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Abstract 

Climate change is expected to alter temperature and precipitation regimes across the 

globe and have varying effects on localized hydrological processes. For Silver Bow Creek 

(SBC), a headwater to the Clark Fork River in western Montana, the magnitude, duration, and 

frequency of spring runoff and summer base flow are dependent on the processes of snow 

accumulation and melt. Headwater hydrology and mountain streams will likely experience 

earlier snowmelt, increased spring flows, and decreased summer flows due to climate change.  

A process-based hydrological model the Soil and Water Assessment Tool (SWAT) was 

used to evaluate the effects of climate change on SBC spring runoff and summer base flows. 

SWAT is a continuous simulation model that allows the user to predict surface water discharge, 

sediment loading, and stream nutrient content from user specified meteorological forcing 

functions. The SBC model was developed using 1/3 arc second DEM, SSURGO soil database, 

Montana land cover framework, and observed climatic data and was calibrated between the years 

2008-2009 and validated between the years 2010-2011 to daily USGS flow data. Projected future 

downscaled climate change from CMIP5 emission scenarios RCP 2.6, 4.5, 6.0, and 8.5 were 

used as temperature and precipitation for the modeling period. A calibrated and validated 

baseline model was used for comparison against the four CMIP5 scenarios. Results were then 

used to make qualitative inferences about changes in surface water quality due to climate change. 

Model simulations indicate the timing of spring melt off to be earlier, the duration shorter, and 

volume to be less than the baseline scenario.  One of the limitations to this study was the 

inability to satisfactorily calibrate and validate daily values.  

Keywords: SWAT, Climate Change, Silver Bow Creek Watershed, Snowpack, Snowmelt, 

Hydrology 
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1. Introduction 

1.1. Climate Change 

Earth has gone through roughly seven major climatic changes throughout the last 650,000 

years, where a retreat and advancement of ice caps is marked at the beginning and end of each 

cycle. Ebbs and flows of global temperatures are deduced from measuring the amount of CO2 

trapped in ice caps (NASA: Global Climate Change 2018a) and warmer and cooler periods are 

the result of two phenomena (IPCC 2014). The first is that the earth’s rotation around the sun 

isn’t set, there are eccentricities to it. Over a period of about 100,000 years, the earth’s rotation 

around the sun fluctuates from being a perfect circle to more of an ellipse. As the earths annulus 

turns more elliptical, it increases the distance of the earth from the sun during certain times of the 

year, reducing the amount of solar radiation reaching the planet. Currently, the earth’s orbit is 

closer to a circular orbit. The second phenomenon is that the earth’s axis rotates. On about a 

40,000 year cycle the earth’s axial tilt ranges from 22.1 to 24.5 degrees. This tilt causes more 

extremity of the seasons by increasing the distance of the hemispheres from the sun. Currently 

the tilt is in the middle of its phase.  

In the latest Intergovernmental Panel on Climate Changes report, 95% of scientist agree 

that the current trend of climate warming is outside the natural variance (IPCC 2014). This 

warming trend is believed to be the direct cause of anthropogenic influence, mainly the burning 

of fossil fuels and the subsequent release of greenhouse gasses into the atmosphere. Most of the 

earth’s heat is the result of atmospheric gases reflecting the suns solar radiation back on earth. 

The main gasses that contribute to the greenhouse effect are: water vapor (H2O), nitrous oxide 

(N2O), methane (CH4), and carbon dioxide (CO2). As these gas concentrations increase so does 

trapped solar radiation, resulting in warming of the planet.  In the last 150 years, atmospheric 
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CO2 concentrations have increased from 280 ppm to just over 400 ppm, outside a range we have 

ever seen before (IPCC 2014). Additionally, since the late 1800s there has been a global increase 

in temperature of 0.9°C, a previously unprecedented event (Mann and Bradley 1999) (Figure 1). 

 
 

Figure 1: Global increase in temperature since 1880 (NASA: Global Climate Change 2018b) 

 

1.2. Montana Climate Change 

Due to Montana’s size and topography its climate varies from east to west. The east is 

marked by relatively flat topography, warmer summers, colder winters, less overall precipitation, 

and the majority of rainfall occurring in late spring and summer. The west is marked by 

mountainous topography, relatively cooler summers, relatively warmer winters, more 

precipitation than the east, and a more evenly distributed precipitation throughout the year. 

Overall, the state receives very little precipitation and is in a semi-arid climate (Desert Research 

Institute and Western Regional Climate Center 2016). Because of Montana’s relatively arid 

climate, winter snow pack plays an integral role in annual hydrology. Snowpack, and the capture 

of spring runoff, drive late summer baseflow in streams and overall hydrology in the state.  
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Montana has already seen an increase in temperature of 1.1-1.7°C across the state from 

1950-2015. Most of this warming has been during the spring months with average increase of 

2.2°C. Additionally, the state has more warmer days on average throughout the year, with a 

lengthening of the growing season by 12 days. Montana’s climate is projected to get warmer; 

2.5-3.3°C by 2050, and 3.1-5.4°C by 2100 (Figure 2) (Silverman et al. 2017).  

 
 

Figure 2: Change in temperature across the state for two climate scenarios a) RCP 4.5 and b) 8.5 (Silverman 
et al. 2017) 

 

Overall, peak runoff from snowmelt has occurred earlier in the spring (Stewart et al. 

2005) and is only expected to shift more with projected climate scenarios (Stewart et al. 2004). 

The Rockies specifically have seen a decrease in April 1st snow water equivalent between 15-

30% between the years 1950-1997 (Glawe and Dugan 2006). As snow pack continues to 

decrease, it will mean earlier peak runoff and more stressed water days in late summer. This 
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could lead to prolonged drought, stressed environments for aquatic species, more extreme fire 

season, and impact towards municipal water supply.  

1.3. Silver Bow Creek Hydrological Processes  

Silver Bow Creek is a 26-mile-long creek originating near the continental divide in Silver 

Bow County, Montana. Silver bow creek is a headwater to the Clark Fork River, which 

eventually drains into the Columbia River Basin. The watershed is in a semi-arid climate and 

receives a relative small amount of precipitation over the year and is heavily dependent snow 

pack that drives early spring runoff and late summer base flows. Snowpack is an integral part to 

the hydrological processes in SBC. As snowpack increases throughout the winter, it is stored and 

then released later in the year when the watershed is water limited (Figure 3). When snowpack 

starts to melt in the spring it recharges shallow and deep aquifers, supplies overland flow to SBC, 

and supplies water to wetlands and ponds. Both wetland and aquifer recharge are important once 

the initial surge of surface flows retreat from snow pack runoff as it supplies additional flow to 

SBC.  
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Figure 3: Snowmelt Vs Discharge in SBC Watershed 
 

As snowpack plays such an integral role in hydrological processes for SBC, increased 

temperature associated with climate change could have devastating effect on the watershed. 

Increased temperatures may cause more precipitation falling as rain rather than snow and less 

snowpack accumulation throughout the winter. From a hydrological perspective, this would 

mean earlier snowmelt, increased spring flows, and decreased summer flows.  

