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Abstract 

The McDonald gold deposit is located in Lewis and Clark County near Lincoln, Montana and is 

divided into two regions: East Butte and West Butte. Approximately 90% of gold mineralization 

at McDonald is hosted by quartz-adularia-altered lithic tuff. Low-grade, stratabound, 

disseminated mineralization within permeable volcanic tuff is the dominant style of 

mineralization at McDonald. Higher-grade mineralization at West Butte is interpreted to be 

controlled by subvertical, intersecting vein systems that occur along the 9800’ E-W fault. 

Preliminary gold estimates at West Butte indicated the possibility of a 500 koz gold orebody at 

an average grade of 7.2 grams per ton or 0.21 troy ounces per ton (opt). The purpose of this 

project is to develop a gold resource estimate and simulated model of West Butte at the 

McDonald gold deposit using Maptek Vulcan. A drillhole database was provided for this project, 

however, previous work indicated significant downhole contamination in reverse circulation 

(RC) drilling. Domains could not be defined based on logged geologic information, so a grade 

shell was used to define estimation domains. The grade shell was defined based on a 0.04 Au opt 

cutoff and only core drilling was considered. Resource estimation of gold at West Butte was 

conducted in three passes. At a cutoff of 0.06 Au opt, conservative estimates indicate the 

existence of a 2.75 Mt orebody at an average grade of 0.171 Au opt and a total of approximately 

470 koz. Metal loss reports indicate potentially-substantial increases in total ounces if more core 

drilling takes place to replace contaminated RC drilling. Sequential Gaussian simulation (SGS) 

was conducted in conjunction with resource estimation of gold at West Butte. Visual 

discrepancies between the estimated model and the averages of the simulated models delineated 

regions of high uncertainty within West Butte. It is recommended that more core drilling takes 

place at West Butte. Angled core drilling should be conducted to better characterize subvertical 

orientations outlined by previous company geologists, and new exploration drilling should take 

place to the east and below the project area. It is likely that additional core drilling and 

replacement of contaminated RC drilling will result in a higher-tonnage orebody at West Butte 

through the expansion of the grade shell. 
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1. Introduction 

1.1. Location 

The McDonald gold deposit is located in west-central Montana in Lewis and Clark 

County, approximately 8 miles east of Lincoln, Montana and 40 miles northwest of Helena, 

Montana (Figure 1). The McDonald deposit lies near the confluence of Lander’s Fork and the 

Blackfoot River, and can be divided into two regions: East Butte and West Butte (Figure 2).  

 

Figure 1: Location map of the McDonald gold deposit near Lincoln, Montana 
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Figure 2: Site map of the McDonald gold deposit 

 

1.2. Deposit Geology at West Butte 

The following information on the geologic setting and history of the McDonald deposit 

comes from Bartlett, Enders, Volberding, & Wilkinson’s The Geology of the McDonald Gold 

Deposit, Lewis and Clark County, Montana (Bartlett et al., 1995), except where otherwise stated. 

1.2.1. Description of Significant Lithologies  

The McDonald deposit is hosted within a sequence of layered Tertiary volcanics which 

overly Precambrian Belt Supergroup rocks (Figure 3 and 4). These layered volcanics dip 20° to 

the north and include lithologies such as andesite and others (Ta), lithic tuff (Trtl), crystal-rich 

tuff (Trtcr), and volcaniclastic sedimentary rocks and sinter (Tvs-l and Tvs-u). Overlying these 

units are biotitic rhyolite tuffs (Trb) that post-date mineralization at the McDonald deposit and 

Quaternary glacial tills and alluvium (Qal).  
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Figure 3: Geologic map of the McDonald site location. Taken from (CAM, 2003) 
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Figure 4: Stratigraphic section of rocks at the McDonald deposit site location. Taken from (CAM, 2003) 
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1.2.1.1. Andesite and others (Ta) 

Andesite, latite porphyry, and volcaniclastic rocks overlie Precambrian Belt rocks at 

McDonald, with a thickness of roughly 180 m. The volcaniclastic rocks within this unit are 

deposited laterally adjacent to the andesite and latite porphyry. This lithology hosts 

approximately 3% of gold mineralization sampled at the McDonald deposit.  

1.2.1.2. Lithic tuff (Trtl) 

The Tertiary lithic tuff unit is the thickest and most significant lithology present at the 

McDonald deposit, reaching up to 400 m in thickness and hosting approximately 90% of all gold 

mineralization sampled at the McDonald deposit. The rhyolitic lithic tuff unconformably overlies 

Tertiary andesites, is moderately- to strongly-welded, and contains up to 35% lithic fragments, 

which decrease gradually in abundance up-section. Additionally, the lithic tuff contains up to 

20% pumice lapilli and up to 20% quartz and sanidine phenocrysts. The remaining fraction is 

comprised of vitroclastic matrix. Lithic tuff at McDonald is relatively permeable, exhibiting 

leaching within pumice layers and containing well-developed joints along bedding planes and 

vertical orientations.  

1.2.1.3. Crystal Rich Tuff (Trtcr) 

The crystal-rich tuff at McDonald overlies the lithic tuff unit and only slightly differs in 

composition from the lithic tuff, having a lesser fraction of lithic fragments. This unit is up to 

116 m thick and contains approximately 7% of gold mineralization sampled at the McDonald 

deposit. The contact between the crystal-rich tuff and the lithic tuff is rarely well defined and is 

often delineated by a 3 – 5% change in the percentage of lithic fragments down-section.  
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1.2.2. Ore Mineralogy 

The McDonald deposit is almost entirely oxidized to a depth of 300 to 350 m below the 

surface, with minor to no sulfide logged in drillholes. Sulfide-bearing material is generally 

restricted to highly-silicified veins or deeply-emplaced, unoxidized mineralization. Common 

oxidation products include a variety of iron oxide and manganese oxide minerals (Table I).  

Gold mineralization at McDonald is comprised mainly of electrum (Au,Ag), native gold, 

and minor gold-silver-sulfide minerals (Table I). Electrum grains range in size from 0.5 to 350 

microns with compositions varying between 55 and 60 wt% gold.  

Electrum is often accompanied by pyrite, goethite, hematite, acanthite, and adularia; with 

goethite replacing pyrite. Silver at the McDonald deposit is present mostly in the form of 

acanthite (Ag2S), but lesser quantities are hosted by electrum and Ag-sulfosalts such as 

pearceite-polybasite ([(Ag,Cu)6As2S7][Ag9CuS4] to [(Ag,Cu)6Sb2S7][Ag9CuS4]) and proustite-

pyrargyrite (Ag3AsS3 to Ag3SbS3).  
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Table I: Ore and Gangue Mineralogy of the McDonald Deposit 

Mineralogy Mineral Formula 

Ore 

acanthite Ag2S 

electrum Ag,Au 

native gold Au 

Gangue 

quartz SiO2 

chalcedony SiO2 

calcite CaCO3 

adularia KAlSi3O8 

pyrite FeS2 

marcasite FeS2 

hematite Fe3O4 

goethite Fe3+O(OH) 

jarosite KFe3+
3(SO4)2(OH)6 

cryptomelane K(Mn4+
7Mn3+)O16 

Uncommon 

chalcopyrite CuFeS2 

covellite CuS 

digenite Cu9S5 

galena PbS 

pyrrhotite Fe7S8 

sphalerite ZnS 

stromeyerite AgCuS2 

Rare 

famatinite Cu3SbS4 

pearceite [Ag9CuS4][(Ag,Cu)6As2S7] 

polybasite [Ag9CuS4][(Ag,Cu)6Sb2S7] 

proustite Ag3AsS3 

pyrargyrite Ag3SbS3 

petrovskaite AuAgS 

uytenbogaardtite Ag3AuS2 
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1.2.3. Hydrothermal Alteration 

The McDonald deposit exhibits some zonation in hydrothermal alteration with depth. 

Intense quartz-adularia alteration with minor chalcedony and kaolinite is the most dominant style 

of alteration within mineralized zones at McDonald. This alteration exists at depth (between 60 

and 200 m) and grades vertically into more chalcedony-dominated silicic alteration at shallower 

depths and at the surface in the form of silica sinter. Gold mineralization at McDonald is 

observed to be mostly confined to zones of quartz-adularia alteration.  

Argillic alteration exists as halos around mineralized zones and within favorable volcanic 

units. Kaolinite is the more prevalent alteration product immediately adjacent to mineralized 

zones, while alteration to montmorillonite and minor chlorite, epidote, and calcite is more 

distally related.  

1.2.4. Structure 

At least two subparallel, subvertical faults striking approximately N 60° E exist at West 

Butte (Figure 3). The Eclipse Fault, which bounds West Butte to the north, exhibits post-mineral 

displacement of 180 m downward to the north. The other two faults also display post-mineral 

displacement, but movement is minor. Also present at West Butte is a north-northeast striking 

fault on the western flank and the 9800’ E-W fault which strikes approximately N 80° W.  
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1.2.5. Modes of Gold Mineralization  

Higher-grade gold mineralization at the McDonald deposit is present predominantly as 

steeply-dipping, intersecting veins. These veined zones appear to correlate with the 9800’ E-W 

fault, which is interpreted to be a mineralizing structure. Lower-grade regions at McDonald 

consist of stratabound, disseminated mineralization. This lower-grade material is preferentially 

mineralized within the lithic tuff unit, and to a lesser degree the andesite and crystal-rich tuff 

unit, due to high relative permeability.  

