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Abstract 

The increasing effectiveness of additive manufacturing has contributed to increased fabrication 
of complex parts with less material waste. With this process, complex shapes that can reduce the 
weight of the component can be explored. Topology optimization of a component uses computer 
software to remove and add material in locations throughout the design volume. The optimized 
design output results in a reduced weight component that meets the performance requirements of 
the original design. There are many optimization methods, one of which is the solid isotropic 
material with penalization (SIMP) method. An objective function is defined to give the 
optimization method an objective for the algorithm to iterate against while a design variable is 
altered after each iteration to achieve the objective. Different constraints are applied to keep the 
optimization method within a set of bounds defined by the user and the components original 
geometry. A penalization factor is applied to the optimization method algorithm to refine the 
final solution to solid and void regions so that a three-dimensional printer can manufacture the 
component.  
 
Various optimization programs were explored for the topology optimization of a beam designed 
for three point loading. A solid beam that has not been optimized is used as the initial design for 
optimization as well as a baseline for comparison of the different optimization software 
packages. Five different methods for optimization were used which include: MATLAB with 
penalization; MATLAB without penalization and variable thicknesses; ParetoCloud 
optimization; and two simple methods previously used for component lightening. The 
components were printed with a fused filament fabrication process that extrudes material 
building the component layer by layer. The printed beams were then tested in a three point 
bending test until failure. Comparisons of the different optimized beams were performed using 
calculations from the resulting load-deflection curves. 
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1. Introduction 

1.1. Background 

Modern technology has enabled the ability to construct complex parts that were 

previously considered difficult to manufacture. Classically, production of complex parts involved 

the removal of material to obtain the final product. With developing 3D printing technologies, 

additive manufacturing has become a more feasible method for production of complex 

geometries. Additive manufacturing creates components by building up material where it is 

needed instead of removing material (where it is not needed) from the component. This process 

allows for a more efficient use of material, with less waste. The additive technologies being 

developed within the past 32 years, (Pena, Micali, & Lal, 2014), are used to produce complex 

shapes and parts that were previously considered too difficult to manufacture. Advancements in 

additive manufacturing have provided the ability for quick and efficient implementation of 

manufacturing components with less overall effort in production. However, for some 

circumstances, materials used in the additive manufacturing process may not be readily available 

or too expensive making it even more important to implement methods that efficiently utilize 

material (Weller, Kleer, & Piller, 2015). One such method appropriate for additive 

manufacturing to more efficiently utilize material is to first design a component using topology 

optimization. 

Topology optimization is the mathematical process of retaining and removing material of 

a design within the design domain. Topology optimization has become more advanced and 

prevalent in use since its introduction to the homogenization method of topology optimization in 

1988 (Bendsoe & Kikuchi, 1988). By removing unnecessary material from the design, the 

resultant component will be lighter with theoretically equal strength. Typically, a new or 



2 

improved design is just an incremental change in an existing design. Therefore, the 

implementation of topology optimization in component design improvement changes from an 

incremental improvement to a substantial improvement in function when applied to the original 

component design. When efficient use of additive manufacturing material and simplicity of 

component improvement is of importance, topology optimization is an effective method in the 

design process. 

1.2. Types of Optimization 

Two other subsets of structural optimization are related to topology optimization. Size and shape 

optimization are the more common methods practiced for optimizing a component. Size 

optimization can be considered as the location of links and joints within the components design 

domain. In trusses in structural beam analysis, the links and joints are designed to carry the load 

while providing lightening effects by only occupying a fraction of the beams total design 

domain. Size optimization also includes the variance of material thickness. If a truss with links 

and joints under loading were to have a fixed height and width, the thickness of the links could 

be optimized to reduce weight and maintain the required strength. Shape optimization modifies 

the design geometry to meet the required objective(s). If a beam with circular holes were to 

undergo loading, shape optimization would be able to change the geometry of the holes to 

withstand the loading as best as possible. By themselves, size and shape optimization can only 

optimize a single aspect of the design. The combination of the two types of optimization allows 

for simultaneous optimization of the size and shape of the geometry Topology optimization is a 

combination of shape and size optimization. By relocating material and altering the shape of the 

structure, topology optimization can provide a more accurate representation of an optimized 

design. Shape and size optimization add certain design elements to the topology optimization 
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process. Each method is trying to maximize the optimized structures stiffness, this maximization 

of the structures stiffness can be considered the objective function of each method. Size 

optimization method (Figure 1a) adds a design element by positioning the links and joints in an 

optimal position and changing the size of the cross-sectional area of each link. Therefore, size 

optimization will rely on these design variables for optimization. Shape optimization (Figure 1b) 

maximizes the optimized structures stiffness by altering the shape of the voids. However, the 

voids in the structure must keep the same position and area within the structure. For this 

example, the area and location of the voids are considered design constraints (Broxterman, 

2017). Topology optimization (Figure 1c) uses both the design variables and constraints of size 

and shape optimization to satisfy the objective function. Because of the combination of design 

variables and constraints from size and shape optimization, the optimization becomes more 

complex, but presents a more accurate optimization result to the objective function.  

 

 
 

Figure 1: Three categories of structural optimization. a) Sizing optimization of a truss structure, b) shape 
optimization, and c) topology optimization. The initial problems are shown at the left hand side and the 

optimal solutions are shown at the right. (Bendsoe & Sigmund, 2003) 
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Anything that is affected by the size and shape of material within the design domain can 

be set as an objective function. Heat transfer, vibrations, and structural stiffness are the more 

common objective functions because of their wide applications. The design variables and 

constraints vary between each problem, so it is up to the designer to analyze the problem for the 

required specification.  

The calculations involved in topology optimization will be discussed to provide an 

understanding of the functionality of optimization methods. An understanding of how the 

optimization methods calculate optimal designs is necessary to discover possible improvements 

with optimization and to decide which constraints and variables to alter to rectify certain issues. 

The objective is to then use this foundational understanding to modify an optimization method to 

produce an improved component which will then be compared to other optimization methods. 
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2. Topology Optimization 

The main goal of a topology optimization program is to decide which elements in a 

components design domain will be solid material or a void with respect to the objective function. 

The optimization process relies on different constraints and alters the design variables that are 

specific to each problem to generate a unique solution. For a structural optimization problem, a 

maximum stiffness of the structure is usually desired. In a simply supported beam, a large 

stiffness will reduce the deflection from a load. Since the compliance of a structure is inversely 

proportional to the stiffness, a minimum compliance is another consideration to the objective 

function. 

 

2.1. Optimization Calculation Introduction 

To begin understanding the analysis done by topology optimization, consider a solid 

simply supported beam with a single center load (Figure 2) where the goal is to reduce the beams 

weight. 

 

 
 

Figure 2: Simply supported beam with single center load 
 

To define the problem, the beam design needs to remain within the build domain, must deform as 

little as possible, and is made of a single isotropic material. The problem definition establishes 
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beam weight and build domain as constraints, the deformation (compliance) as the objective 

function, and the material as a design variable. For structural optimization, there are three forms 

of constraints: behavioral, design, and equilibrium (Christensen & Klarbring, 2010). For a linear 

discretized problem, the equilibrium constraint involves the design variable. Behavioral and 

design constraints are similar where the behavioral constraint involves the state variable and the 

design constraint involves the design variables. The state variable represents a given structure as 

a function of the structures response to loading, displacement is typically used. The design 

variable is a function that can be changed during the optimization process, this design variable 

will be defined as the material density. The objective of the solid simply supported beam was to 

minimize the displacement of the beam. This objective can also be reverted to the maximizing of 

stiffness or minimizing the compliance. The equilibrium constraint can then be defined as 

𝐾𝐾(𝑥𝑥) 𝑢𝑢 = 𝐹𝐹(𝑥𝑥) (1) 

  
where K is the structures stiffness matrix, u is the displacement vector, F is the force vector, and 

x is the design variable. From this equation, the stiffness matrix is a function of the design 

variable and the force vector may also depend on the design variable. The displacement vector is 

considered to be the state variable where the displacement shows where the beam is and where it 

will be located in a linear displacement. The objective function as stated before is to minimize 

the compliance. Because the compliance matrix is the inverse of the stiffness matrix, the 

objective function can be to maximize the stiffness or minimize the compliance which is written 

as 

min
𝑢𝑢,𝑥𝑥𝑒𝑒

𝑐𝑐 = 𝐹𝐹𝑇𝑇 𝑢𝑢 

𝑠𝑠. 𝑡𝑡    𝐾𝐾(𝑥𝑥𝑒𝑒) = 𝐹𝐹 
(2) 
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where, the compliance (c) of the beam is minimized subject to (s.t) the stiffness matrix. The 

stiffness matrix is a function of the design variable xe on each element in the design domain 

(Bendsoe & Sigmund, 2003). For topology optimization that focuses on the placement of 

material in the design domain, the design variable will be assigned as a material property. The 

most commonly used properties are the materials elastic modulus and density. For a void in the 

beam, the material property would ideally become a zero so that there is no force resistance from 

the stiffness matrix. For material located within the design domain, the material property would 

become fully available for force resistance. To begin getting the desired solid or void, an 

artificial density function will need to be applied to a Young’s modulus. For this example, ρe will 

represent the design variable xe as the density of each element in the design domain. A density of 

1 will represent a solid while a density of 0 will represent a void. This density will then be 

applied to a Young’s modulus to find the strength of material for that element. 

𝐸𝐸𝑒𝑒 = 𝜌𝜌𝑒𝑒 ∗ 𝐸𝐸𝑜𝑜 (3) 

  
where Ee is the penalized Young’s modulus at an element within the design domain and Eo is the 

actual Young’s modulus of the isotropic material. When the optimizer varies the design variable 

to minimize the compliance, the Young’s modulus of each element will change based on the 

design variable at that element which, in turn, will change the material properties of the 

elements.  

When running the optimization with just the minimization of the compliance in mind, the 

result will be a solid beam that fills the whole design domain. The stiffest structure that will be 

the easiest to compute is a solid beam. The lack of material removal means that a volume 

constraint will need to be applied to guide the optimizer to an optimized beam with solid and 

voids. The volume constraint then takes the form 
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�𝜌𝜌𝑒𝑒 ≤ 𝑣𝑣𝑣𝑣 ∗ 𝑉𝑉𝑜𝑜 (4) 

  
where vf is the chosen volume fraction and Vo is the original volume. This constraint now forces 

the optimizer to select material to be removed until the new design volume is less than or equal 

to the desired volume (Bendsoe & Sigmund, 2003). 

 

2.2. SIMP Method 

With the optimizer’s objective function working on minimizing the compliance and the 

volume constraint forcing a reduced volume solution, the result is closer to an end solution. 

However, the density function will vary between 1 and 0 (0 < ρ <1). This variation in density 

will create a variable density gradient that will exist in the new build domain. Without the ability 

of manufacturing components with a variable density gradient, the gradient will need to be 

corrected. The solid isotropic material with penalization (SIMP) method is a common solution to 

the density gradient problem. The intermediate density material gets a stiffness tensor that is 

represented by 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜌𝜌) = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 ∗ 𝜌𝜌𝑝𝑝 where the original stiffness tensor of solid material 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0  is 

penalized by a penalized density 𝜌𝜌𝑝𝑝. The penalization factor p helps force a solution of either a 

solid or a void. The penalization of density results in a solid or void solution by lowering the 

local stiffness of the element causing the final design to not favor the lower density gradients 

because its cost is greater than the benefit. In other words, the stiffness that the element would 

provide is too small for the amount of material that the element would provide making it 

“uneconomical” for the final solution (Sigmund & Petersson, 1998). A penalization factor 

greater than one is chosen for solutions that aim to transform the intermediate densities into solid 

and void regions, while a penalization factor equal to one will result in a density gradient.  
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Without a penalization factor, the resulting beam will have a density gradient while a 

penalization factor will create a solid and void region. From Figure 3a, the gray area is a density 

gradient while the black and white is solid and void respectively. This gradient is caused by a 

penalization factor of one being applied so that the density is not forced to change to become a 

solid or void. 

 

a)  
 

b)  

 
Figure 3: Beams optimized using the 99 line MATLAB code (Sigmund, 2001) a) Optimized beam with a 

penalization factor p=1, b) Optimized beam with a penalization factor p=3 
 

In Figure 3b, the density gradient has been penalized to form black and white, solid and void 

regions. The solid and void regions can exist because the penalization factor force the density 

gradients to become a solid or a void. This penalization can then be applied to the material 

properties and volume constraints of each element within the design domain. 

𝐸𝐸𝑒𝑒 = 𝜌𝜌𝑒𝑒
𝑝𝑝 ∗ 𝐸𝐸𝑜𝑜 

�𝜌𝜌𝑒𝑒
𝑝𝑝 ∗ 𝑉𝑉 ≤ 𝑣𝑣𝑣𝑣 ∗ 𝑉𝑉𝑜𝑜

𝑛𝑛

𝑒𝑒=1

 (5) 
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Because the stiffness matrix depends on the stiffness of Ee in each element and the global 

element stiffness matrix Ke is a function of Ee (Bendsoe & Sigmund, 2003), the new stiffness 

matrix can be written as 

𝐾𝐾 = �𝐾𝐾𝑒𝑒(𝐸𝐸𝑒𝑒)
𝑁𝑁

𝑒𝑒=1

 (6) 

  
By combining Equations (5) and (6), the final problem statement can be written as 

min 
𝜌𝜌𝑒𝑒

𝑐𝑐 = 𝐹𝐹𝑇𝑇 𝑢𝑢 

𝑠𝑠. 𝑡𝑡.�(𝐾𝐾𝑒𝑒 ∗ 𝜌𝜌𝑒𝑒
𝑝𝑝

𝑁𝑁

𝑒𝑒=1

)𝑢𝑢 = 𝐹𝐹 

           �𝜌𝜌𝑒𝑒
𝑝𝑝 ∗ 𝑉𝑉 ≤ 𝑣𝑣𝑣𝑣 ∗ 𝑉𝑉𝑜𝑜

𝑛𝑛

𝑒𝑒=1

 

0 ≤ 𝜌𝜌𝑒𝑒 ≤ 1 

𝑒𝑒 = 0 …𝑛𝑛 

(7) 

  
The objective function is to minimize the compliance of the structure by altering the density at 

each element, e. The stiffness contributed to the structure by each element is penalized by the 

density. To force the optimizer to find a solution that reduces the volume of the overall structure, 

the objective function is subject to the volume constraint where the volume fraction is a user 

defined fraction of the original design. The objective function must also consider the density of 

each element to remain in the complete void to solid range. 

Typically, the larger the penalization factor, the better the intermediate density removal. 

However, with the increase in penalization factor, the required time for the software to converge 
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on an answer increases. Therefore, a balance between accuracy and required computational time 

must be found.  

2.3. Sensitivity Analysis 

During the optimization process, it is necessary to run a sensitivity analysis. The 

sensitivity analysis will determine which parameters and design variables will affect the result 

the most due to the significance of the variable. If a variable is perturbed slightly and greatly 

changes the result, that variable is going to have a higher significance. If the variable is perturbed 

and the result has minimal change, the variable is going to have a smaller significance. The 

significance of each variable is important to the optimization process because the significance 

may be used to determine how uncertain the result is based on the varying parameters. A large 

significance will cause the solution to be easily alterable depending on the input variables. 

For most problems, the sensitivity of the structure is assumed to be differentiable with 

respect to the design (Choi & Kim, 2005). A general outlook on the sensitivity analysis indicates 

that the sensitivity of the structure depends on the design. A cross sectional area of a simply 

supported beam would change the weight of the structure. The volume of the beam can be 

expressed as 

𝑉𝑉(𝑎𝑎) = 𝑏𝑏 ∗ ℎ ∗ 𝐿𝐿 (8) 

  
where V is the beams volume, b is the thickness, h is the height, and L is the length of the beam. 

If the thickness of the beam is a design variable, the design sensitivity of the beams volume with 

respect to b is 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑏𝑏

= ℎ ∗ 𝐿𝐿 (9) 
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Because this function can be explicitly formed with respect to the specific design, the function is 

explicitly dependent (Choi & Kim, 2005). In most cases however, the sensitivity of the structure 

is not explicitly dependent on the design. The stiffness of a structure is dependent not only on the 

shape of the structure, but also the elastic modulus, which is part of the finite element solution. 

From the equilibrium Equation (1), the derivative of the equilibrium equation and the objective 

function c can be calculated as 

𝐾𝐾(𝜌𝜌)
𝑑𝑑𝑢𝑢
𝑑𝑑𝜌𝜌

=
𝑑𝑑𝑣𝑣
𝑑𝑑𝜌𝜌

−
𝑑𝑑𝐾𝐾
𝑑𝑑𝜌𝜌

𝑢𝑢 (10) 

  
𝑑𝑑𝑐𝑐
𝑑𝑑𝜌𝜌

= 𝑣𝑣𝑇𝑇
𝑑𝑑𝑢𝑢
𝑑𝑑𝜌𝜌

 (11) 

  
If the displacement vector u is known from the finite element analysis, df/dρ and dK/dρ 

can be calculated using input values of K(ρ) and F(ρ), then du/dρ can be found from 

Equation(10). The value du/dρ can then be substituted into Equation (11) to compute dc/dρ 

which is the sensitivity of the compliance problem. 

 

2.4. Problems 

The formation of an optimized component using topology optimization is not quite 

perfect and requires special care for the optimization process. Sigmund and Petersson (1998) 

describe three main problems that topology optimization faces including the formation of 

checkerboard patterns, mesh dependencies, and local minima.  

2.4.1. Checkerboard 

The checkerboard patterns refer to the formation of solids and voids that form a 

checkerboard pattern where the corners of the solids and voids meet at a point. It has been found 
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that the checkerboard problem is most common in minimal compliance problems. Figure 4 is a 

representation of the checkerboard problem where black areas are solid material and white areas 

are voids. 

