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Abstract 

The primary scientific purpose of this project was to improve geologic knowledge of valley-fill 

units in the most downstream portion of the Clark Fork River valley in Montana. This was done 

to help understand the history of glacial Lake Missoula filling and draining cycles in the vicinity 

of the dam. The secondary purpose was to make a geologic map of the Cabinet, Heron and 

Smeads Bench 7.5-minute quadrangles and to resolve differences between detailed maps of 

Idaho (Lewis and others, 2008) and the old map of the Smeads bench, Heron and Cabinet 

quadrangles in Montana (Harrison and others, 1992; mapping was done 1977-87).  

Improving knowledge as to the timing and history of glacial Lake Missoula in this area was done 

by delineating the valley fill sediments and flood gravel deposits from newer alluvial gravels and 

glacial outwash. There are two large glaciolacustrine outcrops in the field area that were 

analyzed in detail. Stratigraphic sections show sections of repeating sequences of silt and clay 

couplets, that are unconformably separated by a thicker layer of fine grained, crossbedded sand 

and silt. Sands from both sections were sampled for Optically Stimulate Luminescence and 

Infrared Stimulated Luminescence burial age-analysis. The burial-age of our successful sample 

was 16.02 +/- 1.08ka, which is consistent with having been buried during the final stages of 

glacial Lake Missoula. The other sample was determined to be in error due to scatter in the 

signal. In the field area, massive gravel deposits were found in streamlined bars mid-channel 

along the banks of tributary channels and in areas protected from stream erosion such as 

meanders and topographical highs. The gravels were deposited by one or more massive floods 

that flowed through the valley when the ice dam broke. The gravel deposits are buttressed and 

mantled by glaciolacustrine sediments of glacial Lake Missoula and thus can be assumed to be 

the older of the two deposits. The preservation of the lake beds in the field area indicates that the 

final draining of the lake was much slower and less erosive. The laminated couplets represent 

annual deposits laid down while the lake was increasing in depth. The basal sand beds represent 

high-energy influx of sediment in shallow water. This suggests that lake levels fluctuated around 

16.02 +/- 1.08ka before draining completely. 
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1. Introduction 

During the Wisconsin Era of the Pleistocene, the Purcell Lobe of the Cordilleran Ice 

Sheet descended south from Canada into Idaho and Montana. The lobe of ice created a massive 

ice dam on the Clark Fork River that backed up 2,200 to 2,600 km3 of water into 

the intermontane valleys of Western Montana (Pardee, 1910, Smith, 2006). As the water rose, 

tunnels beneath the ice formed and the dam eventually failed (Clarke et al., 1984) Flood waters 

of the largest magnitude ever recorded cascaded through Idaho, Washington and Oregon, eroding 

resistant bedrock into channels and coulees, depositing massive amounts of gravel 

and creating what’s known as the Channeled Scablands (Bretz, 1923, Bretz et al., 1956).   

Geologic maps that show accurate extents of Quaternary units in intermontane valleys of 

western Montana are needed to understand the history of glacial Lake Missoula filling and 

draining cycles. Correlation of glaciolacustrine deposits within the lake basin contributes to the 

knowledge of the lake in its final stages.   

One goal of this project was to make a geologic map of the Montana portion of the 

Cabinet 7.5 minute quadrangle, the Smeads Bench and the Heron 7.5-minute quadrangles at a 

scale of 1:24,000 (Figure 1). To date, published maps in this area are at smaller scales: 1:250,000 

(Harrison et al., 1983), 1:250,000 (Harrison and Cressman, 1993) and 1:100,000 (Lewis et al., 

2008). A 1:24,000 scale map was published in the Idaho portion of the Cabinet Quadrangle 

(McFadden, et al., 2006).   

The primary goal of mapping was to delineate unconsolidated Quaternary units and 

improve the precision of contact placement of these units abutting bedrock. Sand and gravel 

deposits in the lake Missoula basin are key aquifers across Western Montana, so knowing their 

distribution and sedimentology in the field area is useful for understanding the groundwater 
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resources in this area. The Montana Bureau of Mines and Geology’s (MBMG) Groundwater 

Characterization Program (GWCP) plans to begin a multi-year study across economically 

developing northwestern counties of Montana in the near future. 

 

1.1. Previous Geologic Mapping 

Previous mapping of this area in Northwestern Montana has only been carried out at a 

1:100,000 scale and smaller. The most detailed map that includes the quadrangles mapped in this 

project is Harrison and Cressman’s (1993) map of the Libby Thrust Belt. On this map, most river 

valley sediments, including the smaller channel offshoots joining the valley from adjacent 

mountains, were mapped as Qg, Quaternary glacial deposits. No delineation was made between 

Qg, as all the sediments were lumped together as glacially deposited or influenced. Holocene and 

Pleistocene alluvium, proglacial lake sediments or flood gravels, glacial outwash and till were 

not differentiated on previous maps in Montana (Harrison and Cressman, 1993; Harrison et al., 

1983; Lewis et al., 2008; and McFadden et al., 2006).  

On the 1:100,000 scale map by Lewis et al. (2008), gravel and flood related deposits are 

divided further than on our map. On this map multiple terraces of flood gravel deposits are 

delineated as old, middle, and young. This map includes the Montana portion of the Cabinet 

quadrangle. Quaternary units that are on this map that are not on Plate I are Qfgb (flood gravel 

bars), and Qgu (undivided). Lewis et al. (2008) mapped most the valley as glacial till. 

 

1.2. Previous Research on glacial Lake Missoula 

In 1910, Joseph Pardee proposed that a large ice-dammed lake filled the intermontane 

valleys of western Montana. The evidence he cited was large strandlines on the side of Mt Jumbo 
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in Missoula. Bretz (1925) studied the origin of the Grand Coulee in Washington and deduced 

that the coulee and the channeled scablands were carved out by floods from glacial Lake 

Missoula. This was evident to Bretz because of the location of the dam and the volume and 

height of the lake, stating that it contained all the necessary elements for catastrophic draining. 

Although it is unknown how many times the ice dam formed and broke, Pardee (1910, 

1942) proposed that it did so at least twice and that the later draining(s) were much slower. This 

is due is the closely spaced the shorelines are and that they were faint enough that each lake 

stand must have been of short duration. The wave cut shorelines are not necessarily 

chronological though, and are difficult to correlate (Smith, 2017). The highest shoreline is a 

marker for the highstand of the lake at its maximum volume to be 1,260 – 1,298 m asl, not 

accounting for post-glacial isostatic adjustment (Smith et al., 2016).  

Glacial Lake Missoula sediments are found preserved on valley floors at 610 m in 

elevation near the ice dam to 100 m below the top strandline in Missoula (Smith et al., 2016). 

Constraining the ages of different glacial Lake Missoula deposits is important for understanding 

the history and chronology of the lake. This is difficult due to the lack of organic material. The 

most effective way of dating these sediments has been Optically Stimulated Luminescence 

dating (Hanson et al., 2012.; Smith, et al., 2016; Smith et al., 2018). 

The outcrop of glacial Lake Missoula sediments that has been studied the most in the 

glacial Lake Missoula basin is called the Ninemile section (Alt and Chambers, 1970; Chambers, 

1971, 1985; Waitt, 1980, 1985; Fritz and Smith, 1993; Shaw et al., 1999, 2000; Atwater et al., 

2000; Booth et al., 2004; Hanson et al., 2012). The Ninemile creek section is near the confluence 

of Ninemile Creek and the Clark Fork River. It is approximately 250 meters long and 23 meters 

thick (Hanson et al., 2012). The sedimentology here consists of sections of clay and silt 
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laminations that thin up-section until they are unconformably covered by a thicker deposit of silt, 

sand and/or gravel. These sections have been interpreted to be rhythmites: draining and filling 

cycles of glacial Lake Missoula (Chambers, 1971, 1984; Fritz and Smith, 1993; Hanson et al., 

2012).  

Ninemile has been interpreted as showing evidence for up to 40 filling and draining 

cycles by Waitt (1980, 1985), and Atwater (1986) counted 89 transgressions of glacial Lake 

Missoula. The section has been correlated with slackwater deposits of catastrophic flood events 

in Idaho, Washington and Oregon (Waitt, 1980, 1985; Atwater et al., 2000). Fritz and Smith 

(1993) argued that the sedimentology of the Ninemile section shows patterns of lake level 

fluctuations, without indication of catastrophic flooding. In 2006, analysis by Smith attributed 

these glaciolacustrine deposits to later stage, less energetic drainings of the lake. He stated that 

the large-scale gravel bars that underlie these lake beds in other places along the Clark Fork 

River such as Tarkio and Garden Gulch, are evidence for catastrophic flood events (Lonn and 

Smith, 2007), much like the Stout and Paradise bars along the Flathead River and lower Clark 

Fork River of Pardee (1942). 

Hanson et al. (2012) compared the Ninemile section to another outcrop of 

glaciolacustrine sediment in Missoula coined the Rail Line section. In both the Rail Line and the 

Ninemile sections, the rhythmites begin with a thin layer of gravel (only 2 of the rhythmites at 

the Rail Line section have the gravel layer), followed by a layer of fine crossbedded sand, and 

then clay and silt couplets that thin up-section. They showed evidence for soft sediment 

deformation and subaerial exposure surfaces near the base of many of the rhythmite sections. 

