
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

12-2018

ORGANIZE EVENTS MOBILE APPLICATION ORGANIZE EVENTS MOBILE APPLICATION

Thakshak Mani Chandra Reddy Gudimetla
005647976@coyote.csusb.edu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Computer and Systems Architecture Commons, Data Storage Systems Commons, and the

Other Computer Engineering Commons

Recommended Citation Recommended Citation
Gudimetla, Thakshak Mani Chandra Reddy, "ORGANIZE EVENTS MOBILE APPLICATION" (2018).
Electronic Theses, Projects, and Dissertations. 772.
https://scholarworks.lib.csusb.edu/etd/772

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/212814276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/772?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

ORGANIZE EVENTS MOBILE APPLICATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Thakshak Mani Chandra Reddy Gudimetla

December 2018

ORGANIZE EVENTS MOBILE APPLICATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Thakshak Mani Chandra Reddy Gudimetla

 December 2018

Approved by:

Dr. David Turner, Advisor, Computer Science and Engineering

Dr. Josephine Mendoza, Committee Member

Dr. Yunfei Hou, Committee Member

© 2018 Thakshak Mani Chandra Reddy Gudimetla

iii

ABSTRACT

In a big organization there are many events organized every day. To know

about the events, we typically need to check an events page, rely on flyers or on

distributed pamphlets or through word of mouth. To register for an event a user

now a days typically does this online which involves inputting user details. At the

event, the user either signs a sheet of paper or enters credentials in a web page

loaded on a tablet or other electronic device. Typically, this is a time-consuming

process with many redundancies like entering user details every time the user

wants to register for a new event and re-entering the details at the event. This

project designs a system that eliminates these redundancies and improves event

management.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my mentor, supporter and

advisor Dr. David Turner for encouraging and guiding me for completing this

project. I would also like to thank my committee members Dr. Josephine

Mendoza and Dr. Yunfei Hou for their valuable suggestions and support.

I would also like to thank my parents, Mr. Yogendra Gudimetla and Mrs.

Chandra Kala Gudimetla and my sister, Venneesha Gudimetla who stood by my

side in every situation and supported me mentally and financially.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ...iv

