

links to the popular sports website such as nba.com, nfl.com,

nhl.com, pga.com, and mlb.com. On the home page, it briefly

describes how the simulator works and the rules for VSSX.

The following screenshot is the home page for VSSX:

28

nba.com
nfl.com
nhl.com
pga.com
mlb.com

Search _ 1 6 Search Groups (Bote) © Search She Web tllj

Dome

Connects: > NBA.COM - ► NFL.COM > WHL.COM > PGA.COM > MLB.COM

► What is Virtual Sports Stock Exchange?
Virtual Sports Stock Exchange is a sports stock market where you can buy and sell fantasy shares of

your favorite athletes from die NBA HFL, NHL. PGA and MLB. You can compete against other

members for die monthly price. Join Frse, Play Fun and Win Big J

► How to Play Virtual Sports Stock Exchange?
First you wifi have to become a member of VSSX. Once you have become a member, you can buy

and sell shares of your favorite athletes with your VSSX dollars by using the trading system. You can

also track your portfolio performance and you can also check the latest market news. To create your

own portfolio, please click hsf£ to join in VSSX membership.

► Rules of Vistual Sports Stock Exchange

• Contest Term; The first of every month at 0.00a.m. PST to the first of
the foilov/ihg month; at Tt‘33p.m..

• Each member will'be given 100.000 Virtual Sports Stock Exchange
Dollars to get their portfolio's going. There are no fees, charges, or
purchases required to play VSSX.

• To enter, participants must complete the online registration form with
legal first, rnL and last name, and valid email address. Members who
cannot be contacted due to inaccurate information may forfeit their
rights to prizes.

• The registered members who finish within the top £0 will claim the
winner prizes.

r*i 'ii.ci i ojin

Gi3?n.5.'T3€;:

PaTSwssf.'

iPf) 11

If YevHsv* Retucio in. Clide
itere tc S)§r. Vc.

Copyright © 56® VktM Sports Stock Exchange fVSSXS Aii Rights Rssereoo

Figure 4. Screen Shot of Home Page

Portfolios

The portfolios page is the core page for VSSX. It

contains information of the virtual stocks and the virtual

money that users have. This page is divided into different

type of sports such as MLB, NBA, NFL, NHL, and PGA. The

reason is that different sports have different scoring

methods. The following is the screenshot for the portfolios

page:

29

MLB.COM

Stock

Search O Search Groups'(Bsla) O 'Search the Web.)!

'WSG-J SOCKS (?;

'.Choose:. ■ ©flstef.Si SUUS' <j?QWgf Histea

“Currently Available Stocks

today’s top pick:— yesterday’s top pick: — i

jSymbdt Playe/s Maine " XCMG' last. / Charge % Issued Shares

Derek Jeter MLBX §8:00 3 38% 422.000-30 GutckTrade

RjNSJJ •Randv Johnson " ' M‘.SX • - 8-88% •28380003- GuickTrade

VURDM Michael Jordan' MSAX S23..S0 5.30% 18800300 Quick-Trade
SCREt ShsouilleG'neal ’ ’ , r ■ WtX • - - tt&o'js sop'ypoop . ‘QuickTisde
PR'VKR BriM-Walter MrtX S7.00 3.30% 23808880 GuickTrade

: Tony.Banks. • ' t < NFLX" §7 CO ’ ' 3 IfOOOCk. GutckTrade
GRAOM Graves Adams fJHLX §8.00 3 83% S003300 QuickTrade
wv: • John Madden • NHLX OxW ’ . ,3i88% ' 28803388, • GuickTrade
,niOv David Leva. PGAX S‘S.00 0,83% 2.8003800 GuickTrade

1GR3 1 • TioerWood < • / ixxroc GutckTrade

Copyright © 2000 Virtual Sports Stock Exchange (VSSX) Ail Rights Resewd

Figure 6. Screen Shot of Stocks Listing Page

Trading

Trading page is for used for users to place orders.

Users can buy, sell, or short the virtual stocks. At this

time, the system allows users to short the stocks but it can

be taken out to avoid manipulation in the market. The

trading page also links to order status, and order history

for the user. The following screen shot is the trading page

31

Sports Stock SXoi i®

Search O Search Groups ^Beta) <3> Search the Web I'

° Choose;t Order Status? ^Order History •• . •

Place Your Order

Tctrade the maximum number of shares possible, you can enter "max” intothe quantity field and then we will figure out
the most'you can afford'up to the allowable amount. Ifycu do. notenter a stopprice; we will assume you mean io make
tbe'trade immediately. You cannot place a stbp order with a quantity of “max.”

ACTION: I Buy

SYMBOL: i __ (click-hare for a complete list

QUANTITY: j

Price: -t

(.- Order j. Order Cancel; j

Copyright €: 2£’S0 Vhiua! Sports Stock Exchange iVSSX; All Rights Reserved

Figure 7. Screen Shot of Trading Page

Order Status

The order status page shows an placed order's status.

If a user placed an order but the transaction is not

completed, the status will show "PENDING" just as shown in

the screenshot below. In the other case, it will show

"COMPLETED". The following is the screenshot for the Order

Status page:

32

Search I • O Search Groups (Beta) 0 Search the Web [Goi '

Choose: tifr Order Status & Order History

••Currently Order Status

today's top. pick: *

< t Date Symbol

12HS/20G4 BRWKR

yesterday’s top pick: --

Action Pnce _ Quantity^ _ Total _ Status

BUY $6.75 5000 $33,750.00 PENDING

'Cepynght ^-2000 Virtual Sports Stock Exchange (VSSX) All Rights Reserved

Figure 8. Screen Shot of Order Status Page

Order History

The order history page shows all completed transaction ever

made by the user. The following is the screenshot of Order

History page:

33

tertaal Sports Stock Exchange

Search _______

PROTTOLIO *-

Choose: <►> Order Status Order History- .

