
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

Conceptual model builder Conceptual model builder

Chia-Yang Lin

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Lin, Chia-Yang, "Conceptual model builder" (2004). Theses Digitization Project. 2708.
https://scholarworks.lib.csusb.edu/etd-project/2708

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2708&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2708?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2708&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

CONCEPTUAL MODEL BUILDER

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Chia-Yang Lin

March 2004

CONCEPTUAL MODEL BUILDER

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Chia-Yang Lin

March 2004

Approved by:

© 2004 Chia-Yang Lin

ABSTRACT

Whenever one designs a new database system, an

Entity-Relationship Diagram (ER diagram) is always needed

to present the structure of this database. Using the

graphically well-arranged ER Diagram helps you to easily

understand the entities, attributes, domains,, primary

keys, foreign keys, constraints, and relationships inside

a database.

Conceptual Model Builder (CMB) is a project aimed at

offering a Java-based conceptual diagram tool in several

diagrammatic notations. It will support a user-friendly

graphic interface. Since object-modeling methodologies

such as Universal Modeling Language and Object Modeling

techniques are popular, CMB will provide UML-style diagram.

A user can switch among these different diagrams, or

customize the conceptual diagram notations. The current

CMB version allows a conceptual model with about twenty

entities and their relationship diagrams.

This data-modeling tool is an ideal choice for

companies and developers.

iii

ACKNOWLEDGMENTS

One of the great pleasures of writing this document

is acknowledging the efforts of these people who helped me

during the proj ect development.

Dr. Josephine Mendoza, my advisor, her precious

assistance and advice on both program design and

documentation are the key to the success of this project.

Dr. David Turner and Dr. George Georgiou: my

committee members. They provide the valuable assistance.

Mr. Ken Han, his advice and help, especially on

operating system installation facilitated the smooth

development of the project.

Joseph and John provided their aid on system testing

and documentation review.

My parents for providing full financial aid, without

them this project cannot be finished on time.

The support of the National Science Foundation under

award 9810708 is also gratefully acknowledged.

ia

iv

TABLE OF CONTENTS

ABSTRACT... iii

ACKNOWLEDGMENTS iv

LIST OF FIGURES.. ix

CHAPTER ONE: SOFTWARE REQUIREMENTS SPECIFICATION

1.1 Introduction...... 1

1.1.1 What is a Graphic Conceptual
Model? 1

1.1.2 Why we Need a New Tool? 2

1.2 Purpose of the Project........................ 5

1.3 Significance of the Project.................... 6

1.4 System Requirements 6

1.5 Limitations . ,................................... 7

1.6 Definition of Terms...................... 8

1.7 Organization of the Project................... 9

CHAPTER TWO: SOFTWARE DESIGN

2.1 Introduction................................... 10

2.2 User Interface Component...................... 11

2.3 Diagram Engine Component 13

2.4 Notation Data Component........ 14

2.5 Script and Output Component........ 15

2.6 The Network Component.............. '.......... 15

2.7 Model-View-Controller 16

2.8 The Detail Design.............................. 18

2.8.1 CmbMenu Class 18

v

192.8.2 TableObject Class

2.8.3 DatalO Class........................... 22

2.8.4 Open Class.............................. 22

2.8.5 Save Class.............................. 23

2.8.6 InsertTable Class 26

2.8.7 InsertRelation Class 26

2.9 Summary.. 2 6

CHAPTER THREE: SOFTWARE QUALITY ASSURANCE ■

3.1 Introduction................................... 28

3.2 Unit Test Plan................................. 28

3.3 Integration Test Plan......................... 3 0

3.4 System Test Plan............................... 32

3.5 Summary.. 32

CHAPTER FOUR: MAINTENANCE

4.1 Introduction................................... 34

4.2 Model Data Maintenance........................ 34

4.3 The Graphic Engine Maintenance 35

4.4 User Interface Maintenance.................... 3 6

4.4.1 Main Menu............................... 3 6

4.4.2 Save/Load............................... 3 7

4.4.3 South Menu.............................. 3 7

4.4.4 Tree.................................... 37

4.4.5 The Model View.......................... 3 7

4.5 Network Interface 38

4.6 Summary... 41

vi

CHAPTER FIVE: USERS MANUAL

5.1 The Main Menu.................................. 42

5.2 The Model View................................. 43

5.3 The South Submenu.............................. 44

5.4 The File Submenu............................... 46

5.4.1 Login......................... 46

5.4.2 Save.................................... 46

5.4.3 Open.................................... 47

5.4.4 Print.... 48

5.4.5 Page Setup............................. 4 8

5.5 The Table Submenu.............................. 49

5.5.1 Entities................................ 49

5.5.2 Attributes.............................. 50

5.6 The Tool Submenu............................... 51

5.6.1 Setup Font...................... 51

5.6.2 Options................................. 52

5.7 The Connection Submenu......................... 52

5.7.1 Server.................................. 53

5.7.2 Client.................................. 53

CHAPTER SIX: CONCLUSIONS

6.1 Introduction................................... 55

6.2 Future Design.................................. 56

6.2.1 Extend Model Views 56

6.2.2 Improve Menu Functions................ 56

vii

6.2.3 Improve the Print Preview
Features

6.2.4 Add More Managing Tools for
Network Component 57

6.2.5 Make Graphic User Interface More
Friendly................................ 57

6.3 Summary......... 57

APPENDIX: PROJECT SOURCE CODES 59

REFERENCES... 61

56

viii

LIST OF FIGURES

Figure 1. Phases of Database Design 1

Figure 2 . A Example of ER-Diagram.................... 2

Figure 3. Alternative Notations, Entity Types,
Attributes, and Relationships 3

Figure 4. Cardinality Ratios and (Min, Max)
Notations. Several Variations of
Displaying Specializations/
Generalizations 4

