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ABSTRACT

The purpose of this project is to investigate the 

differences between psychoacoustic principles and genetic 

algorithms (GA). These two theories will be discussed 

separately. The review will also compare the compression 

ratio and the quality of the decompressed files decoded by

these two methods.

The report will thoroughly discuss the reason that 

psychoacoustic principles produce small compressed files

without affecting the quality of the sound. Two important 

topics, absolute threshold of hearing and masking effect,

will be discussed in the report.

Unlike psychoacoustic principles, GA uses a different

approach to achieve high compression ratio. In the review, 

topics related to GA will be discussed. These topics will

include the concept, training procedure, and the

performance of GA.

A computer program called Azip has been developed and

is included for the use of researchers who are interested

in this topic. In the review, the design and

implementation of Azip will be discussed. Several

experiments have been done using Azip. The result of 

experiments is discussed in the report as well.

iii



The review also compares the performance of Azip with 

that of Ogg and MPEG Layer3 (MP3), so the readers can have

an understanding on their differences.
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CHAPTER ONE

INTRODUCTION

1.1 Purpose of the Project 

The purpose of this project is to investigate the

theories and the performance of psychoacoustic principles 

and genetic algorithms. Psychoacoustic principles are 

theories specifically designed and applied to audio 

compression. It is noted that sound can be masked by other 

sounds and the resulting sound can't be detected by human 

ear. Because of this, psychoacoustic principles focus on 

removing the irrelevant sound and thus achieving

compression. The method has been adopted by most modern 

audio compression systems, including MPEG Layer3, AAC and

Ogg. Unlike psychoacoustic principles that detect and 

remove irrelevant sound, genetic algorithms analyze a lot

of audio files to return a string of numbers. These

numbers represent the subbands that are least likely to

influence the quality of music if they are removed. The 

programs that use genetic algorithm simply remove the 

subbands in the solution. In this project, the genetic

algorithm will be adapted to audio compression. The result 

will be compared with the one produced by psychoacoustic
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principles. The performance of MPEG Layer3 and Ogg will be 

compared with that of Azip.

Signal-to-Noise Ratio (SNR) will be used as the 

standard for comparing the quality of the decompressed 

files produced by the decoders based on psychoacoustic 

principles and genetic algorithm. Although decompressed 

files with larger SNR value should have a better quality 

in theory, it is not necessary the case in reality because 

human ear is not sensitive enough to detect all 

differences. To solve the problem, subjective testing will 

be used to find the file that has the better quality. The 

subjects selected for sound quality test can be ranged 

from naive listeners, trained listeners, to listeners who 

are gifted in all areas of auditory perception, also 

called "golden ear". During the subjective testing, 

listeners hear pairs of music files and give a grade for 

each pair. Further detail about subjective testing will be

discussed in 5.2.2.

1.2 The Scope of the project

The audio compression system contains the following 

three components

1. The coder and decoder using psychoacoustic 

principles
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2. The coder and decoder using genetic algorithm

3. Signal-to-Noise Ratio used for determining the 

quality of the decompressed files produced by

the decoder.

The coder could compress one or more .wav files to 

.csusb files using the method specified by the users. The 

decoder decompresses .csusb files to .wav files. The users 

can easily change the method they want to compress the 

.wav files by modifying the configuration. The processes 

of compression and decompression are illustrated in figure

1.

Figure 1. Basic Audio Compression and Decompression 
Process
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Every compression program contains a coder and a 

decoder. Figure 1 shows a basic flowing process in a 

typical modern audio compression program. The purpose of 

the compression process is removing all undetectable 

signals, reducing redundancy of raw data and storing the 

digital representation in a new file. In order to reduce 

the size of the compressed files, Azip first analyzes the 

input file by applying discrete cosine transform (DCT) or 

modified discrete cosine transform (MDCT). In the analysis

filter, analysis filter determines the undetectable sound. 

This includes the sound that is masked by other signals

because of masking effect. Besides this, the sound that

does not have enough energy to be detected by human ear

would also be identified.

Quantizer removes the undetectable sound in the data.

Lossless algorithm is applied next to remove redundancy in 

the remaining data. In the project, Huffman encoder is

used in the lossless compression process. The final data

is stored in a .csusb file.

The decoder transforms the data in .csusb file from

time-frequency representation back to the time-domain 

representation which can be played in Windows Media Player 

or other music playing programs. Decoder also contains

three sections, Huffman decoder, inverse quantizer and

4



synthesis filters. The goal for each section is to produce

the information sent to the correspond section in encoder.

Huffman decoder reverses the effect of Huffman encoder and

inverse quantizer de-quantizes the data sent from Huffman 

decoder. The output of the inverse quantizer is sent to 

synthesis filters and inverse discrete transform at which 

the time-domain representation will be reconstructed.

1.3 Organization of Chapters

Chapter two will focus on Psychoacoustic principles. 

This will include some physics phenomena that are used in

audio compression. Chapter three covers on the concept of 

genetic algorithm. The processes used to find a solution

will be described in detail as well.

The architecture of the project is provided in 

chapter four. This chapter describes each component of the 

project and the relationships among them. User interface

will be briefly discussed in chapter four as well. The

chapter also introduces the implementation of the project

Chapter five compares the result of genetic algorithm 

and psychoacoustic model. The computation and complexity

of modified discrete cosine transform (MDCT) and discrete

cosine transform (DCT) will also be discussed.

Furthermore, the result of psychoacoustic model and
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genetic algorithms will be compared in the chapter. This 

will include compression ratio, SNR comparison and the 

result of subjective testing.

Chapter six lists of improvement and concludes this

paper.
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CHAPTER TWO

PSYCHOACOUSTIC PRINCIPLES

2.1 Introduction

Psychoacoustic principles achieve compression by 

detecting the signal information that is not detectable by 

human audio system. In order to detect the irrelevant 

signal, human auditory perception and particularly the 

time-frequency analysis capabilities of the inner ear have 

been modeled and researched [5]. Modern audio compression 

software applications use psychoacoustic principles to 

exploit the irrelevant signals. By effectively eliminating

the irrelevant information, the storage requirement can be

greatly reduced.