,, O Search Groups (Beta) ® Search the Web [^°J

our Transactions History

today's top pick: yesterday’s top pick: —

Dgte___ ' Symbol Action ______ Quantity__ ___ ; Total ' Status

12/19/2004 MJRDN BUY 223.00 5000 2115,000,00 COMPLETE

Capynght ® 2000 Vktuai Spans Stock Exchange (VSSX) AH Rights; Reserved

Figure 9. Screen Shot of Transactions History Page

Admin Pages

The following diagram shows the main navigation flow of the

admin pages for VSSX:

34

The

the

The

Figure 10. Admin Navigation Diagram

", and "Modify" for

and TRANSACTIONS.

page for stocks:

admin page provides "Add", "Delete

following subpages: USERS, STOCKS,

following screenshots is the admin

Currently Active Virtual Sports Stocks

Ail Exchange
XCHGSymbol Name '

VSSX VSSX Stocks VSSX
DKJTR Derek Jeter MLBX
RJNSN Randy Johnson MLBX
MJ RDM Michael.-Jordan .NBAX
SONEL Shaquille O'neal NBAX
TNYBK Tony Banks NFLX
JMADN John Madden NHLX
GRADM Graves Adams, NHLX
BRWKR Brian Walker NFLX
TQRWD Tiger Wood PGAX
DDLOV David Love PGAX

Figure 11. Screen Shot of Admin

0 c?P Change % Volume ■■■a
$7:00 0.00% 1000000 Update
$8.00 0 00% 42200000 Update
$7.00 0.00% 20000000 Update

$23.00 0.00%’ 10000000 Update
$15.00' 0;00%: 20000000 Update
$7.00 o:oo% 150OQOOO Update

$7.00 0.00% ■20000000 Update
$6.00 q;oq%, 9000000 .Update
shoo- 0.00% 20000000 Update

$2100 0,00% 10000000 Update
$19.00 o.ob%- 20000000 Update

Stocks Page

35

■ MARCHING for AWUUWU WOTtMSL Osriw' • /■-
- f p fafie»a» ;. ' ••" /”•
.<«)» la.TAiusmo) ' - 7 ‘ ' j ’ -'V.:

WRTOM, USER tlt>: 01 r» wo WWE*.
virtual usrR [101 at chooses i» out» «oi>

v:3MteHW6br-«oiKS,L, - j ' J. - . ■ '.'5?',’"
1^4 STOsy : » a 5>!f tot'< 33a ;
(SfW 0^ VstSLSUt

VWTUAI USFB 110! M 4f<.4r4 to cur t*6T *t 4132.B3.

tOTAt-i:'

is«8wrn*iH;
> •' .^cfiiv^-ty-afVFacSsciR §'?S'.

(tfirc«d.»Jeep<nh 1

■W

tb

Figure 12. Screen Shot of Virtual Users Log

36

CHAPTER THREE

SOFTWARE QUALITY ASSURANCE

Create Virtual Stocks

The test is done by creating virtual stocks in the

administrator panel.

Table 6. Test Result of Creating Virtual Stocks
Test Case Actual Result Expected Result
Create DKJTR
Virtual Stocks

Return no error Return no error

Create RJNSN
Virtual Stocks

Return no error Return no error

Create MJRDN
Virtual Stocks

Return no error Return no error

Create SONEL
Virtual Stocks

Return no error Return no error

Create BRWKR
Virtual Stocks

Return no error Return no error

Create TNYBK
Virtual Stocks

Return no error Return no error

Create GRADM
Virtual Stocks

Return no error Return no error

Create JMADN
Virtual Stocks

Return no error Return no error

Create TGRWD
Virtual Stocks

Return no error Return no error

37

Register Users

The test is done by using the user signup page to

create a user profile.

Table 7. Test Result of Register User
Test Case Actual Result Expected Result

Regsiter User

cchen
Return no error Return no error

Browse Stock Listings

The test is done by verifying with the database of the

numbers of entries that has been input.

Table 8. Test Result of Stock Listings
Test Case Actual Result • Expected Result

Verify Stocks

Listings with SQL

Statement: "SELECT

COUNT(*) FROM

STOCKS"

Return 10 Return 10

Buying a Stock

The test is done by triggering the buy sequence of

virtual stocks and verifying with the database result.

38

Table 9. Test Result of Buying a Stock
Test Case Actual Result Expected Result
Buy MJRDN 5000
Shares. Verify
with SQL
Statement: "SELECT Return 12/19/2004 Return 12/19/2004
* FROM MJRDN BUY 23.00 MJRDN BUY 23.00
PENDING ORDERS 5000 115000 5000 115000
WHERE USER ID =
'2' AND SYMBOL =
'MJRDN'"

Verify Scheduled Virtual User Tasks

The test is done by verifying when a transaction is

completed.