Figure 5. Alternative Specializations/
Generalizations Notations 5

Figure 6. User Interface Component 11

Figure 7. Model-View-Controller Architecture 17

Figure 8. Mapping CMB to MVC.......................... 18

Figure 9. CmbMenu Class 19

Figure 10. TableObject Class 20

Figure 11. TableObject Class 21

Figure 12. DatalO Class 22

Figure 13 . Open Class.................................. 23

Figure 14. Save Class................................... 23

Figure 15. InsertTable Class 24

Figure 16. InsertRelation Class 25

Figure 17. A Sample of Unit Test...................... 29

Figure 18. The Unit Test List........................... 30

Figure 19. The Integration Test List................... 31

Figure 20. The System Test List......................... 32

Figure 21. The Major Model Data Structure.............. 34

ix

Figure 22. The Graphic Engine

Figure 23. Main Menu

Figure 24. One of Model View

Figure 25. Another Model View

Figure 26. The Metal Look And Feel (Part 1)

Figure 27. The Metal Look And Feel (Part 2)

Figure 28. The Metal Look And Feel (Part 3)

Figure 29. The South Menu Bar

Figure 30. Login Interface

Figure 31. Save Interface

Figure 32. Load Interface

Figure 33. Print Interface........................... . .

Figure 34. Page Setup Interface

Figure 35. Entities Interface

Figure 36. Attributes Interface

Figure 37. Setup Font Interface

Figure 38. Option Interface

Figure 39. Server Interface

Figure 40. Client Interface

36

42

43

44

44

45

45

46

46

47

47

48

49

50

51

52

52

53

54

x

CHAPTER ONE

SOFTWARE REQUIREMENTS SPECIFICATION

1.1 Introduction

1.1.1 What is a Graphic Conceptual Model?

As illustrated in Figure 1, conceptual modeling is an

important phase in designing a successful database. [1]

Application Programs Internal Schema.

Figure 1. Phases of Database Design

1

In conceptual modeling, a diagram can be used to

represent the overall logical structure of the database.

For example, the E-R (entity-relationship) diagram is a

data modeling technique that creates a graphical

representation of the entities and the relationships

between entities within an information system.

Figure 2. A Example of ER-Diagram

1.1.2 Why we Need a New Tool?

Several of the conceptual modeling tools have been

developed to facilitate conceptual modeling designs. The

most popular are ER/Studio, ERwin, Oracle Designer,

Visio2000 and PowerDesigner. Table 1 compares these

products.

However, these products have common weaknesses.

First, these products only provide "one style" of

2

notation. There are different notations for representing

an entity-relationship conceptual model.

Figures 3, 4, and 5 show different notations for

entity types/classes, attributes, relationships, and

specializations notation/generalizations.

1
i

Entity type/class symbols
z-- \

E
___ z

iiE

2

3

4

Attribute symbols * >39 11 z® 111

iRelationship symbols

Notations for attaching attributes to entities and

how detailed the information is. Figure 3 (iii) and

(iv) are popular in 00A methodologies and in some

case tools.

Figure 3. Alternative Notations, Entity Types, Attributes

and Relationships

3

There are also various types to demonstration

relationships as well.

Figure 4(a) shows various notations for representing

the cardinality ratio of binary relationships. Figure 4(b)

shows several variations for displaying structural (min,

max) constraints.

Second, for family users or students, the prices of

the products are too expensive (See Table 1).

Figure 4. Cardinality Ratios and (Min, Max) Notations.

Several Variations of Displaying Specializations/

Generalizations

Third, some products are too complex or not

user-friendly. Take ER/Studio as an example. It provides

4

multi-level designs, cross-project and reusable models

which are only suited for enterprise users.

Fourth, some products can only be used on certain

platforms.

Figure 5. Alternative Specializations/Generalizations

Notations

1.2 Purpose of the Project

This master project "Conceptual Model Builder" (CMB)

will offer a Java-based conceptual diagram tool in several

diagrammatic notations. It also will support a

user-friendly graphic interface.

Since object-modeling methodologies such as UML

(Universal Modeling Language) and OMT (Object Modeling

Technique) are popular, CMB will provide UML-style

5

diagram. A user can switch among these different diagrams,

or customize the conceptual diagram notations. A script

generator which creates SQL statements for table

definitions will also be available.

1.3 Significance of the Project

This project will benefit students in database design

classes, professors who teach database system, and

database programmers and consultants.

This tool can act as an excellent launching pad for

students who desire advancement through database design.

It is very simple to use and the help document is easy

enough to understand.

1.4 System Requirements

This section lists the hardware and software

requirements for installing CMB:

1. Hardware requirements:

• 64 MB RAM (128 recommended)

• 40 MB hard disk space (80 recommended)

• Pentium, Celeron, AMD or Cyrix processor

• 1024 x 768 Screen Resolution

6

2

3

Operating system requirements:

CMB requires the following minimum operating system

versions. Some Java Virtual Machines (JVMs) and web

servers have more stringent requirements.

• Windows 98/ME/NT/2000/XP

• Solaris 7, 8

• Red Hat Linux 6.2, 7.x,

• SUSE Linux 7.2, 7.3

• TurboLinux 6.5

Java requirements:

To install CMB, a user minimally needs a JRE version

1.3.0 or later on the user's computer. However, to

take full advantage of all CMB capabilities, install

the Java 2 Software Development Kit (SDK), sometimes

called the Java Development Kit (JDK), version 1.3.0

or later. You can obtain the latest Java versions at

http://java.sun.com ' ’

1.5 Limitations

Due to the limited screen size of the operating

system, the current CMB version allows a conceptual model

with about 23 entities and their relationship diagrams. On

average, there will be about two to three persons who may

work on one conceptual model. So a CMB server will be

7

http://java.sun.com

designed to serve four remote users. But this can be

extended if necessary.

1.6 Definition of Terms

The following terms are defined as they apply to the

proj ect.

Java - The premier solution for rapidly developing and

deploying mission-critical, enterprise applications,

J2SE provides the essential compiler, tools,

runtimes, and APIs for writing, deploying, and

running applets and applications in the Java

programming language.

IP Address - The address of a computer when it connects to

network. IP stands for "Internet protocol.

Port Number - The port number is a way to identify a

specific process which is connecting to a server. The

CMB uses the Registered Ports in the range 1024-49151

Component - A component is a set of process to accomplish

related tasks. A component may include many classes.

