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Abstract 

Electrical Resistivity Tomography (ERT), Spontaneous Potential (SP), Multichannel Analysis of 

Surface Waves (MASW) and Seismic Refraction Tomography methods have been used to 

provide valuable information on the seepage pathways leading to dewatering of Lolo Creek and 

the subsurface lithology of the area. Results from the MASW and seismic refraction tomography 

studies show a bedrock elevation of about 35 m close to Highway 93 and about 27 m at the end 

of the 288 m East-West seismic line running through Lewis and Clark Drive.  ERT results show 

a shallow high resistive geolectric layer underlain by low resistive layers. The Eocene bedrock 

(mylonite) was found to have low resistivity between 180-400 Ωm. A geologic fault was inferred 

in a 360 m East-West ERT profile. SP measurements around the inferred fault indicate a zone of 

infiltration, with SP values between -18 mV to -2 mV. A 1D depth velocity profile obtained from 

MASW survey located close to East-West ERT profile, indicates a low velocity subsurface 

between 0-39 m, which is interpreted to be fractured bedrock.  This fractured shallow bedrock 

and associated fault work as a seepage path from the shallow to deep aquifer and could possibly 

account for dewatering of the Creek during low flow periods in the late-summer. 
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1. Introduction 

Lolo Creek, located in Montana, is the northern-most major tributary of the Bitterroot 

River which empties into the Clark Fork River in Missoula, Montana.  The Lolo Creek 

watershed covers an area of about 710 km2 and sits in the middle portion of the Bitterroot 

Mountains, southwest of Missoula (Figure 1). The Creek originates at the crest of the Bitterroot 

Range near the Idaho/Montana border at an elevation of about 1600 m above sea level and flows 

eastwards about 60 km to its confluence with the Bitterroot River at an elevation of about 960 m 

above sea level (John, 2004). The upper and middle portions of Lolo Creek sits in narrow, high 

gradient canyon while the lower portion broadens across the low-angle Lolo Creek alluvial fan 

(Chambers, 2016). The town of Lolo lies at the eastern end of the watershed. 

Measured precipitation near the town of Lolo ranges from 33-38 cm/year, to 61 cm/year 

near the headwaters to 123 cm/year near the Idaho/Montana boarder (Chambers, 2016). Much 

greater annual precipitation occurs in the mountainous areas surrounding the valley, with 

wintertime precipitation falling mostly as snow (Larry et al., 2013).  Significant accumulations of 

snowfall in the watershed’s higher elevations create a larger reservoir of water released during 

melt periods resulting in annual peak flows in late spring, with annual lows in late summer (John 

2004).  The warmest months are also the driest months, which accordingly are periods with 

significant demands on groundwater and surface water for irrigation. Estimated water-use data 

for the year 2000 shows that water withdrawn for irrigation by Lolo-Bitterroot residents 

overwhelm other demands (Canon and Johnson, 2004).  

Late-summer dewatering of Lolo Creek has been a reoccurring event in the areas between 

Highway 93 and Lolo Creek’s confluence with the Bitterroot River (Figure 2). Recorded 

instances of dewatering start in the 80’s and most recently includes 2007, 2011, 2012, 2013, 

2015 and 2016 (Perry 2016; Pete, 2017). The dewatered reach has raised concerns about fish 

habitat and other riparian issues with water managers and local residents.  

Carstaphen et al., (2016) and Chambers (2016) studied the magnitude of exchange 

between groundwater and surface-water in the lower reaches of Lolo Creek, and observed 

significant loss of surface water to groundwater as the Creek approached the Bitterroot Valley. 

Chambers also noted an increase in hydraulic gradient and the prevalence of coarse grained 

channel deposits as the Bitterroot Valley widened downstream. Possible contributing factors to 
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the dewatering include surface water diversions, geomorphological changes that may separate 

the water table from the stream channel, lowering of the water table due to groundwater 

withdrawal, porous gravels that lose water to seek the level of the Bitterroot River, Lolo Creek 

responding to a lowered alluvial water level in the Bitterroot River valley, and the cumulative 

effect of climate change (Camela Carstaphen, personal communication, April 18, 2016).   