1.4. Hydrologic Models and Their Utility for Evaluating Climate 
Change 

Hydrological models are effective tools for understanding basin wide implications to 

hydrological processes (Gassman, et al., 2014) and models have utility in predicting water 

quantity in scenarios where empirical data is unattainable, such as modeling stream hydrology 

with projected climate change data. One model in particular, the Soil and Water Assessment 

Tool (SWAT), has been used in a number of instances to model hydrological processes and 
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climate change (Jin and Sridhar 2012) (Watershed et al. 2008). Through use of soil type, land 

use, weather data, and topographical data while using geographical information systems (GIS) in 

tandem as a user interface (Arnold et al, 1998). SWAT is a continuous time simulation model 

that allows the user to predict the impacts on sediment loading, stream nutrient content, and 

surface water discharge. SWATs GIS interface, ArcSWAT, allows the modeler a platform for 

visual representation and an interface for file management. SWAT uses a digital elevation 

models (DEM) and stream network to divide basins into smaller watersheds based upon 

topographical and river location information. SWAT then further divides the basin into smaller 

units, called HRUs (hydrologic response units) which are the fundamental computational unit of 

the model. HRUs are determined by a common factor of land use, land cover, soil type, and 

management type. After sub watershed and HRUs are discretized the model is forced with 

observed climate data. The model requires precipitation, temperature, solar radiation, and wind 

speed.  Following calibration and validation, coupling SWAT with future projected climate 

change data can be an effective way to understand the effects of changing climate can have on 

small head water streams in Montana, such as Silver Bow Creek (SBC).  

1.5. Climate Change Data 

General circulation models (GCMs) are used to predict worldwide changes in weather 

patterns based upon atmospheric CO2 concentrations and they consider interactions between 

greenhouse gas concentration a trapped solar radiation of the entire globe and output daily 

temperature and precipitation data. They forecast potential climate scenarios for possible futures. 

Generally, GCMs create data that is too large for regional use and downscaling must be 

performed before used in a local environment. Downscaling is a statistical technique or the 

refining of large scale climate data to a local environment. GCMs generally make data output on 
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a scale that is appropriate for an area larger than 100 km2, so it doesn’t account for small scale 

geography that plays an important role in local weather. So, when downscaling climate data local 

geography and weather conditions are considered for a more refined climate projection.  

The Coupled Model Intercomparison Project (CMIP5) is a framework of atmospheric-

oceanic driven GCMs, comprised of about 30 coupled GCMs. The CMIP5 uses an anthropogenic 

class system to categorize emission scenarios called Representative Concentrated Pathways 

(RCPs) (Braconnot et al. 2011). RCP emission pathways are split into four different groups: 2.6, 

4.5, 6.0, and 8.5. These different scenarios are grouped based upon hypothetical future 

anthropogenic influence on atmospheric greenhouse gas concentrations. Factors such as 

economic growth, urbanization, and technological growth and innovation are considered. Each 

scenario has a corresponding greenhouse gas emission and a resulting radiative forcing (W/m2) 

that guide the projected effect on temperature and precipitation (Bjørnæs 1992).  

• RCP 2.6 - Lowest emission path scenario; peak radiative forcing peak at 3.1 

W/m2 and then decline to 2.1 W/m2 by 2100. Emissions peak in 2020 and reduced 

and becoming negative by 2100. Peak CO2 concentration at 490 ppm (van Vuuren 

et al. 2011).  

• RCP 4.5 – Moderate emission path; radiative forcing stabilizes after 2100 at 4.5 

W/m2, peaking at 2040. Peak CO2 concentration at 650 ppm (Clarke et al. 

2007)(Thomson et al. 2011). 

• RCP 6.0 – Moderate emission path; 6.0 is also a stabilization pathway but has a 

stabilization at 6 W/m2 by 2100 with a peak at 2080. Peak CO2 concentration at 

850 ppm (Fujino J, Nair R, Kainuma M 2016) (Masui et al. 2011). 
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• RCP 8.5 – Highest emission path; this is the rising scenario, with peak radiative 

forcing at 8.5 W/m2 in 2100. Peak CO2 concentration at 1370 ppm (Riahi et al. 

2011). 

There is a wide range of variability across the globe for projected climate change 

scenarios, on average though, temperature is expected to rise, and precipitation is expected to 

increase (Figure 4 Figure 5). These meteorological changes are expected to have cascading 

global effects on human and ecological health including: ocean acidification, mass species 

extinction, threatened food security, coastal flooding, drought, landslides, air pollution, water 

scarcity, reduction in snow pack, and more severe storms (Ernmenta and Nel 2014). 

 
 

Figure 4: a) IPCC projection for global average increase in temperature for different climate emission 
scenarios b) IPCC projection for global mean sea level rise for different climate emission scenarios 

(Ernmenta and Nel 2014) 
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Figure 5: a) IPCC projection for average change in global surface temperature under RCP 2.6 and 8.5 
emission scenarios for decadal average from 1986-2005 and 2081-2100 b) IPCC projection for average 

change in global precipitation under RCP 2.6 and 8.5 emission scenarios for decadal average from 1986-
2005 and 2081-2100 (Ernmenta and Nel 2014) 

 

1.6. Objectives 

The goal of this study is to assess the effects of climate change on hydrological process in 

the Silver Bow Creek Watershed.  

Specific objectives of this study are: 

● Develop a Soil and Water Assessment Tool (SWAT) model of the study area 

● Calibrate and validate the model within a statistically acceptable range of corresponding 

real-world data 

● Conduct scenario analysis in the model with climate change data 

● Investigate the effects of climate change on peak and base flows as well as the impact to 

snow pack. 
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2. Methods 

2.1. Study Area 

The study area is in southwestern Montana and is a 26-mile-long stretch of SBC, 

beginning at the confluence of Little Basin and Blacktail creeks and extending to USGS 

Opportunity gage station located just west of Opportunity MT, where it becomes the Clark Fork 

River (Figure 6). The area surrounding and containing the Berkeley Pit (west of Butte) is omitted 

from the watershed boundary, as it is hydrologically separated from the greater watershed.  

 
 

Figure 6: SBC Watershed 
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2.2. Model Development 

2.2.1. Basic Model Overview 

Figure seven outlines the basic process for model development. The model is built for the 

study area and then calibrated and validated to predetermined statistical standards. Following 

calibration and validation, the base line model’s weather data is replaced with RCP 2.6, 4.5, 6.0, 

and 8.5 scaled CMIP5 weather data and compared to the baseline SWAT model.  

 

 
 

Figure 7: Conceptual flow diagram for model development  
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2.2.2. Watershed Delineation 

The first step in SWAT’s basin wide modeling is to divide the greater watershed into 

smaller units called subbasins. These subbasins are further divided into HRU’s, which make up 

the basis for subbasin hydrologic process prediction. 

 The watershed was delineated using a 64-meter digital elevation model for Montana, 

downloaded from the Defense Mapping Agency’s 3-arc second 1x1 degree 1: 250,000 scale 

Digital Elevation Models database (Defense Mapping Agency 1970). A mask was created with 

the U.S. Department of Agriculture’s complete digital hydrologic unit boundary layer of sub-

watersheds for Montana (U.S. Department of Agriculture, Natural Resources Conservation 

Service 2014). The watershed outlet was chosen at Opportunity, MT due to the availability of 

USGS stream gage data. Additionally, the USGS National Hydrography Dataset (U.S. 

Department of Agriculture, Natural Resources Conservation Service 2014) was used to burn in 

the stream network to increase accuracy.   