Model View - It is the display of a conceptual model on

current CMB main graphic window.

Socket - A socket is a package for communications between

two computers.

8

Swing - The Swing is one part of the Java Foundation

Classes for designing the Graphic User Interface.

1.7 Organization of the Project

This project document is divided into six chapters.

Chapter one provides software requirement specifications,

purpose of the project, and significance of the project,

limitations, and definitions of terms. Chapter Two

consists of the software design. Chapter Three documents

the steps used in testing the project. Chapter Four

presents the maintenance procedure. Chapter Five presents

the users manual for the project. Chapter Six presents

conclusions drawn from the development of the project. The

Appendices containing the project code follows Chapter

Six. Finally, the references for the project are

presented.

9

CHAPTER TWO

SOFTWARE DESIGN

2.1 Introduction

CMB has five components: user interface, diagram

engine, notation data, script and output, and network.

The user interface component will help users create

the target conceptual diagram. The target diagram will

automatically be generated by the diagram engine component

The diagram engine component allows users to

transform from one style of a conceptual model to another.

This function needs the diagram engine to reference the

notation data component.

The script and output component allows the user to

save the diagram in a binary file. It also generates the

SQL scripts to create the table definitions. These SQL

scripts will be saved as text files.

The network component provides remote,control through

a network. CMB checks the user's ID and password to

protect CMB from unauthorized access.

Detail of CMB components and techniques used will be

described in the following subsections.

10

2.2 User Interface Component

The user interface component is the most complex

component in the CMB. It is divided into four panels: the

main menu, south menu, tree menu and conceptual model.

Figure 6. User Interface Component

The main menu panel provides operations just like

most windows applications do. When a user moves the mouse

over the main menu bar, a pull-down submenu will pop up.

After a user clicks the submenu item, a new window will

appear. These options provide users with more detailed

functions. For example, the "Save" window will allow users

to enter the name and directory where to save the file,

11

and an "Entities" window will allow users to make changes

on data related to entities.

The south menu provides references for mouse

movements. Three "look and feel" buttons provide the

"metal", the "window" and the "motif" style of overall CMB

appearances. These styles each provide a different graphic

presentation of buttons, menus and windows. For example:

when a user chooses to use the "window style",,all the

windows and buttons of CMB will completely look like a

Windows 2000/XP application.

The tree menu displays additional information

regarding tables and their attributes. Users can easily

understand the structure of entities and their attributes.

The current function on this panel only displays

information. But more mouse-related operations can be

implemented in the future.

The conceptual model panel reflects the graphic model

view provided by the diagram engine. The default size of

this panel is 800x600 pixels. This is larger than what a

user actually can see when CMB starts. This means some

areas of the conceptual model panel are outside the

overall CMB display window, however two scroll bars are

provided to aid the users. The vertical scroll bar allows

users to scroll up or down the conceptual model. The

12

horizontal scroll bar allows users to scroll the

conceptual model to the left or to the right.

A listener is also implemented in the conceptual

model panel for retrieving mouse movements. This listener

feeds movement information into the diagram engine and

also launches the graphic drag and drop animations in

response to current user operations.

2.3 Diagram Engine Component

The diagram engine component plays the main role of

database demonstration. It has two major subcomponents.

The concept model data component generates the model data

and stores the data. Two classes are involved with data

storage: The data for entities is handled by

tableDataObject class. The data for relationships is

handled by relationDataObj class.

Each class has its data section and method section.

The major data structure for data section is linked lists.

Choosing linked-lists as the main storage structure makes

it easy for CMB to add, remove and modify data. Since

there is no "order" on tables or relationships, a linked

list is a better choice than an array or a vector. The

methods of these two classes provide functions for user

interface component and network component to acquire model

13

data. These functions include inserting, deleting or

updating tables/relationships, summarizing total number of

tables or relationships, saving/loading tables or

relationships and transferring tables or relationships to

another remote CMB application through the network.

The second subcomponent of the diagram component is

the graphic generation component. This component has

algorithms to analyze the concept model data and generate

the graphic data for notation data component. This

component has multiple classes. Each class supports one

kind of conceptual model view. These classes also tell the

user interface how to draw the graphics and responds to

user input.

2.4 Notation Data Component

This component keeps the information on notations and

the graphic data for CMB. It also has multiple classes.

The control Mode class keeps the trace of the overall CMB

setting like font types, the graphic size, notations

status and so on. The remaining classes of notation data

component store the graphic data generated by the diagram

engine and provide functions for diagram engine to manage

these data. Because the diagram engine of CMB provides

more than one model view and each model has it own graphic

14

data, CMB uses multiple graphic data classes for each

model. For example, the "DrawTablelnfoVector" notation

data class provides the graphic data for "EnterprisePanel"

diagram engine class to exhibit the enterprise model view.

The "DrawBasicPanellnfo" notation data class provides the

graphic data for "BasicPanel" diagram engine class to show

the student learning style model view.

2.5 Script and Output Component

This component retrieves the conceptual model data

and generates a binary file for CMB. This component also

is related to the user interface component for accepting

the user's request to save or load files. There are three

classes-- the save class and load class in the CMB handle

the user's operation for Save/Load files. The script class

generates the current conceptual model script for users.

2.6 The Network Component

When CMB activates its network service, a listener

will start running. This listener is a stand-alone thread

and therefore will not interrupt the rest of CMB

operations.

Once a client is connected, its IP address along with

other information will be recorded in a CMB data array.

This data array helps the server to transmit and receive

15

any network package. The data inside these socket packages

include something like data of entities and attributes,

lock requirements, graphic information and so on. A lock

request is a package issued by servers to keep data

consistency. On the user interface, CMB provides a server

panel and a client panel for users to receive connection

information and monitor network activities.

2.7 Model-View-Controller

CMB uses Model-View-Controller technique to relate

each component. The detail of this technique is described

below.