1.3. Exploration History 

Exploration of the McDonald deposit began in the 1980s by the Anaconda Company, 

who discovered it during exploration of the adjacent Keep Cool area to the west. In 1986, the 

Western Energy Company conducted surface mapping at the McDonald deposit and drilled two 

shallow holes. In 1989, Addwest Gold optioned the property and drilled 11 shallow holes, 

totaling 1,720 m. Shortly after, Phelps Dodge Mining Company and CR Montana Corporation 

coordinated to create the Seven-Up Pete Joint Venture, which lasted until 1992. This Joint 

Venture eventually included Echo Bay Mining, who were brought in to evaluate the property. 

Echo Bay Mining conducted a close-spaced, angled-core drilling program at West Butte, which 

demonstrated the existence of high-grade, high-angle veins (Paul & Guimard, 2011). By the end 

of the Joint Venture in 1992, 494 drillholes were drilled, with the majority being reverse 

circulation (RC) drilling. Permitting applications for an open pit mine at McDonald were 

accepted in 1996 by Montana state regulators. However, in 1998, Initiative 137 passed, banning 

open-pit, cyanide-leach (vat or heap leaching), gold-and-silver mining in Montana. By 2003, the 

McDonald deposit was estimated to be the largest gold deposit in Montana, with an open pit 

potential in excess of 10 Moz of gold at 0.016 Au opt (CAM, 2003). 
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In 2007, Newmont Mining Corporation acquired the McDonald property through an 

exchange of assets; and in 2011, conducted a reevaluation of the property to determine the 

potential of a high-grade, structurally-controlled orebody amenable to underground mining 

methods (Paul & Guimard, 2011). In 2017, Newmont transferred all remaining core, chip boards, 

and documentation pertaining to the McDonald Project to Montana Tech (Rosenthal & 

Rosenthal, 2017).  

1.4. Project Scope 

The McDonald deposit is interpreted to be the largest gold deposit in Montana, with an 

open pit potential in excess of 10 Moz of gold at 0.5 grams per ton (Newmont Mining 

Corporation, 2014). Preliminary resource estimates produced by Newmont suggest the existence 

of a 500 koz gold orebody at West Butte with a grade of 0.21 troy ounces per ton (Newmont 

Mining Corporation, 2014). The purpose of this thesis is to utilize existing drilling data and 

geologic information on the McDonald deposit to produce a resource model and simulated model 

of gold at West Butte which reflects the two modes of mineralization described by Bartlett et al. 

and Newmont geologists.  
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2. Exploratory Data Analysis 

Maptek Vulcan version 11.0.0 and Leapfrog Geo version 4.3.1 were used in tasks related 

to exploratory data analysis (EDA). The dimensions used in this project are represented in feet, 

and grades are represented as ounces per ton.  

2.1. Drill Hole Database & Variables List 

The drillhole data for the McDonald deposit are comprised of three Microsoft Excel 

comma separated values (.csv) files which contain collar, survey, and assay tables for the drilling 

data. This drillhole database consists of 55 diamond core holes, 447 reverse circulation 

drillholes, and 100 monitoring wells (Table II); and at West Butte, consists of 18 diamond core 

holes, 122 reverse circulation drillholes, and 7 monitoring wells (Table III). 

 

Table II: Breakdown of McDonald Drillhole Database by Drilling Type 

Type of Drillhole Count 

Diamond Core 55 

Reverse Circulation (RC) 447 

Monitoring Wells 100 

Total 602 

 

Table III: Breakdown of West Butte Drillhole Database by Drilling Type 

Type of Drillhole Count 

Diamond Core 18 

Reverse Circulation (RC) 122 

Monitoring Wells 7 

Total 147 

 

Samples in reverse circulation were taken on 5 ft. intervals. Diamond core holes were 

logged and sampled based on geology, but were generally taken on 5 ft. intervals. Samples were 

assayed for gold (Au) and silver (Ag) and logged for a suite of geologic parameters (Table IV). 

Missing or non-assayed samples were assigned placeholder values of -99.0. 
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Table IV: Logged Geologic Parameters 

Variable Description 

fm formation 

lth lithology 

alt_t alteration type 

alt_i alteration intensity 

ox oxidation intensity 

pyabd pyrite abundance 

pytyp pyrite type 

vabd vein abundance 

vtyp vein type 

grc geotechnical rock classification 

str structures 

2.2. Compositing Methodology 

Compositing is a method of processing samples in a drilling database into a database of 

equivalent samples. By taking length-weighted averages down each hole at a constant length, 

compositing converts sampled intervals of varying lengths into samples of equivalent length 

called composite samples. Compositing methodologies can vary widely to accommodate 

different geological attributes (E.g. breaking composite intervals by lithology) or spatial 

parameters (e.g. bench height composites), but they must also address short intervals found at the 

ends of drillholes. These “leftover” intervals are shorter than the compositing length and may be 

left in, discarded, or processed in other ways.   

The drilling data for the McDonald deposit were composited down-hole using composite 

intervals of 10 ft., and short composite samples were kept. Figures 5 and 6 summarize lengths 

and gold grades of short composites. Gold and silver concentrations in troy ounces per ton (opt) 

were composited as assay fields, and the majority geology codes for each compositing interval 

were recorded. Missing and non-sampled data were assigned placeholder values of -99.0 and 

were excluded from compositing calculations.  
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Figure 5: Histogram of short composite lengths 

 

 

Figure 6: Histogram of short composite gold grades 
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2.3. Domains and Statistics 

Domains are relatively-stationary subsets of data that are critical to the estimation 

process. Domains must be defined such that each domain contains sufficient data to characterize 

its statistical behavior, and they are often defined by the mineralizing controls within a deposit 

(Rossi & Deutch, 2014).  At the McDonald deposit, two geographic domains exist: East Butte 

and West Butte. For this project, only data from West Butte was considered.  

2.3.1. Downhole Contamination 

Downhole contamination or “smearing” is a form of bias found in some reverse 

circulation drilling that can lead to the recording of longer, mineralized intercepts than what is 

actually present. Downhole contamination is often thought of as a form of dilution and is 

attributed to vertical mixing of cuttings over an interval larger than the sampling interval. If not 

addressed, downhole-contaminated data may lead to an overestimation or bias in mineable tons.  

Bias in the form of downhole contamination of gold grades in reverse circulation (RC) 

drilling at the McDonald deposit has been noted by Newmont geologists. A 2014 internal 

presentation by Newmont outlines that “potential exists for bias in RC gold assay data > 0.05 

opt, with ~70% RC drilling in West Butte underground target and ~90% in East Butte” 

(Newmont Mining Corporation, 2014).  

Visual inspection and analysis of sampling intervals in RC drillhole PRM-94-557 

(Figures 45 and 46 in Appendix A) suggests the presence of downhole contamination in RC 

drilling data. To further assess if downhole contamination exists, a quantile-quantile (Q-Q) plot 

of deposit-wide, gold composite data was created using pairs of RC and core samples (Figure 7).  
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Figure 7: Quantile-Quantile plot of gold composite pairs for the McDonald deposit 

 

The Q-Q plot in Figure 7 compares equivalent grade distributions at close distances 

between RC and core data. Data pairs generated for the Q-Q plot were comprised of one RC and 

one core sample with a maximum spacing of 100 feet. Data pairs were defined twice, as different 

data pairs are generated depending on which type of data is considered first.  

Deviation from the equality line in the Q-Q plot indicates deposit-scale downhole 

contamination in RC drilling at higher grade values. In addition, the Q-Q plot suggests a positive 

correlation between downhole contamination and gold grades beyond 0.02 Au opt. However, it is 
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2.3.2. Geologic Domains 

Statistics of gold grades by alteration styles and lithology (see Appendix A for gold 

statistics) agree with Bartlett et al. (1995), who stated that, “Silicification and adularization are 

the dominant forms of alteration within the mineralized zones” and that “The lithic tuff (Trtl) 

[hosts] approximately 90 percent of all the known gold mineralization…” However, the lithic 

tuff lithology and silicic alteration were not ideal attributes for domain definition, as these 

parameters were inherent of the majority of data at West Butte. Vein type, vein abundance, pyrite 

type, and pyrite abundance did not show any significant visual or statistical correlation to gold 

grades and were not used to define domains.  

2.3.3. Grade Shelling 

It is the author’s opinion that grade shelling is a controversial technique in the field of 

resource estimation. It is a method that defines domains based on grade cutoffs that should only 

be employed when no other methods exist to define estimation domains. Grade shells often 

inflate block grade statistics inside the shelled volume by artificially creating hard boundaries 

within estimated models (Jewbali, Elenbaas, & Roos, 2015). Despite this, grade shells have 

found success in the estimation of some gold deposits, where grade shells are used primarily to 

constrain estimated tonnages within structurally-controlled orebodies where the orebody edges 

may be ambiguous. It is the author’s opinion that grade shells can be used to constrain estimated 

tonnages in areas of sparse drilling where a hard grade boundary is expected. Grade shells 

constructed for this purpose should honor grade data as well as geologic data, and should be free 

of spikes and “one-hole wonders” (discontinuous pod-like shapes sometimes also referred to as 

“leapblobs”). 
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Grade shelling was conducted using Seequent Leapfrog Geo version 4.3.1, a 3D geologic 

modeling tool and implicit modeler. Grade shelling was selected as a method of defining 

estimation domains at the McDonald deposit because logged geologic attributes in the composite 

database failed to provide a means of defining higher-grade, vertical vein systems characterized 

by Bartlett et al., Echo Bay Mining, and Newmont geologists. In addition, choosing not to 

domain higher-grade mineralization would likely lead to “…falsely smearing the grade laterally 

along volcanic stratigraphy” (Paul & Guimard, 2011). The grade shell was produced at a gold 

grade cutoff of 0.04 troy ounces per ton (opt) using Leapfrog Geo’s radial basis function (RBF) 

indicator interpolant feature. The parameters used to construct the grade shell are outlined in 

Table V.  