Two major techniques used by psychoacoustic 

principles are absolute threshold of hearing and masking

effect. Absolute threshold of hearing emphasizes the

limitation of human ear in quiet condition. Masking effect

focuses on the phenomena that a signal masks or is masked 

by another signal. Absolute threshold of hearing will be

discussed in 2.2 and masking effect would be discussed in

2.3.
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2.2 Absolute Threshold of Hearing 

Sound is characterized by its energy in physics.

Absolute threshold of hearing characterizes the amount of 

energy needed in a pure tone such that it can be detected 

by a listener in a noiseless environment [5]. Absolute 

threshold is expressed in db sound pressure level (dB 

SPL). Figure 2 shows the relationship between absolute

threshold and frequency.

Figure 2. The Absolute Threshold of Hearing Under Quiet 
Condition

The non-linear function shows the sound pressure 

level (SPL) required at each frequency for average
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listeners to detect the signal. From the point of view of 

audio compression, this curve represents the maximum 

energy level for coding distortion introduced in the 

frequency domain [5]. In other words, if we plot the point 

that represents a sound signal in the graph and the point 

is under the curve, the signal can be removed because it

is too quiet for anyone to hear. In contrast, the signal

that is higher than the curve must be reserved or

listeners will detect the differences. From the graph, we

can see that human ears are most sensitive to the sound

near 4kHz. A 4kHz sound signal with low energy level can

still be easily detected by most people. However, a high 

frequency sound with much higher energy level is

undetectable for most people.

We can conclude that whether or not a sound signal

can be heard depends on i-ts- two properties, frequency and 

the amount of energy it carries. Different sound signals

with same energy level can be loud, quiet or undetectable 

by human depending on its frequency. By applying this to 

audio compression, we can-remove signals that nobody can

hear under quiet condition and obtain a better compression

effect.
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2.3 Masking Effect

The absolute threshold of hearing determines the 

amount of energy required for people to hear the sound 

with certain frequency. However, music is created by sound 

signals each with different frequency and sound pressure

level. Each sound signal can influence the neighbor sound 

signals as well. Masking refers to one sound that is 

inaudible because of the presence of another sound.

The masking effect allows us to further remove the

sound signals that are masked. By removing the signal, we

reduce the size of a music file and achieve a better

compression result. Masking can be further divided to 

simultaneous masking and nonsimultaneous masking.

2.3.1 Simultaneous Masking

When two or more noises exist simultaneously, the 

sound with higher SPL will mask off the one with lower 

SPL. Simultaneous masking happens when the presence of a 

strong masker creates sufficient strength to block 

detection of a weaker signal [5]. The phenomena can be 

further divided to tone-masking-noise (TMN),

noise-masking-tone (NMT), and noise-masking-noise (NMN).

When a tone and a noise within the same critical band

exist simultaneously, the minimum signal-to-mask ratio 

(SMR) determines whether we only hear the tone, the noise
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or both of them. SMR is the difference between the SPL of

masking signal and the SPL of masked signal.

Tone-masking-noise occurs when tone and noise are within 

the same critical band, and the SMR ratio is between 21-28

dB. In the case the pure tone is the masker and covers the 

noise (maskee). Most people are able to detect the tone

even when noise exists. In contrast, noise-masking-tone

(NMT) happens when the SMR is between -5 and 5 dB. The 

tone would be covered by the noise in NMT. Under this

situation, nobody is able to hear the tone because it is 

covered by the surrounding noise.

2.3.2 Non-Simultaneous Masking

Non-simultaneous masking refers to the phenomena that

a masker can cover the signal that is right before or

after it. The fact that a masker can cover the sound prior

to masker onset is called pre-masking. Figure 3

illustrates the property of non-simultaneous masking.

Sound signal has the capability of covering other signals occurring 
very close to it. The length of post-masking is much longer than the 
length of pre-masking.
Figure 3. Non-Simultaneous Masking
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Post-masking, also called forward masking, refers to

the situation that a masker can cover another sound even

after the masker is removed. Unlike post-masking, which 

lasts more than 100ms, pre-masking, also called backward 

masking, usually only lasts for a few ms. From figure 3, 

we can see that sound signals do not only cover the sound 

that occurs simultaneously, but under some conditions, it

has the ability to make all sound that occurs very close

to the masker undetectable. Taking advantage of this

phenomenon, one can improve audio compression ratio.

By applying absolute threshold of hearing and masking

effect, psychoacoustic principles can accurately detect

the signal that can not be heard. The information that

represents the irrelevant sound can be removed but the 

quality of the music file can be kept.
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CHAPTER THREE

GENETIC ALGORITHMS

,3.1 Introduction

Genetic algorithms are a series of methods which 

solve problems by modeling the process of Darwinian 

evolution [16]. Psychoacoustic principle determines and 

removes the irrelevant signal of an individual music file.

In contrast, genetic algorithms analyze a large number of

music files and determine the chunks that are most likely

to contain irrelevant signal. The combination of these 

chunks is called the solution. In the training process, 

sequences of processes are repeatedly executed until the 

requirements are met. The outcome of the training process

is the solution that will be used in the compressing 

process. Unlike psychoacoustic principle, genetic 

algorithms do not analyze music files anymore. This method

removes chunks that are listed in the solution regardless

of music type and length. Because of this, the solution 

encoded in the program plays an important role and 

directly influences the performance of genetic algorithms.

3.2 Training Processes

In the training processes, a large number of

solutions are generated by the genetic algorithms first.
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Each of these solutions is called a chromosome. Each

chromosome is made of a string of different values. Each

value is a gene. The value and the order of the genes in a

chromosome determine the feature of the chromosome.

The genes of the first generation chromosomes are

selected from random. During the training processes, two

chromosomes crossover and create chromosomes of the next

generation. The genes of the child will be determined by 

the genes of the parents. The newly created child will

have a chance to mutate. When a chromosome mutates, the

value of one or more genes in the chromosome will be 

changed to a randomly selected number. The processes of 

crossover and mutation may create new chromosomes that 

perform better than their parents. In order to keep the 

chromosomes that suit our requirements mostly, an 

evaluation is executed. Each chromosome would be given a 

score in the evaluation process. The score, also called

fitness value, determines which chromosomes are selected 

as the parents for the chromosomes of the next generation. 