 

 

 
Figure 4: A simply supported beam with a checkerboard solution 

 

The checkerboard problem has been proven to be the result of the checkerboard pattern being 

calculated as the stronger optimized result because of the difficulty in numerical modeling of the 

checkerboard pattern (Diaz & Sigmund, 1995). When a component is optimized and the 

checkerboard pattern emerges as the result, the optimizer assigned a large artificial stiffness to 

the checkerboard pattern. When the maximum stiffness of the structure (inverse of minimum 

compliance) is the objective function, the optimizer views the checkerboard as a viable option. 

Sigmund and Petersson (1998) summarized various solutions to the checkerboard pattern 

problem. 

2.4.2. Higher-Order Finite Elements 

Elements with a higher number of nodes have a higher degree of freedom with respect to 

the displacement as compared to those with a lower node count. Because a lower degree of 

freedom allows for quicker calculations, a lower node count is more common in optimizations 

(Diaz & Sigmund, 1995). However, it has been found that finite elements with eight to nine 

nodes have eliminated most checkerboard patterns (Jog & Haber, 1996). For the SIMP method, 
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the checkerboard pattern was only eliminated when the penalization factor was small (Diaz & 

Sigmund, 1995). 

2.4.3. Filter 

A filter proposed by Diaz and Sigmund (1995) is another possible action to prevent 

checkerboards in the final solution. The optimized structure after each iteration can be viewed as 

a matrix of elements that have a color value assigned to them where white is a void and black is a 

solid element. A noise filtering technique is applied to where the color (density) of each element 

is averaged with respect to its neighboring elements. This filter will fill the checkerboard pattern 

area with weight averaged material so that the checkerboard pattern will be removed. By 

modifying the sensitivity of the optimization analysis with this filter, the checkerboard problem 

can be corrected. 

2.4.4. Mesh Dependency 

Mesh dependency refers to varying results with different mesh sizes applied to the same 

problem. A component with a larger mesh size will have a different result than that of one with a 

smaller mesh size even though the components are bound the same constraints and variables. 

With different mesh sizes, the two components should represent the same solution with different 

detail, however, with different mesh sizes, the two components will have different optimized 

material locations. For most solutions, the density of the mesh was found to have the largest 

impact on the final solution. With a larger mesh density, the final solution will have thinner 

members than a smaller density mesh because the resolution of the high mesh density can 

provide the finer detail needed for thin members (Figure 5). 
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a)  

b)  

 
Figure 5: Simply supported beam with penalization factor of 3 and half beam dimensions of a) 50x20 elements 

and b) 100x40 elements 
 

If manufacturability is a limit to the design process, a smaller mesh density can be used to 

simplify the solution with close to optimal results. A larger mesh density can be used for a 

solution with more accurate optimization results if there are no manufacturing limitations. The 

mesh density must be considered in the design of the component optimization. The result of each 

is an iterative process that will lead to an optimized solution that will fit the manufacturing 

capabilities. Other sensitivity analysis modifications created by Ambrosio and Buttazzo (1993), 

Sigmund and Petersson (1998), and Diaz and Sigmund (1995) are summarized in a report by 

Zhou, Shyy, and Thomas (2001). 

2.4.5. Local Minima 

Local minima refers to the variance in optimization solutions between components of the 

same problem with different parameters. For many problems that need optimization, changing 

one parameter can greatly affect the outcome. It is difficult to determine the optimum parameters 

to use to generate the best optimized solution without running the optimizer repeatedly with the 

different parameters. This trial and error method would take a lot of setup and computing time. 

The different minima are mostly due to the difference in local minima of the function. A non-
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convex function can have different minima depending on the parameters used, however, a 

convex function is more desired because the function will only have one minimum that fits the 

whole solution. The convex function will force the optimizer to converge onto a single solution 

of the global minimum instead of a local minimum that may or may not be the global minimum 

of that function. 
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3. Methods 

After a basic understanding of topology optimization and its methods for optimizing 

structures was acquired, various software and methods for optimizing a simply supported beam 

were explored. This section will introduce the methods used for optimizing three dimensionally 

printed beams. The beams are designed to fit into a three-point loading machine for testing with 

a volume reduction of 50%. Five different beams are optimized using different software and 

theory. The optimized beams were tested and compared to a solid beam without the volume 

constraint applied to it. 

 

3.1. MATLAB Optimized Beam 

MATLAB is a programing language that is designed for numerical computing. Because 

of its computing capabilities, it has been useful for solving simple topology optimization 

problems. A 99 line MATLAB topology optimization code was created by O. Sigmund (2001) to 

optimize simply supported beams in two dimensional space. This method and a variation to the 

code was used to generate beams for testing. Sigmund’s code is provided in Appendix A. 

3.1.1. MATLAB Penalization 

The first beam optimized in MATLAB is the penalized beam. This beam uses the 

unaltered MATLAB topology optimization code created by O. Sigmund (2001) (Appendix A).  

3.1.1.1. Penalization Method 

Sigmund’s MATLAB code uses the SIMP method for penalizing intermediate densities. 

This method assumes that the material density is a design variable and that the material 

properties are constant within each element in the design domain (Sigmund, 2001). The material 

properties of the elements are penalized by multiplying the material properties of solid material 
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to the density raised to a certain power, or penalization factor. This method is used if the 

penalization factor is greater than or equal to three. The SIMP method must also include a 

perimeter constraint, gradient constraint, or filtering methods for the optimizer to find solutions 

(Sigmund, 2001). Without the gradient constraint and filtering, the resulting beam will have 

intermediate densities and a checkerboard pattern. The MATLAB optimization code has allowed 

for the gradient constraints to be met and explored for producing optimized beams. 

For the optimization program to run with less computing time, the code simplifies the 

problem. The problem can only take place in two dimensions, so the final solution can print an 

image in the x and y plane. A rectangle is also assumed to be the design space such that the 

dimensions of the rectangle x and y are defined by the user in the problem statement. By 

simplifying the problem to a rectangle, the number of elements is defined by a matrix of length x 

and y which was previously defined. Therefore, the larger the defined beam, the larger the 

number of elements, the finer the mesh size, then the more accurate the solution. To save more 

time, the beam is assumed to be symmetrical across its x axis center. The assumed symmetry of 

the beam allows the solver to use half of a beam in its calculations. A free body diagram of the 

half beam used in the MATLAB calculation is displayed in Figure 6 with elements 1 through n 

in the y and x direction. 
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Figure 6: Half beam mesh from xy matrix 
 

The x and y matrix lengths are for the half beam and not the full beam. When the optimizer uses 

a half-length beam, it assigns a roller support to the mid span boundary condition. The roller 

support prevents rotational and lateral movement in the x direction so there is only deflection in 

the y direction. A roller support at the right end of the beam is used to prevent the beam from 

deflecting at the support while still being able to move in the x direction. When the optimizer is 

run, the output will be an image consisting of a pixel at each of the matrix values for the material 

placement in the beam after each iteration. The inputs for the code are the element size in the x 

and y direction that define the size of the half beam. The penalization factor is chosen to be three 

or higher (typically lower than five) and the volume fraction is defined based off user desire. A 

filter size is also an input into the code that must be determined. The filter size allows the user to 

change the sensitivity of the elements to confirm the existence of solutions.  

The first section of the code is used to identify the global displacement vector and the 

element displacement vector. The global and element displacement vector are then analyzed in 

the objective function to form a solution. To obtain the global displacement vector, material is 

initially distributed through the entire design domain. Once each element has an assigned 
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material, the design is run through a finite element analysis to determine the global displacement 

vector. Once the global displacement vector is found, the elemental displacement vector is 

extrapolated from the global displacement vector. A sensitivity analysis is run for each element 

that is then updated by the applied filter. The resulting density distribution for the iteration is 

printed and recorded before the loop starts over. The 99 line code will continue to run under a 

while loop until the design variable criteria of change in the design variables becomes less than 

1% change. 

3.1.1.2. Penalized Beam Design 

To start designing the MATLAB penalized beam, the objective of the design and 

computing requirements needs to be considered. The weight reduction of the beam for the testing 

is decided to be 50% of the original solid beams volume. The 50% weight reduction will set the 

volume fraction (volfrac) in the MATLAB function input to be 0.5. For this example, the beam 

dimensions were chosen to be 4 inches long by 0.75 inch tall by 0.25 inch thick. To get a 

modeled beam the same size as the actual beam dimensions, the size of the beam elements 

should represent the desired beam dimensions for more accurate results. Because the length of 

the beams span is 2.667 times larger than the height of the beam, the number of elements in the x 

direction needs to be close to 2.667 times larger than the elements in the y direction. A large 

number of elements in either direction will increase the number of elements in the design 

domain. However, a larger number of elements resulted in increased computing time. With 

limited computing capability, the element sizes cannot be too large or else convergence will take 

too long. With the computing time in mind, the element sizes in the x and y direction are chosen 

to be 100 in the x direction and 37 in the y direction. These dimensions will keep the final result 

more defined while keeping the computing time relatively low. 
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A penalization factor is applied to the density to remove the intermediate densities in the 

material. A penalization factor greater than one will start to remove the density gradient. A lower 

penalization factor will remove some of the intermediate densities, however, some areas of 

intermediate density will still remain. In Figure 7, three beams are shown with different 

intermediate densities caused by different penalization factors.  

 

a)   
 

b)  
 

c)  
 

Figure 7: MATLAB optimized beam with penalization factor of a) p=2, b) p=3, c) p=4 
 

Because the penalization factors are different in Figure 7, the intermediate densities will be 

penalized differently resulting in different material placement in the final solution. As the 

penalization factor increases, the amount of intermediate density should decrease. The amount of 

gray area in Figure 7a decreases to a clearer black and white image in Figure 7c when a higher 

penalization factor is applied to the same problem. Dadalau, Hafla, and Verl (2009) 

demonstrated that a penalization factor of one has a majority of intermediate densities while a 
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penalization factor of two removed most intermediate density with some still remaining. A 

penalization factor of three resulted in a solution that had clear solid and void regions. By 

increasing the penalization factor, the optimizer was able to remove all intermediate densities. 

The removal of intermediate densities did come at a cost, which was that as the penalization 

factor increased the compliance also increased (Dadalau, Hafla, & Verl, 2009). For a minimal 

compliance problem, the additional cost is not desired. From Dadalau, Hafla, and Verl’s study, a 

penalization factor large enough to remove intermediate densities but small enough to keep the 

compliance low is required. For this penalization factor range, a penalization factor of three was 

chosen for the optimization of the beam.  

The final input to Sigmund’s MATLAB code is the minimum filter radius. The filter will 

give a better chance for existence of solutions by restricting the resulting design (Sigmund, 

2001). If the distance between the centers of neighboring elements falls within the filter radius, 

then the weighted average of those elements is taken and applied to the elements. 

 

  
 

Figure 8: Filter radius sizes a) small filter radius with no intersections b) medium filter radius with some 
intersections c) large filter radius with complete intersections 

 

 A larger filter radius will encompass more elements making a larger area of elements uniform in 

value (Figure 8c). The larger number of included elements can create larger zones of 

intermediate density along a solid void boundary because the solid elements and void elements 
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are grouped together making the weighted average between solid and void. For a more accurate 

boundary between the solid and void, a smaller filter radius can be used (Figure 8b). However, if 

the filter radius is too small, neighboring elements will not be grouped together and each element 

will have their assigned value (Figure 8). A single element in the filter radius leads to the 

checkerboard problem where one element is a solid and perpendicular elements are voids. A 

filter radius of 1.5, which fits between being too large and too small, was used for the beams. 

When the final iteration outputs the material distribution figure, the final step before the 

optimized beam can be printed is to create a three-dimensional model from the two-dimensional 

image. Because the optimized beam was penalized, the result will be a solid and void solution. 

This solution creates an image that is black and white where black is solid material and white is a 

void. 

 

  
 

Figure 9: Resulting optimized beam from MATLAB with penalization factor of 3.0, size of 100x35, and filter 
radius of 1.5 

 

The image is imported into SolidWorks and the black portions are traced creating a border 

between the white and black regions. The area is then extruded and mirrored so that the result is 

a full three-dimensional beam. Because the bending of the beam causes the supported ends to 

move towards each other, additional nonstructural supports must be added to the beam would not 

fall through before reaching its failure point. 
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3.1.2. MATLAB Non-Penalization 

The second beam optimized in MATLAB is the MATLAB non-penalized beam. This 

beam was optimized using the 99 line MATLAB topology optimization code created by O. 

Sigmund (2001) and additional code for intermediate density processing. 

3.1.2.1. MATLAB Non-Penalization Method 

Topology optimization is used to generate an improved component that fits an objective 

function. The process of improving a component is typically done by penalizing intermediate 

densities so that the end component is a solid and void structure where the solid is 100% of the 

materials density and the void is 0% of the materials density. These two densities make it easier 

for the additive manufacturing process because, currently, there are no easy ways to print a 

density gradient. However, during the penalization process, the stiffness contribution of the 

density gradient is skewed. When the gradient is penalized, the density is nudged to either a solid 

or a void which then makes the elements contribution to the components stiffness a value 

different than its true value. This section proposes an alternate method to this slight loss in 

stiffness due to penalization of the density gradient. 

A possible way to relate the variable density to a solid or void without altering the true 

value of stiffness contribution is to relate the density at each element in the gradient to a 

thickness of 100% density. For example, if an element in the density gradient is calculated to be 

50% of the density of material, then the thickness of the solid material may be 50% of the 

thickness. If the objective of the optimization process is to reduce the weight of the component, 

by varying the thickness of the component where there is a density gradient, the weight will 

ideally be reduced while keeping the true stiffness contribution of each element intact without 

penalization. 
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To go about this process, a simply supported beam was optimized using Sigmund’s 

MATLAB code. Instead of using a penalization factor of three like before, the penalization factor 

was set to one. This new penalization factor made it so there was no penalization of intermediate 

densities creating a density gradient (Figure 3a). From here, two different methods for relating 

the densities of each element to a thickness are used.  

The first method was a user interpreted thickness and boundary location. The output 

image of the code was changed so that instead of a grayscale image, the image would be colored. 

The colored image helped distinguish areas of similar densities. In the density gradient, there are 

slight boundaries between colors that created an area of similar density that could be related to a 

thickness. These boundaries are then traced in SolidWorks and extruded to a thickness based off 

the color of the layer. From the color scale, blue and red are both extremes where blue was 100% 

thickness and red was 0% thickness. Any color in the density gradient that was closer to red 

(orange and yellow) was a lower density region that related to a thinner section. Colors that are 

closer to blue on the scale (teal and green) are higher density regions that related to a thicker 

section. In general, the boundary of the beam had a higher density than the mid-section of the 

beam. The colors of each area created by the color boundary are then compared to the color scale 

of the image. The areas are extruded from mid-plane so that the beam was a mirror image. By 

keeping each side symmetrical, the structure of the beam would remain in line with the applied 

force to avoid eccentric loading. A volume calculation was run to check to see if the modeled 

beam was 50% of the initial volume. The thicknesses of the beam are scaled until the volume of 

the beam met the desired volume. Because the distance between the ends of the beam shorten 

due to bending, additional non-structural supports are added to the ends of the beam to prevent 

fall through. While in SolidWorks, the final model was loaded in a finite element analysis to find 
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yield initiation points. By locating the yield initiation points, the results of the finite element 

analysis could be compared to the failure locations in the printed beam. This method, while 

simple, loses accuracy of results. The goal of the non-penalized beam was to find a more 

accurate representation of an optimized beam without varying the results caused by penalization. 

Therefore, a second method was developed to avoid the “guess and check” work of finding the 

thicknesses and find the true thicknesses of the density gradient. 

The second method is similar to the first, however, it uses more MATLAB code to 

increase the accuracy of the related thicknesses and density boundary locations. Once the non-

penalized beam image is produced from Sigmund’s MATLAB code, the image is saved to the 

MATLAB directory so that is can be used for image processing. The first step is to identify the 

boundaries of the similar density regions. Each pixel in the image is an element in the mesh of 

the beam. The pixels each have an intensity value assigned to them that determine the color that 

they are assigned. When pixels of similar intensity are called, they are assigned a value of 1 

while all other uncalled pixels are assigned a value of 0. This process will run for different 

intensity values each time displaying the pixels with a 1 value as white and those with a 0 value 

as black. The black and white images produced are then considered the different layers of the 

density gradient. The next step is to identify the thickness of the previously identified layers. The 

intensity of each pixel is used to compare to the color scale of the original image. The color scale 

has 64 different colors in it that can be related to a thickness. If the intensity of the pixel relates 

to red (a void in the beam and color number 1 in the color scale) then the pixel is assigned a 

value of 0. For a pixel that is related to blue (a 100% density value in the beam and color number 

64 in the color scale) the assigned value is 100. The assigned values relate to the percent of the 
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material density so that the thickness can be applied. This value assignment is done for each 

layer so that an accurate thickness is applied to each layer. 

3.1.2.2. Non-Penalized Beam Design 

Like the MATLAB penalized beam, the objective and constraints of the problem need to 

be defined before optimizing. To keep the test the same, the objective and constraints for each 

beam are required to remain the same. The objective of the optimization is to minimize the 

compliance while reducing the weight of the beam by 50% of its original volume. The beam 

needs to remain the same size as well to provide comparable results.  

In Sigmund’s code, the inputs are similar to the penalized beam. The dimensions of the 

elements are 200 elements in the x direction and 75 elements in the y direction. The scale of x 

elements to y elements remains to be 2.667 times larger to provide for the 2 inch half beam 

length to the 0.75 inch height. The weight reduction is still desired to be 50% of the beams 

original volume so the volfrac is chosen to be 0.5. To remain consistent in the filtering technique, 

the filter radius is also kept at 1.5. The difference between the penalized beam and the non-

penalized beam inputs is the penalization factor. Because the goal of the non-penalized beam is 

to not penalize intermediate densities, the penalization factor is chosen to be one. This 

penalization factor will make the optimizer return the true density of each element instead of a 

penalized value because raising the design variable to the first power will result in the same 

value. In order to process the image with a clearer view of the density boundaries, the 

optimization code was changed to output the image as a colored image with a 64 color scale 

instead of a gray scale image. The output of the optimizer is then a colored image of half of a 

beam with intermediate densities. This image is then processed to produce the desired 

thicknesses for the various densities. 
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For the second method of the MATLAB non-penalized beam, a MATLAB code was 

written to accurately determine the boundary locations and thicknesses of the gradient (Appendix 

B). The first step is to import the colored beam image from the optimization code. The image is 

then separated into its three main colors of red, green, and blue. On the color scale, a 100% red 

color signified a zero density so a new image was created by removing red and combining green 

and blue. The result is a blue, green, and black image with black being a zero density area 

(Figure 10). The black color was desired because the pixel intensity value assigned to it is zero 

which makes the thickness calculation easier to manage. 