LIST OF TABLES ...ix

LIST OF FIGURES ... x

CHAPTER ONE: INTRODUCTION

Background .. 1

Purpose ... 1

Existing System ... 1

CHAPTER TWO: SYSTEM ANALYSIS

Proposed System .. 3

System Requirement Specification .. 3

Hardware Requirements ... 3

Software Requirements ... 3

Dependencies .. 4

Project Dependencies ... 4

Project Development Dependencies ... 7

CHAPTER THREE: SYSTEM DESIGN

Scenarios ... 9

Login ... 9

View All Events ... 9

View My Events ... 9

Register/Un-Register ... 10

vi

Attend Event ... 10

Add Event ... 11

Receive Attendee .. 11

Logout ... 11

Data Flow Diagram .. 11

Use Case Diagram .. 13

Sequence Diagrams .. 13

Login ... 14

Logout ... 14

View All Events ... 15

View My Events ... 15

Add Event ... 16

Register/Unregister ... 16

Attend Event ... 17

Receive Attendees .. 18

Identified Custom Components .. 19

AppButton ... 19

ListEvents ... 19

Navigation .. 20

Switch Navigator ... 20

Stack Navigator ... 21

Loading ... 22

Login ... 23

Homepage .. 24

vii

All Events .. 25

My Events ... 26

Event Details ... 28

Create Event ... 31

Attend Event ... 33

Receive Attendees .. 34

Database Storage .. 34

Database Hierarchy .. 35

Data Store .. 36

CHAPTER FOUR: SYSTEM TESTING

Unit Testing .. 38

Integration Testing ... 40

User Acceptance Testing ... 40

CHAPTER FIVE: FUTURE ENHANCEMENTS

Locate Event Location on Maps ... 43

Better Method like Near Field Communication to Check-In to the
Event.. 43

Notifications and Reminders for New and Registered Events 44

Share Events with Friends ... 44

CHAPTER SIX: CONCLUSION .. 45

APPENDIX A: APPLICATION CODE ... 46

index.js ... 47

App.js ... 47

rootSwitch.js .. 47

viii

appNavigator.js .. 48

appHomepage.js .. 49

allEvents.js ... 50

myEvents.js ... 51

addEvent.js .. 52

eventDetails.js ... 53

receiveAttendees.js ... 55

appButton.js ... 56

listEvents.js .. 56

dataStore.js .. 58

firebase.config.js .. 61

APPENDIX B: APPLICATION ASSETS ... 62

CSUSB Events Application Logo ... 63

Add Event Button ... 64

Logout Button .. 65

REFERENCES ... 66

ix

LIST OF TABLES

Table 1. User Object ... 35

Table 2. Event Object ... 36

Table 3. User Acceptance Testing – Users and Feedback 41

x

LIST OF FIGURES

Figure 1. Project Dependencies ... 4

Figure 2. Firebase Configuration .. 6

Figure 3. Project Development Dependencies ... 7

Figure 4. Data Flow Diagram .. 12

Figure 5. Use Case Diagram .. 13

Figure 6. Sequence Diagram – Login ... 14

Figure 7. Sequence Diagram – Logout ... 14

Figure 8. Sequence Diagram – View All Events ... 15

Figure 9. Sequence Diagram – View My Events .. 15

Figure 10. Sequence Diagram – Add Event ... 16

Figure 11. Sequence Diagram – Register/Unregister ... 16

Figure 12. Sequence Diagram – Attend Event ... 17

Figure 13. Sequence Diagram – Receive Attendees .. 18

Figure 14. AppButton Component .. 19

Figure 15. ListEvents Component .. 20

Figure 16. Switch Navigator.. 21

Figure 17. Stack Navigator ... 22

Figure 18. Loading Screen ... 23

Figure 19. Login Screen ... 24

Figure 20. Homepage ... 25

Figure 21. AllEvents ... 26

xi

Figure 22. My Events .. 27

Figure 23. My Events (Moderator) .. 28

Figure 24. Event Details (Unregistered) ... 29

Figure 25. Event Details (Registered) ... 30

Figure 26. Event Details (Creator) .. 31

Figure 27. Create Event ... 32

Figure 28. Attend Event .. 33

Figure 29. Receive Attendees .. 34

Figure 30. CSUSB Events Database Objects ... 35

Figure 31. dbData Singleton Class Diagram .. 37

Figure 32. Creating Snapshots ... 39

Figure 33. Snapshots Comparison ... 40

1

CHAPTER ONE

INTRODUCTION

Background

The two major smartphone platforms used worldwide are Android and

iOS. So, if we want to develop a smartphone application which is intended to be

used by most people we at least need to develop it in Android and iOS platforms.

It will be very difficult to develop the applications in each platform separately. So,

we need a cross platform application development framework. React Native is

chosen as it reduces the pain of developing the applications for each platform

independently. We can write our code in JSX and react.js to create applications

for our required platform.

Purpose

The purpose of this project is to develop a smartphone application which

makes the process of announcing, registering, and attending to any events

offered by any organization events faster and easier.

Existing System

This project uses CSUSB events to demonstrate the system. Events on

campus are posted by the department organizing the event in their department

website. The CSUSB Events website collects the information from these

department websites and creates organized and browsable events based on the

2

event date. When you want to register for an event you need to click on an event

which then redirects you to the details on the department page, where you enter

your details to register for that event. On the day of the event you need to show

your Coyote ID card at the event entrance and enter your details in the webpage

on the tablet device or just write them down on an attendance sheet.

In the existing system entering the details for registration and again

entering details for attending the event is a redundant process.

Moreover, filling in details before checking-in guests is a very slow process which

causes a bottleneck.

3

CHAPTER TWO

SYSTEM ANALYSIS

Proposed System

This project aims at developing a smartphone application for the event

management functions of announcing, registering, and checking-in to public

events. The features of this application require proper authentication to access.

This application implements the one-click register button to make the registration

procedure easy. When attending an event, the front desk will display a bar code

generated by the application and the attendee just scans that barcode with the

application to attend the event.

System Requirement Specification

Hardware Requirements

• A PC with a minimum of 8GB RAM, 20GB free HDD space and a 2Ghz

processor (Android Development Only).

• A Macintosh Computer with a minimum of 8GB RAM, 20GB free HDD space

and a 2Ghz processor (Android and iOS Development).

• Android phone with a minimum of 1GB RAM and an iPhone 5 or newer.

Software Requirements

• Firebase Backend

• Frameworks: React Native

4

• Development: VS Code IDE, Node.js, npm (node package manager), Android

SDK, Jest.

Dependencies

Dependencies are the list of frameworks and libraries required to run the

application.

Project Dependencies

Project dependencies are the list of frameworks and libraries required to

run the production build of the application.

Figure 1. Project Dependencies

React. React.js is a highly efficient and productive Java Script library used

for building single page web applications. This was developed at Facebook.

Normally DOM (Document Object Model) manipulations are very costly, React

reduces the DOM writes by creating a virtual DOM and makes only the minimal

5

required changes in the DOM using virtual DOM. This is achieved by using a

render function that calculates the minimum required changes.

React Native. React Native is a cross platform mobile application

development framework. Unlike other cross platform mobile application

development frameworks like Ionic, Cordova, etc., which renders the app using

the built-in browser functionality (called Hybrid Apps), React Native uses native

components to render the app. Since native components are faster, developing

apps in React Native is better when compared to Hybrid Apps.

JSC Android. React Native Framework on android uses an old version of

JSC (Java Script Core) Java Script Engine so to incorporate the new updated

builds into the React Native Framework we use this library as a dependency.

MobX. As the codebase of a React Native app gets larger, we need a

state management solution for managing the application state during the lifetime

of the app. MobX is the easiest alternative to state management solution

available to React.

React Navigation. React Native Navigation library is used for navigation

between application pages in a React Native Application. It is completely

customizable and extensible. In our application, this library is used to manage

navigation between different pages.

React Native Camera. React Native Camera is an all in one native camera

library for React Native. This library is used in our application for scanning the

QR Code when attending an event.

6

React Native QR Code. React Native QR Code library is a QR Code

generator library which generates a scannable QR Code with a given string. In

this application this library is used to generate the event QR Code from the event

code.

Firebase. Backend with authentication and Real Time Database. It

manages the infrastructure for us which makes building mobile apps faster.

React Native Firebase. React Native Firebase library provides an API to

communicate with Firebase backend. This API makes writing code which

requires backend communication simple and easy.

Figure 2. Firebase Configuration

Moment. Moment.js is a date and time library used in this application for

parsing and formatting the event date and time.

Tcomb Form Native. Tcomb Form Native is a library for creating forms for

getting data from the user. This library features built in form validation and smart

rendering capabilities. My application uses this for getting the event information

entered by the moderator when creating a new event.