The Model-View-Controller paradigm is a way of

breaking an application, or even just a piece of an

application's interface into three parts: the model, the

view, and the controller. MVC was originally developed to

map the traditional input, processing, output roles into

the GUI realm:

16

Figure 7. Model-View-Controller Architecture

The user input, the modeling of the external world,

and the visual feedback to the user are separated and

handled by model, view port and controller objects. The

controller interprets mouse and keyboard inputs from the

user and maps these user actions into commands that are

sent to the model and/or view port to effect the

appropriate changes. The model manages one or more data

elements, responds to queries about its state, and

responds to instructions to change state. The view port

manages a rectangular area of the display and is

responsible for presenting data to the user through a

combination of graphics and text. ■

CMB combines the control and view together as a user

interface component. This has been used in most of Java

applications and speeds up the graphic performance.

17

However control and view are still different objects and

perform different tasks in a CMB user interface.

The CMB components map to MVC as follows: diagram

engine component and notation data component belong to the

model; the user interface component and network interface

component both have control and views.

Figure 8. Mapping CMB to MVC

2.8 The Detail Design

2.8.1 CmbMenu Class

The CmbMenu class is the only class with the main()

class and users must launch CMB from this class. It is

also a data transfer center for other processes. Any

update information will be sent to this class first then

submitted to other classes.

The variables and functions of cmbMenu are described

below.

18

extends JFrame
implements ActionListener, MenuListener,
Observer
CmbMenu

None

+CmbMenu() Initialize.
+actionPerformed() A listener for the main toolbar. Call

necessary processes for user request.
Preserve.

+menuSelected() Preserve.
+menuDeselected() Preserve.
+menuCanceled() Activate the CMB.
+main() Repaint the main menu.
+repaintAII() Activate when model data has been
+update() modified by other components.
Figure 9. CmbMenu Class

2.8.2 TableObject Class

The TableObject object stores the model data for the

diagram engine component. Each tableObject class matches

one table. All tableObject class connects through a linked

list like Figure 10.

19

4-

Figure 10. TableObject Class

The variables inside a tableObject are:

• Table name

• Attributes

• Composite Attributes

• Number of attributes

• Super class name (if any)

• Sub Group (only useful if it has a super class)

20

• Maximum character length of a table name.

• Maximum number of attributes

Except for attributes, most of variables are numbers and

characters.

TableObject

StringQ emptyElement
Int numbers, n,
int subGroup
String tablename
String superClassName
boolean superclass
java.util.List attributes,
comboAttributes
static final int NAME_SIZE
static final int ECORDSIZE
+ tableDataObj()
+ addAttribute()
+ addComboAttributeO
+ setSubClass()
+ returnAttribute()
+ returnComboAttributes()
+ String returnName() .
+ setTableName()
+ getNumbers()
+ getComboNumbers()

Initialize the data.
Add another attribute.
Add composite attribute.
Record the sub classes.
Return attributes.
Return composite attributes.
Return the table name.
Modify table name.
Get the total of attributes.
Get the total of composite attributes.
Get sub group number.

+ getGroup()
+ getSuperClassname()
+ ifsuperClass()
+ writeData(DataOutput out) throws
lOException
+ readData(Datalnput in) throws
lOException
+ print()

Get name of super class.
Check super class state.
Write data to I/O.

Read data through I/O.

Print all data information to dos prompt.
Delete an attribute.
Delete a composite attribute.

+ removeAttribute()
+ removeComboAttributeO
Figure 11. TableObject Class

21

The attributes and composite attributes are two

separate linked lists. Each element inside these linked

lists is an array which stores the data of an attribute -

attribute name, attribute type, data type, and key type.

Figure 11 shows the tableObject class.

2.8.3 DatalO Class

This class provides functions for converting between

the characters and the string. This class is called when

the save component wants to save or load files. It will

translate the string into characters when saving and

translate characters back to string when loading.

DatalO

None
+ readFixedString()

+ writeFixedString()

+ readNetString()

+ writeNetString()

Read fix sized characters and output a string.
Write a string as fix- sized characters.
Read fix-sized characters and output a string (for
network use).
Write a string as fix-sized characters (for network
use).

Figure 12. DatalO Class

2.8.4 Open Class

The Open class is designed to load binary CMB files.

Once the file is opened, this class will check if it is a

CMB file. If it is recognized as a CMB file, the open

class will acquire the information about user, tables and

22

relationships from this binary file and update this

information to the model data component.

c)pen
boolean DrawOn = false
java.util.List tableData
relationDataObj relationData
control Mode controlCode
int counter=0,total=0
javax.swing. Timer activityMonitor
+open() Initialize. Include opening the file stated

by user and read the file. Throw I/O
exception.
Clean the previous CMB data on memory.

+cleanData()

+print()

Dump the file data for debugging.

Figure 13. Open Class

2.8.5 Save Class

Save class is the counter part of the open class. It

saves all model data into a binary file. It also has a

user interface component which will acquire the file name

and target directory from users. -

Save
+boolean activeSave
+boolean DrawOn
+String path
+java.util.List listTables +java.util.List
tableData
+relationDataObj +relationData
+controlMode controlCode
+int tableNumbers
None
Figure 14. Save Class

23

InsertTable
JPanel panelNorth, panelSouth, panelCenter
JPanel comboPanelNorth, comboPanelSouth,
comboPanelCenter
JPanel tablesNorth, tablesSouth, tablesCenter
Container contentPane
JTextField
lfSave,TextField1,TextField2,TextField3,TextField4
JComboBox
DataTypeBox,tableChoose,comboTableChoose,SuperCo
mboChoose
+JComboBoxeditSuperAttributeColumn
+java.util.List tableData
+controlMode controlCode
+int colums, numbers, addAttribute, comboRowCounter
+int newTableCounter
+inttablelndex
+String superAttributeChooseed
+String[] columnNames
+String[] tableModelNamesObjectD
+Object[] newComboRow, +comboColumnNames
+String[] CharType
+DefaultTableModel DefauItTable
+JTable table, +comboTable,tableList
+JScrollPane ScrollTable,
+ComboScrollTable,tablesScrollPane
+extendDefaultTableModel model
+extendDefaultTableModel_2 +comboAttributeModel
+extendDefaultTableModel +tableModel
+JDialog colorDialog
+JTabbedPane tabbedPane
■♦-boolean isTableExist
+addAttributeSouthPanel()
+addAttributeNorthPanel()
+add()
+addAttributeTabbedPane()
+setListOfAttribute()
+setListOfComboAttribute()
+addComboAttributeT abbedPane()
+addComboAttributeNorthPanel()
+addTableTabbed Pane()
+addT ableSouthPanel()
+addComboAttributeSouthPanel()
+setListOfRelation()
+setComboTableChoose()
+setSuperAttributeChoose()
+editSuperAttributeColumn()
+repaintAII()
+reflashTableChooseQ