 

a)  
 

b)  
 

Figure 10: Non-penalized beams with layer locations from color variations a) beam with red, green, and 
blue as density gradient layout b) beam with red removed for simplifying calculations 

 

The green and blue image displays a clearer representation as to where the layer boundaries are 

located. In the green region, pixels of similar color are grouped together so that they form an 

area. These colored pixel areas share the same intensity value which makes the layer location and 

thickness calculations easier to calculate. 

Once the new image is created, layer locations are calculated. For each pixel in the 

image, a region of interest calculator is run to determine which pixel values lie within a certain 
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range. The first iteration will look at the intensity of each pixel and group like pixels together. 

All pixels that fall within the starting range will be given a value of one while all pixels that fall 

outside of the range are given a value of zero. The next iteration will adjust the range so that the 

beginning of the second iteration range is at the end of the first iteration range. This change in 

range creates new values for the pixels that fall within the new range. This process continues 

until each pixel is grouped together with pixels of the same values. Each iteration will output an 

image that is black and white (Figure 11). 

 

 
 

Figure 11: MATLAB generated layer locations for a half beam 
 

The white region are the pixels that fell within the certain range that are assigned a value of one 

while the black region are the pixels that are outside of the range and are assigned a value of 

zero. For each iteration the region of interest is adjusted so that the next layer calculated is next 

to the previous one, decreasing in thickness. In Figure 11, panel 1, both the blue and black pixels 

from Figure 10b are grouped into one layer. This grouping by itself can be misleading because it 

appears that the area of full thickness and no thickness are in the same layer when the colored 



30 

image shows that they are each on opposite extremes of the thickness. The grouping of blue and 

black pixels will be corrected in the thickness calculations. 

After the layer locations are found, the thickness of each layer needs to be determined. 

The pixel intensity is once again used. Because the beam image used for thickness calculations 

consists of green, blue, and black as the main colors, the image is broken down to three different 

sections. A higher blue intensity value will resemble a higher density while a small value of each 

color will result in a black region of a lower density value. The green value is designated for the 

density gradient between the full and empty density. A series of filters is run to decide the 

intensity of the pixel so that it can be related to a thickness. If a pixel has no other color but blue, 

then the thickness will be 100% of the original thickness. If a pixel has no color in it (black area) 

then the thickness is not going to exist. For areas that only have a green value, the value is 

related to the color scale to determine what the thickness percentage will be. Because the color 

scale is linear, a linear equation is used to relate the green intensity value to the color scale value. 

This equation is represented by 

%𝑡𝑡𝑛𝑛 = 𝑖𝑖𝑝𝑝(0.0976) + 14.16 (12) 

  
 where %tn is the new percent thickness of the layer and ip is the pixel intensity. The slope and y-

intercept from Equation (12) are derived from known values at the extremes in the linear 

equation range. This thickness percentage is then related to a thickness of the beam when 

multiplied by the original beam thickness. Because the remainder range is a mixture of blue and 

green pixel values, the previously used linear equation cannot be used. This range is made up of 

two similar ranges that use a manual filter to determine the thickness of the layer. In one segment 

of the range, the blue values of the pixels remain mostly unchanged at its peak value while the 

green values vary. The other segment of the manual filter range has the green value close to its 
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peak value while the blue value changes. In this range, a manual filter is applied so that any pixel 

that has a green and blue value will give an appropriate thickness. The color scale used for 

determining the element thickness is displayed in Figure 12 which includes the ranges for 

thickness calculation methods. 

 

 
 

Figure 12: 64 color scale used to define thicknesses in color regions 
 

As the color in the non-penalized beam image moves from right to left in Figure 12, the 

thickness will increase. A higher number (the highest being 64) will result in a thicker layer in 

the beam while a lower number will result in a zero thickness layer. While the manual filter 

range takes up the largest section in the color scale, the manual filter range has a smaller area of 

effect in the actual non-penalized beam. This area is only in effect on the boundary between the 

completely green and completely blue areas. When the thickness is calculated, it is calculated for 

the whole thickness of the design domain. Because the beam must keep the material at its center 

to prevent eccentric loads, the thickness calculations will be based off of the central plane. The 

layers will then have to extrude in two opposite directions from the central plane so the thickness 

calculation must be halved.  

To get a three dimensional model for printing, the layer locations and thickness 

calculations are used. The layer location images are imported into SolidWorks starting with the 

thickest section (Figure 11 panel 1) and working down to the smallest (Figure 12 panel 16). After 

each panel is imported, the image is located in the same position each time so that the images are 
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in the exact location as the one before it. The white segments depicting the layer is then traced 

and extruded to the thickness calculated for that layer. This process is repeated for the next layer 

until all images are traced. The half beam is then mirrored to create a full model of a beam. To 

prevent the beam from falling through the supports, non-structural supports are added to the 

sides at the base. 

An automatic method for importing the thickness values at layer locations was also 

explored. When the thickness calculator calculates the thickness at each element, it creates a 

matrix of thickness values. The values can then be converted into xyz coordinates. Each element 

in the matrix is a certain element over in the x and y direction. The thickness value for that 

element then becomes the z value. A table can then be made to output the new xyz coordinates 

where x and y locate the element in the beam and z is the thickness of material. Running a mesh 

using these numbers gives a representation to how the final design will look (Figure 13).  

 

 
 

Figure 13: Three dimensional representation of thickness calculations at element locations 
 

The dark blue areas in Figure 13 are the zero thickness sections and the dark red areas are the full 

thickness sections. The scale is based off of percentage of the original beam thickness which is 

0.25 inch. The scale for the thickness only goes to 50 because the plot represents a quarter 
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section of the beam so the thickness is only 50% of the total beam thickness. The plot would be 

mirrored across the x, and y plane to get half of the beam and then mirrored across the y and z 

plane to get the other half. The new xyz coordinates can be saved as a xyz file to which 

SolidWorks can read and import the values. These values can then be used to turn the data points 

into a solid body. However, the large number of data points produced requires more computing 

power than available. A MATLAB code written by Sven Holcombe (2011) (Appendix D) uses 

the xyz coordinates to produce a STL file. This STL file can then be more easily opened in 

SolidWorks as a graphics body. This graphics body is only a surface of the beam section (Figure 

14) because the xyz coordinates only produce locations of the surface and no points within the 

solid areas of the beam.  

 
 

Figure 14: Graphics body of beam section created in MATLAB and imported into SolidWorks 
 

Post importing extrusions could possibly be done to give the surface depth, however, the amount 

of surfaces and points is too large for SolidWorks to import as a solid body. A possible solution 

is a method to simplify the surface. If an element has the same thickness value as an element 
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next to it, the points can combine to produce a single surface shared by many points. A method 

of simplifying the amount of surfaces and points could increase the speed and ability to extrude 

the STL surface. 

 

3.2. ParetoCloud 

ParetoCloud is a browser based software used for designing components with topology 

optimization (SCIART, 2017). The software was created by SCIART, LLC and is used in this 

research for a comparison to the other optimized beams.  

3.2.1. ParetoCloud Method 

Like the MATLAB penalized method, ParetoCloud uses a penalization method for 

solving the topology optimization problem. The results of the ParetoCloud optimization method 

has solid and void regions due to intermediate density penalization. A STL file is imported into 

the browser to be used as a design domain. Different boundary conditions can be added to the 

part such as loads and fixed areas. The boundary conditions help to define the problem for 

optimization. Because the part is imported, the problem can also be more complex than a simply 

supported beam with different loading and fixed areas. However, for comparison, a simply 

supported beam will be optimized. The user also has more control on the final design of the 

component. If symmetry in any of the three dimensions are expected, the user can select which 

axis the symmetry is on. The symmetry option will provide a simpler solution for the 

optimization. Like most topology optimization software, a finite element analysis is used with 

the boundary conditions defining the problem. The deflection and stresses within the component 

are displayed once the finite element analysis is complete. The data from the finite element 

analysis is also used for further optimization processes.  This software also focuses on the ability 



35 

to print the final solution. When the topology optimization part of the program is ready to be run, 

different print parameters are considered for the design. The draw direction can be selected to be 

any of the axis so that when optimized, the result will limit the amount of support material 

needed making it easier to print the component. The user must also define the final volume 

fraction of the component much like the other optimization software. When optimized, the result 

will be a solid and void component that is exported as an STL file.  

3.2.2. ParetoCloud Beam Design 

The Paretocloud software, like the MATLAB program, uses a pre-defined design domain 

to optimize. Instead of a two dimensional design domain, ParetoCloud makes use of the full 

three dimensional design space. To get a three dimensional model, a full beam is created in 

SolidWorks and saved as a STL file for ParetoCloud to import. Small areas that will define the 

location of the force and supports also need to be located on the beam. Because the load and 

supports are close to a point load, the area is made to be small. The load and support areas had 

dimensions of 0.25 inch by 0.1 inch. The area where the load is applied is located on the top of 

the beam centered at the beams midpoint while the area for the supports are located on the 

bottom of the beam on either end. Once completed, the STL is imported into ParetoCloud for 

boundary conditions to be applied. A fixed xyz boundary condition was applied to one of the 

support areas and a fixed yz boundary condition was applied to the other support. These 

boundary conditions keep the xyz fixed support from displacing in any of the three directions. 

The yz fixed support is restrained from displacing downwards and to the side. For this support, 

the beam is still allowed to move lengthwise as the beam bends. A normal force is applied to the 

designated area on the top of the beam. This force is made to be 20lbf. The material of the beam 

must also be defined. The material properties of the printed plastic is entered into the optimizer 
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so that when it runs the finite element analysis and optimization, it will have accurate material 

properties for calculations. No other boundary conditions are needed to define this problem so 

the next step is to run the finite element analysis. A medium mesh was selected to improve the 

accuracy of the results as compared to the coarse mesh but save computing time as compared to 

the fine or very fine mesh. Before running the finite element analysis, component symmetry can 

be defined. For a simply supported beam, z axis symmetry can be applied perpendicular to the 

front face of the beam. If no symmetry is applied, one side of the beam can experience more 

material excavation than the other which will create a beam with eccentricity. The last step 

before optimizing the beam is to select the volume fraction. To compare this optimized beam 

with the rest, it must have the same volume fraction as the others so a volume fraction of 0.5 is 

selected to reduce the volume by 50%. With all the boundary conditions and constraints in place, 

the optimizer can be run with the result displayed in Figure 15. 

 

  
 

Figure 15: ParetoCloud optimized beam result 
 

The output of the optimizer is a STL file of the optimized beam with a 50% reduction in volume. 

The same as the other optimized beams, the span of the beam is the exact length as the supports 
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for testing. The exported STL file is imported into SolidWorks as a solid body to add the 

additional non-structural supports so the beam does not fall through when the load is applied. 

 

3.3. Applied Variables and Constraints 

For the three beams modeled using computer software: MATLAB penalized beam, 

MATLAB non-penalized beam, and ParetoCloud beam, the design constraints and boundary 

conditions are given in Table I. 

Table I: Optimized beams design variables and constraints 

Sample 
Penalization 

Factor 
Volume 
Fraction 

Mesh Size Filter 
Radius 

MATLAB Penalized 
Beam 3.0 0.5 100x37 1.5 

MATLAB Non-
Penalized Beam 1.0 0.5 200x75 1.5 

ParetoCloud Beam N/A 0.5 Medium 
(50000 elements) N/A 

 

The ParetoCloud beam had some additional inputs that the MATLAB beams did not require. A 

100 lb load was applied to the top center of the beam over an area of 0.25 inch by 0.1 inch. A 

xyz fixed constraint was placed on one bottom edge over the same area as the load. A slider 

condition was applied to the other end of the bottom of the beam over the same area as the load. 

A draw direction in the z-axis was also applied to resemble the printing direction. 

 

3.4. Simple Machining  

Before additive manufacturing became a feasible solution to manufacturing components, 

simpler solutions are implemented to reduce the weight of components. The most common are 

slots and holes cut from the material. These solutions are used because of the simplicity in the 

weight reducing methods. A hole and slot can easily be cut into a component with common tools. 
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For a simply supported beam, the upper half of the beam undergoes compression while 

the lower half experiences tension. The further out from the center of the beam (neutral axis) the 

higher the bending stress. The bending stress can be modeled by 

𝜎𝜎𝑏𝑏,𝑚𝑚𝑚𝑚𝑥𝑥 =
𝑀𝑀𝑐𝑐
𝐼𝐼𝑐𝑐

 (13) 

  
Where σb,max is the bending stress, M is the bending moment, c is the distance from the neutral 

axis to the extreme fiber at the top and bottom of the beam, and I is the moment of inertia of the 

beams cross section. From Equation (13), the bending stress increases the further out from the 

neutral axis meaning that at the neutral axis there will be no bending stress and locations close to 

the neutral axis will have very small bending stress. If material is to be removed from the center, 

the beams stiffness would theoretically have a very small change than if material was removed 

elsewhere. 

An added benefit of the slot and holes method is the lack of stress concentration points. 

The nature of drilled holes and slots allows for a curved hole without any sharp cornered holes. 

For components that will experience loading, a stress concentration point can create a spot for 

crack initiation.  

3.4.1. Slots 

3.4.1.1. Slots Method 

The purpose of a slot is to remove material from the center of the beam where there is 

less bending stress to reduce the weight of the beam. Timothy Demers (2009) modeled a 

cantilever beam with a slot running through the center length of the beam while leaving material 

on either end to connect the top and bottom sections of the beam. This method was then applied 

to the simply supported beams. For the simply supported beam, two slots are modeled so that the 
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slots run through the thickness of the beam and along the neutral axis. Two slots are chosen 

because the load applied at mid-span would buckle the upper section of the slot. The middle 

section of the beam under the load would remain intact so that no buckling from the applied load 

would occur.  

The largest concern with this slot design is the buckling in the upper section of the slot. 

The material above the neutral axis experiences compression under a three-point loading test so 

the small sections of material above the slot are more likely to experience buckling. Therefore, 

the maximum force that can be applied may be limited by the size of the remaining material. The 

equation for buckling force is given by 

𝐹𝐹𝑏𝑏 =
𝜋𝜋2𝐸𝐸𝐼𝐼𝑏𝑏

(𝐾𝐾𝐿𝐿𝑏𝑏)2 (14) 

  
where Fb is the maximum applied force before buckling, E is the modulus of elasticity, Ib is the 

moment of inertia of the cross sectional area of the upper section of the beam, K is the effective 

length factor, and Lb is the length of the beams upper section. When the cross-sectional area of 

the upper beam material is small, the moment of inertial lowers which then causes the maximum 

force that can be applied to decrease. A wider slot cut from the beam will result in a smaller 

cross-sectional area of the upper material causing the maximum force to lower. Also, from 

Equation (14), the longer the length of the upper beam material, the smaller the amount of force 

can be applied before buckling meaning a longer slot will make it so the amount of force the 

upper beam material can resist is decreased. With these considerations, two slim slots are 

considered so that the chances of failure due to buckling can be reduced. 
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3.4.1.2. Slots Design 

For the slotted beam, there is no software used to optimize the size of the slot. The 

objective of the beam is to still remove 50% of the original beams volume, however, with the 

slot, it becomes increasingly difficult to keep strength and reduce the weight to the desired 

amount. The length of the slot must increase and the cross sectional area of the connecting 

material must decrease. This concept greatly decreases the stiffness of the beam. In order to 

combat this, the design of the slot hole will be smaller so that the resulting beam volume is 

greater than 50% of the beams original volume. Even being larger than the 50% volume, the 

slotted beam is not expected to perform as well as the other optimized beams.  

The slot height is designed to be a third of the beams total height which will leave a third 

of the beams height above and below the slot as connecting material. Because the beam height is 

0.75 inch, the slot height and connecting material will be 0.25 inch. With the length of the beam 

being 4 inches, the slot length must be shorter than half of the beam length to allow for two slots 

to be designed. If the slots are too short, the removed material will not be close enough to the 

50% removed material. However, if the slots are too long, there will not be enough material on 

the ends to support any load. With support material in mind, the total length of the slot is chosen 

to be 1.75 inches. This slot length allows 0.25 inch between the two slots in the middle and 0.125 

inch by the supports on the ends. The dimensions and layout of the slotted beam are drawn in 

Figure 16. 
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Figure 16: Slotted beam dimensions and layout 
 

To begin modeling the slotted beam for printing, a solid beam with the dimensions of 4 inches by 

0.75 inch by 0.25 inch was modeled in SolidWorks. The slots are then cut from the beam along 

the neutral axis. As with the previous beam, additional non-structural supports are added to the 

ends of the beam to prevent the beam falling between the supports when loaded.  

3.4.2. Holes 

3.4.2.1. Holes Method 

Similar to the slot method, the hole method removes material from the center of the beam 

along the neutral axis. This process will remove material that has a low stiffness contribution 

from the component making it lighter. This method is commonly used because of the easy 

manufacturing of the lightening holes. A simple drill can cut the holes in strategic locations. 

To avoid the buckling concern in the slot method, the hole method utilizes connecting 

material between the holes to give strength. The length of the beams upper material is now the 

diameter of the hole which is shorter than the slot. Using Equation (14), the maximum force 

acting perpendicular to the cross sectional area is larger than that of the slot. However, because 

there are more instances of supporting material between the holes, there is less material removed 

from the beam. If the objective of the optimization is to remove a certain amount of volume from 

the beam, then the size of the holes will need to increase which will then greatly decrease the 

strength of the beam. For small material removal objectives, the hole method is a viable solution, 
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however, when the need for more material removal is required, the hole method may not be able 

to remove enough material while maintaining strength. 

