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ABSTRACT 

 

Geosynthetic reinforced soil walls have been widely used for earth retention and stabilization in 

many geotechnical applications. In the traditional design of geosynthetic reinforced soil walls, 

Allowable Stress Design (ASD) is used to address the uncertainties. However, it cannot explicitly 

consider the uncertainties in a systematic way in the design process; especially geotechnical 

uncertainties are typically at high levels and problem-specific. Traditional methods usually result 

in over-conservativeness, inconsistence, and empiricism in the design practice. Recently there has 

been a trend of the application of reliability methods for design of geosynthetic reinforced soil 

walls to explicitly address uncertainties in the design process and account for the actual safety and 

reliability level of a given design. In this paper, a series of reliability analyses of geosynthetic 

reinforced soil walls are performed, results from which can provide a useful decision making tool 

for selection of suitable design of geosynthetic reinforced soil walls based on target reliability 

levels. A case study is presented to demonstrate the significance of the proposed framework. 

 

 

INTRODUCTION 

 

Geosynthetic reinforced earth structures are implemented in geotechnical engineering projects all 

around the world due to their internally supported systems and their ductile performance against 

various loading and foundation deformation.  The “geosynthetics” is a generic term that includes 

most flexible polymeric materials in geotechnical engineering, such as geotextiles, geogrids, 

geomembranes, geofoam and geocells (Elias et al. 2001). This type of structures has been 

increasingly used for many geotechnical applications such as highway mechanical stabilized earth 

walls, bridge abutments, ramps, overpasses, column-supported embankment, and roadway 

subgrade stabilization (Allen et al. 2002; Sayed et al. 2008; Huang et al. 2011; Wu et al. 2013; Liu 

2016). While geosynthetic reinforced soil walls are widely employed in geotechnical engineering, 
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the performance prediction from a model for geosynthetic reinforced soil wall design can be highly 

uncertain because of the difficulties in accurately determining geotechnical and loading parameters 

in the design. Failure to consider these uncertainties could lead to either expensive over-design or 

under-design, which may prolong the construction period and fail to meet the performance 

requirements. 

 

In the traditional design of geosynthetic reinforced soil walls, Allowable Stress Design (ASD) is 

used to address the uncertainties, which adopts an experienced calibrated factor of safety in the 

design process. However, the deterministic method relies significantly on engineering judgment 

and does not explicitly considered uncertainties; especially the geotechnical uncertainties are 

typically at high level and site-specific. ASD method usually results in over-conservativeness, 

inconsistence, and empiricism in the design process. In recent years, reliability-based methods 

have been shown as an effective approach for design of geosynthetic reinforced soil structures 

under various failure modes and loading conditions using probabilistic methods (Sayed et al. 2008; 

Yang et al. 2010; Miyata and Bathurst 2012; Basha and Babu 2014; Chen et al. 2016). In this 

paper, the effects of uncertainties associated with geotechnical and loading parameters on the 

performance of geosynthetic reinforced retaining walls are evaluated using the advanced reliability 

method for assessing failure probabilities under various failure modes.  This reliability approach 

accounts for the stochastic nature of geotechnical parameters and provides useful information on 

the level of design performance under uncertainty. A case study for geosynthetic reinforced soil 

walls is presented to demonstrate the effectiveness of the proposed framework. The proposed 

reliability approach provides a useful tool for the engineer to make a more informed design 

decision based on the target reliability levels. 

 

 

DETERMINISTIC MODEL OF GEOSYNTHETIC REINFORCED SOIL WALLS 

 

There are mainly two types of stability requirements for the deterministic analysis of geosynthetic 

reinforced soil walls, including the external stability and internal stability. External stability 

concerns about the stability of the entire rereinforced soil walls, including the checking for the 

possible failure modes such as sliding, overturning/capsizing, and bearing capacity failures. The 

internal stability concerns about the stability of the reinforced materials, including the checking 

for the possible failure modes due to pullout and rupture. The limit state function gi(X) can be 

derived to evaluate the performance of geosynthetic reinforced retaining walls against each failure 

modes for external and internal stability. These limit functions are for the design of geosynthetic 

reinforced soil walls in uniform granular soil with zero effective cohesion. They are summarized 

in the Eq. (1) to Eq. (5) based on the resisting forces and driving forces for each failure modes 

(Sayed et al. 2008; Das 2014; Chen et al. 2016). 