According to (Jha et al. 2004) subbasin size has a significant influence on the model’s 

accuracy to represent sediment loading and water quality, but not stream flow. The optimal size 

of the subbasin relative to the greater watershed was between 3-5% for sediment loading and 

water quality. The watershed in this study was created with 29 subbasin (Figure 8), with each 

subbasin on average accounting for 3% of the greater watershed area.  
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Figure 8:Subbasins 
 

2.2.3. HRU Definition 

After the watershed is discretized into smaller subbasins, it is further divided fundamental 

computational units called HRUs. HRUs are the smallest component of the model and are 

grouped based on homogenous land use, soil, catchment geometry, and slope to represent areas 

within the subbasin that respond similarly hydrologically (Figure 9). SWAT allows the user to 

define a specific HRU at multiple location across a subbasin. If a HRU is replicated throughout 

the subbasin it means that it’s response to meteorological data will be the same. HRUs can 

further be classified upon the modeler’s specifications to group certain land types together, 
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omitting or including specific classes, or have certain land types play a larger role in the overall 

model.  

With concern to model output, each unique HRU within a subbasin calculates 

independent yields for discharge, sediment, stream quality. HRU yields are then summed for a 

total yield of the subbasin (Shekhar and Xiong 2008). 

 
 

Figure 9: HRU Development 
 

2.2.3.1. Land Use 

SWAT uses a land use and cover raster set to determine the spatial extent of each class. 

For this study the Montana Land Cover Framework published by the Montana Natural Heritage 

program was used (Montana Natural Heritage Program 2016). This is a statewide raster set of 

land use and vegetation coverage for the state of Montana. SWAT requires land use classes in a 

specific format that is different from the Montana Land Cover Framework, so, a “.txt” file was 

created to translate land use designations from the Montana Land Cover Framework to SWAT 

appropriate land classes. Table I presents the land classes and corresponding percentages that 

were used in this study.  
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Table I: SWAT Land Use Classifications 

Land Use SWAT Code Area (Ha) % of Total Area 

Commercial UCOM 2173.55 2.45 
Residential-Low Density URLD 1125.78 1.27 
Transportation UTRN 4359.09 4.92 
Forest-Evergreen FRSE 42207.67 47.59 
Range-Brush RNGB 8510.36 9.60 
Range-Grasses RNGE 29109.49 32.82 
Wetlands-Non-Forested WETN 4.79 0.01 
Industrial UIDU 990.47 1.12 
Residential-High Density URHD 152.69 0.17 
Agricultural Land-Generic AGRL 52.86 0.06 

2.2.3.2. Soil Data 

The second step in HRU classification is the interpretation of soils data for the study area. 

This study used the Soil Survey Geographic (SSURGO) database published by the U.S. 

Department of Agriculture, Natural Resources Conservation Service (U.S. Department of 

Agriculture and Natural Resources Conservation Service 2017). 

2.2.3.3. Slope 

The third and final step in HRU classification is slope classification (Table II). For this 

study, five slope classes were created. These slope classes were chosen using an approach similar 

to (Moriasi et al. 2015).  

Table II: Slope Classification 

Class Lower Limit Upper Limit 

1 0 10 

2 10 20 

3 20 30 

4 40 50 

5 50 9999 
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2.2.3.4. Elevation Bands 

SWAT was originally developed to model agricultural basins where the main form of 

precipitation falls as rain and the basins are relatively flat (Arnold et al. 1998). Elevation bands 

were created for SWAT to account for the effect of orography on precipitation and temperature 

in mountain landscape watershed, particularly in snow melt driven system (Fontaine et al. 2002).  

SWAT simulates precipitation as snow or rain based upon the average daily temperature, 

‘SFTMP’, which is defined by the user. If the average air temperature falls below ‘SFTMP’ 

precipitation falls as snow rather than rain. As the elevation range in SBC watershed is 

significant, elevation bands were used within this study.  

For each subbasin, SWAT determines modelled temperature and precipitation daily 

values based on proximity to input weather stations, and uses daily values provided by those 

stations. Elevation bands help to more accurately account for the effect of orography on 

temperature and precipitation with the use of empirically calculated lapse rates.   

Initially, the model was run with the number of elevation bands in the range of 3-10. 

Using the model results, it was found that specifying five elevation bands is optimal on 

calibration and validation statistics. The model results were insensitive when the number of 

bands was greater than five. So, five elevation bands were used within the model for improving 

the calibration and validation statistics and computational efficiency.  

2.2.4. Weather Stations 

SWAT uses meteorological data to simulate precipitation across a study areas basin, 

including daily precipitation, daily maximum and minimum temperatures, solar radiation, wind 

speed, and relative humidity. If any observed meteorological data are not present for a subbasin, 
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SWAT’s simulated data is available for use. This study used four meteorological stations located 

across the basin (Figure 10) ( 

 

Table III) (NOAA and National Centers For Environmental Information 2017). 

 
 

Figure 10: Weather Stations 
 
 

Table III: Weather Stations 

 

Name Type 
Elevation 

(km) Latitude Longitude 
Bert Mooney Airport Meteorological 1.67 45.95 -112.49 
Anaconda Meteorological 1.59 46.13 -112.95 
Basin Cr. SNOTEL 2.18 45.80 -112.51 
Barker Lakes  SNOTEL 2.55 46.09 -113.13 
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Weather data from the four meteorological stations was compiled from 2004 – 2011.  The 

Anaconda meteorological station went offline in the latter half of 2012 so, the simulation was 

only completed from 2004 through 2011 (NRCS 2018). 

A continuous set of measured data for relative humidity, solar radiation, and wind speed were 

not available, so, simulated data was used. For the simulated data the CFSR World weather 

database was used (NCAR and UCAR 2017). 

Two of the weather stations used in this study were SNOTEL site. SNOTEL sites are 

weather observation sites located in remote areas to monitor snow accumulation and melt. They 

are usually comprised of a snow pillow, snow depth sensor, solar radiation sensor, and 

precipitation gage.  

2.2.5. Database Updates 

2.2.5.1. Butte Silver Bow Waste Water Treatment Plant (SBC WWTP) 

SWAT allows the user to create point source inputs into the model. The user can either 

upload a table or manually select a spot in the ArcSWAT interface. This is important for SBC 

watershed as SBC receives a significant daily discharge from the Silver Bow County Waste 

Water Treatment Plant. Average monthly values of year 2015 were formatted and used for all the 

simulated years of the model. 

2.2.5.2. Temperature Lapse Rates 

The introduction of elevation bands allows SWAT to lapse temperature theryby 

compensate for adiabatic cooling or heating. SWAT allows the user to define specific 

temperature lapse rates based upon observed data. This is especially important for areas that have 

large elevation differences and where temperature plays a key role in the formation, duration, 

and abundance of snow on the watershed, like SBC.  
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The watershed was divided into two regions based on data availability and perceived 

watershed configuration. The first region represented the eastern part of the watershed and used 

Bert Mooney Airport meteorological site to Basin Creek SNOTEL site. The second region, 

representing the western part of the watershed, included Anaconda meteorological station to 

Barker Lakes SNOTEL site for the western portion of the watershed (Figure 10). Temperature 

lapse rates were calculated by calculating the difference of the mean temperatures in each station 

(ΔT) (2004-2011) and dividing it by the difference in elevation between stations (Δkm) (1).  

TLAPS = ΔT/ Δkm  (1) 
 

Temperature lapse rates for Bert Mooney Airport to Basin Creek SNOWTEL and 

Anaconda meteorological stations to basin creek SNOTEL were calculated to be -1.37ºC/km and 

-5.1ºC/km, respectively (Table IV).  