3.4.2.2. Hole Design 

As with the slot method, there is no optimization software that is used for material 

removal using the hole method. The hole method is also not going to reach the 50% volume 

removal that is required by the objective function. In order to remove 50% of the material using 

the hole method, the holes would have to be large and closely spaced. At that point, the strength 

of the beam would have greatly decreased.  

The holes at the ends of the beam are made smaller than the rest of the holes. Described 

in a report by Demers (2009), the ends of the beam experience more stress than the middle so 

more material can be removed closer to the center of the beam while the holes close to the edge 

are kept smaller to resist deformation. Eight holes in total are designed into the beam with 

constant dimensions and locations (Figure 1Figure 17). 

 

  
 

Figure 17: Dimensions and layout of the beam with lightening holes 
 

The two outer holes are 0.2 inch in diameter and the other six are 0.3 inch in diameter. The 

distance between the centers of the holes is 0.5 inch. However, the distance between the two 

holes close to the center of the beam where the load will be applied is 0.55 inch. The increase in 

hole spacing provides more support material to resist the load. To model the beam with holes, 
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another solid beam is extruded in SolidWorks and the holes are cut from the beam along the 

neutral axis.  
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4. Printing 

Once the beams are designed and modeled, they are sent to a three dimensional printer. A 

Stratasys uPrint SE 3D printer was used to print the beams. The uPrint SE printer uses a fused 

filament fabrication process to build up layers of material. An ABS P430 filament was fed 

through a head that moves in the x, y, and z directions. The head heats up the filament to a 

temperature, which the extruded material will bond to the material it is extruded upon. The 

printing head prints out cross sectional areas slices. Each slice builds up the part in the z 

direction. Layers are added to the part until the full dimensions of the part are reached. For 

sections that have empty space below a solid section, support material is used. The support 

material is used as a base for the solid material printed above an empty space, so that the printed 

material will not deform under its own weight upon extrusion. After the 3D printed part is 

finished, the support material is then removed. 

 

4.1. Printed Material Tests 

Before printing of the test beams began, tests were performed on the printed filament to 

determine the printed filament material properties. Three different standard tests were completed 

on the printed filament that was to be used on the test beams. The test data were used determine 

if the filament may be assumed isotropic and provide empirical models on how the material 

reacts under compression, shear, and tensile forces. The empirical models were used to estimate 

the compression modulus, shear modulus, modulus of elasticity, and poisons ratio. Two different 

print orientations were considered for these test. After printing the test specimens flat (0 

degrees), they were rotated 90 degrees from the 0 degree orientation to the long edge to test the 

effect of build direction (Figure 18). 
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Figure 18: Print orientations of tensile testing specimens 
 

Different fill levels of color pigment was also explored, because certain colors require more 

pigments in the material to create the desired color effect. The hypothesis is that the higher the 

filler material, the lower yield point that the material will produce because the pigments added 

may not be as strong as the plastic Various tests were performed to generate data that were used 

to quantify the change of material properties with varying fill loading. Strain gages were attached 

to each specimen to get an accurate strain measurement. The stress was calculated by Equation 

(15). 

𝜎𝜎 =
𝐹𝐹
𝐴𝐴

 
(15) 

  
where σ is the stress, F is the force applied, and A is the cross sectional area of the test specimen 

perpendicular to the applied force. 

4.1.1. Compression Testing 

A compression test was used to determine the compression modulus of the samples. The 

compression modulus was used as a material property input for computer modeling for a more 
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accurate static loading analysis. The test specimens were cylinders that were 0.75 inch in 

diameter and 1 inch tall. The speed of compression was set to 0.05 in/min, making the test a 

quasi-static loading test. A general purpose CEA-13-240UZ-120 strain gage was a used on each 

compression test along the axis of loading. Two green and two white cylinders were tested with 

their orientation the same direction according to ASTM D695. Because the compression 

modulus was the desired material property for this test, the test proceeded until the test specimen 

experienced plastic deformation. After yielding, the test specimen passed its elastic range so the 

compression modulus could be calculated by taking the slope of the linear plastic range. The 

compression modulus was calculated for each color and presented in Table II. 

Table II: Compression testing modulus results 

Sample 

Compression 
Modulus 

(ksi) 
Green Compression 1 320 
Green Compression 2 312 
White Compression 1 317 
White Compression 2 297 

 

The compression modulus was the calculation at the linear region and therefore, the closest to the 

actual compression modulus. The green samples had a larger average compression modulus. The 

variation of compression modulus between the two green samples was 8 ksi while the variation 

of compression modulus between the white samples was 20 ksi. Because only two samples were 

tested, the green compression results can be hypothesized to have a more reliable compression 

modulus. 

4.1.2. Shear Testing 

A shear test was used to determine the shear modulus, which was used in computer 

modeling for a more accurate static loading analysis. Shear was induced in the test specimen by 
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the V-notch beam method. A beam that had a length, width, and height of 3 inches by 0.75 inch 

by 0.25 inch respectively had two notches taken out of the side. The v-notches were 0.15 inch 

deep and had an internal angle of 90 degrees (Figure 19). 

 

 
 

Figure 19: V-notch specimen dimensions 
 

 These notches were placed in the middle of the top and bottom of the beam. Two green and two 

white beams were tested using general purpose EA-06-062TY-350 strain gages as the data 

acquisition devices along the axis of loading using ASTM D5379. The first green and white 

beams were printed flat on the build plate (0 degree build orientation) while the second green and 

white beams were printed on edge with the v-notch on the top and bottom (90 degree build 

orientation). The speed of the test was set to 0.05 in/min as in the compression test. The stress 

strain curve provided a linear area where the shear modulus was calculated. The calculated shear 

modulus for each color and build direction is displayed in Table III. 

Table III: Shear testing modulus results 

Sample 
Build 
Angle 

Shear Modulus 
(ksi) 

Green Shear 1 0° 111 
White Shear 1 121 
Green Shear 2 90° 112 
White Shear 2 96 
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The shear modulus from the white test specimen at the 0 degree build angle had the highest shear 

modulus while the white test specimen at the 90 degree build angle had the lowest shear 

modulus. Tests performed on the green test beams produced the most consistent results with a 

variance of 1ksi between the two build angles. The white test beams had a relatively large 

variance in shear modulus of 25ksi. Because only two samples were tested, there were not 

enough results to quantify the data. However, the green samples were hypothesized to give more 

consistent results. 

4.1.3. Tension Testing  

The tension test was used to determine the tensile modulus of the printed material. The 

tensile modulus is used in computer modeling of the optimized beams for a more accurate static 

loading analysis. For this tension test, a flat bar with a slim midsection had opposing forces act 

axially to create the tensile forces. The midsection that experiences the deformation had a length, 

width, and height of 2.25 inches by 0.5 inch by 0.25 inch respectively. The white material 

tension bar had a general purpose CEA-06-125UT-350 bi-axial strain gage while the green 

material had a WK-06-125TM-350 bi-axial strain gage. Like the shear test, the tensile test bars 

were printed in two different orientations with white and green filaments. The first orientation 

was flat on the build plate at 0 degrees and the second was on its side at 90 degrees. The tensile 

test was performed in accordance with ASTM D638. The modulus of elasticity was calculated 

from the slope of the linear region on the stress strain curve. These values can be seen in Table 

IV. 

 

 

 



49 

Table IV: Tension testing modulus results 

Sample 
Build 
Angle 

Elastic Modulus 
(ksi) 

Green Tension 1 0° 422 
White Tension 1 304 
Green Tension 2 90° 385 
White Tension 2 352 

 

The green colored bars had a larger modulus of elasticity than the white colored specimens. The 

variation between the two build directions was also smaller for the green than the white. Between 

the 0 degrees and the 90 degrees, the green bar had a difference of 37ksi while the white had a 

difference of 48ksi. For the green specimen, the 0 degree orientation had a larger modulus than 

the 90 degree specimen. The opposite is true for the white specimens, the 90 degree orientation 

had a larger modulus than the 0 degree orientation. Because only two samples were tested, the 

results were not enough to quantify the data so the green material can only be hypothesized to 

have a consistently larger elastic modulus. 

4.1.4. Material Testing Conclusion 

From these tests, the green colored filament was hypothesized to perform better than the 

white colored filament. Except for the sheer modulus, the green filament test samples had larger 

values for the compressive modulus and Young’s modulus. The higher modulus values were 

desirable for the three point bending tests that will be conducted for the optimized beams. The 

green filament was also hypothesized to have a more consistent result when compared to build 

angle. As the angle changed, the various values for the green filament changed less than the 

values for the white filament. For the purpose of testing, the smaller variation in values based on 

the print direction is more desirable because the filament can be more closely related to an 

isotropic material. 
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4.2. Printed Beams 

After the green material was selected for the testing, each beam is printed in the same 

orientation. The 4 inch by 0.75 inch face is flat on the build table and it is extruded upwards the 

0.25 inch. This direction was initially chosen because most beams will not require support 

material when built up from this side. The beams were also printed at 100% fill, which does not 

necessarily mean that the beams will be clear of voids, but, the beams will be printed at the 

printer’s maximum density capabilities. Between each cross-sectional layer and rows on the 

cross section, there will be small gaps because the extruded material has a cross sectional area 

that resembles a circle. Circular cross-sectional areas cannot form a perfect fit with neighboring 

material. As each layer prints, the orientation alters direction by 90 degrees between layers. The 

angle between the bottom of the beam and the first extrusion direction is positive 45 degrees. 

The next layer has an angle between the bottom of the beam and the extrusion direction of 

negative 45 degrees.  

 

 
 

Figure 20: Extrusion line angles 
 

The angles will alternate between this positive 45 degrees and negative 45 degrees each layer. 

The alternating angles helps bond the layers and prevents large gaps between the layers from 

running through the full thickness of the beam. 
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A total of 24 beams were printed including four beams by each different method for 

optimization. Figure 21 depicts the beam configurations where a) is the solid beam that will be 

used as a standard for comparison, b) is the beam with lightening holes, c) is the beam with 

slotted holes d) is the MATLAB penalized beam, e) is the MATLAB non-penalized beam, and f) 

is the ParetoCloud beam. 

 

 
 

Figure 21: a) printed solid beam b) printed beam with holes c)printed beam with slots d) printed MATLAB 
penalized beam e) printed MATLAB non-penalized beam f) printed ParetoCloud beam 

 

Each beam was labeled on the support section to keep track of the beam. B1-B4 represents the 

four solid beams, H1-H4 represents the four beams with holes, S1-S4 represents the four beams 

with slots, P1-P4 represents the four beams optimized using MATLAB with penalization, NP1-

NP4 represent the four beams optimized using MATLAB without penalization, and PW1-PW4 

represent the four beams optimized using ParetoCloud. 

 

4.3. Problems with Printing 

Additive manufacturing is still evolving. The technology and methods for three 

dimensional printing have not been perfected and still requires some external work from the user. 
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For topology optimization, the optimized beams are assumed to have a full density with 

complete bonding between extrusion lines and layers. A full print density is not always the case 

for certain additive manufacturing methods. Each method has strengths and weaknesses that can 

have a large effect on the final product. 

4.3.1. Print Density 

For topology optimization, it is important for the final product to obtain solid sections. 

After the optimization process, the result is a component with distinct solid and void regions. 

The solid regions were created to be 100% of the material density. Any variation in this density 

will cause errors in the printed component. For the fused filament fabrication method, voids in 

the solid regions were observed because of the way that the layers are created. To view the voids 

in the beam, a MATLAB penalized beam print was interrupted to show the cross sectional area 

(Figure 22). The first arrow in Figure 22 shows a section where there was improper bonding 

between extrusion lines. When the beam was printed, the extrusion head traces the outline of the 

beam where there is a boundary between solid and void. While this method gives a smooth finish 

on the outer surfaces, it can create problems within the component. In some thin members the 

extruded lines of the boundaries are too far apart to properly bond with each other, but too close 

together for filler material. As each layer builds, a long crack will be built within the full 

thickness of the section. With this crack between the extruded lines, the lines are allowed to slip 

past each other or buckle under loading due to the decreased cross sectional area. 
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Figure 22: Cross section of the MATLAB penalized beam with marked voids 
 

The second arrow in Figure 22 provides an example of how the layer direction effects the 

porosity of the component. Because each layer is built by alternating the extrusion lines by 90 

degrees between 45 degrees and -45 degrees with the horizontal, not every space in the 

component can be completely filled. If a section of the component were to have an angle equal to 

45 degrees, then the extrusion line would be able to run parallel to the boundary at each pass. By 

running parallel to the boundary, the extrusion lines will be able to better fill the subsequent area 

in the layer until converging with the next boundary. However, the MATLAB optimized beam 

did not have support members that matched these angles. At the second arrow, the support does 

not match the filler line angle and there is a slight ark which causes the extrusion line to diverge 

from the boundary. The extrusion fills up the support area with as much filament as possible 

within the constraints of the 45 degree angle. The inability to follow the boundary leaves voids 

on either side of the extrusion lines for this layer. The third arrow shows a void that is a 

combination of the first two issues. The extruded boundary lines create a small gap because they 

are not close enough to bond with each other and the gap cannot be filled because its angle is not 
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a close enough match to the line angle. The fourth arrow shows smaller void regions that exist 

between the extruded lines. When the extruder finishes one line, it curves into the next line 

which leaves a small gap at the curve. Instead of curving into the next line, it may be beneficial 

to move alongside the boundary until it has cleared the previous line, then continue on to make 

the next line. 

4.3.2. Printing Errors 

Imperfections are often created during printing. These imperfections can have an effect 

on the performance of the beams because they can change the geometry of certain areas or create 

stress concentration points.  

The ParetoCloud beam (PW1) in Figure 23 was printed with extrusion defects on the top 

of the beam. 

 

 
 

Figure 23: ParetoCloud optimized beam with extrusion defects 
 

The extrusion defect was created when the filament material did not properly bond to previous 

layers. The filament moved to a position where it interfered with other layers. The intersection of 

layers created gaps and deposits of material in the top of the beam. Once the layers built up 
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enough to move over the hole, the layering resumed as normal. The hole was close to the center 

of the beam where maximum moment and shear exist for a simply supported beam. A stress 

concentration point and removal of material in this location can cause a lower resistance to 

loading. 

A similar printing error occurred while printing the third beam with holes (H3). Instead 

of creating a hole in the surface of the beam, there was a small deposit of tangled filament. The 

tangle was imbedded on the side of one of the center holes, displayed in Figure 24. 

 

 
 

Figure 24: Beam with lightening holes with extrusion defects 
 

The material that formed the inclusion either came from excess material from the extruding head 

or from material already within the beam. If the extruding head deposited excess material on the 

surface of the hole, it had no structural significance to the deposit. If the deposit was imbedded 

into the surface layers, then there will still not be a large issue because the tangled filament 
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became part of the structure but, not in the same orientation as the other surface layers. However, 

if the tangled filament came from within the beam, there may be a hole below the surface where 

the clump originated. A hole below the clump is a larger problem because the hole is a stress 

concentration point where a fracture can form. 

The last significant printing error occurred in the third MATLAB non-penalized beam 

(NP3). Unlike the other printing errors, this error did not induce a stress concentration point, but 

changed the geometry of the beam. A patch of material was improperly extruded that caused a 

divot of mixed melted material, displayed in Figure 25. 

 

 
 

Figure 25: Printing defect in non-penalized MATLAB beam, NP3 
 

This depression of material has a depth of four layers in a circular area with a diameter of about 

0.23 inch. With a diameter close to a third of the height of the beam, the divot may have an 

impact on the beams performance. The accuracy of the thicknesses of the beam are important to 

the non-penalized beams geometry and strength so an area that lowers the thickness may 

decrease the strength of the overall beam. 
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4.3.3. Printing Layer Tolerance 

The design of a component can vary from the actual build of the component when the 

means of manufacturing cannot match the tolerance of the design. For additive manufacturing 

using the fused filament fabrication process, the tolerance was not enough to accurately create 

the non-penalized MATLAB beam. The layer thicknesses of the beam changed by five 

thousandths of an inch between each layer at its smallest. The printer used to make the beam was 

only able to print to a tolerance of ten thousandths of an inch, twice as large as necessary to 

accurately print the layers. The larger tolerance meant that areas that were separated by two 

different thicknesses were then combined into one (Figure 26). 

 

a)  

b)  
 

Figure 26: Non-penalized beam layers with a) designed layer locations and b) printed layer locations 
 

In Figure 26a, there are 14 layers that have five thousandths of an inch thickness difference 

between neighboring layers. If the tolerance of the printer was small enough to print these 
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thickness differences, then the printed beam would also have 14 layers in the same locations. 

However, the printed beam (Figure 26b) has five layers total in the same locations as the design. 

These layers are a simplification of the 14 layers of the designed beam. The simplification of the 

layer thicknesses causes some layers to decrease in thickness and others to increase in thickness 

to average out and combine into one layer. Because the layers are averaged, the volume of the 

beam should still be accurate to the 50% reduction. However, the structural stiffness may be 

skewed because the layers are no longer true to the density values used to calculate the 

thicknesses. 
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5. Break Results  

After the beams were printed, a three-point bending test was performed using ASTM 

D790 to develop load-deflection curves for further calculations. The load-deflection curve was 

used to determine the flexural modulus, flexural resilience, flexural toughness, and maximum 

average load at the yield initiation point. These results are then compared to determine individual 

beam strengths and weaknesses. Fracture locations are also analyzed to determine the areas that 

experience the highest stresses and how the design could be changed to accommodate the high 

stress area. Each beam is compared to the original solid beam to check the variation in strength 

with half of the optimized beams volume removed. The length of each beam is four inches, so 

the support length of the three-point bending test was set to four inches with the applied load in 

the center of the beams span. 