This study is focused in the area between Highway 93 and the Bitterroot River, where 

Lolo Creek has been observed to have little or no flows during the late summer periods. We 

carried out this study with the aim of delineating dewatering pathways of the area using electrical 

and seismic methods. Electrical techniques have been extensively applied to geologic, 

hydrogeologic and dam seepage studies (Nwokebuihe et al., 2017; Atakpo, 2009; Chambers et 

al., 2006; Kumar et al., 2012; Khalil et al., 2015). Seismic methods have been extensively used 

for mapping shallow fault zones and bedrock (Ivanov et al., 2006; Ronczka et al., 2017; Improta 

et al., 2010).  

2. Geology and Hydrogeology of the Study Area 

According to a study by John (2004), the Geology of Lolo Creek watershed can be 

divided between Lolo Hot Springs towards the town of Lolo and above Lolo Hot Springs to the 

south of Lolo Creek. Between the town of Lolo and Lolo Hot Springs, Precambrian Belt 

Supergroup rock composed of limestone, dolomite and non-calcareous Belt Series rocks of the 

Wallace and Ravalli formations dominate (John, 2004; Lewis, 1998; Larry et al., 2013). Above 

Lolo Hot Springs to the south of Lolo Creek, the Bitterroot Mountains are composed primarily of 

metamorphic rocks (Phyllites, schists, quartz and quartzites) resulting from the intrusion of 

Tertiary granitic plutons on older bedrock units during tens of millions of years (John, 2004; 

Larry et al., 2013; Boer, 2002). Development of compressive tectonic forces about 110 million 

years ago and subsequent relaxation of the rocks when the compressive forces died out (40 to 50 

million years ago) controlled the locations of areas down-dropped by faults relative to the 

surrounding mountains, which were filled by basin-fill deposits between 2 and 50 million years 

ago (John, 2004; Larry et al., 2013). 

In the lower Lolo Creek area, Precambrian Belt Supergroup rock (Yb) forms the 

mountains and also underlie the valleys (Figure 3). The metamorphic rock (Mylonite) defines the 
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Bitterroot Range Front (Larry et al., 2013). The valley floor is largely composed of 

unconsolidated alluvium, mostly sand and gravel but range in size from clay to boulders. 

Adjacent to the Lolo Creek flood plain are terrace deposits that form a narrow passageway 

towards the Bitterroot River (Chambers, 2016; Boer, 2002).  Generalized cross sections of 

geologic units based on interpretations of water-well logs show a sequence of Precambrian 

bedrock overlain by Tertiary and Quaternary basin fill, with coarser-grained material as channel 

deposits within the younger quaternary alluvial fill (Figure 4). Figure 5 shows the exposed 

Mylonite bedrock to the south of the study area. 

The principal aquifers in the Lolo Creek Watershed area occur in basin-fill deposits and 

fractured bedrock (Larry et al., 2013). Geologic units important to the hydrogeology of the Lolo-

Bitterroot area are given in Figure 6.  

 In the lower Lolo Creek area, unconsolidated alluvium associated with Lolo Creek and 

its tributaries form a nearly continuous unconfined basin-fill aquifer within 3 m of land surface 

to about 15 m below land surface. Coarse-grained basin fill deposits form deep-basin fill aquifers 

at depths greater than 15 m of land surface with multiple discontinuous layers of low-

permeability silt and clay locally confining water-bearing sand and gravel intervals. Fractures 

within Belt Supergroup form the bedrock aquifer (Larry et al., 2013). 

Recharge to the shallow basin aquifer occurs by infiltration of precipitation, stream losses 

and leakage occur from irrigation ditches. Recharge sources to the deep basin-fill aquifer include 

downward leakage from shallow basin-fill aquifer and mountain-front recharge (Larry et al., 

2013). Pumping test performed by the Montana Bureau of Mines and Geology (MBMG) on 

several wells drilled in shallow-basin fill, deep-basin fill and bedrock aquifers within lower Lolo 

Creek, suggests the deep-basin fill aquifer is in hydraulic connection with the bedrock aquifer 

but disconnected from the shallow aquifer (Ali Gebril, personal communication, April 24, 2017). 