Hanson et al. (2012) concluded that the upwardly thinning varves, climbing ripple-drift 

sequences, soft sediment deformation structures and erosive lower contacts suggests that the silt 
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beds found in the Ninemile and Rail Line sections were deposited by turbidity currents at 

relatively shallow depth. This conclusion was also reached by Chambers (1971, 1984) at the 

Ninemile site. 

Shaw et al. (1999) suggested that the crossbedded basal sand layers were high energy 

turbidite deposits activated by jokulhlaups beneath the Cordilleran ice sheet. Hanson et al. (2012) 

reasoned that this did not explain the exposure surfaces and convoluted and micro-faulted 

bedding just above the sand-silt contact or the fact that the varves thin up-section, representing a 

deepening of water and further distance from the sediment source. Instead, the climbing rippled 

basal sands were deposited in high energy, high deposition flows, i.e. turbidity currents, in a 

shallow Lake Missoula (Hanson et al., 2012; Chambers, 1971, 1984).  

In Montana, previous analysis done on glacial Lake Missoula sediments has been 

primarily along the Upper Clark Fork and Flathead Rivers. Until now, analysis of glacial Lake 

Missoula sediments has not been done in the proximity of where the Pleistocene glacial lobe 

blocked the Clark Fork River. That is what we set out to do in this project, in order to gain 

knowledge as to the timing and behavior of glacial Lake Missoula in its last stage. 

 

1.3. Regional Geologic Setting 

The area of research in this paper is located in the Clark Fork River Valley between the 

Cabinet Mountains and the Bitterroot Range within the Kootenai National Forest, in Sanders 

County, MT. Its boundaries are defined by the extent of three 7.5-minute quadrangles in NW 

Montana: the Montana portion of the Cabinet quadrangle (the Idaho portion of the Cabinet 

Quadrangle was previously mapped at 1:24,000 by the Idaho Geological Society (McFaddan et 

al., 2006); the Heron quadrangle; and the Smeads Bench quadrangle. These three quadrangles 
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include the most downstream portion of the Clark Fork River in Montana, and three tributaries: 

Bull River, Blue Creek, and Elk Creek. The Cabinet Quadrangle straddles the border of Montana 

and Idaho, and the map area begins just east of the Cabinet Gorge Dam and Lake Pend Oreille, at 

the Montana border. It is at this approximate location that the ice damn was formed ~20 ka ago 

(Pardee, 1910, 1942; Bretz, 1925, Booth et al., 2004). 

 

 
Figure 1: Map showing the boundary and extent of the field area in the Cabinet, Heron and Smeads Bench 

7.5’ quadrangles in Northwestern Montana. 
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1.4. Structure 

The study area is located within a complex zone of thrust faults and high-angle normal 

faults that is about 24 km wide and 161 km long and extends from the Canadian Border just west 

of the Idaho/Montana border to the Hope Fault. This zone is called the Libby Thrust Belt 

(Harrison and Cressman, 1993). 

The Hope Fault is a W-NW trending dextral strike slip fault more than 160 km long that 

extends from Hope, Idaho to Heron, Montana. This transform fault has apparent right-lateral 

horizontal displacement of 26 km and 6.7 km of apparent vertical displacement to the south 

(Harrison and Cressman, 1993).  

Evidence of Proterozoic sills across the Hope Fault indicates that the fault may have 

existed in the Proterozoic (Harrison et al., 1972). The Hope Fault has been linked to the Lewis 

Thrust Belt by Harrison and Cressman (1993) stating that since this is the southern terminus of 

the thrust belt, it possibly formed a tear fault through Mesozoic thrusting. Displacement along 

the Hope Fault occurred during Mesozoic thrusting~100 m.y. ago when the Libby Thrust Belt 

was formed, and it remained active until about 60 m.y. ago 
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2. Methods 

The Cabinet, Heron and Smeads Bench quadrangles were mapped at 1:24,000 scale using 

a combination of field analysis, aerial photo interpretation, and referencing from other geologic 

maps of various scales. The field mapping was carried out during the summer of 2015, in 

multiple 10-day segments, as well as during reconnaissance work after the map was in the stage 

of being digitized. Standard geologic tools were used for mapping, including a Brunton compass, 

a handheld GPS, and paper topographic base maps of the Smeads Bench, Heron and Cabinet 

quadrangles at 1:24,000 scale. Mapping was completed on foot, one quad at a time, in north and 

south sections to systematically gather information. Due to dense vegetation on many hillslopes, 

roadcut exposures were traversed and strike and dip was taken where possible.  

The contacts of Belt Supergroup formations and faults on Plate 1 were compiled by 

referencing three previously published maps: Geology of the Libby thrust belt of northwestern 

Montana and its implications to regional tectonics (Harrison and Cressman, 1993); Preliminary 

geologic map of part of the Kalispell 1 degree X 2 degree quadrangle, Montana (Harrison et al., 

1983), and the Preliminary Geologic Map of the Sandpoint 30 x 60 Minute Quadrangle, Idaho 

and Montana, and the Idaho Part of the Chewelah 30 x 60 Minute Quadrangle (Lewis et al., 

2008), (Figure 2). 

 

 

http://ngmdb.usgs.gov/Prodesc/proddesc_4920.htm
http://ngmdb.usgs.gov/Prodesc/proddesc_4920.htm
http://ngmdb.usgs.gov/Prodesc/proddesc_14068.htm
http://ngmdb.usgs.gov/Prodesc/proddesc_14068.htm
http://ngmdb.usgs.gov/Prodesc/proddesc_84388.htm
http://ngmdb.usgs.gov/Prodesc/proddesc_84388.htm
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Figure 2: This map is showing previously mapped areas that intersect the field area. The authors and scales 

of each map is labeled within the mapped outlines. 

 

 The map of the geology of the Libby Thrust (Harrison and Cressman, 1993) shows the 

entire length of the field area, north of the Clark Fork River, at 1:250,000 scale. It is very 

detailed in showing the complex structure of the area and the attitude of bedding planes. This 

map contributed to our placement of the Hope Fault and thrust and normal faults in the 

northwestern region of the map (Plate 1), as well as Belt Supergroup formation contacts. The 

geologic map of the Sandpoint and Chewelah quadrangles (Lewis et al., 2008) was mapped at a 

1:100,000 scale and includes the area at the western edge of our map to ~2.25 km east of Bull 
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River. The map covers south and north of the Clark Fork River and aided in our placement of 

contacts between Belt formations in the mountainous areas. The geologic map of the Kalispell 

quadrangle, 1:250,000 scale, shows most of the field area, starting about where the Libby Thrust 

map cut off to the east. It shows both the north and south of the river. This map was referenced 

when adding contacts between Belt formations south of the valley, and in corroboration with the 

Libby Thrust map for the northern contacts.  

 

2.1. Analysis of valley and glacial Lake Missoula deposits 

A good portion of the mapping was done in an effort to understand the path of glacial 

Lake Missoula during high-energy flood stages. Mapping the distribution and morphology of 

the gravel deposits throughout the field area was done by analyzing the geology from the 

channels outward and walking along edges of the bedrock cliffs. Holocene alluvium was 

analyzed along Bull River at the Bull River Campground and along the Clark Fork River near the 

Heron bridge. The Clark Fork River’s flood plain extends farther south than it does north, and 

many roads head south from Highway 200, across most of the valley. We traversed on foot and 

by car down the roads, analyzing the morphology of the flood plain as we moved south away 

from the river and beyond a river-cut terrace.  

Old alluvium (Pleistocene) deposits were differentiated from Holocene alluvium by 

factors such as sorting, matrix, grain size and overall abundance of clasts. It was essential to 

distinguish between the Pleistocene alluvium, Pleistocene flood gravels and glacial outwash. The 

alluvium was differentiated from flood gravels by clast size and roundness, stratigraphic features, 

pathways and shapes of the deposits. We visited several massive gravel deposits that had well-

exposed surfaces with which to see imbrication and crossbedding. The gravel deposits in the 
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middle of the valley were traversed to determine their extent and stratigraphy. Glacial outwash 

was harder to delineate, as it is very similar to flood gravel characteristically. Geologic 

interpretation of potentially glaciated alpine regions was used as a guide to possible depositional 

processes having taken place. 

 Of equal importance to studying the gravel deposits was to analyze the glaciolacustrine 

deposits left over from glacial Lake Missoula. The valley terrain was thickly forested, and 

exposures of this sediment was topical in most places. The thickest outcrop of these sediments 

that we found in the field area is on a road cut on Elk Creek Road in Heron, MT (Location 1, 

Plate 1). The exposure was steep and so a stair-step exposure was cut into and diagonally up the 

exposure to provide fresh, reachable surfaces. The tools used to expose the sections were 

trowels, a pick axe and a shovel. Stratigraphic analysis of these sediments was done using a 

Jacob staff to measure the overall thickness, and a metric compass-ruler to measure the 

individual laminations in detail. This section was measured vertically on a millimeter scale, to 

the point where bioturbation and soil interference was present. 

A thinner section of glacial Lake Missoula sediments was found at the top of a large 

gravel deposit along Highway 200, next to Blue Creek Road. I refer to this outcrop as the Blue 

Creek Road section, and it was also measured in detail. Two stratigraphic sections of these 

locations were used to infer glaciolacustrine sedimentation in the area.  