The locations of the supports and applied load were marked on the beam so that each 

beam could be arranged in the same location. Because the total beam length beam with the extra 

supports was six inches long and the desired beam dimensions for testing was four inches long, 

the support marks were placed one inch from each side. The location of the load was placed in 

the center of the beam three inches in from the side. The load application was applied at a rate of 

0.1 in/sec until the beam failed. During the test, the load applied to the center of the beam and the 

extension of the load was recorded at time intervals of 0.005 second. The load and deflection 

data were collected from the three point bending test and plotted against each other to produce a 

load deflection-curve. The crosshead position was used to determine the deflection of the beams. 

The data from the load-deflection curve were then used to calculate flexural beam properties for 

comparison by use of a MATLAB code (Appendix C). The flexural modulus, flexural resilience, 
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flexural toughness, and load at yielding were calculated and used to compare the results of the 

various beams.  

 

5.1. Beam Breaking 

5.1.1. Solid Beam 

Four solid beams were subjected to the three-point bending test. Beams B1, B2, B3, and 

B4 were each printed with the same dimensions, in the same orientation, and had no visible 

defects. Because the beams were so similar, the results of the tests were expected to have 

minimal deviation from each other. 

The first beam to be tested was B1. The setup of the beam in the three-point loading can 

be seen in Figure 27 with the load initially being applied. The same setup was done for each 

solid beam. 

 

 
 

Figure 27: Three-point bending test layout of solid beam, B1 
 



61 

The white striations in the lower section of the beam indicated plastic deformation of the beam. 

The plastic deformation occurs where expected because the beam experiences the largest 

bending moment at the center of the beam. The lower section also experienced yielding because 

there is a tensile force experienced at this location. Typically, materials require less force to yield 

under tension than under compression. Yielding striations were also evident parallel to the 

applied force because of the printing pattern. As discussed in section 4.3.1, the edge of the beam 

was not fully filled in because of rounding in the extruded lines near the edge. The rounding 

causes small voids for stress concentration to occur, which will then create yielding. Each 

striation can be contributed to a void from the rounded printed lines and is spaced out 

accordingly. 

After the beam reached its failure point, the solid beam broke in two pieces with the 

fracture in the middle of the beam at the point of highest deflection. The fracture ran the entire 

height of the beam alternating directions 90 degrees between the layer angles (Figure 28). 

 

 
 

Figure 28: Final fracture geometry of solid beam, B3 
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The initial fracture was perpendicular to the bottom of the beam where the vertical yielding 

existed because of the rounded extrusion lines. After the initial crack formed, the fracture 

followed an oscillating pattern with sharp directional changes. The angle of the fracture can be 

attributed to the angle of the extrusion lines where they alter between 45 degrees and -45 degrees 

per layer. The yielding between extrusion layers at the -45 degree angle can be seen on the 

surface of the beam in Figure 28. Each angled yield striation has spacing similar to the vertical 

yield striations because the angled yield striations initiate from the end of the vertical yield 

striations. The spacing of the yield striations are then translated into the fracture. Even though 

the fracture grew at 45 degree angles, the fracture still traveled upwards with little horizontal 

deviation. Because the largest bending stress occurs at the center of the beam, the fracture will 

change directions between the two angles to stay within range of the higher bending stress. 

Once each solid beam was broken, the data were collected and imported into MATLAB 

for load-deflection calculations at each time interval. The load-deflection curve of all four solid 

beams were plotted on a single plot (Figure 29) to see the variance in results. An average load-

deflection curve was used to develop an average flexural modulus. The slope of the line tangent 

line of the linear region of the average load-deflection curve was used to calculate the average 

flexural modulus.  
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Figure 29: Load-deflection curves for the solid beams with average linear tangent line 
 

The result of the load-deflection curve shows that there is not a large amount of variance in the 

data. Beam B1 had a maximum force of 190.6 lbs before breaking while beam B3 (the beam 

with the lowest resistance to force) had a maximum force of 181.1 lbs before breaking. The 

difference of 9.5lbs shows that the results are in an acceptable range. In the load-deflection 

curves, an expected linear region reveals the beam’s elastic deformation. The linear range for 

each beam is nearly identical to one another with slight divergence at a load of about 115 lbs, 

and this close relationship gives a more accurate measurement for flexural modulus. As the load 

increases past the linear range, the deflection begins to increase at a faster rate. The increase in 

deflection shows the initiation of plastic deformation. This deformation occurs at a load of about 

115 lbs. After the beams plastically deform, the load continued to rise until failure at an average 

load of about 185 lbs.  
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5.1.2. Beam with Holes 

The next beams that were tested were the beams with the lightening holes H1, H2, H3, 

and H4. All four beams were printed in the same orientation with small printing errors in beam 

H3. With this printing error, possible strength variations were expected. 

Each beam was set in the three-point loading test the same as the previous beams to keep 

accuracy in testing. The setup and initial deformation of beam H3 is given in Figure 30. 

 

 
 

Figure 30: Beam with lightening holes in the three-point loading test 
 

Like the solid beam, the initial deformation shows the yield striations perpendicular to the 

bottom of the beam. However, with the beams with lightening holes, yield striations begin to 

form at the base of the center holes. Yielding started to develop at the bottom of the beam and at 

the bottom of the center holes. 

Resembling the solid beam, after enough loading was applied, the beams with holes 

fractured in two pieces. The fracturing in each beam occurred near the middle of the beam 

running through one of the center holes (Figure 31). 

 



65 

 
 

Figure 31: Fracture of beam H1 
 

The initial fracture started at the bottom of the beam close to the center where the higher bending 

stress is located. The fracture grows perpendicularly to the bottom of the beam where the yield 

striations exist. Like the solid beam, there were rounded extrusion lines by the edge of the beam 

which caused small voids for high stresses to form. After the fracture traveled past the vertical 

yielding, the fracture traveled along the extrusion line boundary towards the hole. Instead of 

altering directions like the solid beam, the fracture in beam H1 moves directly towards the hole. 

The smaller cross-sectional area allowed for a higher stress to from under the hole rather than the 

full cross section in the middle of the beam. Once through the hole, the fracture traveled through 

the upper section of the beam opposite to how the fracture traveled through the lower section. 

The fracture moved between the extrusion layers again at the 45 degree angle. Once close 

enough to the top of the beam, the fracture traveled vertically slightly above the hole. The cross 

section above and below the hole provided high stress areas for the fracture to travel through. 

Each beam was broken with three-point loading to obtain the necessary flexural data for 

the load-deflection curve. The loads and load extension were imported into MATLAB to 
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generate the load-deflection curves for each beam. The load-deflection curve for the four solid 

beams is given in Figure 32. 

 

 
 

Figure 32: Load-deflection curves for beams H1, H2, H3, and H4 with average linear tangent line 
 

The load-deflection curves for each beam in Figure 32 show a close relationship with each other. 

The maximum load before breaking was 134.6 lbs on beam H3, while the maximum force 

experienced by beam H4 was the smallest at 134lbs. The difference of 0.6 lb is small showing 

that the printing error in beam H3 did not affect the results. The linear range in each load-

deflection curves closely match each other resulting in an accurate reading of the linear tangent 

line for the flexural modulus calculation. After the elastic region, the four curves begin to 

diverge slightly from each other. The plastic range still increases as expected with a decreasing 
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value for the slope. Near the end of the beams plastic range, the slope seems to decrease close to 

zero then suddenly fractures resembling a slightly brittle fracture. 

 

5.1.3. Beam with Slots 

The four beams with slots were then tested in three-point loading. These beams were 

marked S1, S2, S3, and S4 for easy classifications. The slotted beams were printed in the same 

orientation as the previous beams for comparison. 

The marks on the beams indicating support locations were lined up on the supports and 

the center mark indicating the location of the load was used to check for center. This setup is 

displayed in Figure 33. 

 

 
 

Figure 33: Slotted beam, S1, in three-point loading test 
 

The slotted beams were able to deflect more without showing signs of plastic deformation. The 

yield striations in Figure 33 were just starting to appear after the beam deflected more than the 

solid beam. Because the support sections above and below the slot were smaller, they were able 

to bend like a cantilever beam. When bending like a cantilever beam, the higher stresses occur at 
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the fixed point of the beam. The fixed point in the slotted beams are the support locations so 

failure at the end of the slot by the support was expected. 

Unlike the other beams, the slotted beams did not fracture into two pieces. Once enough 

load was applied, the beam yielded enough to where there was not enough resistance of force to 

continue. As expected, the yielding of the slotted beam was at the end of the slot by the support  

 

 
 

Figure 34: Yielding locations in slotted beam, S1 
 

At the base of the beam, in the center, there are the expected yield striations. With the slotted 

beam, there was no crack propagation initiating at these points. Instead, the majority of yielding 

occurred at the end of the slot. The yielding is directed at the location of the support at an angle 

that represents the angles of the extrusion lines. Because the lower support section of the slot 

resembles a cantilever beam near the support location, the tensile forces were located at the top 

of the cantilever beam (bottom of the slot). The next point of higher yielding is the opposite side 

of the slot in the upper support section near the location of applied load. The support sections of 

the slot only act as a cantilever beam near the supports, so the tensile forces acted at the bottom 

of the support in the middle of the beam. The yielding followed the tensile forces acting in the 
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beam at the bottom section of the slot near the support to the upper section of the slot at the point 

of loading.  

The load and extension data from the test were collected for each beam so the load-

deflection curves could be generated with a linear tangent line. Each beam, S1, S2, S3, and S4 

had their respective data plotted in Figure 35. 

 

 
 

Figure 35: Load-deflection curves for beams S1, S2, S3, and S4 with average linear tangent line 
 

The curves for the four beams are highly consistent. Beam S3 was able to resist the largest force 

before fracturing at 84.5 lbs and the smallest maximum force experienced by the four beams was 

82 lbs by beams S2 and S4. The difference of 2.5lbs shows that the printing of each beam was 

accurate enough for testing. The elastic segments of the load-deflection curves for the four 

beams are practically identical. The matching elastic region provides an accurate average slope 
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result for calculation of the flexural modulus. After the elastic region, the curves slightly diverge 

from each other. The initial failure of the beams occurred suddenly without a drop of stress 

indicating a slight brittle failure. After the initial failure, the beams were able to carry more load 

for a small amount of deflection before failing again.  

 

5.1.4. MATLAB Penalized Beam 

The MATLAB penalized beams were the first topology optimized beams to be tested in 

three-point loading. Beams P1, P2, P3, and P4 were printed in the same orientation without any 

major printing errors. The beams were expected to perform similarly to each other. 

The marks near the ends of the penalized beam indicate the support locations for the 

three-point loading test. These marks helped to line up the beam so that the load would be 

applied to the top center of the beam as designed. The setup for beam P1 is displayed in Figure 

36. 

 

 
 

Figure 36: MATLAB penalized beam, P1 in three-point loading 
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The initial bending of beam P1 showed fewer yield striations in in the bottom of the beam. 

Instead, separation of the extrusion lines began to occur in the left side of the beam in Figure 36. 

When the beam bent enough, some extrusion lines failed where the initial separation occurred. 

The failure of the extrusion lines took place in areas where the extrusion lines could not 

completely bond with neighboring layers due to printing angle. As the beam continued to bend, 

vertical yielding at the bottom of the beam began to develop. 

The beam failed when bent to its ultimate point, beyond the plastic yield point. The 

fracture occurred near the middle of the beam where the yield striations occurred. The fracture 

was expected at the point of extrusion line separation on the left side of the beam, instead, there 

was a momentary loss of load resistance until the beam was able to support the load again. The 

fracture in Figure 37 is initiated off center of the beam at the yield striations. 

 

 
 

Figure 37: MATLAB penalized beam, P1 fracture location 
 

Initially, the fracture started from the bottom of the beam offset from the center where the 

highest bending stress occurs in a solid beam. The fracture propagated along the extrusion line 
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until reaching an intersection of void spaces. The thin members between the void spaces created 

an area within the beam where improper bonding of extrusion lines developed. After reaching 

this point, the fracture traveled through the imperfections to the boundary of a void space. The 

boundary layer was fractured, leaving only the top of the beam to support the load. Separation of 

extrusion lines developed at the top of the beam at which point the test ended because of the 

beams inability to resist loading. 

The load and deflection data were collected from the test to develop the load-deflection 

curve for the MATLAB penalized beams. The data for each penalized beam were plotted in 

Figure 38. 

 

 
 

Figure 38: Load-deflection curves for MALAB penalized beams  with average linear tangent line 
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The elastic range of each beam, from a deflection of 0 to 0.05 inch in Figure 38, were nearly 

identical giving an accurate representation for the linear tangent line to calculate the flexural 

modulus. In the plastic region, the maximum load applied was to beam P4 at 108.3 lbs and the 

smallest maximum load applied was to beam P1 at 102.7 lbs. The difference of 5.6 lbs is closely 

related considering the internal voids created in the extrusion process. As the load was increased 

in the beam, the separation of extrusion lines on the side of the beam created a load drop at an 

average deflection of 0.045 in. After the load drop, the load and deflection continued to rise 

linearly in the elastic range before plastically deforming at 65 lbs. In the plastic region, the four 

beam curves began to slightly diverge from each other. At the end of the plastic range, before 

failure, there is a slight area of slope reduction. The slope reduction indicates more yielding is 

occurring with less load resistance. Each beam then failed suddenly with indicating a partially 

brittle failure. 

 

5.1.5. MATLAB Non-Penalized Beam 

The next optimized beam to be tested was the MATLAB non-penalized beam. Beams, 

NP1, NP2, NP3, and NP4 were printed in the same orientation as the previously printed beams. 

Because the variable thickness material was centered in the beam, support material was added 

during the printing process to prevent printed material from falling through the middle. The 

support material produced a variation in surface finish between the two faces of the beam that 

may have produced a variation in results. 

The setup for three-point loading of beam NP1 is displayed in Figure 39. The support 

marks were used to align the beam to the center of the load. 
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Figure 39: MATLAB non-penalized beam, NP1 setup in three point loading 
 

The initial bending of the beam created yielding striations along the bottom center of the beam. 

Lesser amounts of yielding then started to develop near the ends of the beam by the supports 

where the thickness of the beam was the smallest. After more load extension, yielding started to 

develop in the center of the beam in the thinnest center section. With the majority of yielding at 

the center of the beam, the failure was expected to happen at the point of loading in the center. 

For the non-penalized MATLAB beams NP1, NP2, and NP4, the failure of the beam 

developed in the middle under the applied load (Figure 40). The failure started at a yield striation 

at the bottom of the beam where the voids in the printing existed. 
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Figure 40: MATLAB non-penalized beam, NP1 fracture location 
 

The fracture grew towards the top of the beam through the thickest part of the beams lower 

section. Through the lower section, the fracture did not follow the angle of the extrusion lines. 

The yielding striations provided a more vertical path for fracture propagation through the 

extrusion lines. Once into the thinner section, the fracture began to follow the angle of the 

extrusion lines. The fracture altered directions by 90 degrees while continuing up the height of 

the beam. In some areas where a change in thickness occurs. The fracture traveled vertically 

towards the top of the beam instead of following the extrusion line angles. This fracture 

propagation behavior shows proper bonding between extrusion lines and layers. When the 

fracture grew to the thickest part of the upper section of the beam, the fracture propagated 

directly upwards, centered under the load. 

The third non-penalized MATLAB beam (NP3) experienced failure in a different 

location than the other three beams. The failure of NP3 developed close to the side of the beam 

where the printing error occurred (Figure 41). 
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Figure 41: MATLAB non-penalized beam, NP3 fracture location 
 

Instead of a central fracture initiation point, the fracture in NP3 started closer to the support. The 

fracture grew along the angles of the extrusion lines with minimal alterations in angle directions. 

After growing through the thin layers of the beam, the fracture developed along the printing error 

boundary. 

Once all four beams non-penalized MATLAB beams were broken, the load-deflection 

curves were generated from the load and extrusion data. The load-deflection plots for each beam 

were then plotted in Figure 42. 
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Figure 42: Load-deflection curve for the MATLAB non-penalized beams with average linear tangent line 
 

The elastic region of the non-penalized MATLAB beams all matched each other in slope giving 

an accurate slope measurement for flexural modulus calculation. The maximum load experienced 

by a non-penalized beam was 148.1 lbs by beam NP1, while the smallest maximum force 

experienced by a beam was 144.8 lbs by beam NP2. The difference in maximum force was 3.3 

lbs which shows a close relationship in data. The printing error in NP3 did not make a large 

impression in the data because it fell within the range of the two beam extremes. After the load 

passes the elastic range, the curves for each beam begin to diverge. The slope in the plastic range 

levels out, then gradually falls before the final fracture. The decreasing slope indicates a more 

ductile failure with the beams increased extension with decreased load resistance. 
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5.1.6. ParetoCloud Beam 

ParetoCloud optimized beams PW1, PW2, PW3, and PW4 were the final optimized 

beams tested. The four beams were printed in the same orientation with the only major printing 

error existing on the top of the first beam, PW1 (Figure 23Figure 25). Because of the printing 

inclusions, PW1 was expected to have a variance in result compared to the other ParetoCloud 

beam. 

Consistent with the previous three point loading test procedures, the support marks on the 

ParetoCloud beams were aligned with the supports and the load applicator was centered in the 

middle of the beam. The load was initially applied with yielding establishing in the lower section 

(Figure 43). 

 

 
 

Figure 43: ParetoCloud beam, PW1 in three point loading test 
 

As the beam was bent, the yielding began to form and grow from the bottom of the beam in the 

center, upwards parallel to the applied load. The yielding striations were evenly spaced because 

of the voids left from the curved extrusion lines by the beam’s boundary.  