Table 10. Test Result of Verifying Completed Transaction
Test Case Actual Result Expected Result
Verify with SQL
Statement: "SELECT
STATUS FROM
TRANSACTION WHERE
USER ID = '2' AND
SYMBOL = 'MJRDN'"

Return COMPLETED Return COMPLETED

39

CHAPTER FOUR

EXAMPLE SESSIONS

This project uses JSP pages to build the user interface

and use the JDBC classes to access the Oracle Database.

This following example will show how the test result was

performed above.

On the home page, there is a "click here to sign up"

link. This is the initial step for the registration of new

users. Users will be required to enter their username,

password, names and email address in order to complete the

registration. By clicking on the link, it will take you to

the user registeration page shown below:

40

Free Membership Signup.

■Please Fiji Up the Following Information,

Select a Username; ccftari |
Choose .Your Password; ••••••• ”1

Your FirstName;jChi-Chih _______ [
Middle initial;! !

Your Last Name;I Chen _)
Your Email Address lcchen@kcge com !

! Join in [

Figure 13. Screen Shot of User SignUp Page

After fill in the information and click on "Join in",

we will be redirected back to the homepage where we can now

sign in.

After signing in, VSSX redirects us to the Portfolios

page shown below. This pages shows that the stock that was

purchased during the test session is listed under NBA

Exchange.

41

vchi-Chih’s Virtual Stock Portfolios

total worth : $1,000,700.00

CASH
r ' SSSSOOOOO’*-''“

INTEREST
$B5 43 7 Day ©+600%

MARKET VALUE
'.A ihUMBB

RANK Vo GAIN
Overall Rank — Week-to-Date %
Today's Change - Month-to-Date %
How do! rank? Year-to-Date %

MLB Exchange _ . _ r Complete Lists
2 F/LB-Stoclts^ * Gain/Loss' - 0 003

symbol price shares total

NBA Exchange ' 1 '
; ~:"f~ ~2NBA Stocky ~____ .. ."GS/Loss___ • ' -o<mh .

symbol price shares iota!

MJRDN 523 GO 5000 5115,000.00

NFL Exchange
• ' . 2 NFL Slocks ’ f Gan / Loss

Complete Lists
..0 00%

symbol price shares total

NHL Exchange
■' ' . 2UHL Stocks';

---------------- ---- -......
* f ~ C "Gajf/ Loss

ComoTste Lists
, ’ 080%

symbol price shares total

PGA Exciiange Comsletg Lists
2 EGA Stocks. _ __ * Gain/Less _ ‘0 00%

symbol price shares total

Figure 14. Screen Shot of User Portfolios Page

42

CHAPTER FIVE

MAINTENANCE MANUAL

Source Code

In this Virtual Sports Stock Exchange project, there

are six HTML pages, forteen JSP pages, six Java servlet and

six SQL files. All the source files are stored in the

attached CD. The /WEBAPPS directory contains all JSP pages

and JAVA classes. The sql statement files are stored in

/SQL directory. All JAVA files are put in directory /JAVA.

The directory /DOCUMENTS stores all word files.

Here is the list of the source files.

• Scripts/index.jsp

• Scripts/INC_top.jsp

• Scripts/INC_bottom.jsp

• Scripts/INC_styles.css

• Scripts/login.jsp

• Scripts/logout.jsp

• Scripts/Portfolios.jsp

• Scripts/signup.jsp

• Scripts/stocks.jsp

• Scripts/order.jsp

• Scripts/confirm.jsp

43

• Scripts/history.jsp

• Admin/index.jsp

• Admin/bot.jsp

• Admin/INC_top.jsp

• Admin/INC_bottom.jsp

• Admin/INC_styles.css

• Admin/login.j sp

• Admin/logout.j sp

• Admin/users.j sp

• Admin/usrUpd.jsp

• Admin/usrCtrl.jsp

• Admin/stocks.jsp

• Admin/stkUpd.jsp

• Admin/stkCtrl.jsp

• dbConnection.Oracle.class (.java

• member.login.class (.java)

• member.signup.class (.java)

• member.update.class (.java)

• stock.ipo.class (.java)

• stock.trade.class (.java)

• stock.update.class (.java)

• cleanup.sql

• tables.sql

44

• sequences.sql

• triggers.sql

• packages.sql

• data.sql

Re-Compile

This session shows how to recompile Java Servlet

when there are changes to the .java source files.

First, specify the classpath where the command

"javac" is found. Overrides the default path or the

"CLASSPATH" environment' variable if it is set. If

there is more than one directory, using semicolon to

separate the directory names. It is often useful for

the directory containing the source files to be on the

class path. Moverover, users should always include the

system classes and oracle JDBC driver file at the end

of the path. For example:

javac -classpath .;C:\jdk_l.4.2\classes;

C:\oracle\jdbc\lib

Then change the directory to the one that holds the

class or classes needed to re-compile. After changing the

directory path, key in the following command:

javac filename.java -include classesl2.zip

45

Installation Process

There four major steps in the installation process.

The first step is to store all the HTML and JSP files under

the root directory of the Java web server from the same

directory structure listed under /WEB in the CD. Second,

creating an oracle database instance in the database with

username vssx and password vssx. Then start the sql script.

Connect to Oracle by using sql/plus console, run the

following SQL files in orders: tables.sql, sequences.sql,

triggers.sql, packages.sql, and data.sql. Placed the

compiled .class Java Servlet files in WEB-INF directory

(WEB-INF directory is used in Apache Tomcat Java Web Server)

The finally step is to copy Oracle's JDBC thin driver to

WEB-INF/lib under the directory had defineded in the class

path of the web server.