Generate buttons on the entities window.
Generate table options
Add a table.
Add attribute Pane on the window.
Display attributes.
Display composite attributes.
Add composite attribute Pane on the
windows.
Generate the composite attribute option.
Add table Panel on the windows.
Add the buttons to the south panel.
Add the composite attribute option
buttons.
Set type of an attribute.
Check if a table has composite attribute.
Check if a table has super class.
Edit a super class.
Notify all processes about the change of
table data.
Make change for tables

Figure 15. InsertTable Class

24

InsertRelation
JPanel panelNorth, panelSouth, panelCenter
JPanel comboPanelNorth, comboPanelSouth,
comboPanelCenter
JPanel tablesNorth, tablesSouth, tablesCenter
Container contentPane
JTextField
IfSave.TextField 1 ,TextField2,TextField3,TextField4
JComboBox
DataTypeBox,tableChoose,comboTableChoose,Su
perComboChoose
+JComboBox editSuperAttributeColumn
+java.util.List tableData
+controlMode controlCode
+int colums, numbers, addAttribute,
comboRowCounter
+int newTableCounter
+int tablelndex .
+String superAttributeChooseed
+StringO columnNames
+StringQ tableModelNamesObject[]
+Objectn newComboRow, +comboColumnNames
+StringQ CharType
+DefaultTableModel DefauitTable
+JTable table, +comboTable,tableList
+JScrollPane ScrollTable,
+ComboScroHTable,tablesScrollPane
+extendDefaultTableModel model
+extendDefaultTableModel_2
+comboAttributeModel
+extendDefaultT ableModel +tableModel
+JDialog colorDialog
+JTabbedPane tabbedPane
+boolean isTableExist

o

+addTableTabbedPane()

+addRelationsSouthPanel()

+findRelNumber()

+add()
+editRelations()
+checkRel()

+repaintAII()

Add a relationship Panel to the
windows.
Add relationship option buttons.
Get the relation number.
Add a new relationship
Modify a relationship
Check if a relationship is legal before
displaying it.
Notify all processes about the change
of relationship data.

Figure 16. InsertRelation Class

25

2.8.6 InsertTable Class

InsertTable class is designed to modify model data. All

the operations regarding tables and attributes are only

allowed to be changed by this class. A user can add,

remove and modify both tables and attributes through the

panel provided by this class. Some basic input error

handling is also included to make sure a user inputs legal

data only. Any data modification will automatically be

updated to other CMB processes.

2.8.7 InsertRelation Class

This class handles all the changes to relationships.

Any data change to relationships needs to go through this

class. Only the legal change will be displayed. The

insertRelation class also generates a user interface for

users to insert, delete or update data on relationships.

2.9 Summary

The software design of CMB includes various types of

techniques: user graphic input/output, file system,

operating system, sockets, thread and so on. The powerful

Java code library provides great aids to this kind of

software development.

Most of the work is related to the diagram engine

component. To create a diagram engine class for any type

26

of conceptual model, an algorithm must be developed to

tell the diagram engine class how to analyze the model

data and generate the graphic data. After that, a data

structure must be designed to store this graphic data.

Then the designer tells this class how to transfer graphic

data into graphic presentation. Next, the designer creates

the mouse input method for this class. Finally this

conceptual model view class is ready for use.

The last development component is the network

interface. It still requires more functions in the future

to improve stability and security.

27

CHAPTER THREE

SOFTWARE QUALITY ASSURANCE

3.1 Introduction

During CMB development, each class has been tested to

ensure that it can handle the data correctly. Most tests

are simply involved in printing out necessary data and

allow the programmer to check if this process is running

correctly.

The remaining tests focus on the user interface

component. CMB issues this kind of test by adding graphic

related method to display the hidden points or, adjusting

mouse sensor range and so on.

3.2 Unit Test Plan

CMB performs, unit test by implementing a print

function inside each class. Any vital data in a class can

be printed out during the CMB operation. These functions

are disabled after data transfers are founds to be

accurate; however it can be enabled again for future

development and debugging.

Figure 17 shows how a unit test function on CMB works

If a designer wants to make sure the table data is

correctly saved, the print function can be included on

both the load and save classes. After he runs the CMB and

28

performs saving and loading, a list of table information

will show on the DOS prompt for checking.

Figure 17. A Sample of Unit Test

Here is the list of classes which have passed the

unit test.

29

Class name Testing focus
tableDataObject • Verify all required input data

• Verify null value handling
• Check all selected functions work correctly

relationDataObj java • Verify all required input data
• Verify null value handling
• Check all selected functions work correctly

controlMode • Check all default data
• Check all input information
• Check all settings for the data
• Verify function return value

open/save • Check all data saved and loaded correctly
• Check error handling message

drawtablelnfoVextor • Verify received data
• Verify generated graphic data
• Check any modify function works correctly

for graphic data
DrawBasicPanellnfo • Verify received data

• Verify generated graphic data
• Check any modify function works correctly

for graphic data
passwd Dialog • Verify user input

• Verify user name and password storage
Figure 18. The Unit Test List

3.3 Integration Test Plan

Since CMB is a Java application, it follows the

object-oriented design. The risk of integration error is

reduced to the minimum. For CMB, most of the integration

tests focus on how a model view responds to the user input.

The major integration tests are listed below.