Table V: Grade Shell Parameters 

Grade Shell Parameters 

Composite data used Core Data Only 

Grade cutoff (Au opt) 0.04 

Iso value 0.35 

Resolution 20 

Interpolant type Spheroidal 

Total sill 1 

Nugget 0.1 

Base range (ft) 350 

Volume filter (ft³) 1,000,000 

 

Only core data were used to construct the shell, as the usage of contaminated RC data 

may overinflate the shelled volume and lead to a subsequent overestimation of higher-grade 

tonnages. After initial construction, internal discontinuities in the shell were observed; so a 

structural trend was added at a northwesterly trend, producing a continuous, en-echelon, 

vertically-oriented orebody that strikes roughly N 80o W (Figure 8 and 9). 
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Figure 8: Plan view of the 0.04 Au opt grade shell (green) with gold drilling data 
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Figure 9: Side view looking north at the 0.04 Au opt grade shell (green) with gold drilling data 
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Gold statistics inside and outside the shell (Table VI) show that the shelling process was 

effective, however some high grade samples present in reverse circulation drilling were not 

captured within the shelled volume. 

Table VI: Grade shell statistics of gold grade (Au opt) 

  

Location (within West Butte) 

Inside of shell Outside of shell 

Count 556                      41,554  

Mean 0.142 0.010 

Variance 0.140 0.002 

Standard deviation 0.374 0.041 

Max 6.826 4.260 

Upper quartile 0.117 0.010 

Median 0.050 0.004 

Lower quartile 0.024 0.001 

Min 0.002 0.000 

 

2.3.4. Estimation Domains 

Estimation domains (Table VII) were defined within West Butte based on the 0.04 Au 

opt grade shell. The grade shell effectively represents a higher-grade, higher-confidence volume 

within an otherwise nebulous, low-grade, stratabound deposit. Additionally, the grade shell 

defines a maximum volume which will limit estimated tonnages of high-grade material and 

minimize “…smearing [of] grade laterally along volcanic stratigraphy” as recognized by Paul 

and Guimard (Paul & Guimard, 2011).  

Table VII: Estimation domains for the McDonald deposit 

Geographic Zone Au Zone Notes 

West Butte 
Inside Shell Inside 0.04 Au opt grade shell 

Outside Shell Outside 0.04 Au opt grade shell 

East Butte Not modeled Not modeled 
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2.4. Variography 

Variography provides a method of quantifying spatial variability of sample data in space. 

“The variogram is a central parameter for many geostatistical techniques. Kriging, Gaussian 

simulation, and indicator methods all require a variogram model for each variable in each 

domain” (Deutsch J. L., 2019). In its purest definition, the variogram is defined as half of the 

average squared difference between two attribute values approximately separated by a vector h 

(Deutsch & Journel, Geostatistical Software Library and User's Guide, 1992). Many mining and 

geostatistical programs published today offer a variety of methods to calculate and model 

variograms. Many of these software packages have the ability to produce variogram “fans” or 

“maps”, which allow the user to view numerous variograms calculated at different orientations at 

once. Additionally, each software package accommodates different suites of variogram and 

model types.  

Variography at the McDonald deposit was conducted to ascertain the orientation and 

continuity of gold grade within each estimation domain and to produce variogram models that 

would be later used in ordinary kriging. Variograms were calculated on a declustered composite 

database using correlograms standardized to 1 and modeled using two-structure, spherical 

models with a nugget value. Nugget values were approximated using downhole variograms 

(Figure 10 and 11) and the major, semi-major, and minor orientations (Figure 12 - Figure 17) 

were guided by orientations described by Bartlett et al. (1995), especially inside the grade shell, 

due to the paucity of the composite data. Table VIII summarizes the variogram models for the 

estimation domains. 
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Figure 10: Downhole variogram of gold grades inside the grade shell 
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Figure 11: Downhole variogram of gold grades outside the grade shell 
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Figure 12: Major variogram of gold grades inside the grade shell 
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Figure 13: Semi-major variogram of gold grades inside the grade shell 
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Figure 14: Minor variogram of gold grades inside the grade shell 
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Figure 15: Major variogram of gold grades outside the grade shell 
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Figure 16: Semi-major variogram of gold grades outside the grade shell 
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Figure 17: Minor variogram of gold grades outside the grade shell 
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Table VIII: Variogram Model Parameters for Estimation 

 

Estimation Domain 

Inside Grade Shell Outside Grade Shell 

Total Sill 1 1 

Nugget 0.4 0.6 

Structure 1 2 1 2 

Structure Type Spherical Spherical Spherical Spherical 

Bearing 135 135 256.35 256.35 

Plunge 75 75 -6.28 -6.28 

Dip 90 90 -45 -45 

Sill 0.35 0.25 0.26 0.14 

Major Range 30 90 250 1200 

Semi-Major Range 50 75 35 400 

Minor Range 45 60 70 300 
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3. Resource Estimation 

The goal of resource estimation is to provide a reasonable prediction of tonnages and 

grade of material within a deposit. Many estimation techniques have been adapted for such 

purposes and have been well-documented in texts such as Knudsen (1988) A Short Course on 

Geostatistical Ore Reserve Estimation, Goovaerts (1997) Geostatistics for Natural Resources 

Evaluation and Rossi & Deutch (2014) Mineral Resource Estimation. Resource estimation of the 

McDonald gold deposit was conducted using Maptek Vulcan 11.0.0.  

3.1. Block Model Construction 

The block model construction parameters are outlined in Table IX. The orientation of the 

model was set at a bearing, plunge, and dip of 90°, 0°, and 0° respectively.  

Table IX: Block Model Construction Parameters (ft.) 

  Origin  Start Offsets  End Offsets  Block Size 

X            48,700  0 4,000 20 

Y              8,300  0 2,800 20 

Z              3,000  0 3,000 20 

 

The block size of 20 x 20 x 20 feet was selected based on the anticipated selectable 

mining unit (SMU) for an underground mine at West Butte. All blocks within the model and 

below topography were coded with a density value of 0.074 tons per cubic foot based on the bulk 

density report of silicically-altered lithic tuff (Trtl) and crystal-rich tuff (Trtcr) (Fuller, 1998). It 

is not an ideal practice to assign all blocks the same density value; but it is reasonable within the 

scope of this project, as most gold mineralization at West Butte is confined within silicically-

altered lithic and crystal-rich tuffs. The block model variables are summarized in Table X.   
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Table X: Block Model Variables 

Variable Data Type Default Value Description 

density Double (Real * 8) 0 density 

au_zone Integer (Integer * 4) 0 domain variable, 1 = inside shell, 0 = outside shell 

id_flag Float (Real * 4) -99 inverse distance estimate flag 

ok_flag Float (Real * 4) -99 ordinary kriging estimate flag 

au_id Double (Real * 8) -99 au opt - inverse distance 

au_ok Double (Real * 8) -99 au opt - ordinary kriging 

au_nn Double (Real * 8) -99 au opt - nearest neighbor 

nsamp_id Float (Real * 4) -99 samples per estimate id 

nsamp_ok Float (Real * 4) -99 samples per estimate ok 

nhole_id Float (Real * 4) -99 holes per estimate id 

nhole_ok Float (Real * 4) -99 holes per estimate ok 

kvar_ok Double (Real * 8) -99 kriging variance ok 

keff_ok Double (Real * 8) -99 kriging efficiency 

dist_id Float (Real * 4) -99 distance to closest sample 

dist_ok Float (Real * 4) -99 distance to closest sample 

dist_nn Float (Real * 4) -99 distance to closest sample 

 

3.2. Estimation Plan 

Resource estimation of gold at the McDonald deposit was conducted using ordinary 

kriging (OK) and inverse distance squared (IDS) estimation methods. A nearest-neighbor (NN) 

estimate was also produced for validation purposes. Estimates were carried out in three passes: 

1. In-shell estimate using samples only inside the grade shell  

2. In-shell, infill estimate using samples inside and outside the grade shell; and 

3. Out-of-shell estimate using samples only outside the grade shell 

 Estimation parameters (Table XI - XII) between OK and IDS estimates were held 

constant with few exceptions. A cap of 2.0 Au opt was used for all estimates, and a high-yield 

limit of 0.1 Au opt was used to further limit the influence of high-grade samples outside the 

shell. Ordinary kriging estimates used the variogram models outlined in Table VIII. 

  



33 

Table XI: Search Ellipsoid Parameters for Estimation 

Estimate 

Type 
Description 

Orientation (°) Search Ellipsoid Ranges (ft.) 

