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THE CONCENTRATION-COMPACTNESS PRINCIPLE FOR VARIABLE
EXPONENT SPACES AND APPLICATIONS

JULIAN FERNANDEZ BONDER AND ANALIA SILVA

ABSTRACT. In this paper we extend the well-known concentration — compactness principle of
P.L. Lions to the variable exponent case. We also give some applications to the existence
problem for the p(z)—Laplacian with critical growth.

1. INTRODUCTION.

When dealing with nonlinear elliptic equations with critical growth (in the sense of the Sobolev
embeddings) the concentration — compactness principle of P.L. Lions, see [12], have been proved
to be a fundamental tool in order to prove existence of solutions. Just to cite a few, see
[ 21 B, [7, 4, 1] but there is an impressive list of references on this.

More recently in the analysis of some new models, that are called electrorheological fluids,
the following equation has been studied,

(1.1) —Apyu = f(z,u) in Q.

The operator Ay, u = div(|Vu/P®)=2V4) is called the p(z)—Laplacian. When p(z) = p is the
well-known p—Laplacian.
In recent years appeared a vast amount of literature that deal with the existence problem for

(LI) with different boundary conditions (Dirichlet, Neumann, nonlinear, etc). See, for instance
[5L 6], 8, [13], [14] and references therein.

However, up to our knowledge, no results are available for (II]) when the source term f is
allowed to have critical growth at inﬁnityﬂ. That is

[f (@, )] < O+ |t1)

with ¢(z) < p*(z) := Np(z)/(N — p(z)) (if p(z) < N) and {q(z) = p*(z)} # 0.
This paper attempts to begin to fill this gap.

So, the objective of this paper is to extend the concentration — compactness principle of P.L.
Lions to the variable exponent setting.

The method of the proof follows the lines of the ones in the original work of P.L. Lions and
the main novelty in our result is the fact that we do not require the exponent g(x) to be critical
everywhere. Moreover, we show that the delta masses are concentrated in the set where ¢(z) is
critical.
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Finally, as an application of our result, we prove the existence of solutions to the problem

{_Ap(x)u = ‘u’Q(w)_2u + )\(x)‘u”r‘(w)—2u in Q

1.2
(1.2) u=~0 in 90

where  is a bounded smooth domain in RV, r(z) < p*(z) — 6, q(z) < p*(x) with {q(z) =
p*(x)} # 0.

1.1. Statement of the results. As we already mentioned, the main result of the paper is
the extension of P.L. Lions concentration — compactness method to the variable exponent case.
More precisely, we prove,

Theorem 1.1. Let q(x) and p(x) be two continuous functions such that

1< ingp(a:) <supp(z) <n and 1 <gq(x) <p“(xz) inQ.
z€ z€QN

Let {u;}jen be a weakly convergent sequence in Wol’p(m)(Q) with weak limit u, and such that:

o |Vu,|P® — 1 weakly-* in the sense of measures.
o |u;|7®) — v weakly-* in the sense of measures.

Assume, moreover that A = {x € Q: q(x) = p*(x)} is nonempty. Then, for some countable
index set I we have:

(1.3) v = |u]1® + Z Viby, Vi >0
el
(1.4) > VulP® " s, >0
el
(1.5) Syil/P*(xi) < Iug/p(ﬂ%‘) Viel.

where {x;}icr C A and S is the best constant in the Gagliardo-Nirenberg-Sobolev inequality for
variable exponents, namely

VOl Lo ()

S=5,(Q):= in
(€ 9eC (@) 9l Lae

We want to remark that in Theorem [[] is not required the exponent ¢(x) to be critical
everywhere and that the point masses are located in the criticality set A = {x € Q: q(x) =

p*(x)}.
Now, as an application of Theorem [}, following the techniques of [11] we prove the existence

of solutions to
(1.6) —Apyu = u|?®) =2y + \(z)|u|"®) 24 in Q
) u=0 on 0f).

We have, in the spirit of [I1], two types of results, depending on r(z) being smaller or bigger
that p(z). More precisely, we prove

Theorem 1.2. Let p(z) and q(z) be as in Theorem [I1] and let r(x) be continuous. Moreover,
assume that maxg p < mingq and maxgr < mingp.
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Then, there exists a constant \y > 0 depending only on p,q,r, N and  such that if \(x)
verifies 0 < infyeq A(z) < [[A||peo(q) < A1, then there exists infinitely many solutions to (L)) in

Wol’p(x)(Q).