From the yielding locations, a fracture formed that caused the ultimate failure. The 

fracture location and propagation path are displayed in Figure 44. 
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Figure 44: ParetoCloud beam, fracture location and propagation path 
 

The yield striations in the bottom section of the beam extend upwards towards the top of the 

beam and downwards towards the bottom of the beam. The middle section of the beam has a 

void which causes the thicker bottom section to have a boundary parallel to the bottom and 

thickness of the beam. This boundary section produces more voids from the curving of extrusion 

lines at the boundary. Because the extrusion lines are not vertical, the void inclusions by the 

boundaries are not vertically adjacent to each other. The fracture will then propagate from the 

farthermost tension fiber at the bottom of the beam upwards at a slight angle to the next void 

inclusion. The fracture does not follow the extrusion line angles because the voids by the 

boundaries are close enough together to provide a lower stress fracture path. The fracture 

continues to propagate towards the edge of the designed void where the cross-sectional area is 

smallest. After breaking through the boundary layer, the fracture propagates through the top of 

the beam in the middle at the highest stress location. 
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The load and extension data were collected to generate the load-deflection curves for 

each ParetoCloud beam with the linear tangent line. The load-deflection curve for the four beams 

were plotted on the same graph to facilitate comparison (Figure 45). 

 

 
 

Figure 45: Four ParetoCloud beam load-deflection curves with linear tangent line 
 

In the linear range of the ParetoCloud load-deflection plot, each beam’s curve was practically 

identical, exhibiting comparable results. The consistency of the four curves in the elastic region 

gave a closer linear line for the calculation of the flexural modulus. After the linear range, the 

four curves slightly diverge in the plastic deformation range. In the plastic deformation range, the 

slope of each beam’s curve lessens to zero, then becomes negative before failure. The decreasing 

slope shows greater ductile deformation before failure 
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5.2. Comparison  

To compare properties of the assorted optimized styles of beams, numerical data were 

calculated from the load-deflection curves for each beam. Values for flexural modulus, flexural 

resilience, flexural toughness, and maximum average load before yielding were determined.  

One of the most important properties for the optimized beams is the flexural modulus. 

The objective function of the optimization process was to minimize compliance or maximize the 

stiffness of the component. The flexural modulus provides a measure of stiffness. A beam that 

has a higher flexural modulus also has higher stiffness because the beam will be able to 

withstand more load with less deflection before plastically yielding. The flexural modulus for 

each optimization method was calculated using the slope of the averaged linear tangent line to 

the linear region of each beam’s load-deflection curve. In MATLAB, a linear line was fit to the 

linear region of the average load-deflection curves for determining the slope. The flexural 

modulus was then calculated using Equation (16). 

 

𝐸𝐸𝐵𝐵 =
𝐿𝐿3𝑚𝑚
4𝑏𝑏𝑑𝑑3

 (16) 

  
where L is the span, m is the slope of the tangent line to the linear region of the load-deflection 

curve, b is the beam thickness, and d is the beam height. 

The flexural resilience of the beams quantifies the beams ability to absorb energy while 

experiencing elastic deformation then release the energy after returning to the beams original 

state. A higher flexural resilience will result in a beam that can absorb more energy before 

plastically deforming. The flexural resilience is an important calculation because it will 

determine whether the beam will be able to withstand the necessary load in the design without 
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plastic deformation. The flexural resilience of each optimization method was calculated by 

taking the integral of the load-deflection curve in the linear slope region. This integration was 

done using trapezoidal numerical integration (trapz) in MATLAB from the start of the load-

deflection curve to the end of the linear region. 

The flexural toughness is the beams ability to absorb energy without fracturing. A beam 

with a higher flexural toughness will exhibit a larger absorption of energy before failing. 

Flexural toughness of each optimization method was calculated by integrating the load-

deflection curve from start to failure of the beam. The integration was done in MATLAB using 

trapz. 

The loading at the point of yielding was found to determine the maximum average load 

that the beams could resist before yielding. A higher load shows a beams greater ability to resist 

plastic deformation. The load was determined from the load-deflection curve where the linear 

region ended. 

The results of each calculation are given in Table V. The solid beam is used to compare 

the optimized beams to the original design before optimization.  

 

Table V: Calculations from average load-deflection plots for the six tested beams 

 

Volume 
(in3) 

Flexural 
Modulus 

(psi) 

Flexural 
Resilience 

(in*lb) 

Flexural 
Toughness 

(in*lb) 

Load at 
Yielding 

(lb) 
Solid Beam 0.750 236214 4.33 25.89 115 

Beam with Holes 0.632 201835 2.77 11.08 85 

Beam with Slots 0.540 76432 2.58 13.66 50 

MATLAB 
Penalized Beam 0.365 158722 2.30 8.36 65 

MATLAB Non-
Penalized Beam 0.376 158519 5.77 19.69 110 

ParetoCloud 
Beam 0.401 177370 4.43 18.49 100 
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With the volume constraint applied to the optimization process, the volume of the optimized 

beams should have been half of the solid beam’s volume. With the solid beam’s volume being 

0.75 in3, the half volume target for the optimized beams was 0.375 in3. The beam that came the 

closest to half of the solid beams volume was the non-penalized MATLAB beam. The highest 

flexural modulus calculated for the beams was from the beam with lightening holes. The 

MATLAB non-penalized beam then had the highest flexural resilience, flexural toughness, and 

load at yielding. 

The high flexural modulus in the beam with holes may be attributed to its larger volume. 

With a volume close to 1.7 times larger than the 50% volume constraint, the beam with holes 

would not be a viable option for a 50% volume removal requirement. The ParetoCloud beam had 

the highest flexural modulus when compared to the optimized beams with a volume reduction 

closer to the desired 50%. The two versions of the MATLAB beams had a calculated flexural 

modulus that was approximately 18.6 ksi lower than the ParetoCloud beam. Though the 

ParetoCloud had a higher flexural modulus which resulted in a higher stiffness, the two 

MATLAB beams were close in comparison. 

The average load-deflection plots for each beam were employed in the calculations that 

produced the data in Table V. A comparison of plots and visual of how the calculations relate to 

the plots and respective beams is given in Figure 46. 
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Figure 46: Average load-deflection plot comparison for the six tested beams 
 

The curve for the beam with holes had a steeper slope than the other non-solid beams, resulting 

in the highest flexural modulus. The ParetoCloud beam had the next steepest slope resulting in 

the second highest flexural modulus with the two MATLAB beams having the next highest 

flexural modulus. The flexural resilience of the non-penalized MATLAB beam was the largest 

because of the length and slope of the elastic range. Even with the non-penalized beam yielding 

at close to the same as the solid beam, the flexural resilience of the non-penalized beam was 

larger than that of the solid beam because of the non-penalized beams lower stiffness. The non-

penalized beam also resisted the largest load with the same deflection at failure as the solid 

beam. 
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5.3. Discussion of results 

The two optimized beams that gave the better results were the non-penalized MATLAB 

beam and the ParetoCloud beam. The ParetoCloud beam had a volume of 0.401 in3, which was 

0.026 in3 larger than the desired 0.375 in3 volume. The non-penalized beam was 0.001 in3 larger 

than the desired volume. The non-penalized beam had a more accurate volume reduction than the 

ParetoCloud beam. The flexural modulus calculated for the ParetoCloud beam was larger than 

the non-penalized beam which results in a higher stiffness. This larger stiffness may result from 

the extra material in the ParetoCloud beam. The non-penalized beam followed the constraints 

more accurately than the other beams. The non-penalized beams and the ParetoCloud beams also 

had very similar designs which may have contributed to their similar performances. The middle 

sections along the neutral axis were designed to have the thinnest cross-sectional area while the 

top and bottom of the beams were designed with thicker sections. The cross-sectional areas 

resembled an I-beam (Figure 47). 

 

a)               b)    
 

Figure 47: Cross sections of a) MATLAB non-penalized beam and b) ParetoCloud beam 
 

The thinner section along the neutral axis is a relation to the maximum bending stress of 

Equation (13). Because the further from the neutral axis material is located, the higher a stress 
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will be experienced. The beams with holes and slots had the right design with minimal material 

along the neutral axis, however, there was still a need for material to resist loading. By thinning 

the material near the center of the beam and keeping the full thickness at the top and bottom of 

the beam (where the greater stresses are located), the non-penalized and ParetoCloud beams were 

able to resist the loading in a more efficient way. The non-penalized beam was able to resist a 

higher load because there were no designed holes in its cross section that would decrease the 

allowable load. A smaller cross section from a designed hole will produce higher stresses 

because in Equation (13), a smaller cross section creates a smaller second moment of inertia, 

which then produces a higher stress in the part. The stresses then can reach the failure point of 

the material faster than if the cross section was larger. In locations that experience higher 

stresses, there should be an increase in material placement to increase the cross-sectional area. 

The top, bottom, and middle of the beam experience the highest stresses in three-point loading, 

so more material should be added in these areas. The non-penalized beams and ParetoCloud 

beams had a decreasing thickness in this area, and for this decrease, the beams failed in the 

middle sections. 

The penalized MATLAB beam experienced failure at a lower force than the other 

optimized beams because of the small sections designed from the optimization. A smaller 

element size would create a beam that would have larger supporting sections that may have been 

better able to resist the loading. With a smaller element size, the accuracy of the optimization 

would have lowered, as discussed in section 2.4.4. The lower accuracy in calculations may have 

then lowered the beams stiffness, which may have then given the same results as the higher 

element size that was tested. 
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The beams with holes and slots, while a quick and easy method of reducing weight, did 

not perform as well as the optimized beams. The beam with holes had the lowest compliance, but 

also had the most material kept in the final design. If the reduction of material is essential to the 

final design of a component, then the beam with holes cannot be efficiently used. The slotted 

beam had the largest deflection, which in the minimal compliance problem, is not ideal.  

Of the five reduced weight beams, the beam with holes, ParetoCloud, and the non-

penalized MATLAB beam performed the best. The beam with holes could only supply a higher 

stiffness if weight reduction is not essential to the component design. More mass removed with 

larger holes would reduce the effectiveness of the beam because the reduced cross-sectional area 

would increase the stresses. The ParetoCloud beam produced a slightly larger flexural modulus 

than the non-penalized beam, but was slightly outperformed in flexural resilience, plastic energy, 

flexural toughness, and fracture energy by the non-penalized beam. These results show that the 

MATLAB non-penalization method is a comparable method to the higher performing optimized 

beams. If material reduction is important, the non-penalization method or the ParetoCloud 

method are the better choices. 

Various printers possess different printing characteristics that have an effect on the final 

printed component. The fused filament fabrication process used for the simply supported beams 

created small voids within the beams that caused stress concentration points. Because of the 

printing limitations, the method for printing must be considered in the design. For the MATLAB 

penalized beam, the thinly designed links showed improper bonding between the two boundary 

extrusion lines. To avoid this, the design of the beam may constrain the maximum distance 

between small links to twice the filament diameter. The maximum distance would only be 

applied if the filler filament could not extrude between the two boundary extrusion lines. By 
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keeping the small links within a certain range, proper bonding of the two boundary lines would 

be assured. To achieve the desired link size, the mesh size can be altered. Smaller element sizes 

will create a design with smaller links, while larger element sizes will create larger link sizes.  

Because there were areas in the MATLAB penalized beams that had voids caused by difference 

between the extrusion line angles and the link angles, a design constraint might be applied. To 

avoid the voids from the extrusion line angles, the link angles and the extrusion line angles 

should match. If the printing parameters that make the extrusion line angles cannot be changed, 

then the design of the component must be. A constraint that forces the designed links to match 

the angle of the extrusion lines would help to eliminate the voids within the component. 

However, with forcing the design to match certain angles, the compliance of the beams may not 

minimize to the same value as before the angle design constraint was applied. The additive 

manufacturing tolerance can also be considered when applying additional design constraints. The 

MATLAB non-penalized beam, for example, had a thickness step size of 0.005 inch at its 

smallest. For the uPrint used to print the beams, the tolerance was 0.01 inch, double that of the 

thickness step size. Because of the printer’s inability to print to the required accuracy of the non-

penalized beam, thickness layers were combined so that the printer could print the beams. When 

the beam is being optimized, the accuracy of the printer must be considered as a design 

constraint so that the designed component can closely match the printed component. Though the 

optimized design may be ideal for computational modeling, the manufacturing of the component 

creates flaws that should be designed for. 
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6. Conclusions 

The focus of this thesis research was to determine how topology optimization using the 

SIMP method functioned and what changes could be made to improve the optimization process. 

The main optimization method explored was the 99 line MATLAB code written by O. Sigmund 

(2001). With Sigmund’s code, there were multiple variables that have an impact on the outcome 

of the optimization. The penalization factor used to penalize the intermediate densities can 

change the amount of intermediate density in the final design. A large penalization factor creates 

clear solid and void boundaries, but also increases the compliance. A low penalization factor will 

decrease the compliance, but there will be more instances of intermediate density, which a 

printer cannot print. Because a lower penalization factor was discovered to decrease the 

compliance the most, a method for using a penalization factor of one was developed. The 

variable thickness method uses the density values in the intermediate density to determine an 

equal strength thickness value at full density. The variable thickness method would theoretically 

produce a component with a higher stiffness than the penalized beams. Another optimization 

method that combines the design of penalization and non-penalization was explored. The 

ParetoCloud beam results in a beam that had solid and void regions along with a variable 

thickness. To compare to classic means of volume reduction, beams with holes and slots were 

explored. 

Not only do the beams need to be designed for the objective function, but also for the 

additive manufacturing process. The design of the beams were ideal in perfect printing 

conditions, however, there were some limitations in the printing process that had an effect on the 

results. The printing angles created voids in the MATLAB penalized beam while certain links in 

the beam were not sized properly for boundary layer bonding or filling between the boundary 
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lines. The tolerance of the printer also created the printed beam to vary from the designed beam 

with the combination of layers in the MATLAB non-penalized beam. To design a beam that will 

be printed, the limitations of the printing process should be considered. A variation in mesh size 

could alter the link sizes so that the boundary layers can be properly sized for proper bonding 

and filling. A design constraint could be applied to the optimizer to match the link angles to that 

of the printer’s extrusion line angles. Another design constraint could be applied to make the 

minimal thickness variation the same as the printer’s tolerance. The optimization of the beams is 

ideal for computer modeling, however, design constraints that relate to the limitations of the 

printer should be applied for printing. 

Three-point bending tests were performed to determine each beam’s flexural modulus, 

flexural resilience, plastic energy, flexural toughness, and failure energy. Each beam was 

compared to a solid beam that fills the entire design domain of the beams. The beam with the 

lightening holes had the closest flexural modulus to the solid beam, but the method of design was 

unable to remove the required 50% of volume. The main constraint for the optimization of the 

beams was to remove 50% of the beams initial material. The beam with lightening holes was 

unable to fulfil the constraint which did not making it a viable option for optimization. The 

ParetoCloud and MATLAB non-penalized beams were able to produce the highest stress 

resistance with the closest to the 50% volume reduction. The optimization process for the 

ParetoCloud beam was not fully able to get to the 50% volume reduction at 0.401 in3 while the 

non-penalized beam was the closest at 0.376 in3. With the volume reduction in mind, the 

MATLAB beams both met the standards that were required of the optimization while the others 

were too large. Even with less material than the others, the non-penalized beam was able to 
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perform at a comparable level as the other beams. This high performance proves that the variable 

thickness non-penalized beam is a viable option for topology optimization. 
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Appendix A: 99 Line MATLAB Code 

 
%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%% 
%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%% 
function top(nelx,nely,volfrac,penal,rmin); 
% INITIALIZE 
x(1:nely,1:nelx) = volfrac; 
loop = 0; 
change = 1.; 
% START ITERATION 
while change > 0.01 
    loop = loop + 1; 
    xold = x; 
    % FE-ANALYSIS 
    [U]=FE(nelx,nely,x,penal); 
    % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 
    [KE] = lk; 
    c = 0.; 
    for ely = 1:nely 
        for elx = 1:nelx 
            n1 = (nely+1)*(elx-1)+ely; 
            n2 = (nely+1)* elx   +ely; 
            Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 
2*n1+1;2*n1+2],1); 
            c = c + x(ely,elx)^penal*Ue'*KE*Ue; 
            dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; 
        end 
    end 
    % FILTERING OF SENSITIVITIES 
    [dc]   = check(nelx,nely,rmin,x,dc); 
    % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD 
    [x]    = OC(nelx,nely,x,volfrac,dc); 
    % PRINT RESULTS 
    change = max(max(abs(x-xold))); 
    disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ... 
        ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ... 
        ' ch.: ' sprintf('%6.3f',change )]) 
    % PLOT DENSITIES 
    colormap(gray);imagesc(-x); axis equal; axis tight; axis off;pause(1e-6); 
    img_name = sprintf('img%d.jpg',loop); 
    file_name = [File_Path',img_name]; 
    %imwrite(-x,file_name); 
    I = imagesc(-x); 
    saveas(I,file_name); 
end 
  
%%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [xnew]=OC(nelx,nely,x,volfrac,dc) 
l1 = 0; l2 = 100000; move = 0.2; 
while (l2-l1 > 1e-4) 
    lmid = 0.5*(l2+l1); 
    xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid))))); 
    if sum(sum(xnew)) - volfrac*nelx*nely > 0; 
        l1 = lmid; 
    else 
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        l2 = lmid; 
    end 
end 
%%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dcn]=check(nelx,nely,rmin,x,dc) 
dcn=zeros(nely,nelx); 
for i = 1:nelx 
    for j = 1:nely 
        sum=0.0; 
        for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx) 
            for l = max(j-floor(rmin),1):min(j+floor(rmin),nely) 
                fac = rmin-sqrt((i-k)^2+(j-l)^2); 
                sum = sum+max(0,fac); 
                dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k); 
            end 
        end 
        dcn(j,i) = dcn(j,i)/(x(j,i)*sum); 
    end 
end 
%%%%%%%%%% FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [U]=FE(nelx,nely,x,penal) 
[KE] = lk; 
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 
F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1); 
for elx = 1:nelx 
    for ely = 1:nely 
        n1 = (nely+1)*(elx-1)+ely; 
        n2 = (nely+1)* elx   +ely; 
        edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; 
        K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE; 
    end 
end 
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM) 
F(2,1) = -1; 
fixeddofs   = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]); 
alldofs     = [1:2*(nely+1)*(nelx+1)]; 
freedofs    = setdiff(alldofs,fixeddofs); 
% SOLVING 
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:); 
U(fixeddofs,:)= 0; 
%%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [KE]=lk 
E = 1.; 
nu = 0.3; 
k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ... 
    -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8]; 
KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 
    k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 
    k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 
    k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 
    k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 
    k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 
    k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 
    k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This Matlab code was written by Ole Sigmund, Department of Solid         % 
% Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark.     % 
% Please sent your comments to the author: sigmund@fam.dtu.dk              % 
%                                                                          % 
% The code is intended for educational purposes and theoretical details    % 
% are discussed in the paper                                               % 
% "A 99 line topology optimization code written in Matlab"                 % 
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization,    % 
% Vol 21, pp. 120--127.                                                    % 
%                                                                          % 
% The code as well as a postscript version of the paper can be             % 
% downloaded from the web-site: http://www.topopt.dtu.dk                   % 
%                                                                          % 
% Disclaimer:                                                              % 
% The author reserves all rights but does not guaranty that the code is    % 
% free from errors. Furthermore, he shall not be liable in any event       % 
% caused by the use of the program.                                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix B: Non-Penalized Beam Thickness Calculation MATLAB 
Code 