Bearing Plunge Dip Major Semi-Major Minor 

IDS Inside 135 75 90 200 120 80 

IDS Infill  135 75 90 200 120 80 

IDS Outside 256.35 -6.28 -45 700 150 150 

NN Inside 135 75 90 200 120 80 

NN Infill  135 75 90 200 120 80 

NN Outside 256.35 -6.28 -45 700 150 150 

OK Inside 135 75 90 200 120 80 

OK Infill  135 75 90 200 120 80 

OK Outside 256.35 -6.28 -45 700 150 150 

 

Table XII: Sample Parameters for Estimation 

Estimate 

Type 
Description 

Sample Parameters 

Minimum Maximum Maximum per Drillhole 

IDS Inside 3 6 0 

IDS Infill  3 6 0 

IDS Outside 3 6 2 

NN Inside 1 1 0 

NN Infill  1 1 0 

NN Outside 1 1 2 

OK Inside 3 6 0 

OK Infill  3 6 0 

OK Outside 3 6 2 

 

3.3. Model Validation 

3.3.1. Summary Statistics 

“The histograms and basic statistics may be compared to the original, declustered 

drillhole data used to estimate the grades for each domain. This is to check… that overall means 

(without applying a cutoff) are very similar, since the estimated grades should be unbiased” 

(Rossi & Deutch, 2014). If capping strategies were used, the mean of the resource estimate may 

be lower than the declustered mean. Generally, most estimates will exhibit “smoother” 

distributions than the sample database. This smoothing effect may be observed by a decrease in 
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variability (variance, standard deviation, etc.) when comparing statistics between the block 

model and sample database. Table XIII - XV summarize sample and block statistics of the 

estimates inside the shell, outside the shell, and overall. 

Table XIII: Sample and Block Statistics of Gold Inside the Grade Shell 

  Sample Database Nearest-Neighbor Inverse Distance Squared Ordinary Kriging 

Count 556 6,639  6,639  6,639  

Mean 0.141 0.112 0.120 0.123 

Variance 0.140 0.040 0.017 0.018 

Standard deviation 0.374 0.200 0.132 0.133 

Max 6.826 2.000 1.445 1.252 

Upper quartile 0.117 0.099 0.152 0.154 

Median 0.050 0.047 0.074 0.075 

Lower quartile 0.024 0.024 0.043 0.042 

Min 0.002 0.002 0.003 0.004 

 

Table XIV: Sample and Block Statistics of Gold Outside the Grade Shell 

  Sample Database Nearest-Neighbor Inverse Distance Squared Ordinary Kriging 

Count 11,900  1,304,383  857,702  857,702  

Mean 0.007 0.006 0.007 0.007 

Variance 0.001 0.000 0.000 0.000 

Standard deviation 0.024 0.012 0.009 0.008 

Max 3.175 2.000 1.164 0.669 

Upper quartile 0.006 0.005 0.008 0.009 

Median 0.002 0.002 0.004 0.004 

Lower quartile 0.000 0.001 0.001 0.002 

Min 0.000 0.001 0.000 0.000 

 

Table XV: Sample and Block Statistics of Gold in West Butte 

  Sample Database Nearest-Neighbor Inverse Distance Squared Ordinary Kriging 

Count 12,456  1,311,022  864,341  864,341  

Mean 0.008 0.006 0.007 0.008 

Variance 0.002 0.000 0.000 0.000 

Standard deviation 0.046 0.020 0.018 0.018 

Max 6.826 2.000 1.445 1.252 

Upper quartile 0.006 0.006 0.008 0.009 

Median 0.002 0.002 0.004 0.004 

Lower quartile 0.001 0.001 0.001 0.002 

Min 0.000 0.001 0.000 0.000 
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3.3.2. Swath Plots 

Swath plots (Figures 18 - 23) are valuable tools in resource model validation which allow 

spatial trends in grade to be evaluated. These plots divide composite data and block models into 

slices along each coordinate axis, and calculate average grades within each slice. Generally, 

resource estimates should follow nearest-neighbor estimates closely on swath plots, since 

nearest-neighbor estimates approximate the sample database and honor the sample data at close 

distances.  

 

Figure 18: Swath plot of estimated gold grades inside the shell (Easting) 
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Figure 19: Swath Plot of Estimated Gold Grades Inside the Shell (Northing) 
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Figure 20: Swath Plot of Estimated Gold Grades Inside the Shell (Elevation) 
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Figure 21: Swath Plot of Estimated Gold Grades in West Butte (Easting) 
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Figure 22: Swath Plot of Estimated Gold Grades in West Butte (Northing) 
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Figure 23: Swath Plot of Estimated Gold Grades in West Butte (Elevation) 

 

3.3.3. Visual Inspection 

Visual inspection is essential in the validation of a resource model to ensure that 

estimated block grades are similar to the sample grades nearby and that the distribution of 

estimated grades matches orientations described by the variogram model. See Appendix A for 

selected plan-view sections of the ordinary-kriged gold estimate.  
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3.4. Model Results 

3.4.1. Grade-Tonnage Curves 

Grade-tonnage curves are graphs that report tonnages and average grades of material at 

different cutoffs. These curves are used to assess sensitivity and selectivity of mineable material 

as mining cutoffs change. Grade-tonnage curves were generated for inverse-distance-squared 

(IDS) and ordinary kriged (OK) estimates (Table XVI - XX and Figure 24 - 26).  

Table XVI: Grade, Tons, and Metal of IDS and OK Estimate in West Butte 

 Inverse Distance Squared (IDS) Estimate Ordinary Kriging (OK) Estimate 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] Grade [opt] Tonnage [t] Metal [oz t] 

0.006 0.017 181,430,832      3,049,852  0.016   196,063,296  3,174,265  

0.01 0.023 104,823,664      2,454,970  0.022   114,517,072   2,542,279  

0.02 0.042   36,275,984      1,509,444  0.039     38,369,296    1,478,753  

0.04 0.088     8,679,904         767,390  0.106       5,745,360      610,502  

0.06 0.155     3,336,512         517,026  0.171       2,750,432       469,581  

0.08 0.197   2,251,376         442,868  0.204       2,074,368      423,379  

0.1 0.227    1,759,424         399,512  0.233       1,656,416       386,127  

0.2 0.336       780,848         262,435  0.340          769,008      261,693  

0.5 0.727         91,168           66,286  0.690          100,640        69,403  

 

The results of both estimates show lower average grades and less metal than preliminary 

models produced by Newmont; however, the estimated grades and tonnages were constrained in 

effort to limit the influence of bias in RC data, resulting in more conservative estimates. The 

grade shell used to define estimation domains was derived not only from a grade cutoff of 0.04 

Au opt but also from proximity to core data. As such, the grade shell not only represents a high-

grade volume, but also a more-confident and more-selective volume. Additionally, estimates of 

high grade blocks were capped; and a high-yield limit of 0.1 Au opt was imposed outside the 

shell, further limiting the influence and spread of high-grade outside the grade shell. 
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Figure 24: Grade-Tonnage curve for the ordinary kriging (OK) estimate inside the grade shell 
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Figure 25: Grade-Tonnage curve for the ordinary kriging (OK) outside-shell estimate 
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Figure 26: Grade-Tonnage curve for the Ordinary Kriging (IDS) Inside-shell estimate 

 

Table XIX: Grade, Tonnage, and Metal of the IDS Inside-Shell Estimate at Selected Cutoffs 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] 

0.006 0.120       3,927,328            472,968  

0.01 0.123       3,849,776            472,329  

0.02 0.130       3,611,792            468,847  

0.04 0.148       3,053,536            451,649  

0.06 0.177       2,352,016            417,224  

0.08 0.207       1,847,040            382,356  

0.1 0.233       1,517,296            353,318  

0.2 0.338          703,296            237,883  

0.5 0.725            85,248              61,798  
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Figure 27: Grade-Tonnage curve for the Ordinary Kriging (IDS) outside-shell estimate 

 

Table XX: Grade, Tonnage, and Metal of the IDS Outside-Shell Estimate at Selected Cutoffs 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] 

0.006 0.015       177,503,504         2,577,351  

0.01 0.020       100,973,888         1,982,117  

0.02 0.032         32,664,192         1,040,681  

0.04 0.056           5,626,368            315,696  

0.06 0.101              984,496              99,798  

0.08 0.150              404,336              60,509  

0.1 0.191              242,128              46,193  

0.2 0.317                77,552              24,551  

0.5 0.758                  5,920                4,487  
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3.4.2. Metal Loss Due to Capping 

Capping strategies are often used to prevent the overstatement of grades and tonnages 

within a deposit by limiting the influence of high-grade samples during the estimation process. It 

is an industry-best practice to provide metal loss reports with resource estimates to quantify the 

amount of additional metal that may exist as a result of conservative estimation. It is the author’s 

opinion that a conservative estimate with metal loss reports is more valuable than an optimistic, 

unconstrained estimate. Table XXI Table XXVI characterize metal loss due to capping at West 

Butte. Table XXIII andTable XXIV suggest the presence of a significant gold resource outside 

the grade shell in West Butte; however, the magnitude of resource outside the shell may not be 

accurately represented. It is likely that the gold resources are overstated in the uncapped 

estimates outside the shell, due to high-grade samples being unrestricted within a generally-low-

grade domain.  