Theorem 1.3. Let p(z) and q(x) be as in Theorem [I1] and let r(x) be continuous. Moreover,

assume that maxgp < mingr and that there exists 1 > 0 such that r(x) < p*(x) —n in L.
Then, there exists Ao > 0 depending only on p,q,r, N and 2, such that if

inf A(x) >Xg  for some § > 0,
TEAs

problem (L6l) has at least one nontrivial solution in Wol’p(x)(Q). Here, As is the 6—tubular
neighborhood of A, namely
As = | (Bs(z) n Q).

€A

1.2. Organization of the paper. After finishing this introduction, in Section 2 we give a
very short overview of some properties of variable exponent Sobolev spaces that will be used
throughout the paper. In Section 3 we deal with the main result of the paper. Namely the proof
of the concentration — compactness principle (Theorem [[I]). In Section 4, we begin analyzing
problem (L6) and prove Theorem [[L3l Finally, in Section 5, we prove Theorem

Comment on a related result. After this paper was written, we found out that a similar
result was obtained independently by Yonggiang Fu [10].

Even the techniques in the work of Fu are similar to the ones in this paper (and both are
related to the original work by P.L. Lions), we want to remark that our results are slightly more
general than those in [I0]. For instance, we do not require g(z) to be critical everywhere (as is
required in [I0]) and we obtain that the delta functions are located in the criticality set A (see
Theorem [L.T]).

Also, in our application, again as we do not required the source term to be critical everywhere,
so the result in [10] is not applicable directly. Moreover, in Theorem [[.3] our approach allows us
to consider A(z) not necesarily a constant and the restriction that A is large is only needed in
an L°°-norm in the criticality set.

We believe that these improvements are significant and made our result more flexible that
those in [10].

2. RESULTS ON VARIABLE EXPONENT SOBOLEV SPACES
The variable exponent Lebesgue space LP(* )( ) is defined by
LPE)(Q) = {u € LlL.(Q / |u(z)[P@) do < oo}

This space is endowed with the norm
p(z)
de <1

”UHLP(w)(Q) = inf {)\ >0: /Q

The variable exponent Sobolev space W) () is defined by
Whr@(Q) = {u e WL (Q): v e LP®(Q) and |Vu| € LPP(Q)}.

u(z)
A
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The corresponding norm for this space is
lullwrp@ @) = l[ull Lo @) + VUl e o

Define VVO1 P (w)(Q) as the closure of C’(‘]X’ (Q) with respect to the WHP(#)(Q) norm. The spaces

Lr@)(Q), Whr)(Q) and WO1 p(@) (Q) are separable and reflexive Banach spaces when 1 < infg p <
Supq p < oQ.

As usual, we denote p/(z) = p(x)/(p(x) — 1) the conjugate exponent of p(z).

Define Nple)
p(z :
P (a) = N0 if p(z) < N
00 if p(x) > N

The following results are proved in [9]
Proposition 2.1 (Holder-type inequality). Let f € LP™)(Q) and g € LP'®)(Q). Then the
following inequality holds

@@l de < Gl ool v

Proposition 2.2 (Sobolev embedding). Let p,q € C(Q) be such that 1 < g(x) < p*(z) for all
x € Q. Then there is a continuous embedding

Whr@)(Q) — LI@)(Q).
Moreover, if infq(p* — q) > 0 then, the embedding is compact.
Proposition 2.3 (Poincaré inequality). There is a constant C' > 0, such that
||U||Lp(z)(9) < C|||Vu|||LP(I)(Q)7
for all u € Wol’p(x)(Q).
Remark 2.4. By Proposition 23] we know that [|[Vull| s ) and [Jul[y1pe) ) are equivalent

norms on Wol’p(x) (Q).

Throughout this paper the following notation will be used: Given ¢: 2 — R bounded, we
denote

g i=supg(x), ¢ :=infg().
Q Q
The following proposition is also proved in [9] and it will be most usefull.
Proposition 2.5. Set p(u) := [, |u(z P@) dz. For u,e LP™)(Q) and {ug}pen C LP®(Q), we
have
u

(2.1) uwA0= (HuHL,,(x)(Q) =& p(3) = 1).
(2.2) [ull oy @) < L= 1> 1) < p(u) < (= 1> 1).
(2.3) l[ull Ly () > 1 = HUIILM @ S Pl < IIUIILM Q)"
(2.5) kli)Hc;lo ||Uk||Lp(z)(Q) =0< klggo P(Uk) = 0.
(2.6) Jm f[ugll o @) = 00 & lim p(ug) = co.
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3. CONCENTRATION COMPACTNESS PRINCIPLE

Let {u;}jen be a bounded sequence in Wol’p(x)(Q) and let ¢ € C(Q) be such that ¢ < p* with
{z € Q: ¢q(x) = p*(x)} # 0. Then there exists a subsequence that we still denote by {u;};en,
such that

e u; —u weakly in Wol’p(m)(Q),

e uj —u strongly in L"®)(Q) V1 <r(x) < p*(2),
e |u;]|%®) — v weakly * in the sense of measures,

e |Vu,|P® — ;i weakly * in the sense of measures.