7

Project Development Dependencies

Project development dependencies are the list of frameworks and libraries

required to run the development build of the application.

Figure 3. Project Development Dependencies

Babel Preset React Native. Some developers use the latest syntax in Java

Script when writing code for the application but if the framework uses an old

version of the language and does not know the new syntax it throws an error.

The developer must spend a lot of time converting the syntax to be understood

by the old engine. Babel transforms syntax written in any version of Java Script

to raw Java Script understandable by most Java Script engines.

Babel Plugin Transform Decorators Legacy. An individual objects

functionality can be extended using decorators. Decorators are written right

before a class, function or variable declaration. Decorators usually start with an

‘@’ symbol followed by the decorator name. ES7 Decorators are not supported

by default in React Native. So, we need this plugin to transform decorators.

MobX works by using decorators.

8

React Test Renderer. React test renderer converts react components to

pure Java Script objects. These are mainly useful in creating a snapshot of the

component which is used in unit testing applications.

Jest. Jest is a highly productive unit testing framework for testing

JavaScript applications. Jest features snapshot testing which checks the

rendering of the component by taking a snapshot and a JSON tree produced

directly from the component code.

Babel Jest. A plugin to run tests with Jest and provides support to ES6

and ES7 syntax.

9

CHAPTER THREE

SYSTEM DESIGN

The systematic approach chosen before the actual system is developed in

the process of software development is called system design. The components,

modules, architecture, and the data flowing through this system are defined in

this stage.

Scenarios

Login

1. User launches the CSUSB Events Application.

2. Application displays a login page to the user.

3. User enters Coyote ID and password and clicks the login button.

4. Application sends the login information to the server for authentication.

5. Server authenticates the user and sends the response to the application.

6. Application shows the homepage of the authenticated user.

View All Events

1. User is successfully authenticated.

2. Application shows the user homepage.

3. User clicks on the “All Events” button.

4. Application displays all the events to the user.

View My Events

1. User is successfully authenticated.

10

2. Application shows the user homepage.

3. User clicks on the “My Events” button.

4. Application filters the events in which the user is involved and displays the

filtered events to the user. Involved means that the user is either creator of

the event or registered for the event.

Register/Un-Register

1. User clicks on an event.

2. Application shows the event details and a button to register/ un-register.

3. User clicks on the register/un-register button.

4. Application updates the event data by adding/removing the user from list

of attendees.

Attend Event

1. User clicks on an event.

2. Application displays event details and an “Attend” button if the user is

registered to the event.

3. User clicks on the “Attend Button”.

4. Application opens a bar code scanner for scanning the event QR code.

5. User scans the event QR code displayed at the event.

6. Application checks the scanned code with the event code.

7. Application updates the event attendance list on the server with the user id

and displays scan success message.

11

Add Event

1. Moderator clicks on “Add Event” button.

2. Application displays a form for entering the event details.

3. Moderator enters all the details in the form.

4. Moderator clicks on “Create Event” button.

5. Application updates the server with the new event.

Receive Attendee

1. Moderator clicks on an event to receive attendees.

2. Application generates a QR code from the event code.

3. Application displays the generated QR code for the attendee to scan.

Logout

1. User clicks on Logout button.

2. Application sends logout signal to server and waits for response.

3. Server ends user session and returns status to application.

4. Application clears user data and shows the login page.

Data Flow Diagram

In a process or a system, the flow of data or information is mapped with

the help of a Data Flow Diagram.

12

Figure 4. Data Flow Diagram

13

Use Case Diagram

The elements in a system interact to get a job done in a system. These

interactions can be depicted using a Use Case Diagram.

Figure 5. Use Case Diagram

Sequence Diagrams

Sequence Diagrams depict the interactions among various objects in the

system in time sequences.

14

Login

Figure 6. Sequence Diagram – Login

Logout

Figure 7. Sequence Diagram – Logout

15

View All Events

Figure 8. Sequence Diagram – View All Events

View My Events

Figure 9. Sequence Diagram – View My Events

16

Add Event

Figure 10. Sequence Diagram – Add Event

Register/Unregister

Figure 11. Sequence Diagram – Register/Unregister

17

Attend Event

Figure 12. Sequence Diagram – Attend Event

18

Receive Attendees

Figure 13. Sequence Diagram – Receive Attendees

19

Identified Custom Components

AppButton

A custom button component is required because we need the same

styling for any text button throughout the application.

Figure 14. AppButton Component

ListEvents

We have identified that the purpose of All Events page and My Events

page is to list events so a component is required which takes some events and

display them.

20

Figure 15. ListEvents Component

Navigation

Switch Navigator

Switch Navigators switch between different screens and do not save the

information about the switching done. Because of this feature Switch Navigator is

used for Login purpose. In our implementation we have a Loading Screen which

is displayed when fetching the user data from the server, a Login Screen which is

used for logging in to the application and a Stack Navigator.

21

Figure 16. Switch Navigator

Stack Navigator

After successfully logging in to the application we need a navigator which

can store the data about moving between screens and Stack Navigator is the

right choice which pushes the switching from one screen to another into a stack

which makes the navigation in the application easy.

22

Figure 17. Stack Navigator

Loading

A screen with a spinner in the center to show that the application is

loading resources.

23

Figure 18. Loading Screen

Login

A screen to login into the application with student Coyote ID and

password.