Jser Manual

The VSSX uses Java Server Pages and Java Servlet to

interacte with the database process. Buying and selling

virtual stocks, and virtual users tractions are done in the

database PL/SQL triggers and packages.

46

Before Using Virtual Sports Stock Exchange

Users have to be registered with VSSX in order to

continue. By using "Click Here to Signup", an user can

signup with the VSSX for immediately access.

Overall Descriptioin

Users can navigate VSSX through the upper portion of

the page which has the navigation bar. Below the navigation

bar is the actual contents display.

Using Virtual Sports Stock Exchange

A registered user should start with their portfolios

page. In the portfolios page, there are stocks available to

be purchased. To view the available stocks, simply click on

"Complete Lists" at each exchange market. If a user has

decided which stock to buy, he/she can click on Quick Trade

to start the purchasing process. After the process is

completed, the purchased stock will be listed in the user's

portfolios. The same process can be applied to sell the

stocks.

47

CHAPTER SIX

CONCLUSION AND FUTURE DIRECTIONS

Conclusion

The purpose of VSSX project is to simulate the online

broker services with the supply and demand concept in the

business world by using popular sports players as the

virtual stocks.

It is a complete system that allows students to

register and start trading with virtual stocks. It is

educational in that users can learn the principle of stock

trading, just like the real stock market.

VSSX is composed with 5 major components: HTML forms,

Java Server Pages, the Java Servlet classes, the Oracle

Type-4 thin driver, and Oracle database. 3 major languages

are used in the VSSX project: HTML, Java programming

language, and PL/SQL. Without these components, we will not

be able to simulate a 3-tier system.

Before I started with this project, some of these

components were new to me. For HTML forms, I have learned

some advanced tags along with Java Server Pages scriptlets.

48

For Java Server Pages and Java Servlet, I have learned

how to administrate and configure Apache Tomcat web server.

Also to access the database via the Oracle JDBC thin driver.

For JDBC, I have learned the single pass recordset and

multi-pass recordset which allows the record to go from the

beginning to the end and as well as from the end to the

beginning. The main difference is to declare the flag and

to keep track of the bookmarks.

For Oracle Database, it is a good experience to put

what I have learned from the database classes into work.

Tasks like database design, triggers and packages

programming, and database performance tuning.

I have also learned the basis of economic in the real

world and the stock trading system. By implementing simple

artificial intelligent virtual users, I have learned some of

the factors that make the market changes, how users choose

their stocks and when users decide to buy or sell a stock.

Overall, this project involves using many powerful

tools available nowadays such as Java Programming Language,

and Oracle SQL/PLSQL Database. I have to learn how to plan,

design, coding, testing, and administrating in order to

fullfill the requirements.

49

Future Directions

.The-re are several improvements that can be done to the

VSSX. The virtual stocks information is limited. By

connecting to the well established players database, VSSX

can provide more complicated information on the virtual

stocks. It can use this enhancement to create live

information on trading players or live game information.

More complicated knowledge base for virtual users can be

implemented; such knowledge base will allow virtual users to

behavior differently when it comes to choosing and trading

stocks. By adding different factors to each behavior,

Virtual Sports Stock Exchange will become more and more

interesting.

50

APPENDIX A

ORACLE TRIGGERS AND PACKAGES

51

1 PACKAGE Share

CREATE OR REPLACE PACKAGE Shares IS

PROCEDURE Verify (

pTrans_ID IN NUMBER

) ;

END Shares;

/

CREATE OR REPLACE PACKAGE BODY Shares IS

PROCEDURE Verify (

pTrans_ID IN NUMBER

) IS

CURSOR cTransaction IS

SELECT *

FROM Transactions

WHERE Trans_ID = pTrans_ID

FOR UPDATE;

vTransaction Transactions%ROWTYPE;

52

CURSOR cShare Holders IS

SELECT 1

FROM Shareholders

WHERE Member_ID = vTransaction.Member_ID

AND Symbol = vTransaction.Symbol;

vExist NUMBER;

BEGIN

OPEN cTransaction;

FETCH cTransaction INTO vTransaction;

OPEN cShare_H°lders''

FETCH cShare_H°lders INTO vExist;

IF cShare_Holders%FOUND THEN

IF vTransaction.Action = ’BUY’ THEN

DBMS_OUTPUT.PUT_LINE(’BUY’)'

DBMS_OUTPUT.PUT_LINE(’vTransaction.Trans_ID

|| vTransaction.Trans_ID);

UPDATE Share Holders

53

SET Price ((Price * ABS (Quantity)) +

(vTransaction.Price * ABS (vTransaction.Quantity))) /

(ABS(Quantity) + ABS(vTransaction.Quantity))

,Quantity = Quantity +

vTransaction.Quantity

,Total = ((Price * Quantity) +

(vTransaction.Price * vTransaction.Quantity)) /

(ABS(Quantity) + ABS(vTransaction.Quantity)) *

(Quantity + vTransaction.Quantity)

WHERE Member_ID = vTransaction.Member_ID

AND Symbol = vTransaction.Symbol;

ELSE

DBMS_OUTPUT.PUT_LINE('SELL');

UPDATE Shareholders

SET Quantity = Quantity -

vTransaction.Quantity

,Total = Price * (Quantity -

vTransaction.Quantity)

WHERE Member_ID = vTransaction.Member_ID

AND Symbol = vTransaction.Symbol;