Consider ¢ € C*(Q), from the Poincaré inequality for variable exponents, we obtain
(3.1) 615 oy S < I9605) oo -
On the other hand,
IV (duj)ll o ) = 19V || Lo ()| < 145Vl o) @)

We first assume that v = 0. Then, we observe that the right side of the inequality converges to
0. In fact, if, for instance |||u[P(®) HL1 ) > 1,

s V|l oy < IVl ey + VP Izl 1o @
xr 1 —
< (IVoll ey + VP luf @ g, — 0

Finally, if we take the limit for j — oo in (3.1]), we have,
Now we need a lemma that is the key role in the proof of Theorem LIl

Lemma 3.1. Let pi,v be two non-negative and bounded measures on Q, such that for 1 < p(z) <
r(z) < 0o there exists some constant C > 0 such that

Then, there exist {x;}je; C Q and {v;}jer C (0,00),such that:
vV = X0y,
For the proof of Lemma [3.1] we need a couple of preliminary results.

Lemma 3.2. Let v be a non-negative bounded measure. Assume that there exists § > 0 such
that for all A borelian, v(A) =0 or v(A) > 6. Then, there exist {x;} and v; > 0 such that

v= Z V0,

Proof. The proof is elementary and is left to the reader. O
Lemma 3.3. Let v be non-negative and bounded measures,such that
Then there exist 6 > 0 such that for all A borelian, v(A) =0 or v(A) > 4.
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Proof. First, observe that if v(A) > 1,

/ ( XA(SUl) >p(m) d S/ (L@)pm dv = 1.
2 \v(4)r- 2 \v(A)r=

Then I/(A)P% > |Ixall p@. On the other hand,

/ < xa() >T(x) dv
o \ w(A)rF

1
Then v(A)+ > [[xall r@. So we conclude that

v
S
=
=
&
S
X
I
—_

V(A)7 < Cv(A)i-.

Now, if v(A) < 1, we obtain that

Combining all these facts, we arrive at
1 1 1 1
min {I/(A)T_*,V(A)ﬁ} < C'max {V(A)F,V(A)PT} .

Now, if v(A) < 1, we have that

Then, v(A) =0 or

A) > L phl
— ) —p
v(4) 2 ()
Finally,
A) > min{ (£)55 1
()= min { ()1
This finishes the proof. O

Now we are ready to prove Lemma B.1]

Proof of Lemma [3.9l By reverse Holder inequality ([B.2]), the measure v is absolutely contin-
uous with respect to p. As consequence there exists f € L}L(Q), f >0, such that v = u[ f. Also

by [B2) we have,
1
min {I/(A)T%, I/(A)ﬁ} < C'max {,u(A)P%,,u(A)Pj }
for any Borel set A C Q. In particular, f € Lff’(Q) On the other hand the Lebesgue decompo-
sition of p with respect to v gives us
p=v|g+ o, where g € LL(Q),9 >0
and o is a bounded positive measure, singular with respect to v.
Now consider (3.2]) applied to the test function

1
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We obtain
L 1
|gT@=r@ X{ggn}”‘/’”L;“) < Clgr@-—r@ X{g<n}1/1”Lp(w>

- CHgT(x) r@) X{g<n}¢||LP(I)

dv+do

r(z) 1
< CllgP@T@=2@0 x (gl o) + ClgT@ 7 X fg<iy | pie

Since o L v, we have:
1 r(z)
|g7@=p@) X{gﬁn}¢||L£(z) < C|gr@tE-#E) X{gén}¢||Lg(w)

r(z)
Hence calling dv, = g @ -r@) x,<,dv the following reverse Holder inequality holds.
[l o < N[l ppo

By Lemma [3.2] and Lemma 3.3} there exists x}' and K{* > 0 such that v, =}, ; K;'6;.. On the

1€l
r(z)
other hand, v,  ¢g"@-r@ v. Then, we have
r(z)
grOr@ y = Z KPon
7
1€l

r(z;)

where K; = g @2 (z;)v(x;). This finishes the proof. O
The following Lemma follows exactly as in the constant exponent case and the proof is omitted.