In addition to mapping the surficial deposits, well logs were used to get a picture of the 

subsurface. The object was to get a general picture of the thickness and stratigraphy of glacial 

Lake Missoula sediments and gravels in the valley, as well as improve knowledge as to the 

groundwater potential in the area. 
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2.2. Geochronology of glaciolacustrine sediments 

Optical dating is the prevalent method used to determine the timing of burial and 

deposition of quartz and feldspar grains in glacial Lake Missoula deposits (Levish, 1997; Hanson 

et al., 2012; Smith et al., 2018). Optically stimulated luminescence dating (OSL) and Infrared 

Stimulated Luminescense (ISRL) are techniques used to determine the time elapsed since quartz 

and feldspar grains were last exposed to sunlight. During aerial, glacial or fluvial sediment 

transport the sand grains’ luminescence signal is commonly zeroed out, or “bleached”, due to 

exposure of sunlight.  

Determining the burial age of the sand in the 2 glaciolacustrine outcrops we sampled in 

the field area will add to the knowledge of the history of the lake that has been inferred by others 

downstream and upstream of the dam.  

 

2.2.1. Sample Locations 

Two samples were taken for optical dating in the field area, and their locations are on the 

corresponding stratigraphic sections (Plate 2 and Figure 9). Beds that had visible quartz sand 

grains were chosen for our sample locations. The first sample, Sample #: EC-01, was collected 

from the Elk Creek Road Section (Location A on Plate 1 from the sand-silt facies). Sample #: 

BC-01 was taken from the Blue Creek Road section (Location B on Plate 1) in sand-silt facies at 

the base of the section where it contacts the underlying gravel-sand facies. When choosing the 

sample points on these sections, beds that showed signs of post-depositional mixing processes 

such as bioturbation, soil formation, desiccation cracks were avoided. For the lab to determine 

the dose rate of radiation, we provided a quart-sized sample of the sediment ~30 cm surrounding 
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the tube, and the latitude and longitude of the location, elevation, and the burial depth of the 

sample were noted for processing, following the techniques of Rittenour (2008). 

 

2.2.2. Sampling Methods 

Outcrops were excavated to depths of about 50-75 cm in order to expose un-weathered 

sediment. Samples were then collected by hammering in a 25 cm long, 4cm diameter aluminum 

tube into the gravel-sand/sand-silt horizons (Figures 3 and 4), into the exposure, ensuring the 

entire tube was filled. The end of the tube was taped off with electrical tape to limit further light 

exposure, preserve water content and prevent mixing. The other end was taped off upon removal 

of the tube. An arrow was drawn on the tube pointing to the end that was driven into the 

sediment and the site and date in which we had taken the sample were labeled. A Ziploc bag 

filled with sediment from ~30 cm around the hole (over a quart) where the sample had been 

taken was collected.  

 
Figure 3: At the Blue Creek Road section, the OSL sample was taken at the contact between overlying 

sandy silt and underlying sandy-gravel facies. A 25cm long aluminum tube was pounded in the sediment 

and capped off at the ends. 



14 

 
Figure 4: At the Elk Creek Rd section the sample tube is shown in place and capped. A sample bag of 

surrounding sediment for dose rate measurements was collected from around the tube where the outcrop 

has been scraped flat 

Using a Jacob staff and a Brunton compass, I measured the stratigraphic height to the 

sample site location from the base of the section to the land surface.  

 

2.2.3. Sample Preparation Procedures 

The samples we collected were processed for OSL and IRSL dating at the Luminescence 

lab at Utah State University. This was done in a dark room, illuminated by standard photographic 

darkroom light, to prevent the luminescence signature from bleaching. 

2.2.3.1. Optically Stimulated Luminescence Dating (OSL) Procedures 

At the lab I completed the steps below to prepare my samples for OSL dating. All lab 

activities were guided and supervised by Dr. Tammy Rittenour in August of 2015. 
 

1. The outer 2-3 cm of sediment was removed from each end of the tube. The end 

material has more potential to have been exposed to solar radiation, so this portion 

was instead used to measure water content. 

2. The sample of surrounding sediment was split so as to fill a ~50-gram bag. This 

sample must be dry and without coarse grained material (pebbles or gravels). 
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3. The remaining sediment in the tube was then wet-sieved into three grain-size 

fractions. The sieve sizes were <63µm, 63-150µm (target grain size), and 

>150µm because very-fine to fine-grained sand is preferred (Nelson et al., 2015). 

4. Carbonates were removed from the target sand by soaking it in 10% HCl for at 

least an hour and until there was no bubbles when stirred. 

5. The target sample was dried in the oven. 

6. Heavy minerals were removed using DI water and Sodium Polytungstate.  

7. Heavy liquid separation was used to separate the quartz from the feldspar. 

8. To remove remaining feldspar grains, the quartz grains were etched using HF for 

at least an hour. 

9. The quartz grains were rinsed with deionizing water to remove any precipitant 

residuals from the HF. 

10. The target sample was transferred to a canister for lab analysis and instrumental 

luminescence dating. 

 

2.2.4. Environmental Dose Rates and Dose Equivalent Rates 

Calculating the time elapsed since burial using OSL is a matter of calculating the 

environmental radiation dose rate (Gy/ka) and the dose equivalent (DE) to the burial dose. To 

calculate the equivalent dose the sediment received during burial, the natural luminescence of the 

sample was measured using the single-aliquot regenerative (SAR) method of Murray and Wintle 

(2000).  

Due to the presence of radioactive isotopes in minerals, radiation causes electrons to 

become trapped in their crystal lattice (King et al., 2014). Upon burial, this radiation causes the 

luminesce signal to accumulate. Freed “traps” are excited by ionizing radiation. Exposing these 

grains to a stimulus of blue-green light releases these trapped electrons and they emit a photon of 

light or luminescence, upon recombination (Aitken, 1998; Murray and Wintle, 2000).  
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Using the SAR method, a bracket of DE values was determined by irradiating the 

bleached sediment at 5 different doses (Appendix A, Procedures). These values were then fit to a 

saturation exponential and plotted on a luminescence dose-response curve (Figure 5, for 

example). The intercept of this curve is the DE. Multiple aliquots must be used to obtain a 

statistically accurate DE value.  

 
Figure 5: An example luminescence dose-response curve chart from the USU Luminescence Lab, showing 

a single dose plot for one aliquot of one sample. 

 

 

For OSL dating, dose rates were calculated by chemical analysis of the U, Th, K, and Rb 

content in the sediment. This was done using ICP-MS and ICP-AES techniques by ALS 

Chemex, Elko, NV and conversion factors from Guerin et al. (2011). 

Soil moisture must be considered when calculating age because intergranular water 

absorbs radiation and decreases the effective dose rate of sediment, affecting the calculated age. 

The pore water content was estimated to determine the water attenuation of the dry sample. This 

was done by placing a sample of the sand we collected and a saturated sample in a 40 C oven 
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and measuring the drying rates. The burial depth, elevation, latitude and longitude of the sample 

location was noted for the calculation of the cosmic contribution. 

Dose rates on K-feldspar were determined by adding the internal grain beta dose rate 

assuming 12.5% K (Huntley and Baril, 1997) and 400 ppm Rb (Huntley and Hancock, 2001) 

attenuated to grain size using Mejdahl (1979). Alpha dose rate contribution was determined 

using an ‘a’ factor of 0.10 ±0.05 of Reese-Jones (1995) 

Burial age was calculated by dividing the equivalent dose by the dose rate of the 

sediment surrounding the sample: 

Equation 1: Calculating Burial Age 

 

Age (kyr) = Equivalent Dose (Gy) / Dose Rate (Gy/kyr) 

 

2.3. Infrared Stimulated Luminescence (IRSL) Dating Procedures 

Infrared Stimulated Luminescence dating was used as a backup method to account for 

possible underestimation of age of quartz due to scatter error in OSL, and to corroborate results 

(Appendix A: Final Luminescence Age Report).The SAR method was used to measure the IRSL 

signal at 50˚C (Wallinga et al., 2000). Sieving, HCL and bleach treatments, and heavy mineral 

separation with no HF treatment isolated the K-feldspar component with grain sizes between 63-

150µm. DE values and age data were determined using the Central Age Model (CAM) of 

Galbraith and Roberts (2012). 

Feldspars luminescence signal decays over time, known as anomalous fading. So fading 

rate and DE had to be considered to produce accurate results. (Nelson et al., 2015). Anomalous 

fading was accounted for using the fading method of Auclair et al. (2003) and the age correction 

model of Huntley and Lamothe (2001). 
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3. Results 

3.1. Geologic Map 

A geologic map was completed of portions of the Cabinet, Heron and Smeads Bench 

quadrangles at a scale of 1:24,000 (Plate 1). This is the largest scale geologic map produced for 

this area in the state of Montana. Previously published maps in this area are at a scale of 

1:250,000 (Harrison et al., 1983); 1:125,000 (Harrison and Cressman, 1993); and 1:100,000 

(Lewis et al., 2008), while maps adjacent to and west of the field area in Idaho are published at 

1:24,000 (McFaddan et al., 2006).  

The map area boundary was chosen to portray the area that was inundated by the lake at 

some point, up to at least 1,280 m in elevation and to include the areas where the bedrock comes 

in contact with the valley sediments. The map accompanying this report will be used by the 

Montana Bureau of Mines and Geology’s (MBMG) Geologic Mapping and Groundwater 

Characterization programs as a reference for future research pertaining to Sanders County, 

Montana.  

3.2. Valley Topography 

The valley that extends west to east in the field area (on Plate 1) surrounds the 25-km-

long reach of the Clark Fork River from its exit from Montana into Idaho, to the edge of 

the Smeads Bench quadrangle just southwest of the town of Noxon, MT (Figure 1). The valley 

ranges in elevation from 2,200 – 2,500 ft (670 – 760 m) and has a maximum width of 6 km. 