24

Figure 19. Login Screen

Homepage

In this screen the user is greeted with a welcome note followed by his

name and he can navigate to All Events screen or My Events screen by tapping

on the relevant button.

25

Figure 20. Homepage

All Events

A screen which contains brief information about all the events in the

database.

26

Figure 21. AllEvents

My Events

A screen which contains brief information about the events in which the

user is involved. If the user is a moderator a circular floating button is displayed

at the bottom right of the page to create a new event.

27

Figure 22. My Events

28

Figure 23. My Events (Moderator)

Event Details

This screen is displayed when the user clicks on an event. This screen

contains the details of an event such as name, description, organizer, location,

date and time of the event, and buttons to register or unregister and attend event

for the attendees. A moderator can see receive attendees button and delete

event button.

29

Figure 24. Event Details (Unregistered)

30

Figure 25. Event Details (Registered)

31

Figure 26. Event Details (Creator)

Create Event

A form to get input from moderator to register a new event. It takes details

like event name, organizer, location, description, date and time.

32

Figure 27. Create Event

33

Attend Event

A screen which launches a QR code scanner and shows a checked in

alert if the correct event barcode is scanned.

Figure 28. Attend Event

34

Receive Attendees

A screen which displays a generated QR code from the event code for the

attendee to scan.

Figure 29. Receive Attendees

Database Storage

The CSUSB Events application requires that all the information on the

users and events to be available in the Firebase Real-Time Database.

35

Database Hierarchy

Since firebase uses a NoSQL Database, data is stored as JSON. We

created a main object “csusbevents” which contains two objects “users” and

“events”.

Figure 30. CSUSB Events Database Objects

Users. Users Object store the information on all users. Each user is

uniquely identified using their Coyote ID number.

Table 1. User Object

Attribute Datatype Description

Name String First and last name of the user.

Dob String

(MM-DD-YYYY)

Date of birth of the user.

Major String Major of study of the user.

Moderator Boolean A flag to identify that the user is a moderator
or not. If the value is true the user is a

36

moderator and if the value is false he is not a
moderator.

Events. Events Object stores the information on all events. Each event is

given a unique key generated by firebase.

Table 2. Event Object

Attribute Datatype Description

Name String Event name.

Code String Unique event code.

CreatorId String The Id of the event creator.

Desc String Description about the event.

Organizer String The department organizing the event.

Moderators Object Lists all the moderators who can make changes to
this event.

When Object The date and time of the event.

Where String The location where the event takes place.

Attendees Object List containing the IDs of all users registered for
the event.

Attended Object List containing the Ids of all users who attended
the event.

Data Store

It is always recommended to store the server communication logic and

data requested from the server in one place which can later be accessible by the

37

entire application. We created a Singleton dbData through which we can

communicate with server and make data requests.

Figure 31. dbData Singleton Class Diagram

38

CHAPTER FOUR

SYSTEM TESTING

In any software development project testing should be given the same

priority as development. Testing ensures bugless, reliable and quality application

is produced. A well tested application ensures low maintenance costs in the long

run. Testing should be done in all phases of the application development and the

methods of testing used in this project are described below.

Unit Testing

Unit testing is the process of testing the smallest unit in the application to

determine whether the individual units give the expected output for a specific

input. Unit testing the application is done manually and using the Jest Java Script

Testing Framework. Jest uses snapshots to test individual units in the

application. A snapshot is an expected look of the component when it is

rendered. When the test is run a screenshot of the rendered page is taken and

compared with the snapshot. This kind of tests ensures that the user interface

does not change unexpectedly.

39

Figure 32. Creating Snapshots

40

Figure 33. Snapshots Comparison

Integration Testing

Integration Testing tests the application for unexpected behavior when the

tested individual units are integrated. Integration tests in the application are done

manually. If any unexpected behavior is observed, the bugs are documented and

fixed and again tested to ensure the bug fixes will not create new bugs when

interacting with other components.

User Acceptance Testing

The developed application will not be released until the user acceptance

testing is successful. In this phase of testing some users are randomly selected

41

and are briefed about the application. An alpha build of the application is installed

on few devices for some selected users to test. The users use the application as

a normal user and report any unexpected behavior or problems faced during the

test usage. The feedback from the users are taken, analyzed and any confirmed

bugs or issues they will be resolved and again sent for user testing until the user

does not find any issues with the app.

Table 3. User Acceptance Testing – Users and Feedback

User Name Admission
Status

Role User
Comment
/Feedback

Notes

Harika

Alluwala

Female;
Conditional
ly
Admitted:
Fall 2018

User Problem:
Event
Description
Page won’t
scroll down
when the
event
description is
too long.

Fixed: Updated
EventDetails component
to use ScrollView
component instead of
View component.

Charitha
Chanamolu

Female;
Conditional
ly
Admitted:
Fall 2016

Moderator Problem:
Application
won’t go
beyond the
loading page.

Fixed: Application was
struck because it lost
connection with the
server as the user’s
phone lost internet
connectivity. This issue
was resolved by updating
the text on the loading
screen.

42

Testing the application is done with utmost care and ensure that all

identified bugs and issues are resolved, and the production build of the

application works as intended.

43

CHAPTER FIVE

FUTURE ENHANCEMENTS

The ideas for extending this project which can make the CSUSB Events

application better are listed below.

Locate Event Location on Maps

When creating an event, the moderator can mark the location of the event

on the map and the user attending the event can get directions from location of

origin to the event location. This make a user new to CSUSB find an event

location easily.