54

END IF;

ELSE

DBMS_OUTPUT.PUT_LINE('NotFound');

INSERT INTO SHAREHOLDERS VALUES

(vTransaction.Member_ID, vTransaction.Symbol,

vTransaction.Price, DECODE(vTransaction.action, 'BUY', 1,

1) * vTransaction.Quantity, vTransaction.Price *

vTransaction.Quantity);

END IF;

— Update balance:

UPDATE Members

SET Balance = Balance +

(DECODE(vTransaction.Action, 'BUY', -1, 'SELL', 1, 0) *

(vTransaction.Price *

vTransaction.Quantity))

WHERE Member_ID = vTransaction.Member_ID;

-- Update status of transactions:

UPDATE Transactions

SET Status = 'COMPLETE'

WHERE CURRENT OF cTransaction;

55

-- Update last of stocks:

UPDATE Stocks

SET Last = vTransaction.Price

WHERE SYMBOL = vTransaction.Symbol

CLOSE cShare_Holders;

CLOSE cTransaction;

EXCEPTION

WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM) ;

END Verify;

END Shares;

/

— 2 PACKAGE Trading

CREATE OR REPLACE PACKAGE Trading IS

PROCEDURE Verify (

pTrans_ID IN Number,

pMember_ID IN NUMBER,

pSymbol IN VARCHAR2,

pAction IN VARCHAR2,

56

pPrice IN NUMBER,

pQuantity IN NUMBER

) ;

END Trading;

/

CREATE OR REPLACE PACKAGE BODY Trading IS

PROCEDURE Verify (

pTrans_ID IN Number,

pMember_ID IN NUMBER,

pSymbol IN VARCHAR2,

pAction IN VARCHAR2,

pPrice IN NUMBER,

pQuantity IN NUMBER

) IS

CURSOR cPending_Orders IS

SELECT Trans_ID,

Member_ID,

Symbol,

Action,

Price,

Quantity

57

FROM Pending_Or<ders

WHERE Action != pAction

AND Price = pPrice

AND Symbol = pSymbol

ORDER BY Trans ID;

vPending_Or<ders cPending_Or,ders%ROWTYPE;

vQuantity Number := pQuantity;

BEGIN

OPEN cPending_Orders;

LOOP

FETCH cPending_Orders INTO vPending_C>r(ders;

IF cPending_Or(ders%FOUND THEN

IF vQuantity > vPending_Orders.Quantity THEN

dbms_output•put_line('>');
DELETE Pending_Or<ders

WHERE Trans_ID = vPending_Orders.Trans_ID;

58

DBMS_OUTPUT.PUT_LINE('vQuantity

vQuantity);

DBMS_OUTPUT.PUT_LINE('vPending_Orders.Quantity : ' ||

vPending_Orders.Quantity);

UPDATE Pending_Orders

SET Quantity = vQuantity -

vPending_Orders.Quantity

WHERE Trans_ID = pTrans_ID;

Shares.Verify(vPending_Orders.Trans_ID);

DBMS_OUTPUT.PUT_LINE('vPending_Orders.Trans_ID : ' ||

vPending_Orders.Trans_ID);

ELSIF vQuantity = vPending_Orders.Quantity

THEN

DBMS_OUTPUT.PUT_LINE('=');

DELETE Pending_Orders

WHERE Trans_ID = vPending_Orders.Trans_ID

59

Shares.Verify(vPending_Orbers.Trans_ID);

DBMS_OUTPUT.PUT_LINE(’vPending_Orders.Trans_ID : ']|

vPending_Orders.Trans_ID);

DELETE Pending_Orders

WHERE Trans_ID = pTrans_ID;

Shares.Verify(pTrans_ID);

DBMS_OUTPUT•PUT_LINE('pTrans_ID : ' ||

pTrans_ID);

ELSE

dbms_output•put_line('<');

UPDATE Pending_Orders

SET Quantity = Quantity - vQuantity

WHERE Trans_ID = vPending_Orciers . Trans_ID

DELETE Pending_Orders

WHERE Trans_ID = pTrans_ID;

60

Shares.Verify(pTrans_ID);

DBMS_OUTPUT.PUT_LINE('pTrans_ID :

pTrans_ID);

END IF;

vQuantity := vQuantity -

vPending_Orders.Quantity; ,

END IF;

EXIT WHEN cPending_Orders%NOTFOUND;

END LOOP;

DBMS_OUTPUT.PUT_LINE('cPending_Orders%ROWCOUNT :

|| cPending_Orders%ROWCOUNT);

CLOSE cPending_Orders;

EXCEPTION

WHEN OTHERS THEN

DBMS_OUTPUT•PUT_Line(SQLERRM);

END Verify;

END Trading,-

61

/

1 Insert Pending_Or<3ers Trigger

CREATE OR REPLACE TRIGGER Order_Pending AFTER INSERT ON

Transactions

REFERENCES OLD AS OLD NEW AS NEW FOR EACH ROW

DECLARE

vExist NUMBER;

BEGIN

SELECT COUNT(*)

INTO vExist

FROM Pending_Orders

WHERE Trans_ID - :new.Trans_ID;

IF vExist = 0 THEN

INSERT INTO Pending_Orders VALUES (

:new.Trans_ID,

:new.Member_ID,

:new.Symbol,

:new.Action,

-.new. Price,

:new.Quantity

62

) ;