In his field trip guidebook, Breckenridge (1989) describes the region between Noxon, 

MT to Clark Fork, ID along the Clark Fork River as having striations and glacially-scoured cliffs 

along the south side of the valley. He describes the north side of the valley as a bedrock bench 

covered in till interpreted as ice margin deposits. 
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The map area encompasses the reach of the Clark Fork River that has been flooded by the 

construction of the Cabinet Gorge Dam in 1952 (Breckenridge,1989). This ice-marginal till that 

Breckenridge describes was not found in our mapping. This may be because the water level is 

higher than the till deposits due to the flooding of the river. Further study of these deposits on the 

north side of the river and glacial scour on the south side of the valley would be useful in 

tracking the paths of the Purcell Lobe in the Clark Fork River Valley.  

The valley floor is primarily covered in clayey-silt, gravelly-sand and sandy-gravel. 

There are large gravel bars in the lees of bedrock knobs and in streamlined deposits mid-

valley, paralleling the river. These deposits range from 24 m (at the meander deposit mentioned 

below) to140 meters higher than the valley floor. To the east of the Cabinet Gorge Dam, in the 

Heron Quadrangle, the Clark Fork river meanders south and buts up against bedrock. A large 

gravel deposit fills in the meander. Close to the river’s perimeter is an alluvial plain. This 

extends out from the river up to a kilometer in places. At the southern outside edge of the 

alluvium, the elevation steps up by 100-200 feet to a terrace of glaciolacustrine sediments 

that cover the valley middle, along with streamlined gravel bars and deposits behind bedrock 

knobs. At the northern edge of the valley, gravels follow the river’s edge and butt up against the 

steep bedrock. 

Bull River is a tributary that branches off to the north at the Bull River Campground on 

Highway 200. The banks of this river and East Bull River are almost completely covered in 

gravel. Elk Creek is a tributary that joins the Clark Fork River from the south through a bedrock 

channel. When the creek reaches the valley, it flows north east traversing the edge of a gravel 

deposit before connecting with the Clark Fork. This gravel was built up to ~85 meters 

high around a bedrock knob adjacent to where Elk Creek enters the valley from the south. 
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The small active and inactive streams that exit the mountains have wide flood plains’ relative to 

the stream size and gravel backfill deposits.  

3.3. Bedrock 

3.3.1. Belt Supergroup, Middle Proterozoic (1,400 – 900 Ma) 

The predominant bedrock in the study area is a thick sequence of Proterozoic meta-

sedimentary deposits called the Belt Supergroup. Figure 6 shows the geographical coverage of 

these depositions. 

 
Figure 6: This map from Burchfiel et al. (1992) shows the approximate extent of the Belt Supergroup and 

the equivalent Purcell Supergroup in the United States and Canada. 
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The Belt Supergroup is divided into groups in order of deposition: the Purcell Formation, 

the Ravilli Group, the Piegan Group, and the Missoula Group. Below (Figure 7-9) is an overview 

of the formations exposed in the field area. The rock descriptions in the following tables are 

modified from Harrison and Cressman (1993) by descriptions of outcrops in the field area. 

                     Group              Formation                     Rock Descriptions 

 
Figure 7: Missoula Group is the uppermost sequence of Belt Supergroup formations. The formations 

within this group that are in the map area are shown above along with descriptions of the lithology and 

sedimentary structures found in each. 

 

 

This formation consists of alternating dark grey to black 

graded siltite and argillite laminae, and chert-like olive 

green quartzite to pale green siltite. The laminae 

contacts are sharp and wavy to planar and break easily 

along bedding planes. Mud/clay chips, mudcracks, 

ripples, pinch and swell, stromatolites and synerisis cracks 

are present in the upper member.

The green facies of this formation was found in the map 

area. This facies consists of green, thin-bedded, 

interlaminated argillite and siltite.

This formation is dolomitic light green argillite with dark 

green siltite flat laminations. Platey, micaceous layers 

are present between bedding planes. Weathering 

produces a tan outer color. Cherty mud chips were found 

in places.

Pink, red and green fine-to-medium-grained feldspathic 

quartzite, siltite and argillite make up this formation in 

the map area. It is micaceous along bedding planes and 

creates flaggy talus.   

This formations consists of thin-to-medium laminations of 

dark-light grey siltites with argillite interbeds. Mud and 

clays chips, mudcracks, ripple marks, raindrop imprints, 

salt casts and pinch and swell features are abundant.
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Libby Formation

Snowslip Formation

Shephard Formation

Bonner Formation

Mt Shields Formation
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         Group           Formation                                                 Rock Descriptions 

 
Figure 8: Table of rock descriptions for the middle Belt groups and their associated formations. 

 

 

 

 

 

 

Green and purple flat laminae of argillite interbedded 

with siltite. Erosion forms steep bedded cliffs with 

flaggy detritous that collects downslope.
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Helena Formation

The formation consists of cyclical, gray limestone and  

dolomite sequences, with white quartzite laminae in 

places. Molar tooth structures are abundant. Thick beds 

of weathered-orange dolomite and thin interbeds of 

green to tan argillite characterize the lower portion of 

this formation.  

Empire Formation

Revett Formation

Burke Formation
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Wallace Formation

This formation consists of light-colored siltite and very-

fine-grained quartzite that fines upward to black 

argillite. The black layers are hummocky with variable 

thickness. It weathers tan due to an abundance of muddy 

carbonates, algal mats and molar tooth structures.

Dark to light green dolomitic and silty argillite make up 

this formation. Locally found were fluid escape 

structures and calcite-filled voids.

Gray, medium-grained, blocky quartzite and siltite, with 

interbeds of argillite in places.
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                         Formation                                       Rock Descriptions 

 
Figure 9: Rock descriptions of the lowest  and thickest formation in the Belt Supergroup: the Prichard Fm. 

 

3.4. Cambrian Bedrock Units 

There are two outcrops of limestones with shale interbeds are mapped along Highway 

200 north of Heron as Cambrian (undivided). This description is used when thickness is 

uncertain (Harrison and Cressman, 1993). The limestone is grey, fossiliferous and interbedded 

with black shale (USFS, 1979). 

3.5. Quaternary Deposits 

3.5.1. Gravel-dominated deposits 

Gravel-dominated deposits have been differentiated into 4 separate units in this paper: 

Holocene alluvium and older alluvium, Quaternary glacial outwash, and Quaternary glacial Lake 

Missoula flood gravel deposits. These units were delineated according to location, sorting, 

matrix, consolidation, geographic position, stratigraphy and relative age as inferred from 

topographic position.  The lithology of the gravel deposits consists mostly of rocks from the Belt 

This formation consists of thinly-interbedded siltite and 

argilite , occurring as graded couplets (Cressman, 

1985). The color is typically grey but oxidizes to a rusty 

brown. It forms cliffs and has platey weathering. Biotite 

flakes are abundant in the laminae.

Prichard Formation
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Supergroup (quartzite, siltite, argillite) with lesser amounts of igneous rocks such as granite and 

granodiorite.  

Delineating between alluvium, outwash and flood gravel was not always obvious. Most 

areas of interest were heavily forested. In places, there was layering of different gravel units, 

such as the Holocene alluvium and Older alluvium overlying Quaternary flood gravels along the 

banks of the Clark Fork River and its tributaries. Calcite cementation was found in the top layers 

of different gravel units, portraying consolidation and cement. Digging deeper into the different 

formations would aid in understanding the flood and glacial history of the area. 

Below are descriptions of the gravel units in the map area that are based on our field 

observations. 

3.5.1.1. Glacial Outwash (Qgo) 

A deposit of glacial outwash was found overlying flood gravels at the Bull River 

Campground, near the junction of Bull River and the Clark Fork River. The deposit covers a flat 

bench >35m above the modern floodplain. It contacts with sharply steepening bedrock of the 

Wallace Fm to the northeast. The outwash consisted of gravels that were poorly to moderately 

sorted with a sandy/silty matrix. The clasts were rounded to subangular and of Belt and igneous 

origin. The deposit was coarsely-to-moderately stratified. Conglomerates cemented with calcitic 

were abundant in the top layers of the deposits and in areas influenced by groundwater 

percolation. 

3.5.1.2. Flood Gravel Deposits 

Flood gravel found in this area is predominantly clast-supported, pebble-to-boulder sized, 

poorly-to-moderately sorted and rounded-to-subrounded. The lithology of the gravels is 

generally of the Belt Supergroup (quartzite, siltite, argillite) as well as lesser amounts of igneous 
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rocks such as granite and granodiorite. In places, gravel is mantled by silt which has infiltrated 

into the top layers.  

Flood gravels cover much of the outer channel banks in the field area, adjacent to and 

mixed in with modern alluvium. Bull River has flood gravels on both sides of its flood plain and 

is locally overlain by alluvium at the meander where the river turns southwest toward the Clark 

Fork River. Down-cut mountain channels in the Snowslip and Wallace Formations along Bull 

River are infilled with flood deposits in most places. A large, moraine-like feature that trends 

toward the Clark Fork is covered in flood gravel and overlies alluvium.  

East of the junction of Bull River and the Clark Fork River, flood gravels lie along the 

base of the steep Wallace Fm north of the river on the outer flood plain. South of the river on top 

of the Shephard Fm, is a planed off mound called Smeads Bench that is overlain by flood gravel. 