 

Table XXI: Metal Loss Report for IDS Inside the Grade Shell 

 Capped Uncapped 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] Grade [opt] Tonnage [t] Metal [t oz] 

0.006 0.120 3,927,328  472,968  0.128 3,927,328  502,070  

0.01 0.123 3,849,776  472,329  0.130 3,849,776   501,433  

0.02 0.130 3,611,792   468,847  0.138 3,612,384   497,931  

0.04 0.148 3,053,536   451,649  0.157  3,058,272  480,883  

0.06 0.177 2,352,016   417,224  0.189   2,356,160    446,422  

0.08 0.207 1,847,040   382,356  0.222  1,850,000   411,477  

0.1 0.233 1,517,296  353,318  0.252  1,519,072   382,320  

0.2 0.338 703,296  237,883  0.379 704,480   266,829  

0.5 0.725 85,248  61,798  1.037  88,208  91,482  
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Table XXII: Metal Loss Report for OK Inside the Grade Shell 

 Capped Uncapped 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] Grade [opt] Tonnage [t] Metal [t oz] 

0.006 0.123 3,929,104  481,630  0.130 3,929,104  510,784  

0.01 0.125 3,849,776  480,953  0.133 3,849,776  510,134  

0.02 0.132 3,627,776  477,633  0.140 3,627,776  506,800  

0.04 0.152 3,012,096  458,290  0.162 3,016,832  487,611  

0.06 0.182 2,333,072  424,619  0.194 2,336,624  453,866  

0.08 0.210 1,875,456  393,152  0.225 1,878,416  422,362  

0.1 0.238 1,513,744  360,998  0.257 1,516,112  390,156  

0.2 0.342 732,896  250,958  0.381 734,080  279,956  

0.5 0.694 96,496  66,961  0.970 100,048  97,011  

 

Table XXIII: Metal Loss Report for IDS Outside the Grade Shell 

  Capped Uncapped 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] Grade [opt] Tonnage [t] Metal [t oz] 

0.006 0.015 177,503,504  2,577,351  0.017 193,518,288  3,297,552  

0.01 0.020 100,973,888  1,982,117  0.024 113,964,144  2,681,576  

0.02 0.032 32,664,192  1,040,681  0.039 43,031,296  1,695,003  

0.04 0.056 5,626,368  315,696  0.075 10,866,752  818,484  

0.06 0.101 984,496  99,798  0.110 4,802,304  529,118  

0.08 0.150 404,336  60,509  0.136 2,949,936  402,224  

0.1 0.191 242,128  46,193  0.163 1,861,248  303,867  

0.2 0.317 77,552  24,551  0.404 215,488  87,126  

0.5 0.758 5,920  4,487  0.607 76,960  46,717  

 

Table XXIV: Metal Loss Report for OK Outside the Grade Shell 

  Capped Uncapped 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] Grade [opt] Tonnage [t] Metal [t oz] 

0.006 0.014 192,134,192  2,691,800  0.017 193,518,288  3,297,552  

0.01 0.019 110,667,296  2,060,625  0.024 113,964,144  2,681,576  

0.02 0.029 34,741,520  1,001,251  0.039 43,031,296  1,695,003  

0.04 0.056 2,733,264  152,243  0.075 10,866,752  818,484  

0.06 0.108 417,360  44,975  0.110 4,802,304  529,118  

0.08 0.152 198,912  30,235  0.136 2,949,936  402,224  

0.1 0.176 142,672  25,132  0.163 1,861,248  303,867  

0.2 0.297 36,112  10,733  0.404 215,488  87,126  

0.5 0.589 4,144  2,443  0.607 76,960  46,717  
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Table XXV: Metal Loss Report for IDS in West Butte 

  Capped Uncapped 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] Grade [opt] Tonnage [t] Metal [t oz] 

0.006 0.017 181,430,832  3,049,852  0.020 183,416,992  3,600,476  

0.01 0.023 104,823,664  2,454,970  0.028 108,857,552  3,020,797  

0.02 0.042 36,275,984  1,509,444  0.049 43,068,000  2,115,069  

0.04 0.088 8,679,904  767,390  0.090 14,955,696  1,349,452  

0.06 0.155 3,336,512  517,026  0.135 7,267,392  981,171  

0.08 0.197 2,251,376  442,868  0.173 4,609,312  798,886  

0.1 0.227 1,759,424  399,512  0.207 3,290,928  681,946  

0.2 0.336 780,848  262,435  0.352 1,076,848  378,727  

0.5 0.727 91,168  66,286  1.023 100,640  102,954  

 

Table XXVI: Metal Loss Report for OK in West Butte 

  Capped Uncapped 

Cutoff [opt] Grade [opt] Tonnage [t] Metal [oz t] Grade [opt] Tonnage [t] Metal [t oz] 

0.006 0.016 196,063,296  3,174,265  0.019 197,447,392  3,808,760  

0.01 0.022 114,517,072  2,542,279  0.027 117,813,920  3,191,579  

0.02 0.039 38,369,296  1,478,753  0.047 46,659,072  2,201,842  

0.04 0.106 5,745,360  610,502  0.094 13,883,584  1,306,168  

0.06 0.171 2,750,432  469,581  0.138 7,138,928  983,030  

0.08 0.204 2,074,368  423,379  0.171 4,828,352  824,586  

0.1 0.233 1,656,416  386,127  0.205 3,377,360  694,014  

0.2 0.340 769,008  261,693  0.387 949,568  367,084  

0.5 0.690 100,640  69,403  0.812 177,008  143,727  
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4. Conditional Simulation 

Estimation methods such as inverse distance weighting and some forms of kriging are 

deterministic processes that provide “a value that is, on average, as close as possible to the actual 

(unknown) value…” (Rossi & Deutch, 2014). In a resource model, an estimate provides a 

singular, estimated value for each block within the model. Metrics such as kriging efficiency and 

kriging variance help to characterize uncertainty within an estimated model, but these metrics are 

limited and do not completely describe the distribution of possible values. Simulated models 

offer a stochastic solution that not only incorporates a single expected value at each block, but 

also provides each block with a distribution of possible outcomes. Simulated models aim to 

reproduce the statistics and spatial variability (variograms) of the sample data (Goovaerts, 1997). 

Conditional simulation has become a popular geostatistical technique in the mining industry 

“…[having] been used as grade control tools in daily operations, to analyze risk related to 

resource classifications, to assess the uncertainty of minable reserves at the project’s feasibility 

stage, and to assess mineralization potential in certain settings” (Rossi & Deutch, 2014). 

Simulation methods and validations are discussed in depth in literature such as Goovaerts (1997) 

Geostatistics for Natural Resources Evaluation, Rossi & Deutch (2014) Mineral Resource 

Estimation, and Leuangthong et al. (2004) “Minimum acceptance criteria for geostatistical 

realizations”. 
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4.1. Data Transformation and Variography 

Prior to performing sequential Gaussian simulations (SGS), the composite data set was 

transformed to standard normal distributions. Data transformations were performed on each 

estimation domain separately, and the normal-scored domain statistics were reviewed to ensure 

the data were standard normal. Variogram models (Table XXVII and Figure 28 - 35) were 

derived from normal-scored, declustered composite data, and were fixed to the same orientations 

used in the estimated models. 

Table XXVII: Variogram Model Parameters for SGS 

  

Estimation Domain 

Inside Grade Shell Outside Grade Shell 

Total Sill 1 1 

Nugget 0.2 0.1 

Structure 1 2 1 2 3 

Structure Type Spherical Spherical Spherical Spherical Spherical 

Bearing 135 135 256.35 256.35 256.35 

Plunge 75 75 -6.28 -6.28 -6.28 

Dip 90 90 -45 -45 -45 

Sill 0.25 0.55 0.16 0.24 0.5 

Major Range 25 200 40 350 2500 

Semi-Major Range 60 100 25 350 525 

Minor Range 40 65 25 250 680 
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Figure 28: Downhole variogram of normal-scored gold grades inside the grade shell 
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Figure 29: Downhole variogram of normal-scored gold grades outside the grade shell 
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Figure 30: Major variogram of normal-scored gold grades inside the grade shell 
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Figure 31: Major variogram of normal-scored gold grades outside the grade shell 
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Figure 32: Semi-Major variogram of normal-scored gold grades inside the grade shell 

 



56 

 

Figure 33: Semi-Major variogram of normal-scored gold grades outside the grade shell 
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Figure 34: Minor variogram of normal-scored gold grades inside the grade shell 
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Figure 35: Minor variogram of normal-scored gold grades outside the grade shell 
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4.2. Simulation Plan 

Conditional simulation of gold at the McDonald deposit was conducted using sequential 

Gaussian simulation. Simulated models were created using 30, 50, and 100 realizations. The 

simulated models were carried out using the same parameters outlined in sections 3.1 – 3.2, with 

some exceptions: normal-score and gold variables were added to each simulated model based on 

the number of realizations used, capping strategies were removed, maximum sample limits were 

increased to 50, and normal-scored variogram models (Table XXVII) were used.  

4.3. Model Validation 

Validation of simulated models can be carried out using a variety of metrics as outlined 

in Leuangthong et al. (2004) “Minimum acceptance criteria for geostatistical realizations” and 

Deutsch (2017) “Checking Simulated Realizations – Mining”. In effort to reduce redundancy, 

model validation will be restricted to the 30 realization simulated model.  