ELSE

UPDATE Pending_Orders

SET Quantity = Quantity + :new.Quantity

WHERE Trans_ID = :new.Trans_ID;

END IF;

END;

/

-- 2 Update High-Low Price Trigger

CREATE OR REPLACE TRIGGER Price_History BEFORE UPDATE

ON Stocks

REFERENCES OLD AS OLD NEW AS NEW FOR EACH ROW

BEGIN

IF (:new.Last > :old.High) THEN

:new.High := :new.Last;

ELSIF (:new.Last < :old.Low) THEN

:new.Low := :new.Last;

63

END IF;

END;

/

-- 3 Create Default VSSX Shares for New Members

CREATE OR REPLACE TRIGGER Default_Shares AFTER INSERT

ON Members

REFERENCES OLD AS OLD NEW AS NEW FOR EACH ROW

BEGIN

INSERT INTO SHARE_HOLDERS VALUES (

:new.member_id, 'VSSX', 7, 100, 700);

END;

/

— 4 Let All Shares Owned by Administrator

CREATE OR REPLACE TRIGGER Default_h°lders AFTER INSERT

ON STOCKS

REFERENCES OLD AS OLD NEW AS NEW FOR EACH ROW

BEGIN

64

INSERT INTO SHAREHOLDERS VALUES (

1, :new.symbol, :new.last, :new.shares, :new.last

* :new.shares

) ;

END;

/

65

APPENDIX B

JAVA SERVLET SOURCE CODE

66

package member;

import javax.servlet. *;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.sql.*;

public class login extends HttpServlet {

/**Initialize global variables*/

public void init(ServletConfig config) throws

ServletException {

super.init(config);

try {

Class.forName("oracle.j dbc.driver.OracleDriver")

}

catch (ClassNotFoundException e) {

System.err.printin(e.getMessage());

)

}

//Process the HTTP Post request

67

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

try {

String USERNAME = request.getParameter("username");

String PASSWORD = request.getParameter("password");

// Generate Session

HttpSession session = request.getSession(true);

// Create Connection Object

Connection conn =

DriverManager.getConnection("j dbc:oracle:thin:Sbishop:1521:o

racle","vssx","vssx");

Statement stmt = conn.createStatement();

-ResultSet rset = stmt.executeQuery("SELECT MEMBER_ID,

PASSWORD, FIRST_NAME, STATUS FROM MEMBERS WHERE

UPPER (USERNAME) = '" + USERNAME . toUpperCase () + ""’);

if(rset.next()) {

if (PASSWORD.equals(rset.getString("PASSWORD")) &&

(rset.getString("STATUS").equals("UNLOCK"))) {

session.putValue("access","granted");

68

session.putValue("member_id",

rset.getString("MEMBER_ID"));

session.putValue("username",USERNAME);

session.putValue("first_name",

rset.getString("FIRST_NAME"));

if (USERNAME.equals("admin")) {

response.sendRedirect("/VSSX/admin/index.j sp");

} else {

response.sendRedirect('"/VSSX/port folios.j sp");

}

} else {

response.sendRedirect("/VSSX/login_error.html")

}

} else {

response.sendRedirect("/VSSX/login_error.html");

}

rset.close();

stmt.close();

conn.close();

} catch (SQLException e) {

System.err.println(e.getMessage());

}

}

69

package member;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.sql.*;

public class signup extends HttpServlet {

/**Initialize global variables*/

public void init(ServletConfig config) throws

ServletException {

super.init(config);

try{

Class.forName("oracle.j dbc.driver.OracleDriver")

}

catch (ClassNotFoundException e) {

System.err.printIn(e.getMessage()) ;

}

}

70

//Process the HTTP Post request

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

try {

String USERNAME = request.getParameter("username");

String PASSWORD = request.getParameter("password");

String FIRST_NAME = request.getParameter("first_name")

String MI = request.getParameter("mi");

String LAST_NAME = request.getParameter("last_name");

String EMAIL = request.getParameter("email");

// Create Connection Object

Connection conn =

DriverManager.getConnection("j dbc:oracle:thin:@bishop :1521:o

racle","vssx","vssx");

Statement stmt = conn.createStatement();

stmt.executeUpdate("INSERT INTO MEMBERS

VALUES(MEMBER_SEQ.NEXTVAL, '" + USERNAME + "', '" + PASSWORD

+ " ' , ' " + FIRST_NAME + " ' , '"+ MI + + LAST_NAME +

'”, '" + EMAIL.toLowerCase() + "', 1000000, 'UNLOCK')");

71

// Close Connections

stmt.close();

conn.close();

// Redirect Back to User Manager

response.sendRedirect("/VSSX/");

} catch (SQLException e) {

System.err.printIn(e.getMessage());

}

}

}

package member;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.sql.*;

public class update extends HttpServlet {

/**Initialize global variables*/

72

public void init(ServletConfig config) throws

ServletException {

super.init(config);

try{

Class.forName("oracle.j dbc.driver.OracleDriver");

}

catch (ClassNotFoundException e) { '

System.err.printIn(e.getMessage());

}

}

//Process the HTTP Post request

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

try {

String MEMBER_ID = request.getParameter("member_id");

String USERNAME = request.getParameter("username");

String PASSWORD = request.getParameter("password");

String FIRST_NAME = request.getParameter("first_name")

String MI = request.getParameter("mi");

String LAST_NAME = request. getParameter ("last_name")

String EMAIL = request.getParameter("email");