West of Smeads Bench, a large expansion gravel deposit fills the inner meander of the main river 

where the valley widens. Elk Creek’s western path is forced to turn northward to join with the 

Clark Fork (figure 9) upon reaching this gravel barrier. This deposit also fills in a large draw 

(Rice Draw) that that opens into the Shephard Fm - ~40 m west of Smeads Bench – and wraps 

around the base of a knob of the bedrock. Here the gravel is overlain by glaciolacustrine and 

alluvial deposits. Northeast of where Rice Draw exits the mountains are large scale dune deposits 

that can be seen on Google Earth (figure 10). Two streamlined gravel bars up to 4 km long 

parallel the river in the middle of the valley (Plate 1). They are adjacent to and mantled in 

glaciolacustrine sediments, have characteristically large-scale crossbedding, and erratics of up to 

more than a meter wide. 
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Figure 10: Flood gravels form a large expansion bar deposit where the valley widens. Large-scale dune 

deposits are distinct features on the unwooded area of this deposit. Notice where Elk Creek is forced to turn 

north at the west flank of the gravel deposit. Smeads Bench and Rice Draw are also shown, which are also 

covered in flood gravels. 

 

Elk Creek forms a narrow channel that heads into the bedrock to the south. Again, there 

are flood gravels wrapped around the bedrock knobs where the narrow stream exits the 

mountains into the valley. On the east side of the creek there is a relatively large down-cut 

stream channel that is filled with gravel. The gravel extends along the bedrock to the southwest 

until the channel splits into 3 branches and beyond that the banks are covered in older alluvium. 

Along the sharp edge of the bedrock on the south side of the valley and to the west of Elk Creek, 

there are outcrops of flood gravel either as infill of down-cut channels or as benches slightly 

higher in elevation than the glaciolacustrine sediments adjacent to them. 

North of the Town of Heron, flood gravel covers a large part of the map area. It 

dominates the river bank and reaches far into the mountains surrounding and overtopping the 
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Shephard formation, filling in the down-cut mountain channels in the Prichard Fm, the Helena-

Wallace Fm, the Libby Fm and the Snowslip Fm in the northwest corner of the map.  

At Blue Creek, these gravels are locally overlain by glaciolacustrine sediments and cover 

the banks of the east and west fork of the creek. At the Blue Creek Roadcut section (Location 2, 

Plate 1), the contact between the gravel with the sand above it is irregular, with cobbles 

protruding up into the sand and sand infiltrating around the cobbles below it. The basal gravel 

consists of poorly sorted cobble gravels with open-work gravel texture. The gravel below the 

lake beds has boulders, cobbles and pebbles throughout. The cobbles are of Belt Supergroup and 

igneous origin, are poorly sorted and of variable sizes and roundness. The erratic boulders 

measured up to ~90cm wide on their A-axis, were subrounded and randomly emplaced. 

Gravel fills the valley to depths of >90 m deep (Figure 25) according to well log 

lithology data (Appendix C). 
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Figure 11: This cross section extends down-valley, parallel to the river. The primary surface geology is 

glaciolacustrine and gravel deposits. This diagram was made from well logs identified by their GWIC Id, 

(Appendix C). Reference Plate 1 for cross-section line. 

 

 Gravel deposits were well exposed in the multiple gravel pits within the field area.  

deposits were well exposed in the multiple gravel pits within the field area. These outcrops are 

described in a supplementary table in Appendix B, with their corresponding map locations.  
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Figure 12: Gravel Pit outcrop location G on Plate 1. This exposure shows poorly sorted gravels with large 

scale crossbedding. Flow direction is to the northwest. 

 



30 

 
Figure 13: Location F on Plate 1, this picture shows a gravel pit exposure along Bull River. These gravels 

are trending toward the river out of a down-cut channel in the Wallace Formation. The formation is very 

steep, so slope failure disrupts the bedding. The gravels here are poorly sorted, unconsolidated and 

crossbedded. 
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Figure 14: The Blue Creek Road gravel deposit is located across Highway 200 from the furthest western 

reach of the Clark Fork River in the map area. The junction of Blue Creek and the river is directly east of 

this picture. 

 

 
Figure 15: Erratics as big as 90cm were found toward the top of the Blue Creek gravel deposit. A thin 

layer of lake beds mantles the deposit. This deposit is at location 2 on Plate 1. 
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3.5.1.3. Glaciolacustrine Deposits (Qgl) 

Glaciolacustrine sediments recognized in this study area are rhythmically bedded 

coarsening-upward sequences including sand, silt and clay. Each rhythmite consists of basal 

sections of a sandy silt facies that is bounded on the base by an erosional contact, overlain by the 

silt-clay facies that includes microlaminated couplets of silt and clay, with a lower gradational 

contact. Bedforms such as soft sediment deformation, load and dewatering structures, 

and moderate crossbedding are present in the basal sands in most cases. Figure 16 shows an 

outcrop of these sediments that has stairs dug into the slope to expose unweathered sediments 

and provide a climbable surface.  

 

 
Figure 16: Vertical staircase I dug into the slope to analyze the glaciolacustrine sediments at the Elk Creek 

Rd section. 

 



33 

3.5.1.3.1. Sand-silt facies 

The sand-silt facies are present in each of the 12 rhythmite units at the Elk Creek Road 

section. This facies consists of cross-bedded fine-grained quartz arenite sand, which grades to 

very fine sand and to silt. The base of these beds is typically crossbedded  

(figure 17a) and mudclasts (figure 17e) are present around the sand-silt transition. These sand-silt 

beds are thicker than the varved couplets above them. The range of thickness of the basal sand 

layers is 1.1 – 15 centimeters. Other defining features found in the sand-silt facies are erosive 

bottom contacts (figure 17b), load structures, (figure 17a), soft-sediment deformation (figure 

17a, c), and micro-faulting (figure 17d).  
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a)  
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b)  

 

c)  
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d)  

 

e)  

Figure 17: a.) A wavy, erosive contact between the sand-silt facies and the silt-clay facies. b.) A load 

structure at the contact between the silt-clay sub-facies and the sand-silt sub-facies. c.) Soft-sediment 

deformation mixed in silt from below into the clay at the base of the silt-clay facies. d.) Microfaulting of 

clay and silt beds. e.) Crossbedded basal sand with mudclasts at the sand-silt transition. 
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3.5.1.3.2. Silt-Clay Facies 

The silt-clay facies consist of rhythmically sequenced couplets of silt and clay laminae 

(Figures 18a-d). These couplets have the same characteristics of the lake beds found in the 

upstream areas of the glacial Lake Missoula basin, i.e. Ninemile Creek, Tarkio, Rail Line, 

Mission Valley., etc. 

The clay laminations in this section are predominantly thicker than the silt layers. 

The thickness of the silt laminations is variable but predominantly 0.2 – 6cm thick. The number 

of couplets per rhythmite ranges from 3 to 80. The average number of couplets per rhythmite 

section is 21, discounting the two rhythmites previously mentioned.  

The contacts between the silt and clay laminations are gradational, and the contacts 

between couplets is sharp and planar. Other distinctive characteristics of these sequences 

is micro-faulting toward the top of the section and rip up clasts of sediment found in the sand-silt 

beds (Figure 18d).  

 There are places where microlaminations may be present but were eroded, faulted or too 

thin to be measured (18a).   
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(a)  (b)  

(c)  (d)  

Figure 18: (a) Above the first basal sand measured was a thick layer of clay. (b) Silt-clay varves at a 

contact with a basal sand. This shows a possible ice wedge cast but it is unconfirmed. (c) 8 varve couplets 

and the basal sand of the next rhythmite are showing. This shows an example of varves thinning up-

section. (d) Micro-faulting and varve inclusions are above the sand-silt contact. 

  

3.5.1.3.3. The Elk Creek Rd Section 

The Elk Creek Road section is a northeast-trending outcrop of glaciolacustrine sediment 

exposed at a road cut along Elk Creek Road, in the town of Heron, Montana. It is located just 

south of the Cabinet Gorge Reservoir and just east of the Montana/Idaho border This section is 

labeled 1 on the map (Plate I). The elevation of the glaciolacustrine beds at the Elk Creek Road 
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Section is ~719m, which is the lowest point in elevation of all the deposits documented. For 

reference to the descriptions provided, refer to the stratigraphic section, Plate II, in pocket.   

The height of the Elk Creek Road exposure is ~9 meters from ground surface at its 

maximum and it tapers down toward an alluvial bench to the north. The exposed section is nearly 

vertical, so I dug diagonal steps to allow for the most complete stratigraphic analysis (Figure 16). 

This section was only measured and analyzed to ~4.5 meters above the road, as the upper part of 

the section was disturbed by plant roots and burrowing of insects. 

 The Elk Creek Road lake beds consist of sections of alternating silt and clay couplets. At 

the base of each section there is a bed of fine/very-fine, crossbedded sand that fines to silt, then 

the silt grades to clay. The sections with the basal sands are delineated in rhythmite units. At the 

Elk Creek Road section, the clay laminations are thicker than the silt laminations in general. The 

contacts between the clay and the silt are consistently sharp and planar, while the silt laminations 

grade normally to clay. Contacts between rhythmites are wavy and erosional. A flame structure 

invades the lower sediment at the base of the section. Mudclasts and broken pieces of the 

laminated sediment are incorporated into the sand in places along with microfaulting of couplets. 

These features are generally found directly above the sand/silt – silt-clay facies’ contacts. 

Mudclasts were also found in the sand bed of the second rhythmite. 