The processes will be repeated, and chromosomes with 

higher fitness value will be generated. The cycle

continues until a suitable chromosome is found. The

process of genetic algorithms is as follows.
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Step 1. Initialization: Create chromosomes by randomly 

selecting the genes.

Step 2. Evaluation: Evaluate the fitness of each

chromosome.

Step 3. Selection: Select the chromosomes with better

fitness as the candidates for crossover and

mutation operations.

Step 4. Crossover: Two candidates are selected as parents 

to produce new chromosomes of next generation.

Step 5. Mutation: Mutation is randomly applied to the 

genes of new chromosomes.

Step 6. Repeat steps 2 to 5 until a suitable chromosome is

found.

The training processes are illustrated in figure 4.

Figure 4. The Training Procedures of Genetic Algorithms

3.2.1 Initialization

A set of chromosomes is generated randomly. Each

chromosome contains fixed number of genes.

15



3.2.2 Evaluation

Evaluation is the process of determining the fitness 

of chromosomes. In Azip audio compression system, 

Signal-to-Noise Ratio (SNR) is used to determine the 

fitness. Chromosomes are sorted according to their

fitness.

3.2.3 Selection

The chromosomes with higher fitness value would be'

selected as the candidates for crossover and mutation. Two

common selection methods are roulette wheel selection and

tournament-based selection. In order to generate better

chromosomes, both methods give chromosomes with higher

fitness value better chances to be selected. The

chromosomes with low fitness value may contain good genes,

therefore, both methods reserve a small chance for

chromosomes with low fitness value.

3.2.4 Crossover

The crossover operation is one of the most important 

operations in genetic algorithm. The basic idea is to

generate new chromosomes by exchanging the segments 

between pairs of chromosomes. Some crossover operations

will be illustrated here.

3.2.4.1 One-Point Crossover. The one-point crossover 

is a simple and effective technique. The first step of the

16



technique is to select the crossover point. Genes up to 

and including the crossover point are copied from one 

parent. All other genes are copied from the second parent.

Assume the chromosomes of two parents are as follow

Parentl: 2 30 45 56 77 82 90 95

Parent2: 12 22 39 48 50 64 83 92

If position 4 is selected to be the crossover point,

then the following two children will be generated.

Childl: 2 30 45 56 | 50 64 83 92 

Child2: 12 22 39 48 | 77 82 90 95

The first child has the first four genes from parent

1 and others from parent 2. The second child has the first

four genes from parent 2 and others from parent 1.

3.2.4.2 Two-Point Crossover. The procedure is similar

to one-point crossover. The only difference is instead of

one crossover point, two points are selected and genes

between these two points are swapped. With the same 

parents above and position 2 and 5 as the crossover

points, the following two children will be generated

Childl: 2 | 22 39 48 50 | 82 90 95

Child2: 12 1 30 45 56 77 1 64 83 92

3.2.4.3 n-Point Crossover. The procedure is similar 

to two-point crossover except that n crossover points are 

selected. Genes between odd and even crossover points are

17



swapped. All other genes remain the same. With the same 

parents above and position 2, 5, 6, and 7 as the crossover 

points, the following two children will be generated.

Childl: 2 30 | 39 48 50 | 82 | 83 | 95 

Child2: 12 22 | 45 56 77 | 64 | 90 | 92

3.2.4.4 Uniform Crossover. In uniform crossover [14],

each gene is copied from a parent based on a random flip. 

In other words, for each gene, the probability that the 

gene is copied from parent 1 is equal to the probability 

that it is copied from parent 2.

Crossover allows two chromosomes to generate two new

chromosomes. In audio compression, not all chromosome

generated by the crossover is valid and effective. The 

most important restriction is that the value of every gene 

must be unique. If two or more genes contain the same

value in one chromosome, the chromosome is invalid.

However, in the view of audio compression, the order of 

the genes is not meaningful. For example, a chromosome 

with value {l, 2, 3, 4, 5} is the same as a chromosome 

with value {5, 3, 2, 4, l}.

3.2.5 Mutation

Although selection and crossover effectively search 

and generate new chromosomes, they may miss some

potentially useful genes. In some cases, some useful genes

18



may not even be selected in the initial step. In order to 

produce a better solution, mutation is applied. The basic 

idea of mutation is to randomly select a number as 

crossover point. The value of the gene in the position 

would be replaced by any valid random number that does not

exist in the chromosome.

3.3 Applying Genetic Algorithms on 
Audio Compression

To model the process of Darwinian evolution, a music 

file is first cut to several sections with equal length.

In the case that the last chunk is not long enough to meet 

the required length, a number of zeros are added to extend

the length of the last chunk.

As illustrated in figure 5, two music files are

allowed to have different number of sections. However, the

length of each section must be the same regardless of the

length of music files.

19



3 24 56 78 90
Once GA training processes select the positions, value in the
position will be changed to 0. In figure 6, chromosome with {3, 24, 
56, 78, 90} is selected as solution in the training processes.
During the compressing process, positions 3, 24, 56, 78, 90 will 
all change their values to 0. (same applies for the first and third 
chunk)

Figure 6. Compressing Process of Genetic Algorithm

The length of a section directly influences the 

length of the solution. The length of the solution must be 

between zero and the length of a section. Genetic

algorithm achieves compression effect by changing the 

chunk whose position is in the solution. The values of 

these chunks will all be changed to zero. The action 

increases the redundancy and creates better compression 

effect during the Huffman coding.

If the length of the solution is zero, no compression 

will take place and the decompressed output file is

identical with the original one. As the length of the

solution increases, the compression ratio increases but

the quality of the decompressed file drops. Figure 7
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illustrates this by comparing the compression ratio with

the SNR.

Compression Ratio vs SNR

Compression Ratio

Music 1 

Music 2

Genetic algorithms are applied to two different music. The length of 
the solution increases from 10% to 70% of the length of the whole 
music files. The increase of the solution length causes the 
compressing ratio to increase but the SNR decreases.
Figure 7. Compression Ratio versus Signal-to-Noise Ratio 

in Genetic Algorithms

3.4 Problem of Genetic Algorithm and Conclusion 

Genetic algorithm is a simple technique to compress

an audio file, but it also has a problem. The main problem

of the method is that the final solution produced is a 

general solution. Genetic algorithm only uses one solution 

to compress all kind of music files. Consequently, the

differences between some decompressed files and the source 

files are significant. In.order to generate the best

result for a music file, the training and evaluation
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process must be executed every time. This will be

time-consuming and inefficient.