Measured hydraulic conductivities and transmissivities for some wells in the study area are 

shown in Table 1.  
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3. Methods  

We conducted Electrical resistivity tomography (ERT), spontaneous potential (SP), 

multichannel analysis of surface waves (MASW) and seismic refraction tomography studies in 

the study area as shown in Figure 7. The theories behind these methods have been well discussed 

(Telford et al., 2010; Reynolds, 2011; Park et al, 1999).  

3.1 Electrical Resistivity Tomography (ERT) 

We acquired Electrical Resistivity Tomography (ERT) utilizing a Wenner electrode 

configuration in two stages during the summer of 2016. The first stage was for reconnaissance of 

the subsurface geology and structures. During the first stage, we measured resistivity profile P1 

(Figure 7). P1 is an East-West trending 2D ERT profile having a length of 360 m. Guided by the 

results of P1, we made a 3D resistivity survey of an area measuring 16,000 m2. In this second 

stage, we acquired nine parallel 2D resistivity profiles (S1-S9 in Figure 7) with each measuring 

200 m in length and 10 m intervals between profiles. We collected the data using a Syscal R2 

resistivity meter manufactured by IRIS instruments and measured the position of each electrode 

using a Garmin handheld Global Positioning System.  

We inverted the acquired 2D resistivity data for P1 using RES2DINV by Geotomo after 

inputting the surface elevations and applying appropriate inversion parameters. 2D apparent 

resistivity data sets of profiles S1-S9 were combined into a 3D data set and inverted in a 3D 

manner using RES3DINV (Geotomo Software, 2014). The ERT data were relatively good 

quality with RMS error of 3.0% after seven iterations for P1 and 3.24% after five iterations for 

the 3D inversion of the combined profiles S1-S9. 

3.2 Spontaneous Potential (SP) 

We acquired spontaneous potential (SP) data during the summer of 2016, using two 

saturated copper (II) sulfate non-polarizing electrodes and a high impedance voltmeter. The 128 

SP station locations are shown in Figure 7. The SP stations spacing was 10 m from west to east, 

and 10 m from north to south. The base (reference) electrode was kept fixed while the lead 

electrode was moved progressively across the surface area. Measured SP data were subjected to 

drift correction relative to the base station. We used the drift-corrected SP data to generate an SP 

contour map using Surfer 10 software by Golden Software.  
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3.3 Multichannel Analysis of Surface Waves (MASW) 

We collected Multichannel Analysis of Surface Waves (MASW) data in proximity to Well 

290586 and along ERT profile P1 in spring of 2017 (Figure 7). The seismic data was acquired 

using a 24 channel 8 Hz geophone array with 2 m spacing between geophones. A 9.07 kg sledge 

hammer was used as the seismic source at an offset of 10 m spacing from the first geophone. We 

measured the position of each profile using a Garmin handheld Global Positioning System.  

Profiles M1 to M6 were oriented in a North-South direction. MASW profiles (M1–M5) were 

acquired on 33 m, 100 m, 162 m, 225 m and 318 m marks along the West-East oriented ERT 

profile P1. The seismic data were analyzed using Surfseis3, a software developed by the Kansas 

Geological Survey. We generated a dispersion curve for each shot gather, assigned a surface 

location corresponding to the middle point of the receiver spread and inverted to give a 1D 

vertical shear wave velocity (Vs) and compressional wave (Vp) profile. 

3.3 Seismic Refraction Tomography  

We acquired refraction seismic tomography data along Lewis and Clark Drive in the 

summer of 2016. The Seismic data was acquired along a 288 m long East-West profile (Figure 7) 

using 144 geophone arrays (ninety-six 45 Hz and forty-eight 40 Hz geophones) with 2 m spacing 

between geophones. A 226.8 kg accelerated weight drop was used as the seismic source. 343 

seismic stations were occupied, each having 3 shot records per station. We recorded the position 

of each seismic station using a Trimble Geo 7x Global Positioning System. We used Vista 

software by Schlumberger for the first-break picking and performed velocity calculation and 

modelling of the seismic section with the software package Rayfract (version 3.35) by Intelligent 

Resources Inc. The final result has been presented using the software package Surfer 10 by 

Golden Software. 