 

Seth Grinde 02/09/2018 
 
 
% Calls colored image 
A=imread('density gradient beam images as jet colormap'); 
A=imresize(A,[150,400]); 
Figure 
Imshow(A)  
 
% Separates image into RGB 
A1=A(:,:,1); 
A2=A(:,:,2); 
A3=A(:,:,3); 
  
a = zeros(size(A,1), size(A,2)); 
a2 = zeros(size(A2,1), size(A2,2)); 
  
R = cat(3,A1,a,a); 
G = cat(3,a2,A2,a2); 
B = cat(3,a2,a2,A3); 
  
% Creates an image of GB 
Y=G+B; 
  
Y(:,1:53,:)=[]; 
Y(1:20,:,:)=[]; 
Y(114:130,:,:)=[]; 
Y(:,311:347,:)=[]; 
  
Y=imresize(Y,[150,400]); 
figure 
imshow(Y) 
  
%Creates individual layer image 
for x=0:15:240 
    x; 
    x2=x+15; 
    BWA = roicolor(A2,x,x2); 
    BWA(:,1:53,:)=[]; 
    BWA(1:20,:,:)=[]; 
    BWA(114:130,:,:)=[]; 
    BWA(:,311:347,:)=[]; 
    figure 
    imshow(BW) 
  
    img_name2 = sprintf('Thickness%d.jpg',x); 
    filename = ['File location',img_name2]; 
    imwrite(BWA,filename) 
end 
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%Displays A2 and A 
  
A2(:,1:53,:)=[]; 
A2(1:20,:,:)=[]; 
A2(114:130,:,:)=[]; 
A2(:,311:347,:)=[]; 
figure 
imshow(A2) 
  
A(:,1:53,:)=[]; 
A(1:20,:,:)=[]; 
A(114:130,:,:)=[]; 
A(:,311:347,:)=[]; 
figure 
imshow(A) 
  
  
%% Thickness Calculations  
  
[m,n,o]=size(Y); 
z=zeros(m,n); 
i=0; 
for y=1:1:m 
    for x=1:1:n 
        if Y(y,x,3)>80 && Y(y,x,3)<210 && Y(y,x,2)<100 
            p=100; 
        elseif Y(y,x,2)>15 && Y(y,x,3)<=5 
            p=(Y(y,x,2)*.09765625)+14.16014525; 
        elseif Y(y,x,2)>=230 && Y(y,x,3)>5 
            if Y(y,x,3)>5 && Y(y,x,3)<85 
                p=39.0625; 
            elseif Y(y,x,3)>=85 && Y(y,x,3)<170 
                p=51.5625; 
            elseif Y(y,x,3)>=170 && Y(y,x,3)<=255 
                p=64.0625; 
            end 
        elseif Y(y,x,3)>=210 && Y(y,x,2)<=230 
            p=76.5625; 
        elseif Y(y,x,3)>=5 && Y(y,x,3)<=25 && Y(y,x,2)<230 && Y(y,x,2)>40 
            p=29.6875; 
        elseif Y(y,x,3)<30 && Y(y,x,2)<=40 
            p=0; 
        end 
        z(y,x)=p/2; 
        i=i+1; 
        s(i,:)=[x,y,z(y,x)]; 
    end 
end 
  
x=s(:,1); 
y=s(:,2); 
z2=s(:,3); 
k=[x y z2]; 
figure(4) 
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axis image 
mesh(z) 
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Appendix C: Beam Load-Deflection Plot Maker/Flexural Properties 
Calculator MATLAB Code 
Seth Grinde 04/29/2018 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Data Reader %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filename = 'Data File Location'; 
delimiter = ','; 
startRow = 2; 
 
fileID = fopen(filename,'r'); 
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue' 
,NaN,'HeaderLines' ,startRow-1, 'ReturnOnError', false); 
 
fclose(fileID); 
 
B1Force = dataArray{:, 1}; 
B1Stroke = dataArray{:, 2}; 
B2Force = dataArray{:, 3}; 
B2Stroke = dataArray{:, 4}; 
B3Force = dataArray{:, 5}; 
B3Stroke = dataArray{:, 6}; 
B4Force = dataArray{:, 7}; 
B4Stroke = dataArray{:, 8}; 
H1Force = dataArray{:, 9}; 
H1Stroke = dataArray{:, 10}; 
H2Force = dataArray{:, 11}; 
H2Stroke = dataArray{:, 12}; 
H3Force = dataArray{:, 13}; 
H3Stroke = dataArray{:, 14}; 
H4Force = dataArray{:, 15}; 
H4Stroke = dataArray{:, 16}; 
S1Force = dataArray{:, 17}; 
S1Stroke = dataArray{:, 18}; 
S2Force = dataArray{:, 19}; 
S2Stroke = dataArray{:, 20}; 
S3Force = dataArray{:, 21}; 
S3Stroke = dataArray{:, 22}; 
S4Force = dataArray{:, 23}; 
S4Stroke = dataArray{:, 24}; 
P1Force = dataArray{:, 25}; 
P1Stroke = dataArray{:, 26}; 
P2Force = dataArray{:, 27}; 
P2Stroke = dataArray{:, 28}; 
P3Force = dataArray{:, 29}; 
P3Stroke = dataArray{:, 30}; 
P4Force = dataArray{:, 31}; 
P4Stroke = dataArray{:, 32}; 
NP1Force = dataArray{:, 33}; 
NP1Stroke = dataArray{:, 34}; 
NP2Force = dataArray{:, 35}; 
NP2Stroke = dataArray{:, 36}; 
NP3Force = dataArray{:, 37}; 
NP3Stroke = dataArray{:, 38}; 
NP4Force = dataArray{:, 39}; 
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NP4Stroke = dataArray{:, 40}; 
PW1Force = dataArray{:, 41}; 
PW1Stroke = dataArray{:, 42}; 
PW2Force = dataArray{:, 43}; 
PW2Stroke = dataArray{:, 44}; 
PW3Force = dataArray{:, 45}; 
PW3Stroke = dataArray{:, 46}; 
PW4Force = dataArray{:, 47}; 
PW4Stroke = dataArray{:, 48}; 
 
clearvars filename delimiter startRow formatSpec fileID dataArray ans; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Volume Calculations %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
density=15.547; 
% Solid beam volume calculation 
BV=((17.47+17.52+17.5+17.47)/(4*density))-(2*.75*.25*1); 
% Beam with holes volume calculation 
HV=((15.68+15.63+15.68+15.64)/(4*density))-(2*.75*.25*1); 
% Beam with slots volume calculation 
SV=((14.25+14.24+14.18+14.21)/(4*density))-(2*.75*.25*1); 
% Penalized MATLAB beam volume calculation 
PV=((6.64+6.65+6.66+6.63)/(4*density))-(2*.125*.25*1); 
% Non-penalized MATLAB beam volume calculation 
NPV=((7.4+7.41+7.41+7.4)/(4*density))-(2*.2*.25*1); 
% ParetoCloud beam volume calculation 
PWV=((7.78+7.78+7.79+7.78)/(4*density))-(2*.2*.25*1); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Beam Dimensions %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
b=.25;          %beam thickness 
d=.75;          %beam height 
L=4;            %beam length 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Load Calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Average Load 
Bf=(B1Force+B2Force+B3Force+B4Force)/4; 
Hf=(H1Force+H2Force+H3Force+H4Force)/4; 
Sf=(S1Force+S2Force+S3Force+S4Force)/4; 
Pf=(P1Force+P2Force+P3Force+P4Force)/4; 
NPf=(NP1Force+NP2Force+NP3Force+NP4Force)/4; 
PWf=(PW1Force+PW2Force+PW3Force+PW4Force)/4; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% Deflection Calculations %%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Average Deflection 
Bd=(B1Stroke+B2Stroke+B3Stroke+B4Stroke)/4; 
Hd=(H1Stroke+H2Stroke+H3Stroke+H4Stroke)/4; 
Sd=(S1Stroke+S2Stroke+S3Stroke+S4Stroke)/4; 
Pd=(P1Stroke+P2Stroke+P3Stroke+P4Stroke)/4; 
NPd=(NP1Stroke+NP2Stroke+NP3Stroke+NP4Stroke)/4; 
PWd=(PW1Stroke+PW2Stroke+PW3Stroke+PW4Stroke)/4; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Solid Beam %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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figure(1) 
set(figure(1),'Position',[200 250 1000 500]) 
plot(B1Stroke,B1Force,B2Stroke,B2Force,B3Stroke,B3Force,B4Stroke,B4Force) 
grid on 
xlabel('Deflection (in)','FontSize',12) 
ylabel('Load (lbs)','FontSize',12) 
title('Solid Beam Load vs. Deflection','FontSize',18) 
legend('B1','B2','B3','B4','Location','northeastoutside') 
% Flexural Resilience Calculation 
[strain,num]=min(abs(Bf-115)); 
Solid_Resilience = trapz(Bd(1:num),Bf(1:num)); 
% Flexural Modulus Calculation 
[val,loc]=min(abs(Bd-.05)); 
g=polyfit(Bd(1:loc),Bf(1:loc),1); 
BFM=(g(1)*L^3)/(4*b*d^3); 
h=refline(g(1),g(2)); 
set(h,'Color','r') 
xlim([0,0.25]) 
ylim([0,200]) 
% Flexural Toughness Calculation 
Bf2=Bf; 
Bf2(isnan(Bf2))=[]; 
Bd2=Bd; 
Bd2(isnan(Bd2))=[]; 
Solid_Toughness = trapz(Bd2,Bf2); 
% Energy Calculation 
SolidPW=Solid_Resilience*BV; 
SolidFW=Solid_Toughness*BV; 
% Present Data 
a1=[num2str(BV), ' in^3']; 
a2=[num2str(BFM), ' psi']; 
a3=[num2str(Solid_Resilience), ' in*lb/in^3']; 
a4=[num2str(SolidPW), ' in*lb']; 
a5=[num2str(Solid_Toughness), ' in*lb/in^3']; 
a6=[num2str(SolidFW), ' in*lb']; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Holes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(2) 
set(figure(2),'Position',[200 250 1000 500]) 
plot(H1Stroke,H1Force,H2Stroke,H2Force,H3Stroke,H3Force,H4Stroke,H4Force) 
grid on 
xlabel('Deflection (in)','FontSize',12) 
ylabel('Load (lbs)','FontSize',12) 
title('Holes Beam Load vs. Deflection','FontSize',18) 
legend('H1','H2','H3','H4','Location','northeastoutside') 
% Flexural Resilience Calculation 
[strain,num]=min(abs(Hf-85)); 
Holes_Resilience = trapz(Hd(1:num),Hf(1:num)); 
% Flexural Modulus Calculation 
[val,loc]=min(abs(Hd-.05)); 
i=polyfit(Hd(1:loc),Hf(1:loc),1); 
HFM=(i(1)*L^3)/(4*b*d^3); 
r=refline(i(1),i(2)); 
set(r,'Color','r') 
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xlim([0,0.25]) 
ylim([0,200]) 
% Flexural Toughness Calculation 
Hf2=Hf; 
Hf2(isnan(Hf2))=[]; 
Hd2=Hd; 
Hd2(isnan(Hd2))=[]; 
Holes_Toughness = trapz(Hd2,Hf2); 
% Energy Calculation 
HolesPW=Holes_Resilience*HV; 
HolesFW=Holes_Toughness*HV; 
% Present Data 
c1=[num2str(HV), ' in^3']; 
c2=[num2str(HFM), ' psi']; 
c3=[num2str(Holes_Resilience), ' in*lb/in^3']; 
c4=[num2str(HolesPW), ' in*lb']; 
c5=[num2str(Holes_Toughness), ' in*lb/in^3']; 
c6=[num2str(HolesFW), ' in*lb']; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Slot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(3) 
set(figure(3),'Position',[200 250 1000 500]) 
plot(S1Stroke,S1Force,S2Stroke,S2Force,S3Stroke,S3Force,S4Stroke,S4Force) 
grid on 
xlabel('Deflection (in)','FontSize',12) 
ylabel('Load (lbs)','FontSize',12) 
title('Slot Beam Load vs. Deflection','FontSize',18) 
legend('S1','S2','S3','S4','Location','northeastoutside') 
% Flexural Resilience Calculation 
[strain,num]=min(abs(Sf-50)); 
Slot_Resilience = trapz(Sd(1:num),Sf(1:num)); 
% Flexural Modulus Calculation 
[val,loc]=min(abs(Sd-.05)); 
j=polyfit(Sd(1:loc),Sf(1:loc),1); 
SFM=(j(1)*L^3)/(4*b*d^3); 
r=refline(j(1),j(2)); 
set(r,'Color','r') 
xlim([0,0.25]) 
ylim([0,200]) 
% Flexural Toughness Calculation 
Sf2=Sf; 
Sf2(isnan(Sf2))=[]; 
Sd2=Sd; 
Sd2(isnan(Sd2))=[]; 
Slot_Toughness = trapz(Sd2,Sf2); 
% Energy Calculation 
SlotPW=Slot_Resilience*SV; 
SlotFW=Slot_Toughness*SV; 
% Present Data 
b1=[num2str(SV), ' in^3']; 
b2=[num2str(SFM), ' psi']; 
b3=[num2str(Slot_Resilience), ' in*lb/in^3']; 
b4=[num2str(SlotPW), ' in*lb']; 
b5=[num2str(Slot_Toughness), ' in*lb/in^3']; 
b6=[num2str(SlotFW), ' in*lb']; 
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%%%%%%%%%%%%%%%%%%%%%%%%% Penalized MATLAB Beam %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(4) 
set(figure(4),'Position',[200 250 1000 500]) 
plot(P1Stroke,P1Force,P2Stroke,P2Force,P3Stroke,P3Force,P4Stroke,P4Force) 
grid on 
xlabel('Deflection (in)','FontSize',12) 
ylabel('Load (lbs)','FontSize',12) 
title('Penalized MATLAB Beam Load vs. Deflection','FontSize',18) 
legend('P1','P2','P3','P4','Location','northeastoutside') 
% Flexural Resilience Calculation 
[strain,num]=min(abs(Pf-65)); 
Penalized_Resilience = trapz(Pd(1:num),Pf(1:num)); 
% Flexural Modulus Calculation 
[val,loc]=min(abs(Pd-.04)); 
k=polyfit(Pd(1:loc),Pf(1:loc),1); 
PFM=(k(1)*L^3)/(4*b*d^3); 
r=refline(k(1),k(2)); 
set(r,'Color','r') 
xlim([0,0.25]) 
ylim([0,200]) 
% Flexural Toughness Calculation 
Pf2=Pf; 
Pf2(isnan(Pf2))=[]; 
Pd2=Pd; 
Pd2(isnan(Pd2))=[]; 
Penalized_Toughness = trapz(Pd2,Pf2); 
% Energy Calculation 
PenalizedPW=Penalized_Resilience*PV; 
PenalizedFW=Penalized_Toughness*PV; 
% Present Data 
d1=[num2str(PV), ' in^3']; 
d2=[num2str(PFM), ' psi']; 
d3=[num2str(Penalized_Resilience), ' in*lb/in^3']; 
d4=[num2str(PenalizedPW), ' in*lb']; 
d5=[num2str(Penalized_Toughness), ' in*lb/in^3']; 
d6=[num2str(PenalizedFW), ' in*lb']; 
  