The top few meters of sediment was bioturbated and had root interference and so it was 

not analyzed in the section. A sample was collected from the sand-silt facies about 3.5 meters up 

from the base of the section for burial age-dating analysis. The exact location of where the 

sample was taken can be seen on Plate 2. The base of the sequence of rhythmites, where 

glaciolacustrine sediments are underlain by gravel, was not found. 
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3.5.1.3.3.1. Blue Creek Lake Beds 

The Blue Creek Road Section is an east-west-trending blanket of glaciolacustrine 

sediments on top of a thick gravel deposit. The exposure is located at a road cut along Highway 

200, north of the Cabinet Gorge Reservoir and is labeled location 2 on the map (Plate 1). The top 

of the section is at an elevation of ~731.5 meters and the lake sediments are <0.5 meters thick at 

this location. 

The Blue Creek roadcut section has only one rhythmite above its contact with gravel 

(Figure 15). The glaciolacustrine sediments consists of a basal, cross-bedded sand layer that 

grades to laminated silt and then to clay. The rest of the sequence consists of 12 silt-clay 

couplets. 

 
Figure 19: This picture shows the Blue Creek Road rhythmite section beginning with the sand-gravel facies 

at the base, then a fine sand-to-silt layer below a section of 12 varve couplets. 
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Figure 20: Stratigraphic section of the one rhythmite unit at the Blue Creek Road Section. A gravel deposit 

is the base of the section. The symbol next to the sand bed represents crossbedding. The symbol toward the 

upper part of the section indicates bioturbation.   

  

 

3.5.1.4. Holocene Alluvial Deposits 

3.5.1.4.1. Older Alluvium (Qalo) 

Old alluvium was mostly found adjacent to the larger streams in areas outside of (stream) 

flood plains, but inset into the older flood gravel deposits. The rocks are of Belt Supergroup and 

igneous lithology The gravel is well-sorted, rounded to subrounded and normally graded. Older 

alluvium is generally less consolidated than active alluvium and is covered in overgrowth. 
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3.5.1.4.2. Active Alluvium (Qal) 

The young alluvium in the field area is found along the banks of the main river and its 

tributaries. It consists of well-sorted, rounded to subrounded, normally graded gravel and 

gravelly-sand deposits. Silt infiltrations and calcite cementation is common due to groundwater 

influence. 

 

 

Figure 21: This picture faces north towards the river over the alluvial plain adjacent to the Elk Creek Road 

lakebeds. 

 

3.5.1.4.3. Alluvial Fans (Qaf) 

There are three alluvial fans in the field area. Two are downstream of the Bull River 

outlet and the third is west of where Elk Creek enters the valley. They consist of unconsolidated 

deposits of unsorted tallus and gravel. The rocks were transported out of the mountains by water 

and piled up in a conical shape at its base where the stream reached the open valley. The 

lithology of these deposits is reflective of the formation the stream emptied out of. 
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3.6. Optical Ages 

Optical dating of basal sands in the rhythmic glaciolacustrine sequences gives an 

approximate age of when the sediment was buried. These results can then be compared with the 

ages of other similar deposits within the lake basin.  

Quartz luminesce age dating depends on the dose rate and the dose equivalent of the 

samples. The dose rates for the quartz samples are shown on Table I. 14 aliquots were used to 

determine bracketed DE values for both samples, but only 12 were analyzed for BC-01. The 

estimated values are shown in Table I and distribution radial plots used in determining these 

values are shown in Appendix A. The following data was produced by Tammy Rittenour after 

processing the EC-01 and BC-01 samples in the lab at USU. 

 

 

 

The sand sample (EC-01) collected from the Elk Creek Road section yielded a burial age 

of 12.65 ± 1.414 ka using the OSL dating technique on quartz grains. Dr Rittenour tested the 

luminescence and concluded that the intensity of the signal was too weak and likely 

underestimated the age. Using IRSL on this sample yielded an age of 16.02 ± 1.08 ka after 

 

Table I: Small-Aliquot Optically Stimulated Luminescence (OSL) Age Information. 

Sample 
number 

USU num.  Depth (m)  Num. of 
aliquots1  

Dose rate 
(Gy/ka)  

DE2 ± 2σ 
(Gy)  

OD3 (%)  OSL age  
± 2σ (ka)  

EC-01  USU-2128  4.27  14 (14)  4.71 ± 0.21  59.61 ± 3.22  2.3 ± 8.1  12.65 ± 1.414  

BC-01  USU-2129  1.55  12 (14)  4.00 ± 0.18  70.42 ± 5.57  9.1 ± 4.1  17.60 ± 2.20 

1 Age analysis using the single-aliquot regenerative-dose procedure of Murray and Wintle (2000) on 2mm small-

aliquots of quartz sand. Number of aliquots used in age calculation and number of aliquots analyzed in parentheses.  

2 Equivalent dose (DE) calculated using the Central Age Model (CAM) of Galbraith and Roberts (2012). 

3 Overdispersion (OD) represents variance in DE data beyond measurement uncertainties, OD >20% may indicate 

significant scatter due to depositional or post-depositional processes.  

4 Quartz OSL age is underestimating burial age, see IRSL results in Table 2. 
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correcting for anomalous fading (Table II). Dr. Rittenour reported that this represents an accurate 

estimate for the burial age of this sediment. 

TheBC-01 sample collected from the Blue Creek Roadcut section yielded a final burial 

age of 17.60 ± 2.20 ka using OSL on the quartz grains and 18.28± 3.67 using IRSL on feldspar 

(Table II). The test showed that IRSL over-dispersion (OD %, Appendix A) was >20%, which 

indicates scatter that may have overestimated the results.  

 

Table II: Infrared Stimulated Luminescence (IRSL) Age Information 

Sample 
num. 

 
USU num. 

Num. of 

aliquots1 

Dose 
rate 
(Gy/ka) 

D 2 ± 2σ 
E 
(Gy) 

 
OD3 (%) 

IRSL age4 ± 2σ 
(ka) 

Fading Rate 
g2days 

(%/decade) 

EC-01 USU-2128 11 (13) 6.74 ± 0.33 79.02 ± 
7.18 

9.8 ± 4.8 16.02 ± 
1.08 

3.4 ± 1.0 

BC-01 USU-2129 13 (14) 5.89 ± 0.30 78.99 ± 
13.97 

29.3 ± 
6.7 

18.28 ± 
3.67 

3.7 ± 0.7 

1 Age analysis using the single-aliquot regenerative-dose procedure of Wallinga et al. (2000) on 1-2mm small-aliquots of 

feldspar sand at 50°C IRSL. Number of aliquots used in age calculation and number of aliquots analyzed in parentheses. 
2 Equivalent dose (DE) and IRSL age calculated using the Central Age Model (CAM) of Galbraith and Roberts (2012), unless 

otherwise noted. 
3 Overdispersion (OD) represents variance in DE data beyond measurement uncertainties, OD >20% may 

indicate significant scatter due to depositional or post-depositional processes. 
4 IRSL age on each aliquot corrected for fading following the method by Auclair et al. (2003) and correction model of 

Huntley and Lamothe (2001). 
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Table III: Dose Rate Information 

 

 

Sample 

num. 

USU num. In-situ 

H2O (%)1 

Grain size 

(µm) 

K (%)2 Rb (ppm)2 Th (ppm)2 U (ppm)2 Cosmic 

(Gy/ka) 

EC-01 USU-2128 2.4 63-150 3.14±0.08 147.5±5.9 13.3±1.2 2.8±0.2 0.14±0.01 

BC-01 USU-2129 3 4.7 63-150 2.35±0.06 

2.60±0.07 

109.0±4.4 

124.0±5.0 

12.3±1.1 

11.6±1.0 

2.6±0.2 

2.7±0.2 

0.20±0.02 

Assumed 5±2% for moisture content over burial history. 

Radioelemental concentrations determined by ALS Chemex using ICP-MS and ICP-AES techniques; dose rate is derived from 

concentrations by conversion factors from Guérin et al. (2011). For IRSL dose rate, grain-size based internal beta dose rate 

determined assuming 12.5% K and 400ppm Rb using Mejdahl (1979). Alpha contribution to dose rate determined using an ‘a’ factor 

of 0.10±0.05 after Rees-Jones (1995). 

Dose Rate for USU-2129 is average of sediment dose rate sample (top values) and rock dose rate sample (bottom values). 
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4. Geologic History 

4.1. Precambrian 

During the Mid-Proterozoic (1,470 – 1,400 Ma), an accumulation of ~15-20 km (Winston 

and Link, 1993) of sedimentary rocks were deposited into a rifted intracratonic basin on the edge 

of North America. These sediments make up what is known as the Belt Supergroup, which is the 

predominant bedrock in the field area. The basin was mostly a lacustrine environment but was 

periodically connected to the ocean (Winston and Link, 1993).  

At the base of the Belt Supergroup is the Prichard Fm, which is the thickest of all the Belt 

units, and its thickest known exposure is near the field area in Plains, MT (Cressman, 1985). The 

Prichard Fm was deposited during the first marine progradation of deltaic complexes into the 

basin (Cressman, 1989). The Ravilli Gp. is stratigraphically above the Prichard Fm. The units in 

the Ravilli Gp have been interpreted to represent marine transgression and progradation of 

beaches, deltas, tidal flats and alluvial plains (Winston and Link, 1993). Above the Ravilli Gp, is 

the Peigan Gp., also referred to as the Middle Belt Carbonate. It has been interpreted to represent 

another transgressive-regressive sequence in and out of the basin. Dolomitic to siliciclastic 

cycles of the Helena Fm. have been interpreted to suggest a marine/lacustrine environment. The 

uppermost group of the sequence is the Missoula Gp. It is interpreted to be intertidal and 

subtidal, due to evidence of traction transport, suspension settle out, and desiccation (Horodyski, 

1983).  