4. Results and Discussion 

We have used the available lithologs for wells 290586, 67465, and 67523 (Figure 8) to 

facilitate interpretation of results obtained from the ERT, Seismic Refraction Tomography, and 

MASW surveys.  

The large length of ERT profile P1 (360 m) provided a good depth of investigation of 70 

m (Figure 9) and 34 m for the 3D resistivity profile (Figure 10). However, the wide electrode 
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spacing (10 m) resulted in low lateral and vertical resolution. ERT results show a high resistive 

top layer of 600-1200 Ωm corresponding to the shallow dry surface layer above the water table. 

We interpreted this to be a mixture of quaternary cemented sand and gravel. This layer is 

underlain by low resistive layers of sands, gravels and clay having resistivities between 400-600 

Ωm. Resistivity values decrease with depth, with variation in lateral and vertical resistivities 

suggesting that the properties of the basin-fill sediments is highly variable. Examination of 

resistivity distribution in P1 indicates a large horizontal discontinuity in resistivity layers. 

Matching between ERT profile P1 and well 290586 indicate that the low resistivity zone to the 

west (< 400 Ωm) corresponds to the Tertiary Mylonite bedrock at 27 m depth in well 290586 

(Figure 9). The bedrock was easy to drill through, highly fractured and has a high specific 

conductivity value (Camela Carstaphen, personal communication, April 24, 2017). The mylonite 

low resistivity zone is east dipping as described by Larry et al., (2013). From geological point of 

view, mylonite rocks result from recrystallization of mineral grains during rapid ductile 

deformation in a shear zone. Their polygonal to saturated grain boundaries differ from fine 

grained cataclastics, in which the grains have the sharp, angular shape characteristics of brittle 

fracturing (Twiss et al., 1992). Mylonite is characterized by low resistivity in the range of 50 – 

150 Ωm (Sun et al., 1997). We recognized an inferred fault zone on ERT profile P1 based on the 

high resistivity contrasts in the subsurface. We interpreted the areas between 240 m and 320 m 

on P1 as a seepage pathway, because SP anomalies within these areas show negative values of -

18 mV to -2 mV (Figure 9). Seepage infiltration locations are typically characterized by negative 

SP anomalies (Nwokebuihe et al., 2017; Revil 2013). The mylonite low resistivity zone is 

represented by a positive SP anomaly of + 2 mV to + 18 mV. The positive SP signature of 

Mylonite has been observed also by (Heinson et al., 1999; Wishart et al., 2008).    

The 3D resistivity inversion model (Figure 10) shows a high resistivity surface at the 

upper resistivity slice of 0-5 m. A low resistivity zone (< 400 Ωm), labelled as “A” has an N-S 

extension and vertically extends from a depth of 10.8 m to 33.7 m. We interpreted this low 

resistivity zone as highly fractured Mylonite zone.  

The high hydraulic conductivity values of wells 290586 and 67523 in the study area 

(Table 1) support the idea of highly fractured and coarse grain aquifer. We observed that the 

water level in well 67523 (located about 300 m from the Creek) responds to the incremental 
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stream flows of Lolo Creek (Figure 11). This suggests that the well is hydraulically connected to 

the Creek and lends credence to the highly fractured and coarse grain aquifer of the area.  

MASW M6 (Figure 12 (f)) located about 45m north of Well 290586 show a depth to 

bedrock of about 27 m (943 m elevation). Also, lithologs from Well 290586 (Figure 8) show 

depth to top of bedrock at 26.8 m (943.2m elevation). This close match between both values 

indicate the suitability of the MASW as a non-invasive method to delineate depth to bedrock 

with high accuracy. We observe the bedrock to have an S-wave velocity (Vs) between 800-

990m/s and P-wave velocity (Vp) between 2050-2105m/s (Figure 12 (f)). Depth to bedrock in 

M1, M2, M3 and M4 is 34.8m, 35.5m, 36.8m and 37.5m respectively. M5 (Figure 12 (e)) shows 

a low velocity subsurface (Vs of < 600 m/s and Vp < 1800 m/s) to depths of about 39 m, which 

we interpreted to be fractured bedrock. This fractured bedrock can serve as a conduit of surface 

water from the Creek to the bedrock aquifer.  