Better Method like Near Field Communication to Check-In to the Event

When checking in to the event, with features like Near Field

Communication a user can check in to the event with just a tap on the receiver

with their phone. This improves the check-in time of the guests to the event

because unlike scanning using camera which needs the device camera to be

angled parallel pointing to the QR Code which requires adjustment, Near Field

Communication is fast because in which angle the devices may be check-in

takes place with only one tap.

44

Notifications and Reminders for New and Registered Events

Notifications for new events keeps a user aware of all events going on

campus. Whenever a new event is posted, the user gets a pop-up notification on

his phone. Adding reminders for the registered events to remind on the day of the

event will ensure that the user does not miss the event.

Share Events with Friends

Event share feature by which the users can share the events to which they

are attending with their friends through which the users need not search for the

event in the app instead just clicks on a link to see the event information in the

app.

45

CHAPTER SIX

CONCLUSION

This project created software that eliminates unnecessary data input to

save time for both event attendees and organizers. Events organized have an

easier way of registering and attending. The developed application is tested and

free from errors and works with a wide variety of scenarios. This project has the

potential of expanding to include features such as sending the event attendance

list to event organizers, generating analytics to see which type of events attract

which type of users and what times and days of the week are best for these

events. The system can also be expanded to provide event suggestions based

on user interests.

46

APPENDIX A

APPLICATION CODE

47

index.js

import React from 'react';

import { AppRegistry } from 'react-native';

import App from './App';

export default AppRegistry.registerComponent('test', () => App);

App.js

import React, { Component } from 'react';

import { RootSwitch } from './app/navigation/rootSwitch';

import NavigationService from './app/navigation//NavigationService';

export default class App extends Component<{}> {

 render() {

 return (

 <RootSwitch ref={navigatorRef => {

 NavigationService.setTopLevelNavigator(navigatorRef);

 }}/>

);

 }

}

rootSwitch.js

import { createSwitchNavigator } from 'react-navigation'

// import the different screens

import LoadingScreen from './loadingScreen'

import Login from './login'

import RootStack from './appNavigator'

// create our app's navigation

export const RootSwitch = createSwitchNavigator(

 {

 LoadingScreen,

 Login,

 rootStack: RootStack,

 },

 {

 initialRouteName: 'LoadingScreen'

 }

);

48

appNavigator.js

import { createStackNavigator } from 'react-navigation';

import AppHomepage from './appHomepage'

import AllEvents from './allEvents'

import MyEvents from './myEvents'

import EventDetails from './eventDetails'

import AttendEvent from './attendEvent'

import ReceiveAttendees from './receiveAttendees'

import AddEvent from './addEvent.js'

import React from 'react';

import { Image, TouchableOpacity } from 'react-native';

import dbData from '../store/dataStore'

import NavigationService from './NavigationService';

logOut = function()

{

 dbData.signOut();

 NavigationService.navigate('Login');

}

const RootStack = createStackNavigator(

 {

 appHome: AppHomepage,

 allEvents: AllEvents,

 myEvents: MyEvents,

 eventDetails: EventDetails,

 attendEvent: AttendEvent,

 receiveAttendees: ReceiveAttendees,

 addEvent: AddEvent,

 },

 {

 initialRouteName: 'appHome',

 navigationOptions: {

 headerStyle: {

 backgroundColor: '#005eb8',

 },

 headerRight: (

 <TouchableOpacity activeOpacity={0.5} onPress={logOut}

 style={{

 marginRight: 10,

 width: 32,

 height: 32,

 alignItems: 'center',

 justifyContent: 'center',

 }}>

 <Image source={require('../assets/images/logout.png')}

 style={{

 resizeMode: 'contain',

 width: 32,

49

 height: 32,

 }} />

 </TouchableOpacity>

),

 headerTintColor: '#fff',

 headerTitleStyle: {

 fontWeight: 'bold',

 },

 },

 }

);

export default RootStack;

appHomepage.js

import React, { Component } from 'react';

import { View, Text, ActivityIndicator,StyleSheet} from 'react-

native';

import AppButton from '../components/appButton';

import dbData from '../store/dataStore'

import firebase from '../firebase.config';

import { observer } from 'mobx-react/native';

@observer

class AppHomepage extends Component {

 state = { currentUser: null }

 componentDidMount() {

 const { currentUser } = firebase.auth();

 this.setState({ currentUser });

 }

 static navigationOptions = {

 title: 'CSUSB Events',

 };

 render() {

 const { currentUser } = this.state;

 this.CSUSBEvents = dbData.getEvents();

 return (dbData.isLoaded() ?

 <View style={{ flex: 1, alignItems: 'center', justifyContent:

'center' }}>

 <Text style = {{

 fontSize: 32,

 fontWeight: 'bold',

 }}>

 Welcome {dbData.getUserName()}!

 </Text>

 <AppButton

 title="All Events"

50

 onPress={() => {

 this.props.navigation.navigate('allEvents', {

 CSUSBEvents: this.CSUSBEvents,

 });

 }}

 />

 <AppButton

 title="My Events"

 onPress={() => {

 this.props.navigation.navigate('myEvents', {

 CSUSBEvents: this.CSUSBEvents,

 });

 }}

 />

 </View>:

 <View style={styles.container}>

 <Text>Loading...</Text>

 <Text style={styles.txt}>Check your internt connectivity and

 relaunch application if this takes more than 10 seconds.