4.2. Phanerozoic (541 Ma to present) 

Paleozoic (541 to 252 Ma) 

The early Paleozoic was a period of uplift folding and faulting. The Cambrian Period 

(541-485Ma) took place during a time of sea level rise when water inundated the entire area, 
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depositing limestone and shale in a transgressive sequence (USFS, Kootenai National Forest, 

1979). Evidence of this unit in the field area are two small outcrops about one-mile northeast of 

Heron. 

4.2.1. Mesozoic (252 – 66 Ma) 

There is no sedimentary record of Mesozoic rocks in the field area, though the time frame 

is significant in the formation of the landscape. The Laramide Orogeny took place from about 

100 Ma. in the Late Cretaceous into the Middle Tertiary (Cenozoic period about the 40 Ma.) as a 

result of plate interactions along the western continental margin. This orogeny built the Rocky 

Mountains and the Lewis Thrust Belt. Tectonic forces uplifted and deformed the Belt rocks into 

northwest-trending folds and faults. Right-lateral movement was active along the Hope fault 

during this period of thrusting. 

4.2.2. Cenozoic (66 Ma – present) 

The Quaternary Period, Pleistocene Epoch (2.6 Ma – 12,000yr) 

In the Quaternary, during the Bull Lake Glaciation (200ka – 130ka) and the Pinedale 

Glaciation (25ka – 11.2ka) the Cordilleran Ice Sheet descended southward from Canada, 

covering much of the Northern Rocky Mountains.  

During the Bull Lake glaciation, The Bull River lobe of the Cordilleran Ice Sheet flowed 

down Bull River, possibly reaching as far as the Clark Fork River (Richmond, 1965; Alden, 

1953). Alden (1953, p. 140) cited evidence for a flood-gravel-covered moraine, just south of the 

junction of Bull River and East Bull River. 

During the Pinedale glaciation, the Purcell Lobe extended eastward through the Purcell 

Trench, past the Idaho-Montana border, and merged with local alpine glaciers (Richmond et al., 
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1965), damming glacial Lake Missoula. The history of glacial Lake Missoula in the study area 

will be presented in detail below.  



49 

5. Discussion 

Mapping the geology of the area where the ice dam once impounded glacial Lake 

Missoula allowed for a big picture perspective on the history of the lake and the geomorphic 

expression that the ice and water left in their wake. It did not prove easy to map, due to the 

density of the forest cover and steep slopes. For this reason, walking out contacts of bedrock was 

treacherous in some places. We focused on delineation between Belt units to try to improve upon 

precision of contact placement, while mostly staying close to the valley margins. The placement 

of the Belt unit contacts in other areas was done using the previously published maps mentioned 

earlier, predominantly The Geology of the Libby Thrust Belt, Northwest Montana by Harrison 

and Cressman (1993). This map was also referenced when expanding on the rock descriptions 

from what we saw in the field area, and in fault-line placement. 

Distinguishing between alluvium and flood gravels was not always obvious due to 

calcitic cement in the top layers of the deposits closest to the rivers. This gave an impression of 

consolidation in areas where the gravels were most likely conglomerated by ground water 

percolation. We didn’t have the equipment with which to dig into these deposits to determine 

thicknesses of alluvium and old alluvium deposits. Such equipment and effort would possibly 

uncover multiple layers of flood and lake deposits, as was done by the Washington Water Power 

Company when they built the Cabinet Gorge dam. The company drilled monitor wells that 

showed that the terrace north of the river had several cycles of clay till with interbedded lake 

deposits, which Breckenridge (1989) believes is indicative of several episodes of ice damming. 

Upon construction of the Cabinet Gorge Dam in 1952, the length of the Clark Fork River 

in the field area was flooded and much of the channel bank sediment cannot be reached. 

Breckenridge (1989) reported abundant till cover along the north side of the valley west of the 
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dam, interpreting it to be ice marginal deposits. Drilling into the flooded sediment would most 

likely uncover the same ice marginal till. Breckenridge proposed that the flood drainage may 

have been pushed to the south side of the valley by ice on the north during smaller late-glacial 

floods. If this is true, then the gravels that were deposited north of the river and up Blue Creek 

may represent an earlier flood deposit than the gravels south of the river. The burial age for the 

sand sample at Blue Creek Rd indicates that they are likely the same age as the valley gravels, as 

the age was most likely an overestimation, but this is not definitive.  

There are two moraine-like features north of the Bull River Campground and across the 

valley on Smeads Bench that are covered in flood gravel. The shape of the deposits suggests that 

they may have been formed by the terminus of the Purcell lobe in one or two advances and were 

then covered in gravel by flooding. 
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Figure 22: Portion of the geologic map (Plate I) showing the position of Smeads Bench and a moraine-like hill 

of gravel near the confluence of Bull River and Clark Fork River. The “A” symbol shows the location of the 

Bull River Campground  mentioned in the text. 

 

 



52 

 
Figure 23: Picture showing the gravel mound across the river from the Bull River Campground that is 

depicted above in Figure 23. 

 

West of Bull River and Smeads Bench (Figure 22), the valley widens significantly, which 

provided room for the floodwaters to spread out and the flood velocity to decrease. This allowed 

for large deposits of gravel to accumulate in the western half of the valley. The giant current 

dunes that formed on an expansion gravel bar where the valley first widens (Figure 10), and the 

streamlined gravel bars in the mid-valley show that the flow was still cascading at relatively high 

velocities during this particular flood. Eddy deposits are found accumulated at bedrock knobs. 

The gravel was pushed laterally to lap up against the steep bedrock at the edges of the valley and 

along tributary stream valleys. It infilled areas protected from stream erosion, and filled the 
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valley >90 m deep according to well log lithology data (Appendix C). This thick deposit could 

be representative of one or multiple floods. 

 After the catastrophic flooding took place that deposited the gravels currently found in 

the field area, the dam reformed and the lake refilled. This is evident because glaciolacustrine 

sediments overlie flood gravels throughout the Clark Fork River valley and up Blue Creek and 

are therefore the younger of the deposits. This was probably the last stage of glacial Lake 

Missoula, unless evidence is found for subaerial exposure in the lake beds in the field area, of 

which I found nothing conclusive. Another high-velocity flood would have eroded away all 

evidence of the lake sediments in the field area, though it is possible that some of it was eroded. 

While the river was impounded, glaciolacustrine silt and clay laminae were deposited on 

the lake bottom via settling out from the water column and underwater currents. The silt grades 

to clay which is commonly associated with turbidity currents causing a layer of water full of 

suspended sediment to flow across the bottom of the basin. Coarser grains settle out as bed load 

first, then finer grains settle out from the water column. These deposits are commonly referred to 

as varves and they are seasonally variable. Cooler temperatures cause varves to be thinner due to 

less runoff. Composite varves have thin clay laminae within the lighter silt layer, making 

intermittent couplets that resemble varves (Antevs, 1951). What I found was the opposite, thin 

silt laminae inside the thicker clay layers, still making the separation of true varves an inexact 

science. 

The thinness of the silt laminae in the varved sequences at Elk Creek Rd suggests there 

were less high-energy turbidity currents during the summer months. This could be related to why 

the clay laminations were generally thicker because more sediment was being deposited by 
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settling out of the water column. Climate may also have had an influence if colder temperatures, 

possibly due to proximity to the ice, produced less melt and more rock flour. 

I found no conclusive evidence for subaerial exposure at the Elk Creek Road site, 

although this may be subject to interpretation. Micro-faulting, broken varve and dewatering 

structures have been cited as desiccation features from subaerial exposure (Hanson et al., 2012). 

They could also be due to dewatering and erosion due to rapid loading of the overlying sand-silt 

units (Shaw et al., 2000). I found one feature at the bottom contact of second basal sand that 

looked similar to an ice wedge cast, but I couldn’t find it the next day and it may have been 

caused by sediment disturbance from digging. I cannot conclusively say it was a subaerial 

exposure and I did not see any more features like it in the section. 

The crossbedded, erosive sand beds at the base of each rhythmite section were likely 

deposited by higher-energy, higher-density currents produced following a fluctuation in the 

lake’s depth. The basal sand and silt beds grade upward into silt-clay varves that were deposited 

in deeper water (Hanson et al., 2012), further away from the sediment source.  

 

5.1. OSL Discussion 

Once correcting for anomalous fading in the IRSL K-Spar dose rate, the age of the sand 

sample from the Elk Creek Road section was approximately 16.02 +-1.08 for sample EC-01. 

When the feldspar was not corrected for anomalous fading, the lower IRSL K-Feldspar ages 

indicates that the quartz was well bleached. Dr. Rittenour (2016) found that the OSL signal 

intensity in the quarts for EC-01 was low and that the IRSL results were more accurate. 
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The Over Dispersion (OD) as shown on Table 2 of the Full Luminescence Report 

(Appendix A) for the BC-01 sample had a value >20% which indicates significant scatter due to 

processes during and after deposition. Due to the closeness of the sampled sand to the underlying 

gravels at the Blue Creek Roadcut section, we believe that there was mixing of the 

glaciolacustrine sand with sand in the gravel deposit below causing the age to be overestimated.  