 

Sliding Failure 
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Sliding occurs when the friction between the subgrade and the retaining wall is not sufficient 

enough to compensate for the external load, which causes the retaining wall to slide.  The limit 

state function against the sliding failure is represented as: 

 

1 0 0( ) ( ) ( 2 ) / 2ag X L H q k H q H     
                                         (1) 

where μ is the coefficient of friction, L represents the reinforced length of the geosynthetic strip, 

the unit weights of the backfill, reinforced fill and foundation soil are assumed to be the same value 

and represented by , H is the height of the reinforced soil wall, q0 represents the surcharge for the 

backfill, ka represents the active coefficient of the earth pressure for the reinforcement fill based 

on the Rankine’s theory, and N is the bearing capacity factor. 

 

Overturning Failure 

 

Overturning or capsizing occurs when the soil pressures behind the wall are great enough to offset 

the retaining wall based on the wall toe (Chen et al. 2016).  The limit state function for overturning 

is represented as: 

 2 2

2 0 0( ) ( )
2 3 2

a

L H H
g X H q q k




 
    

                                          (2) 

Bearing Capacity Failure 

 

Bearing capacity failure occurs when the subgrade soil beneath the reinforced soil wall fails under 

shear due to overloading or insufficiently constructed subgrades (Das 2014).  The limit state 

function for bearing capacity is represented as: 

 

3 0( ) 0.5 ( )g X LN H q   
                                               (3) 

Pullout Failure 

 

Pullout or uplift failure occurs when the reinforced materials do not have sufficient length or do 

not contain the proper amount of friction, which causes failure by surface fractures.  The limit state 

function for pullout/anti-uplift is represented as:  

 

4 0( ) 2 tan ( ) ( )    i vi a ig X z q L k V
                                   (4) 

where δ is the friction angle for soil reinforcement interface, which is equal to 2/3 of the soil 

friction angle φ (Das 2014), zi represents the depth of the ith reinforcement level from the top of 
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the wall, σvi is the vertical soil stress at the ith reinforcement level, and Vi is the effective height of 

the soil resisted by the ith reinforcement strip. 

 

Rupture Failure 

 

Rupturing occurs when the strength of the reinforcement material is not enough for the developed 

tensile stress, which causes failure by surface fractures and the reinforcement strips to be torn apart 

(Chen et al. 2016).  The limit state function for rupture is represented as: 

 

5( ) ( )  vi a ig X T k V
                                                     (5) 

where T is the tensile strength of the reinforcement strip. 

 

      

EXAMPLE APPLICATION 

 

A design example is presented for the reliability analysis of geosynthetic reinforced soil walls. In 

this paper, the first order reliability method (FORM) is used for the reliability analysis, which is 

an effective method and provides accurate failure probability results comparable to Monte Carlo 

simulations for either explicit or implicit limit state functions (Ang and Tang 1984; Phoon 2004; 

Low and Tang 2007). The geosynthetic reinforced retaining wall  in the granular soil used in this 

analysis is shown schematically in Figure 1. The height of reinforced soil wall (H) varies from 6 

to 10 m and the reinforced length of the geosynthetic strip (L) varies from 5 to 10 m. The backfill, 

foundation, and reinforced soil are assumed with the same geotechnical properties with zero 

cohesion, and the mean values for friction angle and unit weight are φ = 35, and γ = 18 kN/m3 

respectively. The tensile strength of the reinforcement (T) has a mean value of 50 kN/m2. The 

vertical spacing between the reinforcement level is set as 0.5 m. Surcharge is a uniform load 

applied along the horizontal surface of the backfill with a mean value of 20 kPa. 

 

In this analysis, four parameters are modeled as random variables including geotechnical and 

loading parameters. The mean value and coefficient of variations (COV) for these parameters are 

summarized in Table 1. The COV for the friction angle (φ) of soils is assumed as 10% (Phoon and 

Kulhawy 1999).  The COV for unit weight (γ) of soils is assumed as 7% (Goh and Kulhawy 2005; 

Zevgolis et al. 2010). The COV for the tensile strength of the reinforcement (T) is assumed as 10% 

considering the chemical and biological degradation, installation damage and creep effects (Sayed 

et al. 2008) and the COV of surcharge (q0) applied at the surface of the backfill is assumed as 15%.   

Based on the statistics of uncertain parameters presented in Table 1, FORM is used as a means to 

compute the failure probability for a given set of combination of H and L. Results from the 

reliability analysis can be observed in Figure 2 to Figure 6 for each of the five failure modes, 

including sliding, overturning, bearing capacity, pullout and rupture. Each of these figures presents 
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the probability of failure for each failure mode versus two parameters in the design, the height of 

the retaining wall H and the length of the reinforcement strip L. In this analysis, the height of the 

wall varies from 6 to 10 m with 1 m increment and reinforcement length L varies from 5 to 10 m 

with 1 m increment.   