One way to create a better result using genetic

algorithm is to produce multiple solutions. Each solution 

is specifically designed for a kind of music, for 

instance, classical music. The performance of the genetic

algorithm for this kind of music will be improved.
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CHAPTER FOUR

PROJECT DESIGN AND IMPLEMENTATION

4.1 Overall Description

4.1.1 Project Functions

Azip audio compression system is an application which 

allows the users to compress/decompress wave files. During 

the compressing process, a file with ".csusb" suffix will 

be generated. When a .csusb file is decompressed, the 

application will generate a .wav file. Besides compressing 

and decompressing files, users can also easily get the 

file format of a .wav file. By using command "snr", users 

can find the signal-to-noise ratio of two .wav files. The

usage of these commands will be discussed in 4.1.3.

4.1.2 Hardware Interface

Azip audio compression system is tested under Cygwin. 

Since Cygwin is a Linux-like environment run under

Windows, Azip is able to run under Linux operation system.

4.1.3 User Interface

4.1.3.1 Azip Commands. Azip is a text form 
application. Table 1 shows all legal commands and their 
functions
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Table 1. Legal Commands in Azip Audio Compression System

azip —c [list of wave 
files]

Compress a list of wave files

azip -d [list of 
.csusb files]

Decompress a list of .csusb files

azip -i [list of wave 
files]

Print the format of one or multiple 
wave files

snr filel.wav 
file2.wav

Calculate the SNR of filel and 
f ile2

For the users use Cygwin system, please add before

each commands.

4.1.3.2 Configuration Modification. In order to 

modify the configuration values, one must open a file 

called "codec_config.h". The content of the file looks 

like the following figure.

#ifndef CODECCONFIG 
#define CODEC_CONFIG

#define QFACTOR 0.2 
#define QUANTIZATION 
#define DYNAMIC_QFACTOR 
//#define DEBUG 
//#define USE_MDCT 

' #define USE_DCT 
#define FREQ_MASK 
//#define MY_MASK

#endif

Figure 8. File Codec_config.h
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QFACTOR controls the compression rate. By setting it 

lower, compression ratio will rise but the quality of the 

music will drop. By adding or removing "//" sign before 

each line, users can control the way the program compress 

the file. When "//" is added before a line of code, this

line of code is inactive. Figure 8 shows the setting for

the combination of DCT and psychoacoustic principle. Once 

codec_config.h is modified and saved, users must type 

"make clean all" under Cygwin or Unix to make the new

setting effective.

4.2 Project Functions Design and Implementation

The section will discuss some important files used in 

Azip audio compression system. The files in Azip audio 

compression system are summarized in table 2.
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Table 2. Files in Azip Audio Compression System

File Name Function

audio.c .wav file handling, DCT and MDCT

decode.c Decompressing .csusb files to .wav files

encode.c Compressing .wav file to .csusb files.

Freqmask.c Using psychoacoustic principles to 
compress data.

ga. c Executing training processes.

huffman.c Creating Huffman tree and Huffman table. 
Generate the compressing code used in 
Quantization process

snr. c Calculate the signal-to-noise ratio of two 
different .wav files

4.2.1 Filter Implementation

Two kinds of filters, DCT and MDCT, are implemented

in Azip audio compression system. They are coded under 

audio.c files. The functions implement DCT and MDCT are

listed in table 3.
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Table 3. Critical Functions Used in Discrete Cosine
Transform and Modified Discrete Cosine Transform

Function Name Purpose

init dot Initializes tables required in DCT

init_mdct Initializes tables required in MDCT

Dct Main DCT program

Mdct Main MDCT program

Idct Inverse DCT

I mdct Inverse MDCT

The implementation of init_dct is shown in figure 9.

void init_dct(void)
{

int i,j;
for(i=0;i<FRAME_SIZE;i++)
{

for(j =0;j <FRAME_SIZE;j ++)
{

dct_table[i][j]=cos( pi * (double)i*(double)j I 
(FRAME_SIZE-1) );

}
}

}
}

Figure 9. Implementation of Function Init_dct
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The implementation of function dot is shown in figure 10.

freq_frarae *dct(pcm_frame *pcm,freq_frame *freq)
{

int i ,j ; 
double acc;

for(i=0;i<FRAME_SIZE;i++)
{

acc=0.5*(double)pcm->buf[O]*dct_table[i][0]; 
for(j=l;j<FRAME_SIZE-l;j++)
{

acc+=( (double)pcm->buf[j]*
dct_table[i][j] );

}
acc+=0.5*(double)pcm->buf[FRAME_SIZE- 

1]*dct_tab1e[i][FRAMEJSIZE-1];
freq->buf[i]=(acc*2.0/(FRAME_SIZE-l));

Figure 10. Implementation of Function Discrete Cosine 
Transform
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The implementation of function idct is shown in figure 11.

pcm_frame *idct(freq_frame *freq,pcm_frame *pcm)
{

int i ,j; 
double acc;

for(i=0;i<FRAME_SIZE;i++)
{

acc=0.5*freq->buf[0]*dct_table[i][0]; 
for(j=l;j<FRAME_SIZE-l;j++)
{

acc+=(freq->buf[j]* 
dct_table[i][j] );

}
acc+=0.5*freq->buf[FRAME_SIZE-1]*dct_table[i][FRAME_SIZE-1]; 
pcm->buf[i]=(short)(acc);

Figure 11. Implementation of Function Inverse Discrete 
Cosine Transform
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The implementation of int_mdct is shown in figure 12.

void init_mdct(void)
{

int i ,j;
for(i=0;i<FRAME_SIZE;i++)
{

f o r (j =0; j <FRAME_S IZE* 2; j ++)
{

mdct_ftable[i][j]=2.0*1.0/(FRAME_SIZE- 
l)*sin(0.5*pi*(double)j/FRAME_SIZE) *

cos( ((double)j+(FRAME_SIZE+l.0)/2.0) * ((double)i+0.5 
) * pi / FRAME_SIZE);