 </Text>

 <ActivityIndicator size="large" />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 },

 txt: {

 padding: 15,

 textAlign: 'center',

 }

})

export default AppHomepage;

//export default testable('AppHomepage.View.Text')(AppHomepage);

allEvents.js

import React, { Component } from 'react';

import ListEvents from '../components/listEvents';

import {observer} from 'mobx-react/native';

import dbData from '../store/dataStore'

@observer

class AllEvents extends Component {

51

 static navigationOptions = {

 title: 'All Events',

 };

 render() {

 const { navigation } = this.props;

 CSUSBEvents = navigation.getParam('CSUSBEvents', {});

 console.log(dbData.isLoaded());

 return (

 <ListEvents eventList = {CSUSBEvents} navigation = {

navigation }/>

);

 }

}

export default AllEvents;

myEvents.js

import React, { Component } from 'react';import { StyleSheet, View,

Image, TouchableOpacity, Alert, Text } from 'react-native';

import ListEvents from '../components/listEvents';

import {observer} from 'mobx-react/native';

import firebase from '../firebase.config';

import dbData from '../store/dataStore'

@observer

class MyEvents extends Component {

 static navigationOptions = {

 title: 'My Events',

 };

 navigateTo=()=>{

 this.props.navigation.navigate('addEvent');

 }

 myEvent=(e)=>{

 if(dbData.isUserAttending(e)!==null || dbData.hasUserAttended(e)

|| dbData.isUserCreator(e))

 return true;

 return false;

 }

 render() {

 const { navigation } = this.props;

 CSUSBEvents = navigation.getParam('CSUSBEvents', {});

 return (

 <View style={styles.MainContainer}>

 <ListEvents eventList = {CSUSBEvents.filter((event) =>

this.myEvent(event))} navigation = { navigation } />

 {dbData.isUserModerator() ?

52

 <TouchableOpacity activeOpacity={0.5}

onPress={this.navigateTo} style={styles.TouchableOpacityStyle} >

 <Image

source={require('../assets/images/floatingActionButton.png')}

 style={styles.FloatingButtonStyle} />

 </TouchableOpacity> : null

 }

 </View>

);

 }

}

const styles = StyleSheet.create({

 MainContainer: {

 flex: 1,

 backgroundColor : '#F5F5F5'

 },

 TouchableOpacityStyle:{

 position: 'absolute',

 width: 64,

 height: 64,

 alignItems: 'center',

 justifyContent: 'center',

 right: 30,

 bottom: 30,

 },

 FloatingButtonStyle: {

 resizeMode: 'contain',

 width: 64,

 height: 64,

 }

});

export default MyEvents;

addEvent.js

import React, { Component } from 'react';

import { ScrollView, StyleSheet, Button } from 'react-native';

import moment from 'moment';

import t from 'tcomb-form-native'; // 0.6.9

import dbData from '../store/dataStore';

const Form = t.form.Form;

53

const User = t.struct({

 name: t.String,

 organizer: t.String,

 location: t.String,

 description: t.maybe(t.String),

 date: t.Date,

 fromTime: t.Date,

 toTime: t.Date

});

eventDetails.js

import React, { Component } from 'react';

import { StyleSheet, Button, Text, TextInput, ScrollView, View }

from 'react-native';

import AppButton from '../components/appButton';

import dbData from '../store/dataStore'

import Spinner from 'react-native-loading-spinner-overlay';

class EventDetails extends Component{

 constructor(props) {

 super(props);

 this.event = this.props.navigation.getParam('event', {});

 this.state = {

 visible : false

 };

 }

 static navigationOptions = {

 title: 'Event Details',

 };

 stopLoading = ()=>{

 this.setState(pState => {

 return {visible: false}

 });

 }

 render() {

 let eventStatus = dbData.isUserAttending(this.event)!==null;

 return(

 <ScrollView style={{ flex: 1 }}>

 <Spinner visible={this.state.visible}

textContent={"Loading..."} textStyle={{color: '#FFF'}} />

 <View style={styles.container}>

 <Text

style={styles.eventName}>{this.event.name}</Text>

 <Text

style={styles.item}>{this.event.desc}</Text>

 <Text>Organizer: {this.event.organizer}</Text>

 <Text>Location: {this.event.where}</Text>

54

 <Text>Date: {this.event.when.date}</Text>

 <Text>Time: {this.event.when.fromTime} to

{this.event.when.toTime}</Text>

 </View>

 {dbData.isUserCreator(this.event) ||

dbData.hasUserAttended(this.event) ? null :

 <View>

 <AppButton

 title={ eventStatus ? "UnRegister" :

"Register"}

 onPress={() => { eventStatus ?

dbData.removeUserFromAttendees(this.event,this.stopLoading)

 :

dbData.addUserToAttendees(this.event,this.stopLoading);

 this.setState(pState => { return

{visible: true} });

 }}

 />

 {eventStatus ?

 <AppButton //active only if user

registerd

 title="Attend"

 onPress={() =>

{this.props.navigation.navigate('attendEvent',{event:

this.event});}}

 /> : null

 }

 </View>

 }

 {dbData.isUserCreator(this.event) ?