Seismic refraction tomography results show an average depth to bedrock of 27 m (940 m 

elevation) along the profile (Figure 13). Velocity of the top of bedrock is approximately 2200 

m/s. Well 67465 located about 50 m west of the seismic profile provided information about the 

lithology. We interpreted the first 5 m to be a mixture of clay, sand, and gravel saturated with 

water, while 5-27 m was interpreted to be a mixture of water saturated sand and gravel.  

5 Conclusions 

Electrical Resistivity Tomography (ERT), Spontaneous Potential (SP), Multichannel 

Analysis of Surface Waves (MASW), and seismic refraction surveys were carried out in lower 

Lolo Creek to investigate dewatering pathways and to provide valuable information on the 

subsurface geology. 2D and 3D resistivity results show a resistive shallow subsurface underlain 

by a low resistivity subsurface. Resistivity of the subsurface decreased with depth. We observed 

that the contact between basin fill sediments and bedrock could not be resolved by electrical 

resistivity. MASW results (M1 – M4) show the bedrock close to Highway 93 has a depth of 

about 35 m while M6 and lithologs from 290586 show a depth of about 27 m close to Lolo 

Creek. Seismic refraction tomography results along the East-West Lewis and Clark Drive show 

depth to bedrock at 27 m. We observed the bedrock to have a low resistivity (180-485 Ωm). This 

bedrock is interpreted as mylonite. A geologic fault was inferred along P1. Spontaneous 

Potential measurements around the interpreted fault show high negative anomalies, indicating a 
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zone of infiltration. M5, which shows the 1D depth velocity profile (of 318 m mark on P1), 

indicates a low velocity subsurface which we interpreted to be fractured bedrock.  The fractured 

shallow Mylonite bedrock and associated fault work as a seepage path from the shallow to deep 

aquifer and could possibly account for dewatering of the Creek during low flow periods in the 

late-summer. The high hydraulic conductivity values of wells 290586 and 67523 in the study 

area (Table 1) support the idea of highly fractured and coarse grain aquifer. The response of 

water level in well 67523 to incremental discharge of Lolo Creek suggests the area is in 

hydraulic connection with the stream.  
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Figure Captions 
Figure 1.  Lolo Creek Watershed, southwest of Missoula, Montana. Lolo Creek flows from west to East, 
draining into the Bitterroot River. 

Figure 2. Lolo Creek discharge below Highway 93, Lolo, Montana. (a) Discharge recorded from February 
to early December, 2016, showing little to no flow from late-July to early October. (b) Lolo Creek channel 
in August, 2016. (c) Same channel, dry, August, 2016. Lolo Creek discharge data are from MBMG’s 
Surface Water Assessment and Monitoring Program database. (Photo credit: Camela Carstaphen, MBMG).     

Figure 3. Geologic map of study area (after Lewis 1998). Lines of cross-sections A-A’ (Fig. 4) and B-B’ (Fig 
5) are shown. 

Figure 4. Geologic cross section A-A’ based on interpretations of water-well logs 

Figure 5. Geologic cross section B-B’ obtained from well logs showing Quaternary (Qsc) and Tertiary 
basin fill sediments (Ts) underlain by Tertiary and Cretaceous igneous rocks. Tertiary mylonite defines 
the Bitterroot Range Front (after Larry et al., 2013).  

Figure 6. Geologic units important to the hydrogeology of the Lolo-Bitterrot Area (after Larry et al., 
2013) 

Figure 7. Data acquisition map of study area where Lolo Creek has been observed to have gone 
completely dry during the late summer periods. Lolo Creek flows from west to East. The satellite image 
was obtained from Google Earth. Image was taken by Google on 07/07/2014.  

Figure 8. Lithologs from Well 290586, 67465 and 67465. Well 290586 was advanced into bedrock at a 
depth of 27m. Data are from MBMG’s Groundwater Information Center (GWIC) database. 
 