}
}

for(i=0;i<FRAME_SIZE*2;i++)
{

for(j=0;j<FRAME_SIZE;j++)
{

mdct_itable[i][j]=1.0*sin(0.5*pi*(double)i/FRAME_SIZE) * 
cos( ((double)i+(FRAME_SIZE+l,0)/2.0) * ((double)j+0.5 

) * pi / FRAME_SIZE);
1

}

Figure 12. Implementation of Function Init_mdct
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The implementation of mdct is shown in figure 13.

freq_frarae *mdct(pcm_frame *pcml,pcra_frame *pcm2,freq_frame *freq) 
{

int i ,j; 
double acc;

for(i=0;i<FRAME_SIZE;i++)
{

acc=0.0;
for(j=0;j<FRAME_SIZE;j++)
{

acc+=( (double)pcml->buf[j]* mdct_ftable[i][j ] );
}
f o r (j =0; j <FRAME_S I ZE; j++)
{

acc+=( (double)pcm2->buf[j]* radct_ftable[i][j+FRAME_SIZE]
);

1
f req->buf[i]=acc;

}

return freq;
J
Figure 13. Implementation of Function Modified Discrete 

Cosine Transform
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The implementation of imdct is shown in figure 14.

pcm_frame *imdct(freq_frame *freq,pcm_frame *pcml,pcm_frame *pcm2) 
{

int i ,j; 
double acc;

for(i=0;i<FRAME_SIZE;i++)
{

acc=0.0;
for(j=0;j<FRAME_SIZE;j++)
{

acc+=(freq->buf[j]* mdct_itableti][j ] );
}
pcml->buf[i]+=(short)(acc);

for(i=0;i<FRAME_SIZE;i++)
{

acc=0.0;
for(j=0;j<FRAME_SIZE;j++)
{

acc+=(freq->buf[j]* mdct_itable[i+FRAME_SIZE][j] );
}
pcm2->buf[i]=(short)(acc);

return pcm2;

Figure 14. Implementation of Function Inverse Modified 
Discrete Cosine Transform
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4.2.2 Implementation of Genetic Algorithms
Training Processes

File "ga.c" contains code to implement the training 

processes. Three important functions are summarized in

table 4.

Table 4. Functions Required for Genetic Training Processes

Function Name Purpose

mutation Input chromosome might mutate in the 
process. If the chromosome mutates, some 
genes would change their value to zero.

crossover Generating a new chromosome (child) by 
combining the genes of two candidates 
(parents) .

evaluate Calculating the snr value of a chromosome.

The implementation of function mutation is shown in

figure 15.
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void mutation(ga_indiv *pop)
{

int dis[FRAME_SIZE]; 
int i,j,k;

j=0;
for]i=0;i<FRAME_SIZE;i++)
{

i f (pop->sel [ i ]=0) 
dis[j++]=i;

}

for]i=0;i<DISCARD_BANDS;i++)
{

if(my_random])<MUT1)
{

do {
k=(my_random])*FRAME_SIZE); 

} whi le(pop->sel [k]=0); 
pop->sel[k]=0; 
pop->sel[dis[i]]=l;

}
}

Figure 15. Implementation of Function Mutation
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The implementation of function crossover is shown in

figure 16 and 17.

ga_indiv *crossover(ga_indiv *pl,ga_indiv *p2)
{

int i,j ,k,cntl,cnt2,cnt3; 
int disl[FRAME_SIZE],dis2[FRAME_SIZE]; 
int candidate[FRAME_SIZE],final[FRAME_SIZE]; 

ga_indiv *ptr;

ptr=indiv_create();

cnt1=0;
cnt2=0;
for(i=0;i<FRAME_SIZE;i++)
{

i f (pi ->sel [ i ]=0) 
disl[cntl++]=i;

i f (p2->sel [ i ]=0) 
dis2[cnt2++]=i;

cnt3=0;
for(i=0;i<cnt1;i++)
{

int fgl,fg2;

fgl=l; 
fg2=l;
for(j=0;j<cnt3;j++)
{

if(disi[i]=candidate[j ]) 
fgl=0;

Figure 16. Implementation of Function Crossover
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if(dis2[i ]=candidate[ j ]) 
fg2=0;

)

if(fgl)
candidate[cnt3++]=dis1[i]; 

if(fg2 && dis2[i]!=disl[i])
candidate[cnt3++]=dis2[i];

for(i=0;i<DISCARD_BANDS;i++)
{

j=(my_random()*(double)cnt3); 
final[i]=candidate[j];
i f(j <cnt3-1)
{

candidate^]=candidate[cnt3-l];
}
cnt3--;

printf( “%d\n” , DISCARDJ3ANDS); 
for(i=0;i<FRAME_SIZE;i++) 

ptr->sel[i]=l;

for(i=0;i<DISCARD_BANDS;i++) 
ptr->sel[final[i]]=0;

return ptr;

Figure 17. Implementation of Function Crossover (Continue)

37



The implementation of function evaluate is shown in 

figure 18.

double evaluate(ga_indiv *indiv)
{

int i ,j ,k;
double sig,noise,dl,d2;

sig=0.0; 
noise=0.0;
for(i=0;i<gaopt->frames;i++) 

for(j=0;j<FRAME_SIZE;j++)
{

dl=gaopt->training_data[i]->buf[j]; 
if(indiv->sel[j]!=0)

d2=gaopt->training_data[i]->buf[j]; 
else

d2=0.0; 
sig+=dl*dl;
noise+=(dl-d2)*(dl-d2);