 <View>

 <AppButton //active only on day of event and

user is creator of event

 title="Receive Attendees"

 onPress={() =>

{this.props.navigation.navigate('receiveAttendees', { barcode:

this.event.code,});}}

 />

 <AppButton

 title="Delete Event"

 onPress={() =>

{dbData.deleteEvent(this.event);

this.props.navigation.goBack(null);}}

 />

 </View> : null

 }

 </ScrollView>

);

 }

}

const styles = StyleSheet.create({

55

 container: {

 paddingTop: 5,

 margin: 5,

 padding: 10,

 backgroundColor:'lightgray',

 borderRadius:10,

 borderWidth: 1,

 borderColor: 'gray'

 },

 item: {

 paddingTop: 5,

 margin: 5,

 padding: 10,

 backgroundColor:'white',

 borderRadius:10,

 borderWidth: 1,

 borderColor: 'gray'

 },

 eventName: {

 fontSize: 32,

 fontWeight: 'bold',

 },

 eventDate: {

 fontSize: 12,

 },

})

export default EventDetails;

receiveAttendees.js

import React, { Component } from 'react';

import QRCode from 'react-native-qrcode';

import {Text} from 'react-native';

import {

 StyleSheet,

 View,

 TextInput

} from 'react-native';

export default class ReceiveAttendees extends Component{

 static navigationOptions = {

 title: 'Event Code',

 };

 state = {

 text: 'csusb-events-app',

 };

 render() {

56

 return (

 <View style={styles.container}>

 <Text style={{padding:10,fontSize: 18,}}>Scan this code

to Attend</Text>

 <QRCode

 value={this.state.text}

 size={300}

 bgColor='black'

 fgColor='white'/>

 </View>

);

 };

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: 'white',

 alignItems: 'center',

 justifyContent: 'center'

 },

});

appButton.js

import React, { Component } from 'react';

import { View, Text, Button } from 'react-native';

export default class AppButton extends Component{

 render() {

 return (

 <View style={{ marginTop: 5, margin:10 }}>

 <Button

 title={this.props.title}

 onPress={this.props.onPress}

 />

 </View>

);

 }

}

listEvents.js

import React, { Component } from 'react';

import { FlatList, StyleSheet, View, Text, TouchableOpacity } from

'react-native';

57

export default class ListEvents extends Component {

 render() {

 return (

 <View style={styles.container}>

 <FlatList

 data={this.props.eventList.map((item, i) =>

Object.assign({key:i}, item))}

 renderItem={({item}) =>

 <TouchableOpacity style={styles.item}

 onPress={() =>

{this.props.navigation.navigate('eventDetails', { event: item,});}}>

 <Text

style={styles.eventName}>{item.name.substring(0,32)}{item.name.lengt

h<32 ? "" : "..."}</Text>

 <Text

style={styles.eventOrganizer}>{item.organizer}</Text>

 <Text

style={styles.eventDate}>{item.when.date}</Text>

 </TouchableOpacity>

 }

 />

 </View>

);

 }

 }

const styles = StyleSheet.create({

 container: {

 flex: 1,

 paddingTop: 22

 },

 item: {

 margin: 5,

 padding: 10,

 height: 86,

 backgroundColor: 'lightgray',

 },

 eventName: {

 fontSize: 18,

 },

 eventDate: {

 alignSelf: 'flex-end',

 fontSize: 12,

 },

})

58

dataStore.js

import firebase from '../firebase.config';

import {observable} from 'mobx';

import moment from 'moment';

class dbData{

 @observable loaded = false;

 @observable CSUSBEvents = [];

 users = {};

 eventSnap = {};

 JSONobjToJSobj(jsonO,jsO)

 {

 for (let objKey in jsonO){

 jsO.push(jsonO[objKey]);

 }

 }

 constructor(props){

 firebase.database()

 .ref('/')

 .on('value',function(snapshot) {

 this.CSUSBEvents.length=0;

 let snap = snapshot.val();

 this.users = snap['users'];

 this.eventSnap = snap['events'];

 this.JSONobjToJSobj(this.eventSnap,this.CSUSBEvents);

 this.loaded = true;

 }.bind(this));

 }

 isLoaded()

 {

 console.log(this.loaded);

 return this.loaded;

 }

 getEvents() {

 return this.CSUSBEvents;

 }

 getUsers() {

 return this.users;

 }

 getEncryptedUID()

 {

 return firebase.auth().currentUser.uid;

 }

 getCoID()

 {

 return firebase.auth().currentUser.email.split("@")[0];

 }

 getUserName()

 {

 return this.users[parseInt(this.getCoID())].name;

59

 }

 addUserToAttendees(e,exec)

 {

 let newAttendeeKey =

firebase.database().ref().child('events/'+e.code+'/attendees').push(

).key;

 firebase.database()

 .ref('events/'+e.code+'/attendees/' + newAttendeeKey)

 .set(this.getCoID()).then(()=>{exec()});

 }

 addUserToAttended(e,exec)

 {

 let newAttendeeKey =

firebase.database().ref().child('events/'+e.code+'/attended').push()

.key;

 firebase.database()

 .ref('events/'+e.code+'/attended/' + newAttendeeKey)

 .set(this.getCoID()).then(()=>{exec()});

 }

 isUserAttending(e)

 {

 e = this.eventSnap[e.code];

 let cid = this.getCoID();

 for (let objKey in e.attendees){

 if(e.attendees[objKey] == cid)

 {

 return objKey;

 }

 }

 return null;

 }

 hasUserAttended(e)

 {

 e = this.eventSnap[e.code];

 let cid = this.getCoID();

 for (let objKey in e.attended){

 if(e.attended[objKey] == cid)

 {

 return true;

 }

 }

 return false;

 }

 isUserCreator(e)

 {

 let cid = this.getCoID();

 if(e.creatorId == cid)