Table IV: Station Temperatures/Elevations 

Location Elevation (km) Average Temperature (ºC) Lapse Rates (°C/km) 

Bert Mooney Airport 1.67 4.50  

-1.37 Basin Creek SNOTEL 2.18 3.80 

Barker Lakes SNOTEL 2.55 2.00  

-5.10 Anaconda 1.59 6.90 

  

2.2.5.3. Precipitation Lapse Rates 

Another important component in modeling SWAT in areas with large elevations gains is 

precipitation lapse rates. Orographic precipitation is the result of moist air gaining elevation, and 

due to adiabatic cooling, condensing and precipitating. Precipitation lapse rates were calculated 

in the same manner as temperature lapse rates but replacing average temperature with average 

annual precipitation (ΔP) (2). 



20 

PLAPS = ΔP/Δkm  (2) 
 

The precipitation lapse rate for the Bert Mooney Airport to Basin Creek SNOTEL site is 

739.84 mm/km and 46.81 mm/km for Anaconda to Barker Lakes SNOTEL site (Table V). 

Table V: Station Precipitation/Elevations 

Location Elevation Average Precipitation (mm) Lapse Rate (mm/km) 

Bert Mooney Airport 1.67 246.50  

739.84 Basin Creek SNOTEL 2.18 625.00 

Barker Lakes SNOTEL 2.55 437.00  

46.81 Anaconda  1.59 392.50 

 

2.3. Calibration 

SWAT is a complex model that simulates basin wide hydrological processes based upon 

empirical data. Because the model is complex, calibration and validation are required to 

understand whether the model is simulating real world scenarios accurately (Srinivasan et al. 

2012). This is done by statistically comparing model output with the measured data. A split 

sample approach to calibration and validation was used for model performance evaluation. The 

model simulations were completed from 2004–2011, with 2004-2007 as warm up years, 2008-

2009 as the calibration period, and 2010-2011 as the validation period. 

The first step in calibration is sensitivity analysis, which helps to identify the parameters 

that directly affect the model outputs and the suitable range that they fall within (White and 

Chaubey 2005). A sensitivity analysis was performed for both the SWE and discharge 

parameters using a local approach of adjusted single parameters individually. Following 

sensitivity analysis, calibration was performed using the data from Basin Creek SNOTEL and 
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USGS Gage Station Silver Bow Creek at Opportunity for discharge of the greater SBC 

watershed model. 

2.3.1. Snowpack Calibration  

Because snowpack plays an integral role in surface water flows for the study area, 

calibration of snow pack was performed prior to surface water calibration. Snowpack is 

represented in SWAT as snow water equivalent (SWE), which is calculated using a mass balance 

approach, where a previous time step SWE (SWE1) is added to current snowfall (Psb) and 

evapotranspiration (Es) and release of meltwater (M) is subtracted (3). 

SWE2=SWE1+Psb-M-Es  (3) 
 

A sensitivity analysis, as well as a meta-analysis of similar projects (Fontaine et al. 2002) 

Ahl, Woods, and Zuuring 2008)(Arnold et al. 2012), identified input parameters that have the 

largest effect on SWE (Table VI). 

Table VI: Snowmelt Parameters 

Parameter Name Description Units 

SFTMP Snow fall temperature; temperature at which precipitation falls as snow ºC 

SMTMP Snow melt base temperature; temperature at which snow pack melts ºC 

TIMP Snow pack temperature lag factor: influence of the previous days snow pack 
temp on current day 

Unitless 

SNO50COV Fraction of snow volume represented by SNOCOVMX that corresponds to 
50% snow cover 

Unitless 

SNOCOVMX Minimum snow water content that corresponds to 100% snow cover Unitless 

SMFMX Melt factor for snow in June 21 mm/C/day 

SMFMN Melt factor for snow on December 21 mm/C/day 

 

To calibrate the SWE, a unit source SWAT model was created using the subbasin that 

contained the SNOTEL site for the sake of reducing computational time and ensuring the site 

was at the exactly correct elevation (Figure 11). Once the smaller SWE SWAT model was 
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calibrated, the snow melt parameter values were used to help guide snow melt in the larger 

SWAT project as discussed in later sections.  

 
 

Figure 11: SWE SWAT Model 
 

2.3.2. Streamflow Calibration 

A sensitivity analysis, as well as an meta-analysis of similar projects (Arnold et al. 

2012)(Flynn and Van Liew 2011)(Fontaine et al. 2002)(Watershed et al. 2008) (Ahl et al. 2008), 

cumulated a table of parameters to target for calibration of surface water discharge (Table VII). 
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Table VII: Surface Discharge Parameters 

Process Parameters Description Units 

Surface Runoff CN2 Initial SCS runoff curve number Unitless 
 SOL_AWC Available water capacity of the soil layer mm H2o/mm soil 
 ESCO Soil evaporation compensation factor Unitless 
 EPCO  Plant uptake compensation factor Unitless 
 SURLAG Surface runoff lag coefficient Unitless 
 OV_N Mannings N value for overland flow  
Base flow ALPHA_BF Groundwater flow response to changes in 

recharge 
1/days 

 GW_Revap Groundwater “revap” coefficient Unitless 
 GW_Delay Groundwater Delay Unitless 
 GWQMN Threshold depth of water in the shallow 

aquifer required for return flow to occur. 
mm H2o 

 REVAPMN Threshold depth of water in the shallow 
aquifer for “revap” or percolation to the 
deep aquifer to occur  

mm H2o 

 RCHARG_DP Deep aquifer percolation fraction Unitless 

 

Three USGS Gage Stations were located within the study area (Figure 12). This study 

originally planned on using a split calibration approach: calibrating Silver Bow Creek Below 

Blacktail then loading calibrated discharge downstream and then calibrate at Silver Bow Creek at 

Opportunity. Given time constraints, daily and monthly data from USGS Gage Station Silver 

Bow Creek at Opportunity were used to calibrate and validate the model(U.S. Geological Survey 

2000). 
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Figure 12: USGS Gage Stations 
 

2.3.3. Calibration Statistics 

Streamflow was calibrated manually by adjusting input parameters. Two calibration 

statistics, Nash-Sutcliffe efficiency (NSE) (4) and  percent bias (PBIAS), were used to evaluate 

the model based on the goals of the study (D. N. Moriasi et al. 2007).  

 

(4) 
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where Yi
obs is the observed value, Yi

sim is the simulated values from SWAT, and Ymean is 

the mean value of the observed values for the period of simulation.  PBIAS is calculated using 

equation (5): 

 

(5) 

 

where Yi
obs is the observed values over the course of simulation, and Yi

sim is simulated 

values over the course of the simulation. 

 A meta-analysis of hydraulic models was used to identify common statistical 

performance measures and evaluation standards for SWAT (Moriasi et al. 2015). The evaluation 

standards to evaluate the success of this study are reported in Table VIII. 

Table VIII: NSE and PBIAS Performance Standards (per Moriasi et al.) 

Measure Temporal Scale Very Good Good Satisfactory Not Satisfactory 

PBIAS Annual <±2.5 ±2.5< PBIAS < ±15  ±2.5< PBIAS < ±15  ≥ 60 

 Monthly <±3.0 ±3.0< PBIAS < ±10 ±10< PBIAS < ±15 ≥ 15 

 Daily <±10 ±10< PBIAS < ±15 ±15< PBIAS < ±45 ≥ 45 

NSE Annual >.75 .60 < NSE < .75 .50 < NSE < .60 < .50 

 Monthly >.85 .70 < NSE < .85 .55 < NSE< .70 < .55 

 Daily >.80 .70 < NSE < .80 .50 < NSE < .70 < .50 

 

2.4. Climate Change Data 

Following a satisfactory calibration and validation of the model (Table VIII), the model’s 

daily min and max temperatures and precipitation were scaled from the downed CMIP5 climate 
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change data. Scale factors were calculated using averages from 1990-2010 and 2050-2070 as 

described below. 