4.3.1. Summary Statistics 

The statistics of individual realizations of a simulated model should closely match the 

declustered database used. The average of all realizations in a simulated model should also 

reasonably match a corresponding kriged estimate. Table XXVIII – XXX compare selected 

realizations against the declustered database, and Table XXX compares the average of all 

realizations against a corresponding ordinary kriged estimate. Appendix A contains cumulative 

density functions of selected realizations for each estimation domain.  
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Table XXVIII: Sample and Selected Realization Statistics of Gold Inside the Shell 

  

Sample 

Database 
au_005 au_010 au_015 au_020 au_025 au_030 

Count 556 6,639  6,639   6,639   6,639    6,639   6,639  

Mean 0.141 0.132 0.128 0.149 0.129 0.137 0.132 

Variance 0.140 0.094 0.085 0.118 0.078 0.131 0.087 

Standard deviation 0.374 0.306 0.292 0.344 0.279 0.362 0.296 

Max 6.826 6.827 6.827 6.827 6.827 6.827 6.827 

Upper quartile 0.117 0.114 0.109 0.128 0.110 0.115 0.117 

Median 0.050 0.050 0.047 0.052 0.049 0.051 0.050 

Lower quartile 0.024 0.024 0.022 0.025 0.024 0.024 0.024 

Min 0.002 0.000 0.001 0.001 0.000 0.001 0.001 

 

Table XXIX: Sample and Selected Realization Statistics of Gold Outside the Shell 

  

Sample 

Database 
au_005 au_010 au_015 au_020 au_025 au_030 

Count   11,900  1,262,314  1,262,314  1,262,314  1,262,314  1,262,314  1,262,314  

Mean 0.007 0.006 0.006 0.007 0.006 0.007 0.006 

Variance 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

Standard deviation 0.024 0.018 0.019 0.022 0.019 0.022 0.018 

Max 3.175 5.602 5.690 4.672 5.042 5.307 5.553 

Upper quartile 0.006 0.006 0.006 0.006 0.006 0.006 0.006 

Median 0.002 0.003 0.003 0.003 0.003 0.003 0.003 

Lower quartile 0.000 0.001 0.001 0.001 0.001 0.001 0.001 

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Table XXX: Kriged Estimate and Average Realization Statistics 

  

Inside Grade Shell Outside Grade Shell 

Kriged 

Estimate 

Average of 

Realizations 

Kriged 

Estimate 

Average of 

Realizations 

Count 6,639  6,639  1,262,314  1,262,314  

Mean 0.132 0.140 0.007 0.006 

Variance 0.011 0.017 0.000 0.000 

Standard deviation 0.105 0.131 0.009 0.009 

Max 2.165 6.827 0.612 0.619 

Upper quartile 0.158 0.167 0.009 0.008 

Median 0.105 0.119 0.004 0.004 

Lower quartile 0.072 0.084 0.001 0.002 

Min 0.007 0.003 0.000 0.000 
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4.3.2. Visual Inspection 

Visual inspection of simulated models, like in estimated models, should be conducted to 

ensure that simulated grades are similar to sample grades nearby. Individual realizations are 

expected to visually appear noisy, however, simulated grades should honor sample grades at 

close spacing. The average of the realizations, referred to as the “E-type” or the expected value 

estimate (Goovaerts, 1997), should also honor sample grades at close spacing, but would ideally 

also match an unrestricted kriged estimate. Visual discrepancies between the kriged estimate and 

the E-type indicate regions of relatively-high uncertainty. See Appendix A for selected plan-view 

sections of the simulated model.  

4.4. Model Results 

In the context of simulation, grade-tonnage curves may be used to evaluate the 

relationship between individual realizations, the E-type or average realization, and the 

unrestricted kriged estimate. Ideally, the E-type and kriged estimates should follow each other 

closely on the grade-tonnage curve. Grade-tonnage curves were generated for the 30 realization 

model inside the grade shell (Figure 36). Values in Table XXXI will differ from the estimation 

results presented in section 3.4.1, due to the removal of capping strategies and sample 

restrictions.  

Table XXXI: Grade, Tons, and Metal of the 30 Realization Simulated Model Inside the Grade Shell 

Cutoff [opt] 
E-Type 

Grade [opt] 

E-Type 

Tonnage [t] 
Metal [oz t] 

Kriged 

Grade [opt] 

Kriged 

Tonnage [t] 
Metal [oz t] 

0.005 0.140   3,926,736         548,997  0.132   3,930,288         517,501  

0.01 0.140   3,920,224         548,949  0.132     3,927,328         517,504  

0.02 0.141    3,885,888         548,415  0.133   3,897,728         516,995  

0.04 0.145    3,752,688         544,327  0.137     3,747,952         512,233  

0.06 0.153   3,470,304         530,020  0.148  3,321,712         491,049  

0.08 0.164    3,049,984         500,472  0.166 2,703,072         447,737  

0.1 0.179  2,531,392         453,676  0.188    2,089,168         392,638  

0.2 0.309    587,264         181,271  0.315       575,424         181,506  

0.5 0.915    36,112           33,036  0.750          34,928           26,179  
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Figure 36: Grade-Tonnage curve of simulated gold grades inside the grade shell. 30 realizations shown 
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5. Additional Work   

During the course of this study, the author was involved in two small mineralogy projects 

related to the McDonald deposit. In the first project, a high-grade sample from McDonald (PCM-

91-173, at a depth of 790.4 ft.) provided by Bill Fuchs (a mineralogist who did work on the 

McDonald deposit in the 1980s) was set in epoxy, polished, and analyzed by scanning electron 

microscopy/energy-dispersive X-ray spectroscopy (SEM-EDS) at the Center for Advanced 

Mineral, Metallurgical, and Materials Processing (CAMP) laboratory at Montana Tech. Gary 

Wyss assisted the analytical session. The results, summarized in Appendix B, characterize ore 

minerals found at the McDonald deposit, including electrum, acanthite, and Au-Ag-Hg-sulfides. 

In the second project, the author produced a pan concentrate from a high-grade, drill-core 

intercept from McDonald (PCM-94-566, at an approximate depth of 710 ft.), and a number of 

reflected light photomicrographs were taken. Results from this second study can also be found in 

Appendix B.   
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6. Conclusions 

Resource modelling and simulation of gold at West Butte was conducted to better 

characterize modes of mineralization at West Butte described by company geologists. 

Preliminary resource estimates produced by Newmont suggest the existence of a 500 koz gold 

orebody at West Butte with a grade of 0.21 troy ounces per ton (Newmont Mining Corporation, 

2014). A conservative, ordinary-kriged estimate of West Butte delineated a 470 koz gold 

orebody at an average grade of 0.171 opt. The corresponding simulated model highlighted 

regions of relatively-high uncertainty within the grade shell where data are sparse. 

6.1. Recommendations 

These recommendations are written in conjunction with the recommendations provided 

by Ken Paul and Marion Guimard in the 2011 Newmont relogging report. 

6.1.1. Improvement of the Resource Model at West Butte 

It has been demonstrated that downhole contamination exists in the majority of reverse 

circulation drilling at the McDonald deposit. If the McDonald deposit is to further be developed, 

it is recommended to replace all contaminated reverse circulation drilling with core drilling. Core 

drilling should prioritize replacing reverse circulation drillholes that contain the largest 

proportion of gold intercepts greater than 0.02 opt. Replacement of contaminated reverse 

circulation drilling by core drilling may also warrant the removal of the high-yield limit, which 

will likely increase estimated tonnages at higher grades outside the grade shell. Additional core 

drilling at West Butte would also likely lead to the estimation of a larger-tonnage orebody. The 

estimated model contains high-grade tonnages partially-restricted by their proximity to core data, 

and the addition of more core data may expand the grade shell and subsequently increase 

estimated, higher-grade tonnages.  
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Future iterations of the resource estimate at West Butte should eventually discard the 

grade shell, and domains should be defined based on a geologic attribute. Grade shells have been 

used in previous resource models of McDonald, but grade shelling is not an ideal method of 

defining domains. 

6.1.2. Future Exploration and Improvement of the Geologic Model 

Logged geologic data on the McDonald deposit failed to provide a means of separating 

high-grade, subvertical mineralization from lower-grade stratabound mineralization. It is 

recommended that future exploration programs at the McDonald deposit include a logging 

program focused on delineating high-grade, subvertical mineralization. Oriented, angled-core 

drilling may be utilized to log vein orientations, which may assist in characterizing high-grade 

mineralization.  

High-grade mineralization at West Butte is interpreted to follow along the 9800’ E-W 

fault. While the fault is poorly documented, it is known that high-grade mineralization has east-

west and vertical continuity. It is recommended to continue the angled-core drilling program 

started by Echo Bay Mining towards East Butte along a 100° azimuth. A digitized surface of the 

9800’ E-W fault should also be created and updated as more core drilling takes place.  