Figure 9. 2D ERT Profile P1 with MASW positions and SP anomaly map. Well 290586 drilled to 
bedrock at about 226 m to the south of ERT profile is shown. Data from well 290586 are from MBMG’s 
Groundwater Information Center (GWIC) database. 

Figure 10.  3D Inversion model obtained by combining data sets of ERT profiles S1 – S9 showing depth 
slices; 0-5 m, 5-10.8 m, 10.8-17.4 m, 17.4-25.0 m, and 25-33.7 m. Location of Well 67465 and 
corresponding lithologs are shown. Data for Well 67465 is from MBMG’s Groundwater Information 
Center (GWIC) database.  

Figure 11. Static water level for Well 67523 responds to the incremental stream flow of  
Lolo Creek. Periods shown are from August 4th to December 12th, 2016. Data are from MBMG’s 
Groundwater Information Center (GWIC) database. 

Figure 12. MASW results showing 1D shear wave (VS) and compressional wave (Vp) velocity profiles. 
(a) M1 acquired at 33 m mark along P1. (b) M2 acquired at 100 m mark along P1. (c) M3 acquired at 162 
m mark along P1.  (d) M4 acquired at 225 m mark along P1. (d) M5 acquired at 318 m mark along P1. (d) 
M6 acquired in close proximity to Well 290586. Green marker on figure indicate interpreted depth to top 
of rock. M5 shows a low velocity subsurface compared to M1, M2, M3, M4, and M6.  

Figure 13. Velocity profile obtained from refraction seismic tomography using wavepath eikonal 
traveltime inversion (WET). Well 67465 located about 50 m west of the seismic profile is shown. Data 
for well 67465 are from MBMG’s Groundwater Information Center (GWIC) database.  
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Table 1. Hydraulic conductivities and transmissivities for some wells in Lolo, Montana. 

Well 
Number 

Saturated 
Thickness 
(m) 

Transmissivity 
(m2/d) 

Hydraulic 
conductivity 
(m/d) 

290661 24 24521 1, 006 
67523 11 22770 2,134 
290586 20 39847 2,011 

              Source: Ali Gebril, MBMG 
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Illustrations  
 

 
Figure 1.  Lolo Creek Watershed, southwest of Missoula, Montana. Lolo Creek flows from west to East, 
draining into the Bitterroot River. 
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Figure 2. Lolo Creek discharge below Highway 93, Lolo, Montana. (a) Discharge recorded from February 
to early December, 2016, showing little to no flow from late-July to early October. (b) Lolo Creek channel 
in early August, 2016. (c) Same channel, dry, in late August, 2016. Lolo Creek discharge data are from 
MBMG’s Surface Water Assessment and Monitoring Program database. (Photo credit: Camela Carstaphen, 
MBMG).     
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Figure 3. Geologic map of study area (after Lewis 1998). Lines of cross-sections A-A’ (Fig. 4) and B-B’ 
(Fig5) are shown. 
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Figure 4. Geologic cross section A-A’ based on interpretations of water-well logs 
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Figure 5. Geologic cross section B-B’ obtained from well logs showing Quaternary (Qsc) and Tertiary 
basin fill sediments (Ts) underlain by Tertiary and Cretaceous igneous rocks. Tertiary mylonite defines 
the Bitterroot Range Front (after Larry et al., 2013).  
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Period Geologic 
Units 

Characteristics Hydrologic Units 

Quaternary Sediments – 
coarse 
grained/fine 
grained 

Coarse-grained: Light to medium brown 
and grayish brown sand and gravel; some 
silt and clay; along active stream valleys 
and areas of sheetwash; contains minor 
amount of colluvium; thicknesses average 
50 ft, but reach 250 ft in paleochannels in 
the Clark Fork River valley; can yield 
significant quantities of groundwater. 

Mostly shallow basin-fill 
aquifer, deep basin-fill aquifer 
where thicker than 75 ft 
 

Fine-grained: Grayish brown, light to 
dark yellowish brown gravelly silt, light 
pink silt and sand, and silty and/or clayey 
gravel; thicknesses range from 5 to 140 
ft; generally does not yield water. 