%%%%%%%%%%%%%%%%%%%%%%%%% Non-Penalized MATLAB BEAM %%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(5) 
set(figure(5),'Position',[200 250 1000 500]) 
plot(NP1Stroke,NP1Force,NP2Stroke,NP2Force,NP3Stroke,NP3Force,NP4Stroke,NP4Fo
rce) 
grid on 
xlabel('Deflection (in)','FontSize',12) 
ylabel('Load (lbs)','FontSize',12) 
title('Non-Penalized MATLAB BEAM Load vs. Deflection','FontSize',18) 
legend('NP1','NP2','NP3','NP4','Location','northeastoutside') 
% Flexural Resilience Calculation 
[strain,num]=min(abs(NPf-110)); 
nonpen_Resilience = trapz(NPd(1:num),NPf(1:num)); 
% Flexural Modulus Calculation 
[val,loc]=min(abs(NPd-.1)); 
l=polyfit(NPd(1:loc),NPf(1:loc),1); 
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NPFM=(l(1)*L^3)/(4*b*d^3); 
r=refline(l(1),l(2)); 
set(r,'Color','r') 
xlim([0,0.25]) 
ylim([0,200]) 
% Flexural Toughness Calculation 
NPf2=NPf; 
NPf2(isnan(NPf2))=[]; 
NPd2=NPd; 
NPd2(isnan(NPd2))=[]; 
nonpen_Toughness = trapz(NPd2,NPf2); 
% Energy Calculation 
nonpenPW=nonpen_Resilience*NPV; 
nonpenFW=nonpen_Toughness*NPV; 
% Present Data 
e1=[num2str(NPV), ' in^3']; 
e2=[num2str(NPFM), ' psi']; 
e3=[num2str(nonpen_Resilience), ' in*lb/in^3']; 
e4=[num2str(nonpenPW), ' in*lb']; 
e5=[num2str(nonpen_Toughness), ' in*lb/in^3']; 
e6=[num2str(nonpenFW), ' in*lb']; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pareto Beam %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(6) 
set(figure(6),'Position',[200 250 1000 500]) 
plot(PW1Stroke,PW1Force,PW2Stroke,PW2Force,PW3Stroke,PW3Force,PW4Stroke,PW4Fo
rce) 
grid on 
xlabel('Deflection (in)','FontSize',12) 
ylabel('Load (lbs)','FontSize',12) 
title('ParetoCloud Beam Load vs. Deflection','FontSize',18) 
legend('PW1','PW2','PW3','PW4','Location','northeastoutside') 
% Flexural Resilience Calculation 
[strain,num]=min(abs(PWf-100)); 
Pareto_Resilience = trapz(PWd(1:num),PWf(1:num)); 
% Flexural Modulus Calculation 
[val,loc]=min(abs(PWd-.06)); 
m=polyfit(PWd(1:loc),PWf(1:loc),1); 
PWFM=(m(1)*L^3)/(4*b*d^3); 
r=refline(m(1),m(2)); 
set(r,'Color','r') 
xlim([0,0.25]) 
ylim([0,200]) 
% Flexural Toughness Calculation 
PWf2=PWf; 
PWf2(isnan(PWf2))=[]; 
PWd2=PWd; 
PWd2(isnan(PWd2))=[]; 
Pareto_Toughness = trapz(PWd2,PWf2); 
% Energy Calculation 
ParetoPW=Pareto_Resilience*PWV; 
ParetoFW=Pareto_Toughness*PWV; 
% Present Data 
f1=[num2str(PWV), ' in^3']; 
f2=[num2str(PWFM), ' psi']; 
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f3=[num2str(Pareto_Resilience), ' in*lb/in^3']; 
f4=[num2str(ParetoPW), ' in*lb']; 
f5=[num2str(Pareto_Toughness), ' in*lb/in^3']; 
f6=[num2str(ParetoFW), ' in*lb']; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Combined Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(7) 
set(figure(7),'Position',[200 250 1000 500]) 
plot(Bd,Bf,Hd,Hf,Sd,Sf,Pd,Pf,NPd,NPf,PWd,PWf) 
grid on 
xlabel('Deflection (in)','FontSize',12) 
ylabel('Load (lbs)','FontSize',12) 
title('Load vs. Deflection Comparison','FontSize',18) 
legend('Solid','Holes','Slot','Penalized','Non 
Penalized','ParetoCloud','Location','northeastoutside') 
xlim([0,0.25]) 
ylim([0,200]) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Table Formation %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C={'Solid' a1 a2 a3 a4 a5 a6;'Slot' b1 b2 b3 b4 b5 b6;'Holes' c1 c2 c3 c4 c5 
c6;'Penalized' d1 d2 d3 d4 d5 d6;'Non Penalized' e1 e2 e3 e4 e5 
e6;'ParetoCloud' f1 f2 f3 f4 f5 f6}; 
T=cell2table(C,'VariableNames',{'Beam' 'Volume' 'Flexural_Modulus' 
'Flexural_Resilience' 'Plastic_Energy' 'Flexural_Toughness' 
'Fracture_Energy'}) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Save Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numplot=7; 
for z=1:numplot 
    saveas(figure(z),fullfile('File Location',['figure' num2str(z) '.jpg'])) 
end 
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Appendix D: STL Write MATLAB Code 

 

function stlwrite(filename, varargin) 
%STLWRITE   Write STL file from patch or surface data. 
% 
%   STLWRITE(FILE, FV) writes a stereolithography (STL) file to FILE for a 
%   triangulated patch defined by FV (a structure with fields 'vertices' 
%   and 'faces'). 
% 
%   STLWRITE(FILE, FACES, VERTICES) takes faces and vertices separately, 
%   rather than in an FV struct 
% 
%   STLWRITE(FILE, X, Y, Z) creates an STL file from surface data in X, Y, 
%   and Z. STLWRITE triangulates this gridded data into a triangulated 
%   surface using triangulation options specified below. X, Y and Z can be 
%   two-dimensional arrays with the same size. If X and Y are vectors with 
%   length equal to SIZE(Z,2) and SIZE(Z,1), respectively, they are passed 
%   through MESHGRID to create gridded data. If X or Y are scalar values, 
%   they are used to specify the X and Y spacing between grid points. 
% 
%   STLWRITE(...,'PropertyName',VALUE,'PropertyName',VALUE,...) writes an 
%   STL file using the following property values: 
% 
%   MODE          - File is written using 'binary' (default) or 'ascii'. 
% 
%   TITLE         - Header text (max 80 chars) written to the STL file. 
% 
%   TRIANGULATION - When used with gridded data, TRIANGULATION is either: 
%                       'delaunay'  - (default) Delaunay triangulation of X, 
Y 
%                       'f'         - Forward slash division of grid quads 
%                       'b'         - Back slash division of quadrilaterals 
%                       'x'         - Cross division of quadrilaterals 
%                   Note that 'f', 'b', or 't' triangulations now use an 
%                   inbuilt version of FEX entry 28327, "mesh2tri". 
% 
%   FACECOLOR     - Single colour (1-by-3) or one-colour-per-face (N-by-3)  
%                   vector of RGB colours, for face/vertex input. RGB range 
%                   is 5 bits (0:31), stored in VisCAM/SolidView format 
%                   
(http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL) 
% 
%   Example 1: 
%     % Write binary STL from face/vertex data 
%     tmpvol = false(20,20,20);      % Empty voxel volume 
%     tmpvol(8:12,8:12,5:15) = 1;    % Turn some voxels on 
%     fv = isosurface(~tmpvol, 0.5); % Make patch w. faces "out" 
%     stlwrite('test.stl',fv)        % Save to binary .stl 
% 
%   Example 2: 
%     % Write ascii STL from gridded data 
%     [X,Y] = deal(1:40);             % Create grid reference 
%     Z = peaks(40);                  % Create grid height 
%     stlwrite('test.stl',X,Y,Z,'mode','ascii') 
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% 
%   Example 3: 
%     % Write binary STL with coloured faces 
%     cVals = fv.vertices(fv.faces(:,1),3); % Colour by Z height. 
%     cLims = [min(cVals) max(cVals)];      % Transform height values 
%     nCols = 255;  cMap = jet(nCols);      % onto an 8-bit colour map 
%     fColsDbl = interp1(linspace(cLims(1),cLims(2),nCols),cMap,cVals);  
%     fCols8bit = fColsDbl*255; % Pass cols in 8bit (0-255) RGB triplets 
%     stlwrite('testCol.stl',fv,'FaceColor',fCols8bit)  
  
%   Original idea adapted from surf2stl by Bill McDonald. Huge speed 
%   improvements implemented by Oliver Woodford. Non-Delaunay triangulation 
%   of quadrilateral surface courtesy of Kevin Moerman. FaceColor 
%   implementation by Grant Lohsen. 
% 
%   Author: Sven Holcombe, 11-24-11 
  
  
% Check valid filename path 
path = fileparts(filename); 
if ~isempty(path) && ~exist(path,'dir') 
    error('Directory "%s" does not exist.',path); 
end 
  
% Get faces, vertices, and user-defined options for writing 
[faces, vertices, options] = parseInputs(varargin{:}); 
asciiMode = strcmp( options.mode ,'ascii'); 
  
% Create the facets 
facets = single(vertices'); 
facets = reshape(facets(:,faces'), 3, 3, []); 
  
% Compute their normals 
V1 = squeeze(facets(:,2,:) - facets(:,1,:)); 
V2 = squeeze(facets(:,3,:) - facets(:,1,:)); 
normals = V1([2 3 1],:) .* V2([3 1 2],:) - V2([2 3 1],:) .* V1([3 1 2],:); 
clear V1 V2 
normals = bsxfun(@times, normals, 1 ./ sqrt(sum(normals .* normals, 1))); 
facets = cat(2, reshape(normals, 3, 1, []), facets); 
clear normals 
  
% Open the file for writing 
permissions = {'w','wb+'}; 
fid = fopen(filename, permissions{asciiMode+1}); 
if (fid == -1) 
    error('stlwrite:cannotWriteFile', 'Unable to write to %s', filename); 
end 
  
% Write the file contents 
if asciiMode 
    % Write HEADER 
    fprintf(fid,'solid %s\r\n',options.title); 
    % Write DATA 
    fprintf(fid,[... 
        'facet normal %.7E %.7E %.7E\r\n' ... 
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        'outer loop\r\n' ... 
        'vertex %.7E %.7E %.7E\r\n' ... 
        'vertex %.7E %.7E %.7E\r\n' ... 
        'vertex %.7E %.7E %.7E\r\n' ... 
        'endloop\r\n' ... 
        'endfacet\r\n'], facets); 
    % Write FOOTER 
    fprintf(fid,'endsolid %s\r\n',options.title); 
     
else % BINARY 
    % Write HEADER 
    fprintf(fid, '%-80s', options.title);             % Title 
    fwrite(fid, size(facets, 3), 'uint32');           % Number of facets 
    % Write DATA 
    % Add one uint16(0) to the end of each facet using a typecasting trick 
    facets = reshape(typecast(facets(:), 'uint16'), 12*2, []); 
    % Set the last bit to 0 (default) or supplied RGB 
    facets(end+1,:) = options.facecolor; 
    fwrite(fid, facets, 'uint16'); 
end 
  
% Close the file 
fclose(fid); 
fprintf('Wrote %d facets\n',size(facets, 2)); 
  
  
%% Input handling subfunctions 
function [faces, vertices, options] = parseInputs(varargin) 
% Determine input type 
if isstruct(varargin{1}) % stlwrite('file', FVstruct, ...) 
    if ~all(isfield(varargin{1},{'vertices','faces'})) 
        error( 'Variable p must be a faces/vertices structure' ); 
    end 
    faces = varargin{1}.faces; 
    vertices = varargin{1}.vertices; 
    options = parseOptions(varargin{2:end}); 
     
elseif isnumeric(varargin{1}) 
    firstNumInput = cellfun(@isnumeric,varargin); 
    firstNumInput(find(~firstNumInput,1):end) = 0; % Only consider numerical 
input PRIOR to the first non-numeric 
    numericInputCnt = nnz(firstNumInput); 
     
    options = parseOptions(varargin{numericInputCnt+1:end}); 
    switch numericInputCnt 
        case 3 % stlwrite('file', X, Y, Z, ...) 
            % Extract the matrix Z 
            Z = varargin{3}; 
             
            % Convert scalar XY to vectors 
            ZsizeXY = fliplr(size(Z)); 
            for i = 1:2 
                if isscalar(varargin{i}) 
                    varargin{i} = (0:ZsizeXY(i)-1) * varargin{i}; 
                end                     
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            end 
             
            % Extract X and Y 
            if isequal(size(Z), size(varargin{1}), size(varargin{2})) 
                % X,Y,Z were all provided as matrices 
                [X,Y] = varargin{1:2}; 
            elseif numel(varargin{1})==ZsizeXY(1) && 
numel(varargin{2})==ZsizeXY(2) 
                % Convert vector XY to meshgrid 
                [X,Y] = meshgrid(varargin{1}, varargin{2}); 
            else 
                error('stlwrite:badinput', 'Unable to resolve X and Y 
variables'); 
            end 
             
            % Convert to faces/vertices 
            if strcmp(options.triangulation,'delaunay') 
                faces = delaunay(X,Y); 
                vertices = [X(:) Y(:) Z(:)]; 
            else 
                if ~exist('mesh2tri','file') 
                    error('stlwrite:missing', '"mesh2tri" is required to 
convert X,Y,Z matrices to STL. It can be downloaded from:\n%s\n',... 
                        
'http://www.mathworks.com/matlabcentral/fileexchange/28327') 
                end 
                [faces, vertices] = mesh2tri(X, Y, Z, options.triangulation); 
            end 
             
        case 2 % stlwrite('file', FACES, VERTICES, ...) 
            faces = varargin{1}; 
            vertices = varargin{2}; 
             
        otherwise 
            error('stlwrite:badinput', 'Unable to resolve input types.'); 
    end 
end 
  
if ~isempty(options.facecolor) % Handle colour preparation 
    facecolor = uint16(options.facecolor); 
    %Set the Valid Color bit (bit 15) 
    c0 = bitshift(ones(size(faces,1),1,'uint16'),15); 
    %Red color (10:15), Blue color (5:9), Green color (0:4) 
    c0 = bitor(bitshift(bitand(2^6-1, facecolor(:,1)),10),c0); 
    c0 = bitor(bitshift(bitand(2^11-1, facecolor(:,2)),5),c0); 
    c0 = bitor(bitand(2^6-1, facecolor(:,3)),c0); 
    options.facecolor = c0;     
else 
    options.facecolor = 0; 
end 
  
function options = parseOptions(varargin) 
IP = inputParser; 
IP.addParamValue('mode', 'binary', @ischar) 
IP.addParamValue('title', sprintf('Created by stlwrite.m %s',datestr(now)), 
@ischar); 
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IP.addParamValue('triangulation', 'delaunay', @ischar); 
IP.addParamValue('facecolor',[], @isnumeric) 
IP.addParamValue('facecolour',[], @isnumeric) 
IP.parse(varargin{:}); 
options = IP.Results; 
if ~isempty(options.facecolour) 
    options.facecolor = options.facecolour; 
end 
  
function [F,V]=mesh2tri(X,Y,Z,tri_type) 
% function [F,V]=mesh2tri(X,Y,Z,tri_type) 
%  
% Available from http://www.mathworks.com/matlabcentral/fileexchange/28327 
% Included here for convenience. Many thanks to Kevin Mattheus Moerman 
% kevinmoerman@hotmail.com 
% 15/07/2010 
%------------------------------------------------------------------------ 
  
[J,I]=meshgrid(1:1:size(X,2)-1,1:1:size(X,1)-1); 
  
switch tri_type 
    case 'f'%Forward slash 
        TRI_I=[I(:),I(:)+1,I(:)+1;  I(:),I(:),I(:)+1]; 
        TRI_J=[J(:),J(:)+1,J(:);   J(:),J(:)+1,J(:)+1]; 
        F = sub2ind(size(X),TRI_I,TRI_J); 
    case 'b'%Back slash 
        TRI_I=[I(:),I(:)+1,I(:);  I(:)+1,I(:)+1,I(:)]; 
        TRI_J=[J(:)+1,J(:),J(:);   J(:)+1,J(:),J(:)+1]; 
        F = sub2ind(size(X),TRI_I,TRI_J); 
    case 'x'%Cross 
        TRI_I=[I(:)+1,I(:);  I(:)+1,I(:)+1;  I(:),I(:)+1;    I(:),I(:)]; 
        TRI_J=[J(:),J(:);    J(:)+1,J(:);    J(:)+1,J(:)+1;  J(:),J(:)+1]; 
        IND=((numel(X)+1):numel(X)+prod(size(X)-1))'; 
        F = sub2ind(size(X),TRI_I,TRI_J); 
        F(:,3)=repmat(IND,[4,1]); 
        Fe_I=[I(:),I(:)+1,I(:)+1,I(:)]; Fe_J=[J(:),J(:),J(:)+1,J(:)+1]; 
        Fe = sub2ind(size(X),Fe_I,Fe_J); 
        Xe=mean(X(Fe),2); Ye=mean(Y(Fe),2);  Ze=mean(Z(Fe),2); 
        X=[X(:);Xe(:)]; Y=[Y(:);Ye(:)]; Z=[Z(:);Ze(:)]; 
end 
  
V=[X(:),Y(:),Z(:)]; 
 




	Montana Tech Library
	Digital Commons @ Montana Tech
	Spring 2018

	TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING USING SIMP METHOD
	Seth Grinde
	Recommended Citation


	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Equations
	Glossary of Terms
	1. Introduction
	1.1. Background
	1.2. Types of Optimization

	2.  Topology Optimization
	2.1. Optimization Calculation Introduction
	2.2. SIMP Method
	2.3. Sensitivity Analysis
	2.4. Problems
	2.4.1. Checkerboard
	2.4.2. Higher-Order Finite Elements
	2.4.3. Filter
	2.4.4. Mesh Dependency
	2.4.5. Local Minima


	3. Methods
	3.1. MATLAB Optimized Beam
	3.1.1. MATLAB Penalization
	3.1.1.1. Penalization Method
	3.1.1.2. Penalized Beam Design

	3.1.2. MATLAB Non-Penalization
	3.1.2.1. MATLAB Non-Penalization Method
	3.1.2.2. Non-Penalized Beam Design


	3.2. ParetoCloud
	3.2.1. ParetoCloud Method
	3.2.2. ParetoCloud Beam Design

	3.3. Applied Variables and Constraints
	3.4. Simple Machining
	3.4.1. Slots
	3.4.1.1. Slots Method
	3.4.1.2. Slots Design

	3.4.2. Holes
	3.4.2.1. Holes Method
	3.4.2.2. Hole Design



	4. Printing
	4.1. Printed Material Tests
	4.1.1. Compression Testing
	4.1.2. Shear Testing
	4.1.3. Tension Testing
	4.1.4. Material Testing Conclusion

	4.2. Printed Beams
	4.3. Problems with Printing
	4.3.1. Print Density
	4.3.2. Printing Errors
	4.3.3. Printing Layer Tolerance


	5. Break Results
	5.1. Beam Breaking
	5.1.1. Solid Beam
	5.1.2. Beam with Holes
	5.1.3. Beam with Slots
	5.1.4. MATLAB Penalized Beam
	5.1.5. MATLAB Non-Penalized Beam
	5.1.6. ParetoCloud Beam

	5.2. Comparison
	5.3. Discussion of results

	6. Conclusions
	7. References Cited
	Appendix A: 99 Line MATLAB Code
	Appendix B: Non-Penalized Beam Thickness Calculation MATLAB Code
	Appendix C: Beam Load-Deflection Plot Maker/Flexural Properties Calculator MATLAB Code
	Appendix D: STL Write MATLAB Code