Additional exploration drilling should also take place below known mineralized zones at 

East Butte and West Butte to test the possible extent of high-grade mineralization at depth. Most 

drillholes at McDonald terminated within the andesite unit (Ta). Newmont geologists evaluating 

the deposit have drawn comparisons to a “sandwich model”, described by Hedenquist (2000), 

which shows the preferred location of vein and disseminated ore in a permeable lithology (Figure 

37).  If this model is followed, there is potential for high-grade vein deposits in the footwall.   
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Figure 37: “Sandwich model” low-sulfidation epithermal gold system. Taken from (Hedenquist, Arribas, & 

Gonzalez-Urien, 2000) 

 

Faulting at the McDonald deposit is poorly characterized, and may have some controls on 

mineralization. Faulting bounds gold mineralization on the north and west flanks of West Butte, 

and the 9800’ E-W fault is interpreted to be a mineralizing structure for higher-grade 

mineralization. It is recommended that faults at the McDonald deposit be investigated using 

geophysical methods and intercepts from core drilling. Digitized surfaces of the faults should be 

produced, as they will be necessary inputs during resource modeling and mine planning. Offset 

and age of faults relative to mineralization should also be documented.  
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The paragenetic sequence of mineralization at the McDonald deposit has not been 

investigated in detail, at least not in the literature available to this study. Preliminary work 

performed by the author (Appendices B and C) shows a rich and interesting assemblage of Au-

Ag minerals in the deposit. It is recommended that a complete ore and alteration mineral study 

be conducted to better understand the McDonald deposit. Such a study should aim to document 

differences in chemistry and mineralogy, e.g., using hyperspectral imaging, that could provide 

vectors to high-grade mineralization and application to future core logging programs.  
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8. Appendix A 

 

Figure 38: North-South section (left-to-right) of drilling data on the 50,400 ft. easting. Gold grade is displayed along the lengths of the drillholes. Grid 

spacing is 100 ft.   
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Figure 39: North-South section (left-to-right) of drilling data on the 50,600 ft. easting. Gold grade is displayed along the lengths of the drillholes. Grid 

spacing is 100 ft. 
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Figure 40: North-South section (left-to-right) of drilling data on the 50,800 ft. easting. Gold grade is displayed along the lengths of the drillholes. Grid 

spacing is 100 ft. 
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Figure 41: North-South section (left-to-right) of drilling data on the 51,000 ft. easting. Gold grade is displayed along the lengths of the drillholes. Grid 

spacing is 100 ft. 
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Figure 42: North-South section (left-to-right) of drilling data on the 51,200 ft. easting. Gold grade is displayed along the lengths of the drillholes. Grid 

spacing is 100 ft. 
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Figure 43: North-South section (left-to-right) of drilling data on the 51,400 ft. easting. Gold grade is displayed along the lengths of the drillholes. Grid 

spacing is 100 ft. 
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Figure 44: North-South section (left-to-right) of drilling data on the 51,600 ft. easting. Gold grade is displayed along the lengths of the drillholes. Grid 

spacing is 100 ft. 
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Table XXXII: Geologic codes for the McDonald Deposit drilling database 

FM (Formation) LTH (Lithology) 

-9 no sample -9 no sample 

0: unconsolidated 

0: undifferentiated 

1: pad material 

2: alluvium 

3: glacial 

till 1: rhyolite 

0: unknown 

1: xtal poor tuff 

(Trtcp) 

2: xtal rich tuff 

(Trtcr) 

3: lithic 

tuff (Trtl) 

4: biotite 

rhyolite (Trb) 

2: dacite 0: undifferentiated 

3: andesite 

0: undifferentiated 

1: aphanitic flow 

(Taf) 

2: amphibole prphy 

(Tap) 

3: andesite agglom. 

(Tag) 

4: plag + hbl prphy 

(Top) 

5: plag prphy (Tpp) 

6: magnetic flow 

(Tm) 

4. Sedimentary (Tvs-l) 
1: conglomerate 

2: sandstone 

3: siltstone 

4: mudstone 

5: calcareous 

siltstone 

6: calcareous 

mudstone 

7: 

volcaniclastic 

sandstone 

8: r/ash fall 

tuff 

5. Sedimentary 

(other) sediments between 

Trtl and Ta 

6: sinter 
0: undifferentiated 

1: geyserite 

7: Precambrian 

Belt Group 

1: undifferentiated 

2: Helena Fm. 

3: Empire Fm. 

4: Spokane 

Fm. 8: Sedimentary 

(Tvs-u) 

1: conglomerate 

2: sandstone 

3: siltstone 
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Table XXXIII: Statistics of gold grade (Au opt) by alteration type 

Alteration Type Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

Silicic 10419 0.019 0.01 0.101 6.826 0.013 0.005 0.002 

Argillic 1387 0.004 0 0.013 0.232 0.002 0.001 0.001 

Fresh 258 0.002 0 0.005 0.078 0.001 0 0 

Potassic 20 0.007 0 0.006 0.024 0.008 0.005 0.003 

Propylitic 35 0.003 0 0.004 0.022 0.004 0.002 0.001 

Sericitic 18 0.006 0 0.002 0.008 0.008 0.007 0.003 

No Sample 319 0.003 0 0.005 0.051 0.002 0.001 0.001 

 

 
Table XXXIV: Statistics of gold grade (Au opt) by hole type 

Hole Type Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

Core 1409 0.027 0.005 0.074 1.105 0.023 0.008 0.003 

Reverse circulation 10434 0.016 0.01 0.098 6.826 0.01 0.004 0.002 

Monitoring well 613 0.006 0 0.012 0.186 0.006 0.003 0.001 
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Table XXXV: Statistics of gold grade (Au opt) by lithology 

Lithology Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

Alluvium 35 0.001 0 0.001 0.003 0.001 0 0 

Andesite agglomerate 9 0.025 0.001 0.024 0.07 0.031 0.012 0.008 

Undifferentiated andesite 89 0.009 0 0.013 0.066 0.009 0.004 0.002 

Aphanitic flow 172 0.008 0 0.018 0.164 0.007 0.003 0.001 

Ash fall tuff 4 0.003 0 0.001 0.004 0.004 0.003 0.002 

Calcareous mudstone 5 0.004 0 0.003 0.009 0.003 0.002 0.002 

Conglomerate 350 0.002 0 0.007 0.082 0.001 0.001 0 

Geyserite 1 0.007 NaN NaN 0.007 0.007 0.007 0.007 

Glacial till 29 0.001 0 0 0.001 0.001 0.001 0 

Lithic tuff 8360 0.022 0.013 0.112 6.826 0.015 0.006 0.002 

Mudstone 89 0.004 0 0.005 0.025 0.004 0.002 0.001 

No Sample 47 0.003 0 0.008 0.051 0.003 0.001 0 

Pad material 36 0.002 0 0.002 0.011 0.001 0.001 0.001 

Plagioclase hornblende porphyry 3 0.003 0 0.002 0.006 0.003 0.002 0.002 

Plagioclase porphyry 23 0.005 0 0.003 0.011 0.006 0.004 0.002 

Sandstone 47 0.008 0 0.014 0.076 0.009 0.003 0.001 

Siltstone 121 0.011 0 0.018 0.078 0.009 0.003 0.001 

Undifferentiated Sinter 238 0.003 0 0.004 0.031 0.004 0.002 0.001 

Undifferentiated unconsolidated 41 0.001 0 0.001 0.005 0.001 0.001 0.001 

Unknown 3 0.001 0 0 0.001 0.001 0.001 0 

Volcaniclastic sandstone 1 0.001 NaN NaN 0.001 0.001 0.001 0.001 

Crystal poor tuff 230 0.004 0 0.008 0.072 0.004 0.002 0.001 

Crystal rich tuff 2523 0.005 0.001 0.024 0.895 0.005 0.002 0.001 
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Table XXXVI: Statistics of gold grade (Au opt) by oxidation intensity 

Oxidiation Intensity Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

Strong 676 0.037 0.079 0.28 6.826 0.014 0.006 0.002 

Moderate 5851 0.02 0.007 0.087 3.175 0.014 0.005 0.002 

Weak 5038 0.012 0.002 0.042 1.354 0.009 0.004 0.001 

Not present 854 0.006 0.002 0.041 1.068 0.003 0.001 0.001 

No sample 35 0.004 0 0.009 0.051 0.003 0.002 0.001 

Unknown 2 0.001 0 0 0.001 0.001 0.001 0.001 

 

Table XXXVII: Statistics of gold grade (Au opt) by pyrite abundance 

Pyrite Abundance Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

0% 9262 0.012 0.003 0.053 3.175 0.009 0.004 0.001 

0 - 2% 2815 0.025 0.008 0.089 1.945 0.017 0.006 0.002 

2 - 5% 286 0.065 0.195 0.441 6.826 0.02 0.008 0.003 

5 - 10% 65 0.044 0.021 0.146 0.904 0.02 0.006 0.003 

> 10% 23 0.067 0.06 0.245 1.17 0.015 0.002 0.001 

No sample 4 0.014 0.001 0.025 0.051 0.004 0 0 
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Table XXXVIII: Statistics of gold grade (Au opt) by pyrite type 

Pyrite Type Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

Fractures or veins 3014 0.028 0.011 0.103 2.723 0.019 0.007 0.003 

Groundmass 589 0.011 0.002 0.043 0.749 0.007 0.002 0.001 

Both 777 0.037 0.081 0.285 6.826 0.014 0.006 0.002 

Not present 8006 0.011 0.001 0.036 1.008 0.008 0.003 0.001 

No sample 49 0.004 0 0.008 0.051 0.003 0.002 0.001 

 