5.1.1. Susceptibility for Error 

The contrasts of ISRL to OSL are that K-feldspar has a stronger and more stable 

luminescence signal when responding to near-infrared light. It also saturates slower than quartz. 

Yet quartz is preferred to feldspar because it is much more rapidly bleached when exposed to 

sunlight.  

When a grain of quartz is fully bleached, the OSL signal was reset completely prior to 

burial. Partial bleaching occurs when a grain of sand is not exposed to enough direct sunlight 

prior to being buried. This can commonly happen when sediment is remobilized in a lake by 

turbidites, where sunlight is limited, and thus the OSL signal is not fully reset. This results in an 

age underestimation (Nelson et al., 2015). 

If it is suspected that the OSL signal was not reset in all grains prior to deposition and 

burial, scatter must be considered. Although, it has now been shown through experiment that it 

takes <1 minute of direct sunlight to completely reset the signal (Godfrey-Smith et al., 1988) in 

quartz grains. 

Moisture content, post-depositional mixing and partial bleaching are all sources of error 

when undertaking the processing of samples for burial dating. Water content impacts the bulk 

density of sediment and decreases the effective exposure to radiation from the surrounding 

sediment. Climate and grain size are twos factors in estimating soil moisture content. The effects 



56 

of these are figured into a model that compares the results of both and provides a dose rate 

variability (Nelson and Rittenour, 2015). 

Post-depositional mixing is caused by occurrences such as erosional contacts, 

bioturbation, soil formation, desiccation cracks, and frost wedging. All of these and more can 

mix grains of different age and origin. This flaws the dating results by causing scatter in the 

signal. 

See Appendix A for the complete Final Luminescence Age Report from the USU 

luminescence laboratory. (Appendix A). 

5.2. Hydrogeologic Implications 

Many areas of influence of the lake Missoula floods benefit from the flood gravels for 

their primary aquifers. West of the field area, the Spokane Aquifer consists of coarse sand gravel, 

cobble and boulders left over from one or more flood events. This is one of the most productive 

aquifers in the United States (Molenaar, 1988). The gravels fill the valley > 90 meters in places 

and have good aquifer potential due to their lack of sorting and openwork texture. See Appendix 

B for a description of different gravel deposits that were exposed and their aquifer potential. 

5.3. Comparison of our data with previous studies 

Two significant sites that had burial ages similar to the Elk Creek Road section are the 

Ninemile and Rail Line sections, about 250km upstream along the Clark Fork River. Hanson et 

al. (2012) used the SAR method and CAM models for determining the OSL burial age of the 

quartz samples taken at the Rail Line and Ninemile sections. At the Ninemile section, subaerial 

exposures were found at 936 m a.s.l. and the crossbedded basal sand at the base of the section 

was buried 15.1 +- 0.6 kya. At the Rail Line section, at around 970 meters a.s.l the basal sand 
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was dated at 14.8 +- 0.7 ka. The burial ages between these sites and the age of the Elk Creek Rd 

section are comparable when their analytical uncertainties are taken into account.  

Burial-age date analysis of transgressive sand beds at different elevations has been done 

in order to better interpret glacial Lake Missoula filling and draining cycles. The current 

interpretation of this data by most who study it is that the last glacial Lake Missoula did not drain 

catastrophically but fluctuated in depth during its last stages. These findings are supported in this 

research. Each of the sand beds that are sampled represents a period of time in which the lake 

had either drained completely or fluctuated in depth in already shallow water.  

A notable difference from the Elk Creek Road section and the Ninemile and Rail Line 

sections is a presumed lack of subaerial exposures in the lake sediments in the field area. Since 

the other two locations are 200-300 meters higher in elevation, the presence of subaerial 

exposures means that the water drained completely below an elevation of 936 meters around 

15,000 – 16,000 years ago. The lack of evidence for these features at the Elk Creek Road section 

shows that the lake did not drain below 720 meters at that time.  
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6. Conclusions 

During the Wisconsin age of the Pleistocene era, the Purcell Lobe of the Cordilleran Ice 

Sheet blocked the flow of the Clark Fork River and created glacial Lake Missoula. The location 

of one or two positions of this ice dam is the area of study in this paper. 

We found geomorphic and sedimentological evidence for catastrophic flooding in the 

field area. In the valley, high velocities of water shaped streamlined gravel bars and eddy 

deposits. Gravel covers the outer banks of all the main streams in the field area and in alpine 

channel reaches. Well logs show that the gravel reaches depths of over 90 meters within the 

valley. The gravels are overlain by glaciolacustrine sediment, so they are the older of the two 

deposits. Both glacial Lake Missoula sediments and flood gravels were preserved throughout 

most of the Clark Fork River Valley in the field area, and thus were not eroded by subsequent 

flooding. 

On the floor of glacial Lake Missoula, varved couplets of glaciolacustrine sediment were 

deposited. The varves thin up-section and represent a period when the lake was deepening. 

Unconformable and erosive crossbedded sand beds are at the base of each section of varves. 

These layers represent a high-energy influx of sediment into the lake after it had dropped in 

water level and was closer to the sediment supply. 

OSL burial-date analysis of a basal sand bed in the field area yielded an age of 16.02 +- 

1.08 ka. This is within error margins of being consistent with OSL ages from the Ninemile and 

Rail Line sections ~200 km upstream. Correlation of transgressive sands across the glacial Lake 

Missoula basin helps to interpret the nature of the lake’s filling and draining cycles.  

Subaerial exposures were found by others in basal sand layers of glacial Lake Missoula 

deposits ~200 meters higher in elevation and ~200 km upstream from the current map area.There 
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were no features to conclusively indicate subaerial exposure in the map area, yet the sands are 

within the same age bracket as those found at the Ninemile and Rail Line sections. The lack of 

these features in the Elk Creek Road section suggests that the lake was not completely draining 

during each cycle of lake-level change at this time.  

Around 16,000 years ago, glacial Lake Missoula was fluctuating in depth in shallow 

water and did so until it drained completely. Preservation of fine-grained lake sediments in the 

map area, likely less than 5 km upstream of the last ice dam, suggests that the lake that deposited 

the sediments did not drain catastrophically. 
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8. Appendix A: Final Luminescence Age Report 
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9. Appendix B: Supplementary Flood Gravels 

 

Location Clast Sizes Lithologies Roundness 
and Sorting 

Matrix Bedding/Imbrication Aquifer 
Potential 

A Granule to 
cobble 

Belt 
Supergroup, 

volcanics 

R/WR and 
poorly 
sorted 

Fine 
sand/silt 

None Good 

B Pebble to 
cobble 

Belt 
Supergroup, 

volcanics 

Angular-WR, 
Poorly 
sorted 

Course 
sandy, 
matrix 

supported 

None Good 

c Pebble to 
boulder 

Belt 
Supergroup, 

volcanics 

Angular-WR, 
Poorly 
sorted 

Fine 
Sand/silt, 

matrix 
supported 

None Moderate 

D Pebble 
(dominant) 
to cobble, 
erratics in 

places 

Belt 
Supergroup, 

volcanics 

WR/SR and 
moderately 

to well-
sorted 

Course 
sandy, 
matrix 

supported 

Stratified/rhythmic 
bedding with large-
scale crossbedding 

Good 

F Dominantly 
pebbles, 

cobbles in 
places 

Belt 
Supergroup, 

volcanics 

WR/SR, 10% 
angular, 

moderately 
sorted 

Sandy/silt 
and 

carbonate, 
rice crispy 
texture, 

well-
cemented 

clast 
supported 

None Poor to 
moderate 

G Granules-
pebble-
cobble 
beds, 

boulders in 
places 

Belt 
Supergroup, 

volcanics 

Angular-
subrounded, 
well sorted 

Silt and 
carbonate, 
rice crispy 
texture, 

well-
cemented, 

clast 
supported 

Stratified/rhythmic 
bedding large scale 

crossbedding, 
alternating ~10-20 cm 

Poor to 
moderate 

H Pebble to 
cobble 

Belt 
Supergroup, 

volcanics 

Sub-angular, 
poorly 
sorted 

Silt and 
carbonate, 
rice crispy 
texture, 

well-
cemented, 

clast 
supported 

None Poor to 
moderate 

 

 

  



73 

10. Appendix C:  Well Logs used 



74 

 

 



75 

 

 

 



76 

 

 

 

 

 

 

 

 

 

 



77 

 

 

 

 

 



78 

 

 

 



79 

 

 

 

 

 



SIGNATURE PAGE 

This is to certify that the thesis prepared by Emily Welk entitled "Quaternary Geology of the Cabinet, 
Heron, and Smeads Bench 7.5' Quadrangles, with Emphasis on Glacial Lake Missoula Sediments" has been 
examined and approved for acceptance by the Department of Geological Engineering, Montana 
Technological University, on this 1st day of May, 2019. 

Chair, Examination Committee 

lenn Shaw, PhD, As· ociate Professor 
Department of Geological Engineering 
Member, Examination Committee 

J.!�dA� 
avid Reichhardt, Assistant Professor 

Department of Petroleum Engineering 
Member, Examination Committee 


	Montana Tech Library
	Digital Commons @ Montana Tech
	Spring 2019

	QUATERNARY GEOLOGY OF THE CABINET, HERON AND SMEADS BENCH 7.5’ QUADRANGLES, WITH EMPHASIS ON GLACIAL LAKE MISSOULA SEDIMENTS
	Emily Welk

	tmp.1558644614.pdf.BXC4W