2.4.1. Projected Climate Change Data Sources 

This study used the World Climate Research Programme’s (WCRP’s) fifth phase of the 

couple model intercomparison project (CMIP5) multi-model ensemble  (Brekke et al. 2013). The 

data consisted of 132 daily bias-correction constructed analogues (BCCAv2) models that were 

downloaded in a rectangular extent around the watershed area (46.2672 Latitude/-113.2196 

Longitude; 45.9301 Latitude/-112.4686 Longitude) to a 1/8th degree resolution. Monthly values 

for precipitation rate (mm/day), minimum surface air temperature (ºC), and maximum surface air 

temperature (ºC) were used for this study. This rectangular grid was further refined to only select 

points that fell within the watershed area (Figure 13). 

 
 

Figure 13: CMIP5 BCCAv2 Climate Data Points 
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2.4.2. Scenarios 

Four different emission scenarios where used in this study (RCP 2.6, RCP 4.5, RCP 6.0, 

and RCP 8.5) to evaluate the effects of climate change on SBC watershed. RCP 2.6 is 

characterized as a low emission scenario, RCP 4.5 is characterized by an intermediate emissions 

scenario, RCP 6.0 is characterized by a slightly higher intermediate emissions scenario, and RCP 

8.5 is characterized by a high emissions scenario.  

2.4.3. Temporal Disaggregation 

To avoid capturing any yearly climate anomalies, decadal averages were used in 

developing scaling factors for the observed meteorological data (Krysanova and Srinivasan 

2014) (Johnson et al. 2015). Average precipitation and temperature for individual months were 

calculated over twenty-year periods, 1990-2010 and 2050-2070, and compared. Mean 

differences in temperature for each month, between the two periods, were added to historical 

daily data for the corresponding month (Table IX). Precipitation ratios between the two decadal 

averages were used as a multiplier for the corresponding months (Table X). 
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Table IX: Scaling factors for temperature 

  RCP 2.6 Monthly 
Averages (°C) 

RCP 4.5 Monthly 
Averages (°C) 

RCP 6.0 Monthly 
Averages (°C) 

RCP 8.5 Monthly 
Averages (°C) 

  1990-
2010  

2050-
2070 

RCP 
2.6 

1990-
2010  

2050-
2070 

RC9 
4.5 

1990-
2010  

2050-
2070 

RCP 
6.0 

1990-
2010  

2050-
2070 

RCP 
8.5 

January -7.54 -7.13 0.41 -11.37 -9.72 1.65 -10.03 -8.14 1.89 -8.21 -5.80 2.41 
February -5.72 -4.00 1.72 -9.39 -6.52 2.87 -8.90 -7.30 1.60 -6.15 -2.87 3.28 
March -2.62 -0.45 2.17 -5.97 -2.11 3.86 -5.86 -3.38 2.48 -3.17 0.50 3.67 
April 2.83 3.40 0.57 -0.42 2.60 3.02 0.11 1.59 1.49 1.95 5.36 3.41 
May 7.34 8.35 1.01 5.01 7.17 2.15 4.90 6.85 1.95 7.55 10.01 2.46 
June 11.86 13.18 1.33 9.39 11.70 2.32 9.66 11.36 1.70 11.94 15.65 3.71 
July 15.40 17.03 1.62 13.66 17.17 3.52 12.82 15.32 2.51 16.11 21.91 5.80 
August 14.52 16.42 1.90 11.83 15.93 4.11 12.09 14.12 2.03 14.77 20.22 5.45 
September 9.39 10.65 1.26 7.07 9.88 2.82 6.90 9.49 2.60 9.39 14.35 4.96 
October 3.82 5.64 1.82 1.66 3.90 2.25 1.59 3.87 2.27 3.97 6.96 2.99 
November -2.34 -0.69 1.65 -5.33 -2.59 2.73 -4.73 -2.63 2.09 -3.13 0.01 3.14 
December -7.02 -6.05 0.96 -11.18 -8.70 2.48 -9.93 -7.57 2.36 -8.17 -3.77 4.41 

 

 

Table X: Scaling factors for precipitation 

  RCP 2.6 Monthly 
Averages (mm H2O) 

RCP 4.5 Monthly 
Averages (mm H2O) 

RCP 6.0 Monthly 
Averages (mm H2O) 

RCP 8.5 Monthly 
Averages (mm H2O) 

  1990-
2010  

2050-
2070 

RCP 
2.6 

1990-
2010  

2050-
2070 

RCP 
4.5 

1990-
2010  

2050-
2070 

RCP 
6.0 

1990-
2010  

2050-
2070 

RCP 
8.5 

January 1.24 1.10 0.88 1.15 1.21 1.04 1.33 1.59 1.19 1.16 1.01 0.87 
February 1.04 1.04 0.99 0.98 1.20 1.23 1.16 1.04 0.90 1.06 0.94 0.88 
March 1.41 1.83 1.29 1.67 1.80 1.07 1.42 1.81 1.27 1.66 2.06 1.24 
April 2.10 2.39 1.13 1.67 2.43 1.45 2.24 2.53 1.12 1.56 2.44 1.55 
May 2.19 2.50 1.14 2.48 2.28 0.91 2.23 2.85 1.27 2.41 2.55 1.05 
June 2.37 2.44 1.02 2.40 2.18 0.90 2.40 2.15 0.89 2.32 1.73 0.74 
July 1.55 1.30 0.83 1.10 0.96 0.87 1.61 0.97 0.60 0.97 0.52 0.54 
August 1.07 0.76 0.71 1.21 0.90 0.74 1.10 1.24 1.12 1.19 0.96 0.80 
September 1.44 1.33 0.92 1.33 1.13 0.85 1.39 1.19 0.86 1.20 0.98 0.81 
October 1.08 0.98 0.90 1.12 1.19 1.05 1.12 1.10 0.97 1.01 1.20 1.18 
November 1.11 1.27 1.14 1.14 0.96 0.84 1.05 1.14 1.09 1.19 1.40 1.17 
December 1.09 1.33 1.22 0.94 1.05 1.11 1.03 1.50 1.45 0.88 1.00 1.13 
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3. Results and Discussion 

3.1. Pre-calibration Model  

Before calibration, the preliminary model’s performance was compared to USGS gage 

station data to help identify parameters that need further investigation (Figure 14). 

 
 

Figure 14: Pre-calibration Monthly Discharge 
 

The model’s calibration period had a monthly NSE values of .45 and PBIAS value of 

10.1; the validation period had a NSE value of .91 and a PBIAS value of 2.5 (Table VIII: NSE 

and PBIAS Performance Standards). The preliminary model predicted the flow rates reasonably 

well, however, the prediction can be improved by systematic calibration and validation. Several 

areas were identified to target during calibration: systematic underestimation of base flow, 

failure to simulate some high peak flows, and secondary peaks. 
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3.2. Snowpack Calibration 

 As the snow pack plays a significant role in discharge, snow water equivalent was 

calibrated prior to discharge to help guide parameter selection (Figure 10). A final calibration 

resulted in a calibrated daily NSE of .91, PBIAS of 7.58, and a validated value for NSE of .93, 

and PBIAS of 7.69 (Figure 15)(Table XI). 