1

indiv->snr=10.0*logl0(sig/noise);

return indiv->snr;
}

Figure 18. Implementation of Function Evaluate

4.2.3 Implementation of Psychoacoustic Principles

Psychoacoustic Principles are implemented in function

named "freqmask_append" in file freqmask.c. The

implementation is shown in figure 19 and 20.
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void freqmask_append(freqmask *fq,double *data,int *out,double 
sample_freq,double k)
{

double temp, dtemp; 
double bwf, bw; 
int a, b, c, d, e; 
int l_left, r_left;

fq->spfq=sample_freq;
bwf=(fq->spfq/2)/fq->fram_size;
bw=13*atan((0.00076*bwf))+3.5*atan(pow((bwf/7500),2)); 
for(a=0;a<fq->fram_size;a++)
1

fq->data[a]=fabs(*(data+a))*k; 
temp=(3.64*pow((0.001*(bwf*a)),-0.8)-6.5*exp(- 

0.6*((0.001*(bwf*a)-3.3)*(0.001*(bwf*a)-
3.3)))+0.001*pow(0.001*(bwf*a),4));

fq->qtspl[a]=pow(10,(0.'l*temp));. 
dtemp=-35.0*freqmask_bark((double)a*bwf);

fq->sfl[a]=pow(10,(0.l*dtemp)); 
dtemp=-35.0*freqmask_bark((double)a*bwf); 

fq->sf2[a]=pow(10,(0.l*dtemp));

if(fq->data[a]>fq->qtspl[a]) ■
fq->mdf[a]=l;

else
fq->mdf [a]=-l';

}
for(b=0;b<fq->fram_size;b++)

{
l_left=b;

Figure 19. Implementation of Function Freqmask_append
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r_left=fq->fram_size-b-1;

c=0;
while(c<l_left)
{

temp=fq->sfl[c+l]*fq->data[b]; 
i f(temp<=fq->qtspl[b-c]) 

break;
else
{

if(temp>=fq->data[b-c]) 
fq->mdf[b-c]=O;

}
C++;

}

for(d=b+l;d<(fq->frara_size);d++)
{

temp=fq->sf2[d-b]*fq->data[b]; 
if(temp<=fq->qtspl[d])

break;
else
{

if(temp>=fq->data[d])
fq->mdf[d]=O;

1
1

}
for(e=0;e<fq->f ram_s i ze;e++) 

out[e]=fq->mdf[e];

Figure 20. Implementation of Function Freqmask_append 
(Continue)
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CHAPTER FIVE

PERFORMANCE ANALYSIS

This chapter focuses on the performance of techniques 

used in the project. Two major filter techniques used in 

filter analysis are discussed in 5.1. The differences and 

performance of psychoacoustic principles and genetic 

algorithm will be illustrated in 5.2. Section 5.2 also

introduces two audio compression systems, MP3 and Vorbis,

and compares their performance with the result of the

project.

5.1 Filter Analysis

Human ear is not sensitive enough to detect the

differences of all the audio signal information,

especially when the difference is small. In order to

produce a better compression product, a filter is 

developed to detect the difference between similar

signals. By using a filter, sound signal is transformed

from time-domain to frequency-domain. Discrete cosine

transform (DCT) and modified discrete cosine transform

(MDCT), two Fourier-related transforms, are the most

common techniques used in audio compression to help 

compress sound signals.
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5.1.1 Discrete Cosine Transform and Modified
Discrete Cosine Transform

There are many different types of DCT. They range 

from DCT-1 to DCT-4. DCT-1 is used in this project. The

formula of DCT-1 is defined by the formula

£4 ( TTkn A= 2^a[«]x[«]cos---- 0<k<N-l
n=0 \N— 1J

the inverse of DCT-1 is defined by the following formula

1 £4 ( vim >*M = — X4*W]lcos—I 0<n<JV-l

when n=0 or N-l, otherwise,

DCT is used in JPEG audio compression, MJPEG video

compression and MPEG video compression. In Mathematics,

DCT is also used to solve partial differential equation.

Modified discrete cosine transform, or MDCT, is a

variant of DCT-4. MDCT is used in AAC, MP3 and Vobis audio

compression. By applying lapped transform. MDCT has half 

as many outputs as inputs. The inverse MDCT is known as

the IMDCT. In general, MDCT is not invertible. However, 

perfect invertibility is achieved by adding the overlapped 

blocks, causing the errors to cancel and the original data

to be retrieved; this technique is known.as time-domain

aliasing cancellation (TDAC). The IMDCT transforms n real 

numbers into 2n real numbers. The overlapped analysis and
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overlap-add synthesis processes are illustrated in figure

21.

Frame k Frame k-t-l Frame k+2 Frame k+31 M \ H \ M \ M \
| 1M |----------------------- >|MDCT y-c M |

| 2M |------------ »jMDGT

| 2Af }»| MDCT HC M |

(a)

M

M

M

-> IMDCT

IMDCT

IMDCT

2Mt

2M

2M

M M
Frame k+1 Frame k+2

(b)
(a) Lapped forward transform - 2N samples are mapped to N spectral 
components, (b) Inverse transform - N spectral components are 
mapped to vector of 2N samples
Figure 21. Modified Discrete Cosine Transform

The definition of MDCT is

X(m) = V /[/c]x[A]cos — f 2k +1 + — }(2m +1) 
2 Jii=0

and the IMDCT:

—i
4 2-

, for m= 0 . . . — 1 2

y(p) = f(p) cos ^\2P + i + x\(2m + 1}\ z for p= O...n -1
n 12n I 2 J
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where f(x) is a function with certain properties. The sine

equation

/(%) = sin^^J

has the right properties.

5.1.2 Complexity of Discrete Cosine Transform and 
Modified Discrete Cosine Transform

The direct application of the DCT or MDCT requires 

0(n2) operations. However, by factorizing the computation, 

one can compute the same thing with only O(n^n) . MDCT 

can be computed in O(n^°gn) by recursively factorizing the

computation. The difference between 0(n2) and O(n^°§n) is 

significant when the data size becomes large.

5.1.3 Performance of Discrete Cosine Transform and 
Modified Discrete Cosine Transform

Ten music samples were selected as sample to check

the performance of DCT and MDCT. The compression ratios of

these two methods are graphed in Figure 22. Figure 22(a)

employs psychoacoustic principles while Figure 22(b)

applies genetic algorithms.
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DCT vs MDCT in Psychoacoustic Principle

cC

no• OQGQ
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Q,
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— DCT
— MDCT

Music Sample

(a)

DCT vs MDCT in Genetic Algorithm

o

Cho• CO
cz>
&
§

Music Sample

— DCT
— MDCT

(b)
DCT and MDCT are used to compress ten music file.
(a) Psychoacoustic principles (b)Genetic algorithms

Figure 22. Discrete Cosine Transform versus Modified 
Discrete Cosine Transform
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Figure 22 shows the performance of DCT and MDCT is 

about the same. MDCT is slightly better when the 

compression ratio is high, but, for cases of low 

compression ratio, they perform equally well.