73

String BALANCE = request.getParameter("balance");

String STATUS = request.getParameter("status");

// Create Connection Object

Connection conn =

DriverManager.getConnection("j dbc:oracle:thin:@bishop:1521:o

racle","vssx","vssx");

Statement stmt = conn.createStatement();

stmt.executeUpdate("UPDATE MEMBERS SET USERNAME='" +

USERNAME + "', PASSWORD^'" + PASSWORD + "', FIRST_NAME=+

FIRSTJSIAME + " ' r MI=’" + MI + "’, LAST_NAME='" + LAST_NAME +

"', EMAIL=’" + EMAIL.toLowerCase() + "', BALANCE=" + BALANCE

+ ", STATUS^"' + STATUS + WHERE MEMBER_ID=" + MEMBER_ID) ;

// Close Connections

stmt.close();

conn.close ();

// Redirect Back to User Manager

response.sendRedirect("/VSSX/admin/users.j sp");

} catch (SQLException e) {

System.err.printin(e.getMessage());

}

74

}

}

package stock;

import javax.servlet.*;

import javax.servlet.http. *;

import java.io.*;

import java.util.*;

import java.sql.*;

public class ipo extends HttpServlet {

/**Initialize global variables*/

public void init(ServletConfig config) throws

ServletException {

super.init(config) ;

try{

Class.forName("oracle.j dbc.driver.OracleDriver")

}

catch (ClassNotFoundException e) {

System.err.println(e.getMessage());

}

}

75

//Process the HTTP Post request

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

try {

String SYMBOL = request.getParameter("symbol");

String NAME = request.getParameter("name");

String LAST = request.getParameter("last");

String HIGH = request.getParameter("high");

String LOW = request.getParameter("low");

String CLOSE = request.getParameter("close");

String SHARES = request.getParameter("shares");

String EXCHANGE = request.getParameter("exchange");

String STATUS = request.getParameter("status");

// Create Connection Object

Connection conn =

DriverManager.getConnection("j dbc:oracle:thin:Qbishop:1521:o

racle","vssx","vssx");

Statement stmt = conn.createStatement();

stmt.executeUpdate("INSERT INTO STOCKS VALUES(+

SYMBOL + "', ’" + NAME + " + LAST + ", " + HIGH + ", " +

76

LOW + ", " + CLOSE + ", " + SHARES + ", SYSDATE, '" +

EXCHANGE + "', + STATUS +

// Close Connections

stmt.close();

conn.close ();

// Redirect Back to User Manager

response.sendRedirect("/VSSX/admin/stocks.jsp")

} catch (SQLException e) {

System.err.println(e.getMessage());

}

}

}

package stock;

import javax.servlet.*;

import javax.servlet.http. *;

import java.io.*;

import java.util.*;

import java.sql.*;

77

public class trade extends HttpServlet {

/**Initialize global variables*/

public void init(ServletConfig config) throws

ServletException {

super.init(config);

try{

Class.forName("oracle.j dbc.driver.OracleDriver");

}

catch (ClassNotFoundException e) {

System.err.println(e.getMessage());

}

}

//Process the HTTP Post request

public void doPost (HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

try {

String MEMBER_ID = request.getParameter("member_id")

String SYMBOL = request.getParameter("symbol");

String ACTION =

request.getParameter("action").toUpperCase();

String PRICE = request.getParameter("price");

78

String QUANTITY = request. getParameter ("quantity’’) ;

String TRANS_NUM = "0";

// Create Connection Object

Connection conn =

DriverManager.getConnection("j dbc:oracle:thin:gbishop:1521:o

racle","vssx","vssx");

// Insert into Transactions

Statement stmt = conn.createStatementO;

stmt.executeUpdate("INSERT INTO TRANSACTIONS

VALUES(TRANS_SEQ.NEXTVAL, " + MEMBER_ID + ", '" + SYMBOL +

"', + ACTION + "’, " + PRICE + ", " + QUANTITY + ", " +

Double.valueOf(PRICE).doubleValue()^Double.valueOf(QUANTITY)

.doubleValue() + ", SYSDATE, 'PENDING')");

// Get Current Sequence Count

Statement stmtl = conn.createStatementO;

ResultSet rset = stmtl.executeQuery("SELECT

TRANS_SEQ•CURRVAL AS TRANS_NUM FROM DUAL");

while (rset.next ()) {

TRANS_NUM = rset.getString(1);

}

79

// Call Oracle Stored Procedure

CallableStatement proc = conn.prepareCall("{

TRADING.VERIFY(?, ?, ?, ?, ?, ?)

proc.setString(1, trans_num);

proc.setstring(2, MEMBER_ID);

proc.setstring(3, SYMBOL);

proc.setString(4, ACTION);

proc.setstring(5, PRICE);

proc.setstring(6, QUANTITY);

proc.execute();

// Close Connections

stmt.close();

conn.close ();

// Redirect Back to User Manager

response.sendRedirect("/VSSX/portfolios.j sp");

} catch (SQLException e) {

System.err.println(e.getMessage());

}

}

}

80

package stock;

import javax.servlet.*;

import javax.servlet.http. *;

import java.io.*;

import java.util.*;

import java.sql.*;

public class update extends HttpServlet {

/**Initialize global variables*/

public void init(ServletConfig config) throws

ServletException {

super.init(config);

try{

Class.forName("oracle.j dbc.driver.OracleDriver")