 
Table XXXIX: Statistics of gold grade (Au opt) by vein abundance 

Vein Abundance Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

0 - 2% 3761 0.02 0.006 0.077 2.723 0.015 0.006 0.002 

2 - 5% 1595 0.023 0.039 0.198 6.826 0.013 0.005 0.002 

5 - 10% 375 0.027 0.014 0.118 1.945 0.015 0.006 0.003 

10 - 25% 509 0.031 0.011 0.105 1.105 0.014 0.007 0.003 

25 - 50% 158 0.04 0.013 0.113 0.904 0.02 0.007 0.002 

50 - 75% 36 0.042 0.038 0.194 1.17 0.013 0.004 0.001 

75 - 100% 17 0.077 0.044 0.209 0.816 0.013 0.004 0.002 

Veinlets 2808 0.012 0.001 0.036 0.749 0.009 0.004 0.002 

Not present 3153 0.008 0.001 0.033 0.952 0.005 0.002 0.001 

No sample 44 0.004 0 0.009 0.051 0.003 0.002 0.001 
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Table XL: Statistics of gold grade (Au opt) by vein type 

Vein Type Count Mean Variance Standard deviation Max Upper quartile Median Lower quartile 

All 12456 0.016 0.009 0.093 6.826 0.011 0.004 0.002 

Chalcedonic 2292 0.019 0.008 0.091 3.175 0.01 0.004 0.002 

Limonite-goethite and Mn-oxide 305 0.047 0.162 0.403 6.826 0.014 0.005 0.002 

Massive quartz 3674 0.017 0.005 0.068 1.945 0.013 0.005 0.002 

Quartz and adularia 8 0.01 0 0.016 0.049 0.007 0.002 0.002 

Quartz and pyrite 1119 0.025 0.012 0.109 2.723 0.016 0.006 0.003 

Quartz, specularite, and pyrite 375 0.037 0.01 0.1 1.354 0.029 0.011 0.005 

Amethystine quartz and other 16 0.004 0 0.004 0.012 0.003 0.003 0.002 

Not present 3319 0.008 0.001 0.032 0.952 0.006 0.002 0.001 

Unknown 1307 0.013 0.001 0.033 0.55 0.011 0.004 0.002 

No Sample 41 0.004 0 0.009 0.051 0.003 0.001 0.001 
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Figure 45: North-South section (left-to-right) of reverse circulation drilling at West Butte along the 51,360 ft. easting. Grid spacing is 100 ft. Gold 

grades are displayed along the lengths of the drillholes. Note PRM-94-557, which appears to show downhole contamination of high grade values over a 

length of roughly 300 ft.  
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Figure 46: Sample intervals from 750 ft. to 855 ft. in RC drillhole PRM-95-557. Potentially contaminated 

intervals are boxed in gray and show decreasing gold grade with depth 
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Figure 47: Plan view section on the 4450 ft. elevation of sample grades (crosses) and estimated grades (boxes). Ordinary Kriging estimate is shown. 
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Figure 48: Plan view section on the 4500 ft. elevation of sample grades (crosses) and estimated grades (boxes). Ordinary Kriging estimate is shown. 
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Figure 49: Plan view section on the 4550 ft. elevation of sample grades (crosses) and estimated grades (boxes). Ordinary Kriging estimate is shown. 
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Figure 50: Plan view section on the 4600 ft. elevation of sample grades (crosses) and estimated grades (boxes). Ordinary Kriging estimate is shown. 
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Figure 51: Plan view section on the 4450 ft. elevation of sample grades (crosses), simulated grades (solid small boxes), and estimated grades (boxes). 30 

realization E-type and ordinary kriged estimate shown. 
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Figure 52: Plan view section on the 4500 ft. elevation of sample grades (crosses), simulated grades (solid small boxes), and estimated grades (boxes). 30 

realization E-type and ordinary kriged estimate shown. 
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Figure 53: Plan view section on the 4550 ft. elevation of sample grades (crosses), simulated grades (solid small boxes), and estimated grades (boxes). 30 

realization E-type and ordinary kriged estimate shown. 
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Figure 54: Plan view section on the 4600 ft. elevation of sample grades (crosses), simulated grades (solid small boxes), and estimated grades (boxes). 30 

realization E-type and ordinary kriged estimate shown. 
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Figure 55: Logarithmic cumulative density function of simulated grades inside the grade shell
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Figure 56: Logarithmic cumulative density function of simulated grades outside the grade shell 
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9. Appendix B 

The following is a short mineralogy report put together by the author and Prof. Chris Gammons.   

 

Fe-stained clay was sampled from a box of drill core (Box 117) from the West Butte ore 

body (drill hole PCM-94-566, approximately 710’ depth). The interval in question (707.5 to 

717’) was reported to assay 3.64 opt Au and 1.485 opt Ag. Some of the clay-rich material was 

physically panned and produced an impressive amount of silt-sized gold grains. The sample was 

then homogenized, crushed to < 0.5 mm, and sent to Gary Wyss at CAMP for further processing. 

Mr. Wyss first separated the clay from the clastic material by repeated rinsing and decanting the 

suspended solids. The clastic material was then separated using di-iodomethane (density of ~3.3 

g/ml). The fraction that sank through the heavy liquid (that is, particles with density > 3.2 g/cm3) 

was cleaned with acetone, dried in an oven, and used for preparation of polished epoxy plugs.   

A series of photo-micrographs was taken (following pages) using a reflected light 

microscope. In these photos, gold (and/or electrum) grains are the bright, yellowish-white grains. 

The photo-micrographs mostly show grains of gold/electrum that are angular in shape and are 

attached to particles of gangue minerals. The grains range in size from < 1 µm to > 200 µm in 

diameter. Additional gold grains were found that occurred as isolated, rounded grains that 

probably were abraded during crushing. These grains were not photographed because the gold-

gangue relationships are no longer shown.  

Most of the light gray material in the photographs is thought to be hematite, goethite, 

and/or Mn-oxides. Some grains of partially oxidized pyrite were found in the samples (not 

shown here), but none of the pyrite grains had inclusions of gold. Darker gray particles (only 

slightly brighter than the epoxy) are probably a mix of quartz and other non-reflective gangue 

minerals such as muscovite, adularia, clays, and carbonate minerals. Further mineral ID is not 

possible without SEM-EDS.   

The most significant finding of this small study is that high-grade intercepts in the 

oxidized portion of the McDonald deposit may contain significant fractions of relatively coarse-

grained gold that could yield relatively-high gold recoveries with gravitational separation 

methods. 
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Figure B1: SEM-BSE image of a sample taken at 790.4 ft. in drillhole PCM-91-173, showing electrum grains (white) surrounded by a 

matrix of quartz (qtz) and adularia.  
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Figure B2: SEM-BSE image of a sample taken at 790.4 ft. in drillhole PCM-91-173, showing an electrum grain (white) surrounded by 

a matrix of quartz. The red box denotes the area analyzed for composition. 
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Figure B3: SEM-BSE image of a sample taken at 790.4 ft. in drillhole PCM-91-173 showing acanthite (light gray) and a Ag-Hg 

sulfide (bright-gray), possibly imiterite (Ag2HgS2), surrounded by a matrix of quartz (darkest gray). The square (medium gray) 

mineral to the left is rutile.  The red box denotes the area analyzed for composition.  
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Figure B4: SEM-BSE image of a sample taken at 790.4 ft. in drillhole PCM-91-173 showing acanthite and an Au-Ag sulfide (bright), 

possibly uytenbogaarditite (Ag3AuS2), surrounded by a matrix of quartz. The red cross denotes the area analyzed for composition. 
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Figure B5: SEM-BSE image of a sample taken at 790.4 ft. in drillhole PCM-91-173 showing acanthite and an Au-Ag sulfide (bright 

triangular crystal), possibly uytenbogaarditite (Ag3AuS2), surrounded by a matrix of quartz. The red cross denotes the area analyzed 

for composition. 
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Figure B6: SEM-BSE image of a sample taken at 790.4 ft. in drillhole PCM-91-173 showing two electrum grains (light-gray) of 

varying composition (46 – 56 wt% Au) and an Au-Ag sulfide (red dot, slightly darker than electrum). The EDS analysis suggests a 

stoichiometry of Ag4Au3S3, which is not a known mineral. More work (e.g., electron microprobe) would be needed to confirm the 

composition of this phase. The color image is a photograph of the same grain cluster taken in reflected light. 
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Figure B7: SEM-BSE image of the same sample from as previous page showing analysis of electrum. 
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Figure B8: SEM-BSE image (left) and reflected light image (right) of a sample taken at 790.4 ft. in drillhole PCM-91-173 showing a 

large electrum grain and an Au-Ag sulfide, most likely petrovskaite (AuAgS).  
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Figure B9: Photomicrograph of a sample taken at 790.4 ft. in drillhole PCM-91-173 using scanning electron microscopy/energy-

dispersive X-ray spectroscopy (SEM-EDS). Photomicrograph shows an electrum grain (white) surrounded by a matrix of quartz and 

adularia. The red box denotes the area analyzed for composition. 
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Figure B10: Photomicrograph of a sample taken at 790.4 ft. in drillhole PCM-91-173 using scanning electron microscopy/energy-

dispersive X-ray spectroscopy (SEM-EDS). Photomicrograph shows grains of acanthite (white) surrounded by a matrix of quartz and 

adularia. The red cross denotes the area analyzed for composition
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Figure B11: Gold and electrum grains from McDonald (drillhole PCM-94-566, 710’ depth). 
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Figure B12: Additional photographs of gold and electrum grains from the same sample (drillhole 

PCM-94-566, 710’ depth). The bright grain in lower right panel is an unknown mineral (not 

gold). 
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