5.2 Comparing Psychoacoustic Principles 
with Genetic Algorithm

This section will discuss the performance of 

psychoacoustic principles and genetic algorithm.

Signal-to-noise ratio and subjective testing will be used

as the measurements.

5.2.1 Signal-to-Noise Ratio

Signal-to-noise ratio [13], or SNR, is a measure of

signal strength relative to background noise. The measure

is usually measured in decibels (dB). Let Sli be the 

signal of original music file and S2i be the signal of

decompressed file. SNR is defined in the following

formula.

N Q

SNR - 201og10( ------ j )
£(Slz-S2z)
i=i
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Compression
Ratio

Original File 
Size

SNR for
Psychoacoustic

Principles

SNR for 
Genetic 

Algorithms

2.7 198KB 7.61 9.18

4.27 5.04MB 15.67 6.91

9.44 5.04MB 19.27 18.62

6.06 5MB 18.44 11.62

8.89 73.6KB 19.06 20.52

Figure 23. Comparing Psychoacoustic Principle with Genetic 
Algorithm Using Signal-to-Noise Ratio

From the testing result in Figure 23, we can conclude

that psychoacoustic principle performs better than genetic

algorithms in most cases. However, SNR is totally based on

mathematics and statistic result. It is noticed that in

some cases, human ear can easily detect the noise of a 

decompressed file with high SNR. The listeners may not

detect noise in the music files with low SNR. Because of

this, subjective quality measures are designed to give a

more reliable result. .

5.2.2 Subjective Quality Measure

Subjective quality measures can be roughly divided

into two categories, absolute category rating (ACR) and
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comparison category rating (CCR). Figure 24 shows two 

subjective quality scales.
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(a)
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A better than B +2

A slightly better 
than B +1

A same as B 0
A slightly worse 
than B -1

A worse than B -2
A much worse 
than B -3

(b)

(a) Absolute Category Rating (ACR)
(b) Comparison Category Rating (CCR)

Figure 24. Subjective Quality Scales

During the absolute category rating process, uncoded 

signal is played first as reference. Encoded signal and 

uncoded signal would be played in a random order. After 

listening all, the subject must identify which one (second 

one or last one) is the hidden reference. Subjects give

the impaired stimulus (coded signal) relative to the 

reference using the 41-point, 5 grade score. Grade 5 is 

reserved for the signal that subject believes identical

with the reference.
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Comparison category rating (CCR) is relatively 

simple. Investigators prefer CCR over 5-point ACR.

Five of the testing results for subjective testing 

are selected and presented in Figure 25. The score given 

by each listener for the test is listed in Appendix B.

Compression
Ratio

Original
File
Size

Codec 1
SNR
for

Coded
Codec 2

SNR
for

Codec2

Average 
Sub j ective 

Testing

2.70 198KB Psychoacoustic
principle 7.61 Genetic

Algorithms 9.18 1.33

4.27 5.04MB Genetic
Algorithms 6.91 Psychoacoustic

principle 15.67 -2.17

9.44 5.04MB Psychoacoustic
principle 19.27 Genetic

Algorithms 18.62 0.06

6.06 5MB Genetic
Algorithms 11.62 Psychoacoustic

principle 18.44 -0.11

8.89 73.6KB Genetic
Algorithms 20.52 Psychoacoustic

principle 19.06 -0.06

Figure 25. Subjective Testing Result of Psychoacoustic 
Principle and Genetic Algorithms

From the result, we can conclude psychoacoustic

principle is better than genetic algorithms. One reason

that causes this result is genetic algorithm does not 

analyze every input file. Instead, it only compresses the 

source file based on the subbands selected during the 

training processes. Genetic algorithms run slightly

faster, but the performance is not as good as

psychoacoustic principle.
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5.3 Comparing Azip with Moving Picture Experts 
Group-Layer3 and Ogg Vorbis

5.3.1 Background

MP3 was developed around 1993 and became very popular

in 1995. In the first half of 1995, there were a large

number of MP3 files on the Internet. MP3 is an audio

compression algorithm capable of greatly reducing the

amount of data required for audio file. Today, many new

and advanced algorithms, such as advanced audio coding

(AAC), LAME, and Ogg Vorbis, have been developed, but MP3 

is still a common audio compression format.

In September 1998, Fraunhofer Gesellschaft, the

inventor of MP3, planned to charge license fee for the MP3

format and eventually he did. As a result, Christopher

Montgomery began to work on the Ogg project. A stable 

version of the codec was released on July 2002.

Ogg Vorbis was a free and open audio compression 

codec. It uses the MDCT to convert signals from time

domain to the frequency domain. Vector quantization was

applied during the quantization stage to achieve the best

result.

5.3.2 Comparing with Ogg and Moving Picture 
Experts Group-Layer3

MP3 and Ogg are compared in many websites and 

research reports [4]. Most research papers conclude that
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Ogg records better than MP3. It is noticed that MP3 model 

deviates from the original data more strongly than OGG at 

higher frequencies. According to Aziz H. Poonawalla [4], 

Ogg performs better than MP3. Figure 26 shows the SNR and 

subjective testing of 5 selected pairs1. The testing 

result shows Ogg performs the best. This also indicates 

there are still some areas where Azip can be improved. 

Improvement that can be made is discussed in 6.1.

Compression
Ratio

Original
File
Size

Codec 1 SNR for 
Coded Codec 2 SNR for 

Codec2

Average
Subjective

Testing

8.65 198KB Psychoacoustic
Principle 7.23 MP3 11.02 -0.06

11.8 5.04MB Ogg 10.77 Psychoacoustic
Principle 14.09 0.11

13.79 14.6MB Ogg 22.94 Genetic
Algorithms 10.2 0.06

44 11MB Genetic
Algorithms 3.42 MP3 25.86 -1.72

13.99 6.47MB ogg 21.22 Psychoacoustic
Principle 18.56 0.06

Figure 26. Subjective Testing Result of Moving Picture 
Experts Group-Layer3 and Ogg

1 The score given by each listener for each test is listed in 
Appendix C
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CHAPTER SIX

FUTURE ENHANCEMENT AND CONCLUSION

6.1 Vector Quantization

Vector quantization is an algorithm used in voice 

recognition, audio.and video compression [3] . Many- 

advanced audio compression applications, such as Vorbis 

Ogg, use vector quantization instead of scalar 

quant i z at i on.