30

Class name Testing focus
InsertTable • Verify all received input data

• Verify null value handling
• Check input function
• Check delete function
• Check update function
• Check warning message

InsertRelation • Verify all received input data
• Verify null value handling
• Check input function
® Check delete function
• Check update function
® Check warning message

SouthMenu.j ava • Check all button works
perfectly

• Check mouse location displays
• Check internal data transfer

BasicERPanel • Verify all received graphic
data

® check error handling message
• Check if graphic output the

correct data
• Check each relationship

connection points
• Check each table connection

points
EnterpriseERPanel • Verify all received graphic

data
• check error handling message
• Check if graphic output the

correct data
• Check each relationship

connection points
• Check each table connection

points
OptionDialog • Verify received data

• Verify generated option button
• Check any modify function works

correctly for graphic data
RandomlntGenerator • Verify generated random numbers
Figure 19. The Integration Test List

31

3.4 System Test Plan

The system test requires CMB to input simple database

information. This test starts when all model data

components and necessary graphic components are finished.

The major system tests are listed below.

Data Table
Tables Insert Tables

Delete Tables
Update Tables

Attributes Insert Attributes
Delete Attributes
Update Attributes
Insert Composite Attributes
Delete Composite Attributes
Update Composite Attributes

Relations Insert Relations
Delete Relations
Update Relations

SaveMoad S/L original data
S/L graphic Data

Display Display table names, Attributes, Keys, Display
attributes names, Data Type, Data Value, Key
Type, Multi Value, Composite Key, Display
Relations Name, From, To, Active

Figure 20. The System Test List

3.5 Summary

The most difficult test was addressed on the diagram

engine component. There are no error messages on graphic

appearance. If something goes wrong, the entire panel may

be frozen or displayed in a strange way. When this happens

each graphic data component must be checked.

32

Some graphic problems are hard to detect by the human

eyes. During CMB development, such problems only could be

founded when the user inputs massive data or does a

graphic test on it.

The null value is another problem in CMB design.

Sometimes when a user deletes something from a model data,

it will create a null value on the graphic data until the

graphic data has been renewed. This, will affect the user

interface component since it does not allow null value

during data to graphic transformations.

But every known CMB test problem has been dealt with

and these code improvements should reduce the bug of

future CMB design.

33

CHAPTER FOUR

MAINTENANCE .

4.1 Introduction

This chapter consists of four parts: the model data

maintenance, the graphic engine maintenance, the user

interface maintenance and the network maintenance.

4.2 Model Data Maintenance

As mentioned earlier, model data includes two major

classes: tableDataObject class and relationDataObject

class. Both classes have two linked list data structures

to store data. Each unit of a linkedlist is an object. One

linkedlist stores the string objects and another stores

the arrays of integers. Using array makes it easy for

other components to acquire the data from fixed array

positions and avoid long search time.

Figure 21. The Major Model Data Structure

34

If any future design requires more information

storage, a designer can enlarge the size of integer array

without any problem. If a designer wants to add more

strings, s/he can change the first linked list to a

different type of object which allows for more strings.

S/he must modify the methods related to this linked-list

as well, but there is no need to modify anything outside

this class. Adding another linked list and creating its

methods are also allowed.

4.3 The Graphic Engine Maintenance

The graphic data class is similar but more

complicated than the model data. Multiple graphic data

classes are allowed and each of them stores particular

graphical data for its model view. A designer creates a

new model view by creating a new class to store the data

and a new interface to read this data and display it. So

what is inside a graphic data class depends on what kind

of model view it stores and how the interface works.

35

—-The graphic Data

Figure 22. The Graphic Engine

There are some important concepts on creating or

maintaining these graphic data classes. First, a graphic

data is the presentation of the model data so major

structures should better be linked lists. Second, it

should have some mouse movement detection methods for the

interface to respond to the operations from users. Third,

it should provide 'load', 'save' and 'transfer' methods

for files and network purposes.

4.4 User Interface Maintenance

The user interface component is a huge set. It

includes classes for saving and loading files, classes for

displaying a main menu, classes to activate the network

connection, and classes to change the model views.

4.4.1 Main Menu

The class for main menu is cmbMenu class. This is the

class where everything is started. It generates the

initial model data and activates the remaining interface

36

when necessary. Any new submenu bar and submenu units

should be added here. The new model panel will also be

declared here.

4.4.2 Save/Load

There are two classes for this interface: save and

load classes. Both classes use the data stream to transfer

the data. The user interface of these two classes come

from the Java standard library and requires few

modifications.

4.4.3 South Menu

The southMenu class handles this part. It is possible

to add more overall look-and-feel style buttons here. Some

other user information also can be included here.

4.4.4 Tree

The tree class is the simplest component. It is the

best place for future designers to add new features. The

connection between tree and cmbMen is already established.

This makes it easier for future development.

4.4.5 The Model View •

The model view display is based on which view the

user, has chosen from the main menu. The cmbMenu keeps

updating every model view class but only the one chosen by

the user will be displayed. These views also include the

functions for mouse drag-and-place on the top of the class

37

4.5 Network Interface

Two classes are included in this interface. The •

cmbServer class receives information from the clients and

sends necessary information through network. The cmbClient

class makes connection with the server for sending or

receiving socket package from the server.

As shown in Figure 2.2, when the server process is

launched, a "listener" will also be generated by the

server to accept connection requests. A list will be

created to keep track "where" and "how many" clients are

currently connected to the server. The maximum number of

clients is set to 4.

A list of IP addresses for possible servers is

located in the file called client_list.cfg. When a client

is started, it will read this test file to generate a list

for the user to choose the IP address for connection. If

the user enters or chooses the correct IP address for the

server, a connection can be made by pushing the connect

bottom.

Once the server accepts the server request, the

server listener will then call the server process to

create two additional processes, one is called the

"sender" and the other is called the "receiver".

38

s A

Send request

Connection

? /Thread: .

; Thread
.... J

<---------- receive

--------- — send —

Client

------------------------- s.

[listener)
k)C______ ________________________ :____________ y

Figure 23. The Connection Process

In the mean time, the client side will also generate

two processes corresponding to the server. The "sender" of

the client will connect to the "receiver" of the server.