}

catch (ClassNotFoundException e) {

System.err.println(e.getMessage());

}

}

//Process the HTTP Post request

81

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

try {

String SYMBOL = request.getParameter("symbol");

String NAME = request.getParameter("name");

String LAST = request.getParameter("last");

String HIGH = request.getParameter("high");

String LOW = request.getParameter("low");

String CLOSE = request.getParameter("close");

String SHARES = request.getParameter("shares");

String EXCHANGE = request.getParameter("exchange");

String STATUS = request.getParameter("status");

// Create Connection Object

Connection conn =

DriverManager.getConnection("j dbc:oracle:thin: Qbishop:1521: o

racle","vssx","vssx");

Statement stmt = conn.createStatement();

stmt.executeUpdate("UPDATE STOCKS SET NAME='" + NAME +

LAST=" + LAST + ", HIGH=" + HIGH + ", LOW=" + LOW + ",

CLOSE=" + CLOSE + ", SHARES=" + SHARES + ", EXCHANGE^" +

82

EXCHANGE + " ' , STATUS='" + STATUS + "' WHERE SYMBOL='" +

SYMBOL + " ;

// Close Connections

stmt.close();

conn.close ();

// Redirect Back to User Manager

response.sendRedirect("/VSSX/admin/stocks.j sp");

} catch (SQLException e) {

System.err.println(e.getMessage()) ;

}

}

}

83

APPENDIX C

JAVA SERVER PAGE SOURCE FILES

84

The JSP Source Files are listed in the table below:

(You can find the source codes of these files in the

attached CD-ROM)

Scripts/index.jsp Admin/index.j sp
Scripts/INC top.jsp Admin/INC top.jsp
Scripts/INC bottom.jsp Admin/INC bottom.jsp
Scripts/INC styles.css Admin/INC styles.css
Scripts/login.j sp Admin/login.j sp
Scripts/logout.j sp Admin/logout.jsp
Scripts/portfolios . j sp Admin/bot.j sp
Scripts/signup.j sp Admin/usrUpd.j sp
Scripts/order.j sp Admin/usrCtrl.j sp
Scripts/confirm.j sp Admin/stocks.j sp
Scripts/history.. j sp Admin/stkUpd.j sp

Admin/stkCtrl.j sp

85

APPENDIX D

HTML SOURCE FILES

86

The HTML Source Files are listed in the table below:

(You can find the source codes of these files in the

attached CD-ROM)

Index.html Signup.html
Login Error.html Faq.html
Portfolios.html Stocks.html
Trading.html

87

REFERENCES

This section contains a list of all books, articles and

documents cited in this SRS.

[1] Core Java 2: Volumn I - Fundamentals, by Cay S.

Horstmann and Gary Cornell, Sun Microsystem, Inc. ISBN

0-13-081933-6.

[2] "Developer.com is the leading develop resource for IT

professionals" (http://www.develop.com).

[3] "Economic equilibrium"

(http://en.wikipedia.org/wiki/Economic equilibrium)

[4] "Hollywood Stock Exchange" (http://www.hsx.com).

[5] Homer Alex, Sussman David, Francis Brian, Reilly George,

Esposito, Esposito Dino, Chiarelli Andrea, Kropog Bill,

McQueen Craig, Godfrey Nolan, Robinson Simon, Schenken

John, Tegel Kent, Professional Active Server Pages 3.0,

Wrox Press Inc, September, 1999.

[6] Horstmann S. Cay, Cornel Gary, Core Java2, Volume 1:

Fundamentals, Prentice Hall, December 15, 1998.

[7] JDBC API Tutorial and Reference, 2nd Edition, by Seth

White, Maydene Fisher, Rick Cattell, Graham Hamilton,

and Mark Hapner, Sun Microsystem, Inc. ISBN

0-201-43328-1.

88

Developer.com
http://www.develop.com
http://en.wikipedia.org/wiki/Economic_equilibrium
http://www.hsx.com

[8] Koch George, Loney Kelvin, 0racle8: The Complete

Reference, Oracle Pr., September,1997.

[9] "Marcopoly" (http://www.marcopoly.scorpioweb.com).

[10] Oracle 9i Programming: A Primer, by Rajshekhar

Sunderraman, Addison Wesley Longman, Inc. ISBN 0-321-

19498-5.

[11] Serge Abiteboul, Data on the Web: From Relations to

Semistructured Data and XML, Morgan Kaufmann Publishers,

NY 1998.

[12] Tulloch Mitch, Santry Patrick, Administering IIS 5,

Computing Mc-Graw-Hill, March 20, 2000.

[13] "Sports Team Stock Market" (http://www.fantasy-

balls tree t .com/).

[14] "Virtual Stock Exchange"

(http://www.virtualstockexchange.com/).

[15] "Yahoo! Finance" (http://finance.yahoo.com/)

89

http://www.marcopoly.scorpioweb.com
http://www.fantasy-
balls_tree_t_.com/
http://www.virtualstockexchange.com/
http://finance.yahoo.com/

	Virtual Sports Stock Exchange
	Recommended Citation

	VIRTUAL SPORTS STOCK EXCHANGE

	Apache Web Server with JServ engine.

	Figure 14. Screen Shot of User Portfolios Page

	Jser Manual

	EXCEPTION

	END Shares;

	/

	FETCH cPending_Orders INTO vPending_C>r(ders;

	INSERT INTO SHAREHOLDERS VALUES (

	END;

	try{

	stmt.close();