In scalar quantization, one represents the value by 

fixed subset of representative values. For instance, a 

16-bit value may only be represented by eight most

significant bits. As the result, we only get an

approximation of the original data.

Although vector quantization is also a lossy 

compression, it significantly reduces the difference 

between the original and the output number. Vector 

quantization breaks all numbers into several regions. For 

each region, a representative codeword is chosen to 

represent all numbers in the region. The representative

codeword is determined to be the closest in Euclidean

distance from the input vector. The Euclidean distance is

defined by:
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d(x,yi) = ^(xj-yf)2

where Xj is the jth component of the input vector, and yy 

is the jth is component of ■ the'codeword y±. Figure 27

illustrates how vector quantization works in 2-dimensional

space.

6.2 Conclusion

Azip audio compression system is a text-based

application. It is capable of compressing .wav files,

decompressing .csusb files and comparing the SNR of two
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music files. Moreover, by changing the configuration, 

users can compare the difference between DCT and MDCT. It 

also provides an interface for users who intend to study 

the application of psychoacoustics principle and genetic 

algorithms in audio compression. The theory of

psychoacoustic.s principle and genetic algorithms were

discussed in chapter 2 and chapter 3.

The performance of DCT and MDCT was discussed in

chapter 5. The test result shows that MDCT performs 

slightly better especially when the input file is large, 

(over 1 MB) Otherwise, DCT performs as well as MDCT.

Psychoacoustic principle is widely applied in all 

audio compression applications. Psychoacoustic principle 

was compared with genetic algorithm in chapter 5. The 

result shows that psychoacoustic principle does work 

better than genetic algorithm. Azip audio compression 

system is compared with MP3 and Vorbis Ogg. Vorbis Ogg 

works much better than Azip audio compression system.. This

■shows that there are still some areas that can be

improved.

During the implementation of this project, a number 

of ideas became clearer. Starting from the format of .wav 

file, the algorithms using for audio compression, the 

implementation of Azip, to the comparison between Azip
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with other audio compression system sold in the market or 

downloaded from internet, I absorbed a lot of knowledge 

from reading the articles related to audio compression. In 

each stage, I have a better understanding in audio 

compression. Unlike lossless compression used in text-form 

data compression, good algorithms used in audio

compression require the understanding of physics and the

structure of human ear. Once again, I would like to thank 

all people who help me understand the algorithms and 

answer the questions I have during the project.
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APPENDIX A

ABBREVIATION

56



AAC

ACR

CCR

CSUSB

DCT

GA

J DCT

I MDCT

JPEG

MDCT

MP3

MPEG

NMN

NMT

SMR

SNR

SPL

TDAC

TMN

The appendix lists all abbreviation used in the document. 

Advanced Audio Coding 

Absolute Category Rating 

Comparison Category Rating 

California State University San Bernardino 

Discrete Cosine Transform

Genetic Algorithms

Inverse Discrete Cosine Transform

Inverse Modified Discrete Cosine Transform

Joint Photographic Experts Group

Modified Discrete Cosine Transform

MPEG Layer3

Moving Picture Experts Group

Noise-Masking-Noise

Noise-Masking-Tone

Signal-to-Mask Ratio

Signal-to-Noise Ratio

Sound Pressure Level ,

Time-Domain Aliasing Cancellation ;

Tone-Masking-Noise —
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APPENDIX B

COMPARING PSYCHOACOUSTIC PRINCIPLES

WITH GENETIC ALGORITHMS
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The appendix lists the scores given by listeners for the subjective 
testing for comparing psychoacoustic principles with genetic algorithms.

Listener Test 1 Test 2 Test 3 Test 4 Test 5

1 1 -3 0 0 0

2 2 -2 0 -1 1

3 1 -2 0 0 0

4 1 -2 1 0 1

5 1 -2 -1 0 1

6 2 -3 1 1 0

7 1 -2 0 0 -1

8 1 -2 0 -1 0

9 1 -2 0 0 -1

10 1 -3 -1 0 0

11 1 -2 0 . -1 1

12 2 -2 1 1 -1

13 1 -2 0 0 0

14 2 -2 -1 1 -1

15 1 -1 0 0 0

16 1 -2 0 -1 0

17 2 -3 1 -1 -1

18 2 -2 0 0 0

Average 1.333333 -2.166667 0.055556 -0.111111 -0.055556

The grade is given using Comparison Category Rating (CCR). Grade given 
can be ranged from 2(the file played first is much better) to -3(the file played 
first is much worse). 0 indicates the listener feel two files are the same.
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APPENDIX C

COMPARING AZIP WITH MOVING PICTURE EXPERTS

GROUP-LAYER3 AND OGG
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The appendix lists the scores given by listeners for the subjective testing for 
comparing Azip with MP3 and Ogg.

Listener Test 1 Test 2 Test 3 Test 4 Test 5

1 -1 0 0 -1 -1

2 1 1 1 -2 1

3 0 0 0 -1 0

4 0 0 0 -1 0

5 -1 0 0 -2 0

6 0 0 0 -1 0

7 1 1 1 -3 1

8 -1 0 -1 -1 1

9 0 0 0 -1 0

10 0 0 0 -2 0

11 1 0 0 -3 0

12 0 -1 2 -1 1

13 0 0 0 -2 0

14 0 -1 -1 -1 -1

15 0 0 0 -2 0

16 -1 0 -1 -2 -1

17 0 1 0 -3 0

18 0 1 0 -2 0

Average -0.055556 0.1111111 0.0555556 -1.722222 0.0555556

The grade is given using Comparison Category Rating (CCR). Grade given 
can be ranged from 2(the file played first is much better) to -3(the file played 
first is much worse). 0 indicates the listener feel two files are the same.
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