60

 {

 return true;

 }

 return false;

 }

 isUserModerator()

 {

 return this.users[parseInt(this.getCoID())].moderator;

 }

 removeUserFromAttendees(e,exec)

 {

 let stat = this.isUserAttending(e);

 if(stat!=null)

 {

firebase.database().ref().child('events/'+e.code+'/attendees/'+stat)

.remove().then(()=>{exec()});

 }

 }

 addEvent(value)

 {

 let userID =

firebase.auth().currentUser.email.split("@")[0];

 let newEventKey =

firebase.database().ref().child('events').push().key;

 let newEvent = {

 name: value.name,

 organizer: value.organizer,

 when: {

 date:moment(value.date).format('MM-DD-YYYY'),

 fromTime:moment(value.fromTime).format('HH:mm'),

 toTime:moment(value.toTime).format('HH:mm')

 },

 where: value.location,

 desc: value.description,

 creatorId: userID,

 moderators: [userID],

 attendees: [userID],

 attended: [userID],

 code: newEventKey,

 }

 firebase.database()

 .ref('/events/' + newEventKey)

 .set(newEvent);

 }

 deleteEvent(e)

 {

61

 firebase.database().ref().child('events/'+e.code).remove();

 console.log('events/'+e.code);

 }

 signOut()

 {

 firebase.auth().signOut().then(function() {

 console.log('Signed Out');

 }, function(error) {

 console.error('Sign Out Error', error);

 });

 }

}

export default new dbData;

firebase.config.js

import RNFirebase from 'react-native-firebase'

const firebase = RNFirebase.initializeApp({

 apiKey: "xxxxxxxxxxxxxxxxxxxxxxxxxxx",// intentionally removed

 authDomain: "csusbevents.firebaseapp.com",

 databaseURL: "https://csusbevents.firebaseio.com",

 projectId: "csusbevents",

 storageBucket: "csusbevents.appspot.com",

 messagingSenderId: "000000000000" // intentionally removed

});

export default firebase;

62

APPENDIX B

APPLICATION ASSETS

63

CSUSB Events Application Logo

csusb_LG.png (600x309)

64

Add Event Button

floatingActionButton.png (512x512)

65

Logout Button

logout.png (512x512)

66

REFERENCES

Ahmad, F. A. (2018, April 12). React Native & Firebase: Authentication – React

Native Training – Medium. Retrieved from https://medium.com/react-

native-training/react-native-firebase-authentication-7652e1d2c8a2

Carli, S. (2017, September 20). Easily Build Forms in React Native – React

Native Development – Medium. Retrieved from https://medium.com/react-

native-development/easily-build-forms-in-react-native-9006fcd2a73b

Dabit, N. (2016, July 01). React Native with MobX - Getting Started – React

Native Training – Medium. Retrieved from https://medium.com/react-

native-training/react-native-with-mobx-getting-started-ba7e18d8ff44

Gaare, J. (2017, May 25). Learning to test React Native with Jest - part 1 – React

Native Training – Medium. Retrieved from https://medium.com/react-

native-training/learning-to-test-react-native-with-jest-part-1-f782c4e30101

JSC build scripts for Android. (2018, June 05). Retrieved from

https://github.com/react-community/jsc-android-buildscripts#how-to-use-it-

with-my-react-native-app

Jun, K. (2017, August 18). RNCamera: Use the barcode scanner on React

Native. Retrieved from

https://gist.github.com/goodpic/f1ba553d85f96c76b6b2992faf037d87

Learn the Basics · React Native. (n.d.). Retrieved from

https://facebook.github.io/react-native/docs/tutorial.html

https://medium.com/react-native-training/react-native-firebase-authentication-7652e1d2c8a2
https://medium.com/react-native-training/react-native-firebase-authentication-7652e1d2c8a2
https://medium.com/react-native-development/easily-build-forms-in-react-native-9006fcd2a73b
https://medium.com/react-native-development/easily-build-forms-in-react-native-9006fcd2a73b
https://medium.com/react-native-training/react-native-with-mobx-getting-started-ba7e18d8ff44
https://medium.com/react-native-training/react-native-with-mobx-getting-started-ba7e18d8ff44
https://medium.com/react-native-training/learning-to-test-react-native-with-jest-part-1-f782c4e30101
https://medium.com/react-native-training/learning-to-test-react-native-with-jest-part-1-f782c4e30101
https://github.com/react-community/jsc-android-buildscripts#how-to-use-it-with-my-react-native-app
https://github.com/react-community/jsc-android-buildscripts#how-to-use-it-with-my-react-native-app
https://gist.github.com/goodpic/f1ba553d85f96c76b6b2992faf037d87
https://facebook.github.io/react-native/docs/tutorial.html

67

Porcello, E. (2018, June 20). Retrieved from https://www.lynda.com/React-js-

tutorials/React-js-Essential-Training/496905-2.html

Ten minute introduction to MobX and React. (n.d.). Retrieved from

https://mobx.js.org/getting-started.html

https://www.lynda.com/React-js-tutorials/React-js-Essential-Training/496905-2.html
https://www.lynda.com/React-js-tutorials/React-js-Essential-Training/496905-2.html
https://mobx.js.org/getting-started.html

	ORGANIZE EVENTS MOBILE APPLICATION
	Recommended Citation

	USE OF MEMORY-RESIDENT COMPUTER RECREATION PROGRAMS TO REDUCE WORKPLAE STRESS