 
 

Figure 15: Calibrate SWE  
 

Calibrated SWE values were used for guidance in the main SWAT model. The original 

and calibrated model parameters are presented in Table IX.  
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Table XI: Calibrated SWE Values 

Parameter Description SWAT Recommended 
Range/Units 

Original Value Calibrated Value 

SFTMP Snow fall temperature -5/5 (ºC) 1 5 

SMTMP Snow melt base temperature -5/5 (ºC) .5 2.5 

TIMP Snow pack temperature lag factor 0-1 1 .1 

SMFMX Melt factor for June 21 0-10 (mm/C/day) 4.5 2.5 

SMFMN Melt factor for December 21 0-10 (mm/C/day) 4.5 2.5 

 

3.3. Discharge Calibration 

3.3.1. Daily 

Satisfactorily daily calibration and validation statistics could not be achieved for the 

simulated discharge values. This is one of the major limitations of this study. Daily flow values 

simulate micro surges of water occurring on the landscape, sometimes ten times as much as the 

observed runoff values. Even though there is a gross discrepancy between the daily simulation 

and the observed values, these over simulated daily values seem to be “washed out” during the 

monthly calibration and validation because satisfactory monthly calibration and validation 

statistics were achieved. 

An inspection into the source of the simulated extra water revealed that it was all coming 

from snow melt. Most likely SWAT is simulating these flash melts of snow and not directing 

them correctly, either from groundwater delay or overland flow.  
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Figure 16: Simulated Daily Discharge vs Observed at Opportunity Gage Station 
 

3.3.2. Monthly 

The model performance statiscs for the monthly calibration period are .72 NSE and -10.3 

PBIAS, and.91 NSE and -1.51 PBIAS for the validation period (Table VIII). The model’s 

outputs had an overall good fit to the measured data. The model has reasonably predicted peak 

runoff and late summer base flows. It systematically predicted the peak runoff very well as well 

as the late summer baseflow. In general, the model performed better in the validation period than 

the calibration period. Overall, the model represented real world discharge well and was found 

suitable for use in climate change scenario analysis. The existing conditions presented below in 

Figure 17 form the baseline for the climate change evaluations.  
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Figure 17: Calibrated and validated Monthly Discharge 
 

 

3.4. Climate Change Data – Temperature 

Decadal averages for1990-2010 and 2050-2070 were computed for RCP 2.6, 4.5, 6.0, and 

8.5 and indicate an increase of temperature across the watershed with the largest increases seen 

in the spring and summer (Figure 18). Each scenario projects a relative higher temperature across 

the watershed, due to global increase in radiative forcing (van Vuuren et al. 2011), omitting RCP 

4.5, which is higher than RCP 6.0. Scenario RCP 4.5 is a peak and stabilizing scenario, with 

peak radiative forcing occurring around mid-century then stabilizing to 4.5 W/m2 at the end of 

the century (Thomson et al. 2011), whereas, RCP 6.0 is a stabilization scenario with a gradual 

increase of 6.0 W/m2. Due to this peak radiative forcing occurring in RCP 4.5 mid-century 

receives a higher radiative forcing for RCP 4.5 than 6.0.  
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Figure 18: Δ Temperature of GCM data: 1990-2010 vs. 2050-2070 
 

3.5. Climate Change Effects on Precipitation 

All RCP scenarios predicted an increase in overall basin wide precipitation in early 

spring and late summer and a decrease during summer and winter (Figure 19). Both the findings 

for the temperature as well as the precipitation are consistent with other climatic studies for 

Montana (Silverman et al. 2017). 
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Figure 19: Precipitation Ratio of GCM data: 1990-2010 vs. 2050-2070 
 

3.6. Climate Change Effects on Snowpack  

As simulated in SWAT, an incremental decrease of SWE can be seen with each 

consecutive scenario, excluding RCP 6.0, which has a larger SWE content than RCP 4.5 due to 

the higher radiative forcing during mid-century (2050). The increased precipitation in the spring 

modeled some years with an earlier accumulation of snowpack, specifically 2008, but generally 

all scenarios predict less snow fall later in the season and melting sooner. Average April SWE 

values for the historical data was computed and compared to all four scenarios: RCP 2.6 SWE 

decreased by 23%, RCP 4.5 SWE decreased by 58%, RCP 6.0 SWE decreased by 31%, and RCP 

8.5 SWE decreased by 65%.  
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Figure 20: RCP 2.6 Basin Creek SNOTEL SWE Simulation 

 

 
 

Figure 21: RCP 4.5 Basin Creek SNOTEL SWE Simulation 
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Figure 22: RCP 6.0 Basin Creek SNOTEL SWE Simulation 

 
 

Figure 23: RCP 8.5 Basin Creek SNOTEL SWE Simulation 
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3.7. Climate Change Effect on SBC Discharge 

3.7.1. Monthly flowrates  

All the scenarios projected decrease in the overall amount of water in SBC over baseline 

conditions, except for RCP 2.6. This is most likely due to increased precipitation and relatively 

small increase of radiative forcing in this scenario. But in general, all the scenarios are marked 

by a smaller hydrograph peak and occurring somewhat sooner in the season. RCP 8.5 is the most 

dramatic with peak flows being almost half of observed. Additionally, RCP 8.5 projects peak 

flows occurring earlier in the year and having less water during late summer/early winter base 

flows. The false peak aforementioned between July and August 2009 can be seen to be 

particularly exaggerated in the RCP 6.0 discharge simulation.  

 
 

Figure 24: RCP 2.6 Discharge Simulation 
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Figure 25: RCP 4.5 Discharge Simulation 
 

 
 

Figure 26: RCP 6.0 Discharge Simulation 
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Figure 27: RCP 8.5 Discharge Simulation 

4. Conclusions 

All the RCP scenarios predict warmer temperatures across the watershed, with the 

highest increase in the spring and late summer. Additionally, precipitation is projected as having 

a basin wide increase, with biggest increase in spring and winter. Snowpack was simulated as 

having a systematic decrease, and this can be seen to be correlated to drop in the intensity and 

timing of peak spring runoff. Additionally, later summer base flows seem to decrease as well, but 

not as strong of a correlation can be made between that of snowpack and intensity of spring peak 

flows. This is most likely due to increased winter precipitation supplementing base flows. These 

trends are generally true for each RCP and dramatizes with each consecutive scenario, except for 

RCP 4.5 and 6.0, where radiative forcing is lower and higher, respectively. Even though overall 

more precipitation falling on the landscape, we see less flow in SBC. This is in part due to the 

loss of storage on the landscape.  
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Montana has seen a 15-30% loss of April 1st snowpack between 1950-1997 (Glawe and 

Dugan 2006) and this study predicts between 20-60% loss of average April snowpack. This loss 

of snowpack resulted in late summer base flows, most likely from loss of snowmelt feeding 

springs and reduction in shallow groundwater recharge. All scenarios projected a dramatic 

decrease in late summer base flow for the years 2008 and 2009. The biggest change can be seen 

in the reduction of peak flows in the spring as well as a shift in peak timing, mainly in the year 

2009 in all scenarios.  

This study only considered the effect of precipitation and temperature on hydrologic 

conditions. Climate change will have cascading ecological effects on the watershed which could 

possibly dramatize these results further. As snow pack recedes, the melt off period decreases and 

limits the input to groundwater and overland flow to streams. This will limit the water in 

perennial streams and could possibly shift perennial streams to ephemeral, reducing spawning 

habitat for certain species. Additionally, as conditions become drier, the probability of larger, 

catastrophic fires increase.  