 

 
 

Figure 1. Schematic of Geotextile Reinforced Soil Wall 

 

 

Table 1. Statistics of uncertain parameters 

 

Parameter Mean COV (%) 

Friction Angle (φ) 35° 10 

Unit Weight () 18 kN/m3 7 

Tensile Strength of Reinforcement (T) 50 kN/m 10 

Surcharge (q0) 20 kPa 15 

 

Figure 2 depicts the relationship of retaining wall height H and reinforcement length L versus the 

probability of failure for sliding. As can be observed, the failure probability decreases with 

lessening wall heights and increasing reinforcement lengths. The greater reinforcement lengths 

and reduced wall heights produce a higher level of stability and thus lower the probability of 
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failure. The probability of failure for overturning or capsizing can be viewed in Figure 3.  As can 

be observed, the failure probability for the overturning generally decreases with increasing 

reinforcement lengths and decreasing retaining wall heights.  However, the effect of increasing the 

reinforcement length has the most significant improvement for the wall height of 10 m. With the 

deceasing wall height, the effect becomes less significant. For the height of 6 m, the effect of 

increasing the reinforcement length is negligible since the failure probability is already very small. 

Also it can be observed, for a given height, when the length of the reinforcement reaches certain 

length (e.g., 8 m for H = 10 m), the failure probability somewhat stabilizes, which also indicates 

the effects of increasing too much reinforcement length has very limited effects on the failure 

probability.  Therefore, any design based on reliability analysis could limit the length of the 

reinforcement strip to save on material costs. 

 

Figure 4 represents the probability of failure for bearing capacity.  The failure probability decreases 

with the increased reinforcement lengths and decreased wall heights.  This is due to the fact that 

increased reinforcement length strengthens the soil, making it less prone to bearing capacity 

failure. Greater height also increases the loads acting on bearing soil, making a structure more 

prone to bearing capacity failure.    

 

Pullout or anti-uplift failure depends on the effective height of the soil resisted by the 

reinforcement layer (Vi) which is set as 0.5 m based on the vertical spacing between reinforcement 

levels. It should be noted that for the given combination of wall height and reinforcement length, 

the failure probability is calculated for all the reinforcement levels and the maximum failure 

probability is presented in Figure 5. As can be observed in Figure 5, for the same reinforcement 

length, the greater height indicates more failure probability. However, for the same wall height, 

failure probabilities all reach maximum when the reinforcement length L = 6 m. For the failure 

probability against rupture, since the reinforcement length is not considered in the limit state 

equation for rupture failure, the failure probability is consistent with different reinforcement 

lengths. In contrast, as the height of the reinforced soil wall is reduced, the probability of rupture 

decreases. The soil friction angle has significant effects on the rupture failure probabilities. 

Reducing the soil friction angle can significantly increase the probability for the rupture failure 

while increasing the soil friction angle can help stabilize against the rupture. 

 

By comparison of the failure probabilities for different failure modes, it can be found that the 

sliding controls the external stability requirements while the rupture controls the internal stability 

requirements. The reduced wall height and increased reinforcement length generally indicate a 

more safety with smaller failure probability for every failure modes other than rupture. Based on  
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Figure 2. Probability of failure versus differing wall heights and reinforcement lengths for 

sliding failure 

 

 
Figure 3. Probability of failure versus differing wall heights and reinforcement lengths for 

overturning failure 
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Figure 4. Probability of failure versus differing wall heights and reinforcement lengths for 

bearing capacity failure 

 

 
Figure 5. Probability of failure versus differing wall heights and reinforcement lengths for 

pullout failure 
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the results from this paper, a more informed design decision can be made by incorporating the 

target reliability requirements. 

 

 

CONCLUSION 

 

Uncertainties in the geotechnical and loading parameters have significant effects on the design of 

geosynthetic reinforced soil walls. In this paper, a series of reliability analyses are performed for 

geosynthetic reinforced soil wall considering various uncertainties in the design process.  An 

example application is conducted for a geosynthetic reinforced retaining wall with granular fills to 

demonstrate the efficiency and effectiveness of the proposed reliability method considering 

various internal and external failure modes. Results show that the probability of failure decreases 

with reduced wall heights and increased reinforcement lengths for every scenario other than 

rupture. This is due to the fact that more stability is induced with greater reinforcement length 

throughout the structure and less load imposed from the reinforced backfill. The results from this 

study can be helpful for the engineers to make a more informed design decision based on target 

reliability requirements. 
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