The "receiver" of the client will connect to the sender of

the server. .

The client "sender" will be responsible for packaging

any client request and send it'to the server. And the

client "receiver" will be responsible for any messages

received from the server. Another class called "share

39

area" will provide data exchange between these two

processes.

An example for data transferring is as follows: First,

the server will send original data to each client. After

this data transfer is complete, any client can then

request a data lock for modifying data but only one

request can be accepted at the same time. After data

modification like add, insert or delete has been made and

the client sends the release lock signal to the server,

the server will unlock the data for other clients. The

client also can modify graphic presentations if desired to

do so.

Figure 24. The Connection Process 2

40

4.6 Summary

Since Java is fully object-oriented, a future

designer can find it is easier to improve the CMB

programs. As shown above, CMB divides different tasks into

different classes. It is easy for designers to make a

modification on any component and activate it without

encountering any serious bugs. For example, a designer can

declare more data and methods on the model data class Or

the graphic data class without modifying any other

interfaces. Then the designer can improve the necessary

interface to "pick up" this new data inside the model or

graphic data class. The most time-consuming work will be

changing the model view interfaces. To allow a user to

switch between different views and enjoy the same

functions, it requires the designer to write these

functions on each model view interface. Since model views

are different from one another, the chance to reuse the

same methods on all model view interfaces is slim. Java

provides several network methods for designers so it is

easy to improve the network functions on CMB.

41

CHAPTER FIVE

USERS MANUAL

5.1 The Main Menu

A menu bar on the top provides pull-down submenus. In

the middle is the display panel. The left panel displays a

tree which includes the entities and attributes. The right

panel provides display a conceptual view. On the bottom is

the system bar which provides overall options for

appearance and the current the mouse location.

BIB

in is a! (- Krrrrn

table tools Connection Help

,3 Ap

Figure 23. Main Menu

F Enlits? |
!©. & Empiweff

]«- DeoLLeel
Projsff !
wwRsjsrj

3 Dsp«»S«j

42

The initial panel size' of the main menu is 800*600

pixels but it,can' be resized according to user's needs. .

' ■ ' 5.2 The Model View ■ ' •

CMB provides' multiple model' views. These views

represent the. same conceptual model. A User can switch,

between different' views using the Tool->Options submenu at

anytime. The component of these views can be changed by

dragging the left mouse button to the new location. The

component-will be. pasted when the User releases the left

mouse button . .

43

Figure 25. Another Model View

5.3 The South Submenu

The South submenu bar provides three types of main

"look and feel" functions for users: the metal type, the

windows type and the motif type.

Figure 26. The Metal Look And Feel (Part 1)

44

Figure 27. The Metal Look And Feel (Part 2)

Fils Table Took Connection Help

_J World i
(+ _ jNew(0}
ft _JNew(i:
T ' 1 New

w X

Metal Motif Windows ; Reflash X;157 I V: 122

Figure 28. The Metal Look And Feel (Part 3)

The location of the mouse in the CMB panel is given

in X and Y coordinates.

45

Metal Motif Windows Reflash ■ X:1B7 ; Y: 9B

Figure 29. The South Menu Bar

5.4 The File Submenu

This menu provides operations like open/save files,

user login and print functions. Each operation has its own

interface.

5.4.1 Login

The login interface is activated when a user clicks

the password icon on file submenu. To access protected

files or connect to a server, a user must enter his user

name and password for authorization.

Figure'30. Login Interface

5.4.2 Save

When a user saves a new file or chooses "save as"

option, this interface will be displayed. If a user chick

in the save function and the current model is already file

name exists, CMB will save the contents to this exists .

filename and will not displaying pop-up panel. If a user

46

wants to avoid overwriting the original file, the "save

as" function must be used.

Figure 31. Save Interface

5.4.3 Open

This interface allows you to open an existing CMB

file. A user can double click the left mouse bottom on a

target file or click the open button to open it.

Figure 32. Load Interface

47

5.4.4 Print

This interface allows you to choose the type of

printer and set the number of print pages.

I

......
P(ift ej ——- —------ ------- -----———----- — -----——-————

NaTo; pSnwcSlwRsim ~ 3 i~ Propanteti- I
Status. Read?
Type: Canon BJC-BCOO (SJRST R)

. Wh««K IFM:

Coraert: nWnllofte

rPriefiarso , "■ - ■ Copies' ' ■

4 All - Norahs# of eefics' h ±t

• Reoes hoirc jl - J
hjfLO r

—- " —

. . OK (Cancel

Figure 33. Print Interface

5.4.5 Page Setup

This interface displays a setup panel. The user can

setup page type, margins and orientation (portrait or

landscape) here.

48

Figure 34. Page Setup Interface

5.5 The Table Submenu

The table menu provides tools for inserting, deleting

or modifying entities and relationships.

5.5.1 Entities

This interface provides functions required to input

information about entities. A user can add a new entity,

rename an existing entity here. A user can remove an

entity if this entity has no relationships.

49

' T. ik , j Pl . ll’« 1 ; . Cu-i i 'Hi
| ffliikits 1‘
L& .
L4 I

!

!
............................ i4 i

jbgpefiieet

Hi td„:
Figure 35. Entities Interface

5.5.2 Attributes

This is a sub panel of the entities interface. First,

a user chooses an entity from the list of existing entity

names. The attributes for the selected entity will

automatically display on the table. Users can changes

values of these attributes. A user also can insert or

remove a target attribute. The result will be directly

displayed to the model view panel.

50

Haiw
j Attribute- | jU-i'.ii.ftui.liles

, rlasrJ T”teiawl 'c««y.su« F' '<■ 1.a a0 ...ft..: 1 • j > □: o
v/ j ■FllJ

l

Insert]'[Sswe jj fiwnwe

Figure 36. Attributes Interface

5.6 The Tool Submenu

The tools menu provides interfaces for additional

graphic options.

5.6.1 Setup Font

Any change the user sets here will change the font

type on all model views. Fonts of the current computer

operating system will be automatically included in the

font list. A user can choose any fonts he wants but some

of the fonts may not be suitable for display. The font

size range allowed is from 8 to 18. The styles are plain,

bold or italic. A sample of chosen font is displayed in

the middle panel. The default button allows users to set

back the original font setting. The original font setting

is Sans Serif, plain with size of ten.