Montana is historically a fire dominated landscape, characterized by low-intensity/high-

frequency fires (Brown, Ryan, and Andrews 2000). Due to a century of fire suppression, fire 

intensity and frequency have increased, and some studies suggest an increase in the amount of 

ignition events due to decreased fuel moisture will occur with climate change (Wotton, Martell, 

and Logan 2003)(Wotton, Nock, and Flannigan 2010). Overland vegetation plays a key role in 

the way the water behaves on a landscape; if the intensity, size and frequency are expected to 

change (Weber and Flannigan 1997) this could play a significant role in the structure and 

ecological succession of late stage seral forest of Montana, affecting waters behavior as well. 



42 

One of the major limitations to this study is lack of a statistically acceptable calibrated and 

validated daily values.    

4.1. Limitations 

Hydrological models can be effective tools for understanding basin wide changes when 

the attainment of empirical data is infeasible. However, they are not predictors of the future, 

especially when it comes to the use of climate change data. Projected climate change data and 

model outputs are merely just one possible scenario that could happen. This studies SWAT 

output was calibrated but it is still a model, and a level of uncertainty exists with it’s credibility 

to simulate real world scenarios. Coupled with the use of modelled data, the results can become 

speculative. The results of this study are intended as a guidance tool for water resources 

managers, an insight to a possible scenario, not a hard truth.  

 



43 

5. References Cited 

Ahl, Robert S, Scott W Woods, and Hans R Zuuring. 2008. “Hydrologic Calibration and 

Validation of Swat in a.” Journal Of The American Water Resources Association 44(6): 

1411–30. http://doi.wiley.com/10.1111/j.1752-1688.2008.00233.x. 

Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “Large Area Hydrologic 

Modeling and Assessment Part I: Model Development.” Journal of the American Water 

Resources Association 34(1): 73–89. http://doi.wiley.com/10.1111/j.1752-

1688.1998.tb05961.x. 

Arnold, J.G. et al. 2012. “SWAT: Model Use, Calibration, and Validation.” Transactions of the 

ASABE 55(4): 1549–59. 

http://elibrary.asabe.org/abstract.asp??JID=3&AID=42263&CID=t2012&v=55&i=4&T=1. 

Bjørnæs, Christian. 1992. “A Guide to Representative Concentration Pathways.” CICERO 

Center: 5. http://www.sei-international.org/mediamanager/documents/A-guide-to-

RCPs.pdf. 

Braconnot, Pascale et al. 2011. “The Paleoclimate Modeling Intercomparison Project 

Contribution to CMIP5.” CLIVAR Exchanges 16(56): 15–19. 

Brekke, L., B. L. Thrasher, E. P. Maurer, and T. Pruitt. 2013. “Downscaled CMIP3 and CMIP5 

Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with 

Preceding Information, and Summary of User Needs.” (May): 104. http://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf. 

Brown, P M, M G Ryan, and T G Andrews. 2000. “Historical Surface Fire Frequency in 

Ponderosa Pine Stands in Research Natural Areas, Central Rocky Mountains and Black 

Hills, USA.” Natural Areas Journal 20(2): 133–39. 



44 

Clarke, Leon E et al. 2007. “Scenarios of Greenhouse Gas Emissions and Atmospheric 

Concentrations.” Program 2011(July): 164. 

http://www.ncbi.nlm.nih.gov/pubmed/22275275. 

D. N. Moriasi et al. 2007. “Model Evaluation Guidelines for Systematic Quantification of 

Accuracy in Watershed Simulations.” Transactions of the ASABE 50(3): 885–900. 

http://elibrary.asabe.org/abstract.asp??JID=3&AID=23153&CID=t2007&v=50&i=3&T=1. 

Defense Mapping Agency. 1970. “Montana 3-Arc Second 1x1 Degree 1: 250,000 Scale Digital 

Elevation Model.” 

http://ftp.geoinfo.msl.mt.gov/Data/Spatial/NonMSDI/Elevation/DEM_64m_1992.zip 

(January 9, 2017). 

Desert Research Institute, and Western Regional Climate Center. 2016. “Climate of Montana.” 

https://wrcc.dri.edu/narratives/MONTANA.htm. 

Ernmenta, Intergov, and L P A Nel. 2014. Climate Change 2014 Synthesis Report. 

Flynn, K F, and M W Van Liew. 2011. “Evaluation of Swat for Sediment Prediction in a 

Mountainous Snowmelt-Dominated Catchment.” Transactions of the ASABE 54(1): 113–22. 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

79951842553&partnerID=40&md5=c2269f139d910c86214f67fcbbbc9330. 

Fontaine, T. A., T. S. Cruickshank, J. G. Arnold, and R. H. Hotchkiss. 2002. “Development of a 

Snowfall-Snowmelt Routine for Mountainous Terrain for the Soil Water Assessment Tool 

(SWAT).” Journal of Hydrology 262(1–4): 209–23. 

Fujino J, Nair R, Kainuma M, et al. 2016. “Multi-Gas Mitigation Analysis on Stabilization 

Scenarios Using Aim Global Model Author ( S ): Junichi Fujino , Rajesh Nair , Mikiko 

Kainuma , Toshihiko Masui and Yuzuru Matsuoka Source : The Energy Journal , Vol . 27 , 



45 

Special Issue : Multi-Greenhouse Gas.” 27(2006): 343–53. 

Gassman, Philip W., Ali M. Sadeghi, and Raghavan Srinivasan. 2014. “Applications of the 

SWAT Model Special Section: Overview and Insights.” Journal of Environment Quality 

43(1): 1. https://www.agronomy.org/publications/jeq/abstracts/43/1/1. 

Glawe, Dean A, and Frank M. Dugan. 2006. “Declining Mountain Snowpack In Western North 

America.” Pacific Northwest Fungi 1(11): 1–11. 

http://openjournals.wsu.edu/index.php/pnwfungi/article/view/1026. 

IPCC. 2014. “Climate Change 2014 Synthesis Report Summary Chapter for Policymakers.” 

Ipcc: 31. 

Jha, Manoj et al. 2004. “Effect of Watershed Subdivision on SWAT Flow, Sediment, and 

Nutrient Predictions.” Journal of the American Water Resources Association 40(3): 811–25. 

http://doi.wiley.com/10.1111/j.1752-1688.2004.tb04460.x. 

Jin, Xin, and Venkataramana Sridhar. 2012. “Impacts of Climate Change on Hydrology and 

Water Resources in the Boise and Spokane River Basins.” Journal of the American Water 

Resources Association 48(2): 197–220. 

Johnson, T. et al. 2015. “Modeling Streamflow and Water Quality Sensitivity to Climate Change 

and Urban Development in 20 U.S. Watersheds.” Journal of the American Water Resources 

Association 51(5): 1321–41. 

Krysanova, Valentina, and Raghavan Srinivasan. 2014. “Assessment of Climate and Land Use 

Change Impacts with SWAT.” Regional Environmental Change 15(3): 431–34. 

Mann, Michael E., and Raymond S. Bradley. 1999. “Northern Hemisphere Temperatures During 

the Past Millennium: Inferences, Uncertainties, and Limitations.” 

Masui, Toshihiko et al. 2011. “An Emission Pathway for Stabilization at 6 Wm-2radiative 



46 

Forcing.” Climatic Change 109(1): 59–76. 

Montana Natural Heritage Program. 2016. “Montana Land Cover Framwork.” 

https://gisservicemt.gov/arcgis/rest/services/MSDI_Framework/LandCoverSPC/MapServer 

(January 9, 2017). 