Non-aquifer basin-fill unit 

 unconformity  
Tertiary Sedimentary 

rocks: coarse 
grained and 
fine grained 

Yellowish brown to light gray pebbly 
sandstone, pebble and cobble 
conglomerate; uncemented to moderately 
cemented; light tan to gray claystone and 
siltstone; rare carbonaceous shale and 
lignite; sandstone and conglomerate yield 
adequate supplies of water to wells for 
household use. 

Mostly deep basin-fill aquifer, 
shallow basin-fill aquifer where 
within 75 ft of land surface 

Mylonite East- and southeast-dipping zone of well 
foliated, erosionally resistant 
metamorphic rocks that define the 
Bitterroot Range front. 

Bedrock 

Upper 
Cretaceous to 
Eocene 

Igneous White to pink, medium- to coarse-grained 
granular and porphyritic intrusive rocks; 
lesser amounts of volcanic rocks; where 
fractured, the rocks can provide adequate 
supplies of water for household use. 

Bedrock 

  unconformity  
Paleozoic Various 

sedimentary 
formations 

Sandstone, quartzite, shale, limestone, 
and dolomite of various formations; the 
rocks provide inadequate to minimally 
adequate water to wells for household 
uses. 

Bedrock 

  unconformity  
Proterozoic Belt 

Supergroup 
Metamorphosed sandstone, shale, 
siltstone, limestone, and dolomite of 
various formations; where fractured, the 
rocks can provide adequate supplies of 
water for household use. 

Bedrock 

Figure 6. Geologic units important to the hydrogeology of the Lolo-Bitterrot Area (after Larry et al., 
2013) 
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Figure 7. Data acquisition map of study area where Lolo Creek has been observed to have gone 
completely dry during the late summer periods. Lolo Creek flows from west to East. The satellite image 
was obtained from Google Earth. Image was taken by Google on 07/07/2014.  
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Figure 8. Lithologs from Well 290586, 67465 and 67465. Well 290586 was advanced into bedrock at a 
depth of 27m. Data are from MBMG’s Groundwater Information Center (GWIC) database. 
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Figure 9. 2D ERT Profile P1 with MASW positions and SP anomaly map. Well 290586 drilled to 
bedrock at about 226 m to the south of ERT profile is shown. Data from well 290586 are from MBMG’s 
Groundwater Information Center (GWIC) database. 
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Figure 10.  3D Inversion model obtained by combining data sets of ERT profiles S1 – S9 showing depth 
slices; 0-5 m, 5-10.8 m, 10.8-17.4 m, 17.4-25.0 m, and 25-33.7 m. Location of Well 67465 and 
corresponding lithologs are shown. Data for Well 67465 is from MBMG’s Groundwater Information 
Center (GWIC) database.  
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Figure 11. Static water level for Well 67523 responds to the incremental stream flow of Lolo Creek. Periods 
shown are from August 4th to December 12th, 2016. Data are from MBMG’s Groundwater Information 
Center (GWIC) database. 
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Figure 12. MASW results showing 1D shear wave (VS) and compressional wave (Vp) velocity profiles. (a) M1 acquired at 33 m mark along P1. 
(b) M2 acquired at 100 m mark along P1. (c) M3 acquired at 162 m mark along P1.  (d) M4 acquired at 225 m mark along P1. (d) M5 acquired at 
318 m mark along P1. (d) M6 acquired in close proximity to Well 290586. Green marker on figure indicate interpreted depth to top of rock. M5 
shows a low velocity subsurface compared to M1, M2, M3, M4, and M6.  

M3    No. of Iterations =  5   RMS=4.4

M4    No. of Iterations =  8   RMS=4.98 M5    No. of Iterations =  6   RMS=4.86 M6    No. of Iterations =  5   RMS=5.0
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Figure 13. Velocity profile obtained from refraction seismic tomography using wavepath eikonal 
traveltime inversion (WET). Well 67465 located about 50 m west of the seismic profile is shown. Data 
for well 67465 are from MBMG’s Groundwater Information Center (GWIC) database.  
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