51

Figure 37. Setup Font Interface

5.6.2 Options

A user can change the model here.

BaiaS
*

j. ArmWi
h c

»w?jass&&6£

O <5STO2tf?«e*

pOjtlso ■■ {
<; ••.JWWStt ' ' . ,< IvxUtXM

/’CaWbaa ■
I

I

r>si»;w-4

1

 i-—, , „ „

Figure 38. Option Interface

5.7 The Connection Submenu

This submenu provides two interfaces: server and

client

The server interface will deal with data transfer; it

accepts incoming connections.

The client interface provides the tool to connecting

to the server.

52

5.7.1 Server

This interface allows a user to connect to other CMB

applications. The current machine IP address and port

number are displayed on the interface. The set port panel

will display you how many users are connected to the

server at this time.

j IP ,132.188.1.104 Port 8189_ J* SetPOrt ’ Cl2UserS;

■X - g NOfllO
taxiWjxxNew 192.188 t.f.Tsw n

Client 1; yiemtnfon t St 14$4

JSPig
i P2S!' J -!™ -name j

Figure 39. Server Interface

5.7.2 Client

If a server exists and a remote user knows the

server's IP address and port number, a connection can be

made by inputting these information into the panel and

clicking the connect button.

53

Figure 40. Client Interface

54

CHAPTER SIX

CONCLUSIONS

6.1 Introduction

The CMB development environment is well supported by

Java. Although the graphic user interface of CMB may not

be as colorful as those Microsoft applications developed

using Microsoft Foundation Class or Visual Basic (Java

graphic engines aim to suit every platform, not only one),

the multiple-platform support and low bug environments

make Java the best choice for developing a

multiple-purpose user application like CMB.

The current CMB do not fully utilize the powerful

Java network capability but still benefits from it. There

is no doubt that more improvements will be required. The

"Future Design" section will provide some tips on how to

improve the CMB ability.

The last section will summarize the CMB. This chapter

lets users understand more about the uniqueness of CMB.

This chapter is also gives users a better idea on how to

use CMB and hopefully, make users can benefit from it.

55

6.2 Future Design

The possible improvements which can be made for CMB

are listed below:

6.2.1 Extend Model Views

The most feasible improvement will be modifying the

current model views. The graphic display can be more

colorful or detailed than the current one. Also, adding

another model view can be helpful to users. Most of the

current CMB source code is reusable, so it will be easier

for the designer to make these changes.

6.2.2 Improve Menu Functions

In the main menu bar more submenus can be added to

assist users. For example, adding a "redo/undo" submenu

allows users to go back to their pervious actions and

adding a "screen control" submenu controls the screen size

of CMB.

More detailed function can also be added in the

submenus. For example, adding "sort" button sorts the

information displayed on the window and adding a "print"

button prints out the information provided by submenu.

6.2.3 Improve the Print Preview Features

Current version of CMB only provides the simplest

printing preview ability. This preview only shows the

border of printable area. It should be required in the

56

future to provide more knowledgeable preview functions and

add a window to display the expected print outpost.

6.2.4 Add More Managing Tools for Network
Component

Current server system only has mirrored

administration ability. This is not enough if too many

users are on-line and use CMB at the same time. Also, if

CMB proves to be useful and become a frequently used

application, additional network security functions like

transmitting protection are necessary for future CMB

design.

6.2.5 Make Graphic User Interface More Friendly

A system's graphical user interface along with its

input devices is sometimes referred to as its

"look-and-feel". CMB aims to provide a "friendly" user

interface, but there are still many possibilities for

improvements. For example, a pop up menu can be added for

users to click the right mouse button and some table

information can be displayed when a users puts the mouse

pointer on a table for a while.

6.3 Summary ■

The CMB project provides a new approach for designing

the conceptual diagram tool. The idea of providing

different model views makes the polymorphous graphic

57

appearance possible. CMB provides "One concept model with

multiple graphic presentations". Users no long need to

adapt to limited diagram tools. CMB will satisfy the needs

of the users in most cases. -

The automatic graphics-generation capability of CMB

makes it an easy used tool. Users no long need to learn

how to put the diagram together. Now they can finish their

concept diagram easier and faster.

The use of Java also makes CMB flexible for updating

operation systems. Unlike other applications, CMB users

never need to worry about changing systems. Although CMB

is a client-server application in its current design, it

is easy to make CMB become a Web-base application if new

techniques related to applet are released. Current applet

platform will take lot of time to load the CMB to the

client.

The network capability of CMB also makes it ideal for

the teamwork projects.

58

APPENDIX

PROJECT SOURCE CODES

59

The Conceptual Model Builder source codes are

included in this disk.

60

REFERENCES

[1] Ramez Elmasri and Shamkant Navathe, Fundamentals of
Database System, third ed. Elmasri Navathe, 1997.

[2] Embarcadero, "ER/Studio",
http://www.embarcadero.com/products/erstudio/
index.asp, 2002.

[3] Osmar R. Zai Ane, "Other Styles of E-R Diagram"
http://www.cs.sfu.ca/CC/354/zaiane/material/notes/
Chapter2/node9.html, 2002.

[4] Cay S. Horstman, Gary Conell, Core Java 2 - Volume 1
Fundamentals. Sun Microsystems, 1999.

[5] Cay S. Horstman, Gary Conell, Core Java 2 - Volume 2
Advanced Features. Sun Microsystems, 1999.

[6] Deitel [1999] , Advanced Java 2 Platform -How To
Program-. Prentice Hall, 1999.

[7] Dean Helman, "Objective Toolkit Pro whitepaper",
http://ootips.org/mvc-pattern.html, 2003. '

61

http://www.embarcadero.com/products/erstudio/
http://www.cs.sfu.ca/CC/354/zaiane/material/notes/
http://ootips.org/mvc-pattern.html

	Conceptual model builder
	Recommended Citation

	in is a!	(