Moriasi, D N, M W Gitau, N Pai, and P Daggupati. 2015. “Hydrologic and Water Quality 

Models: Performance Measures and Evaluation Criteria.” Transactions of the ASABE 58(6): 

1763–85. 

http://elibrary.asabe.org/abstract.asp?aid=46548&t=3&dabs=Y&redir=&redirType=. 

NASA: Global Climate Change. 2018a. “Climate Change: How Do We Know?” 

https://climate.nasa.gov/evidence/ (December 1, 2018). 

———. 2018b. “Global Land-Ocean Temperature Index.” https://climate.nasa.gov/vital-

signs/global-temperature/. 

NCAR, and UCAR. 2017. “CFSR Global Weather Database.” 

http://swat.tamu.edu/media/99082/cfsr_world.zip (January 9, 2017). 

NOAA, and National Centers For Environmental Information. 2017. “Anaconda/Barker 

Lakes/Bert Mooney Airport/Basin Creek Climate Data.” https://www.ncdc.noaa.gov/cdo-

web/datatools/findstation (January 9, 2017). 

NRCS. 2018. “NRCS and Natural Water and Climate Center.” United States Department of 

Agriculture. 

https://www.wcc.nrcs.usda.gov/webmap/#version=80.1&elements=&networks=!&states=!

&counties=!&hucs=&minElevation=&maxElevation=&elementSelectType=all&activeOnly

=true&activeForecastPointsOnly=true&hucLabels=false&hucParameterLabels=false&statio

nLabels=&overl (January 10, 2017). 



47 

Riahi, Keywan et al. 2011. “RCP 8.5-A Scenario of Comparatively High Greenhouse Gas 

Emissions.” Climatic Change 109(1): 33–57. 

Shekhar, Shashi, and Hui Xiong. 2008. “Soil and Water Assessment Tool ‘SWAT.’” 

Encyclopedia of GIS: 1068–1068. http://link.springer.com/10.1007/978-0-387-35973-

1_1231. 

Silverman, Nick et al. 2017. “Climate Change in Montana: Chapter Two.” Montana Climate 

Assessment. http://montanaclimate.org/chapter/climate-change (January 2, 2018). 

Srinivasan, R, C Santhi, R D Harmel, and A Van Griensven. 2012. “Swat: M.” 55(4): 1491–

1508. 

Stewart, Iris T., Daniel R. Cayan, and Michael D. Dettinger. 2004. “Changes in Snowmelt 

Runoff Timing in Western North America under a ‘Business as Usual’ Climate Change 

Scenario.” Climatic Change 62(1–3): 217–32. 

———. 2005. “Changes toward Earlier Streamflow Timing across Western North America.” 

Journal of Climate 18(8): 1136–55. 

Thomson, Allison M. et al. 2011. “RCP4.5: A Pathway for Stabilization of Radiative Forcing by 

2100.” Climatic Change 109(1): 77–94. 

U.S. Department of Agriculture, Natural Resources Conservation Service, National Geospatial 

Center of Excellence. 2014. “Watershed Boundary Dataset 12 Digit Hydrologic Units 

(Subwateshed) For Montana.” 

http://ftp.geoinfo.msl.mt.gov/Data/Spatial/MSDI/HydrologicUnits/WBDHU12_MT.zip 

(January 9, 2017). 

U.S. Department of Agriculture, and Natural Resources Conservation Service. 2017. “Soil 

Survey Geographic (SSURGO) Data for Montana.” 



48 

http://mslapps.mt.gov/Geographic_Information/Data/NRCS/Soils/Default.aspx (January 9, 

2017). 

U.S. Geological Survey. 2000. “USGS 12323600 Silver Bow Creek at Oppurtunity, MT.” 

https://waterdata.usgs.gov/nwis/uv?site_no=12323600 (January 9, 2017). 

van Vuuren, Detlef P. et al. 2011. “The Representative Concentration Pathways: An Overview.” 

Climatic Change 109(1): 5–31. 

Watershed, Snow-dominated Rocky Mountain, Robert S Ahl, Scott W Woods, and Hans R 

Zuuring. 2008. “Hydrologic Calibration and Validation of Swat in a.” Journal Of The 

American Water Resources Association 44(6): 1411–30. 

http://doi.wiley.com/10.1111/j.1752-1688.2008.00233.x. 

Weber, M G, and M D Flannigan. 1997. “Canadian Boreal Forest Ecosystem Structure and 

Function in a Changing Climate: Impact on Fire Regimes.” Environmental Reviews 5(3–4): 

145–66. http://www.nrcresearchpress.com/doi/abs/10.1139/a97-008. 

White, Kati L., and Indrajeet Chaubey. 2005. “Sensitivity Analysis, Calibration, and Validations 

for a Multisite and Multivariable SWAT Model.” Journal of the American Water Resources 

Association 41(5): 1077–89. http://onlinelibrary.wiley.com/doi/10.1111/j.1752-

1688.2005.tb03786.x/abstract%5Cnhttp://onlinelibrary.wiley.com/store/10.1111/j.1752-

1688.2005.tb03786.x/asset/j.1752-

1688.2005.tb03786.x.pdf?v=1&t=ihdj2aeg&s=ad57ee07b37d62c183371343895438382c5e

65dd%5Cn%3C. 

Wotton, B. M., D. L. Martell, and K. A. Logan. 2003. “Climate Change and People-Caused 

Forest Fire Occurrence in Ontario.” Climatic Change 60(3): 275–95. 

Wotton, B. M., C. A. Nock, and M. D. Flannigan. 2010. “Forest Fire Occurrence and Climate 



49 

Change in Canada.” International Journal of Wildland Fire 19(3): 253–71. 

 

 

 

 

  




	Montana Tech Library
	Digital Commons @ Montana Tech
	Spring 2018

	CLIMATE CHANGE IMPACTS ON HYDROLOGICAL PROCESSES IN SILVER BOW CREEK WATERSHED
	William Howard George
	Recommended Citation


	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Equations
	Glossary of Terms
	1. Introduction
	1.1. Climate Change
	1.2. Montana Climate Change
	1.3. Silver Bow Creek Hydrological Processes
	1.4. Hydrologic Models and Their Utility for Evaluating Climate Change
	1.5. Climate Change Data
	1.6. Objectives

	2. Methods
	2.1. Study Area
	2.2. Model Development
	2.2.1. Basic Model Overview
	2.2.2. Watershed Delineation
	2.2.3. HRU Definition
	2.2.3.1. Land Use
	2.2.3.2. Soil Data
	2.2.3.3. Slope
	2.2.3.4. Elevation Bands

	2.2.4. Weather Stations
	2.2.5. Database Updates
	2.2.5.1. Butte Silver Bow Waste Water Treatment Plant (SBC WWTP)
	2.2.5.2. Temperature Lapse Rates
	2.2.5.3. Precipitation Lapse Rates


	2.3. Calibration
	2.3.1. Snowpack Calibration
	2.3.2. Streamflow Calibration
	2.3.3. Calibration Statistics

	2.4. Climate Change Data
	2.4.1. Projected Climate Change Data Sources
	2.4.2. Scenarios
	2.4.3. Temporal Disaggregation


	3. Results and Discussion
	3.1. Pre-calibration Model
	3.2. Snowpack Calibration
	3.3. Discharge Calibration
	3.3.1. Daily
	3.3.2. Monthly

	3.4. Climate Change Data – Temperature
	3.5. Climate Change Effects on Precipitation
	3.6. Climate Change Effects on Snowpack
	3.7. Climate Change Effect on SBC Discharge
	3.7.1. Monthly flowrates


	4. Conclusions
	4.1. Limitations

	5.  References Cited