Lemma 3.4. Let f,, = f a.e and f, — f in LP@)(Q) then

i ([ 15— [ 17— fpac) = [ (7P

Now we are in position to prove Theorem [T.1]

Proof of Theorem [I.1. Given any ¢ € C*(Q) we write v; = u; — u and by Lemma [3.4] we

have
tim ([ jot s — [ ot oo ) = [ o1
J—00 Q Q Q
On the other hand, by reverse Holder inequality (3.2]) and Lemma [B1] taking limits we obtain

the representation
v = |u1® 4 Z V0
jel

Let us now show that the points x; actually belong to the critical set A.

In fact, assume by contradiction that z; € Q\ A. Let B = B(z1,r) CC  —A. Then q( ) <
p*(z) — § for some § > 0 in B and, by Proposition 2.2, The embedding Wl’p(””)( ) — L1®)(B)
is compact. Therefore, u; — u strongly in L@ (B) and so |u;|9®) — |u|¢®) strongly in L(B).
This is a contradiction to our assumption that x1 € B.

Now we proceed with the proof.

Applying (B1)) to ¢u; and taking into account that u; — u in L)), we have
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1 and supported in the unit ball of R".

Consider ¢ € C°(R™) such that 0 < ¢ < 1, ¢(0) =
;) =0 for i # j.

Fixed j € I, we consider ¢ > 0 such that B.(z;) N B:(x

We denote by ¢. j(z) = e "¢((z — xj)/e).
By decomposition of v, we have:

Po(Bios) / PG

/|¢206|q |U|Q(I dfﬂJrZ”z%swz (xl)

el

> Vig -

From now on, we will denote

g = sup q(z), ¢ := inf g(x),
Be(x;) Be (i)

pzfe := sup p(z), p;. = inf p(z).
Be(x;) Be(z;)

If pu(¢iy,e) <1 then
1/q;.

1/qg.
|’¢i075|’L3($)(Q) = ”(bio,a”Lg(z)(Bs(mio)) > pu(¢io7g) /ql’e > Vio

Analogously, if p,(¢i,.c) > 1 then

1/q;
||¢io,€||Lg(z)(Q) 2 Vio 1,5‘

Then,

1 1
. .  q.
min {Vz' * }S < l¢, EHLP(I) + [[(V :—:)UHLP(Z)

Now, by Proposition we have

I(Véie)ull ooy < max{p((Vbie)u) P p((Voie)u) /7" ).

Now, by Holder inequality we have

((V¢25 / |V¢Z 5|p |u|p d:E

< |fulPt® ”La(f)(BE(gci))H‘V(bi,&‘p(x)HLa’(r)(BE(xi)y

where a(z) =n/(n — p(z)) and o/ (x) = n/p(z).
Moreover, using that V¢; . = V¢ (2=2) %, we obtain:

1965 P o) (5 gy < max{p(IT e [P p(V i [P m,
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and

(Vs [P@) = / Viel" da

B ()
T — x; 1

= Vo "— dx
/BE@Z.)’ =

[ Ve .
B1(0)
Then, V¢; .u — 0 strongly in LP@)(Q). On the other hand,

/Q |5, [P' ) dp < p(Be(as)) = p

Therefore,

[iell Lo ) = 1Diell Lo (B ()

1 1
+ —
< max {Pu(@bi,a)pi’s apu(ﬁbi,a)pi’s }

1 1

+ —

pi,s pi,s
é max {MZ 7/~Li } )

1 1 1 1

F = F =

. q,; q,; P; Pp;
Smln{yi RS 78 } < max{,ui“s TR } .

As p and ¢ are continuous functions and as g(x;) = p*(z;), letting £ — 0, we get

so we obtain,

SV}/P*(%‘) < Iul/il’(%‘)

— (2

Finally, we show that p > |Vu|P®) 4 X0,

In fact, we have that p > > p;id;,. On the other hand u; — u weakly in Wol’p(x)(Q) then
Vu; — Vu weakly in LPE)(U) for all U C Q. By weakly lower semi continuity of norm we
obtain that dy > |Vu[P(®) dz and, as |[Vu[P®) is orthogonal to ji;, we conclude the desired result.

This finishes the proof. O

4. APPLICATIONS

In this section, we apply Theorem [[.T] to study the existence of nontrivial solutions of the
problem

(4.1) {_Ap(x)u = [ul?) 20+ A@)u" ™) in Q,

u =0 in 0F,
where r(z) < p*(z) — e, q(z) < p*(z) and A = {z € Q: ¢(x) = p*(x)} # 0. We define
As = Upea(Bs(x) N Q) = {z € Q: dist(z, A) < d}.

The ideas for this application follow those in the paper [11].
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For (weak) solutions of (41]) we understand critical points of the functional

[ | Vulp@) - || 7(@) BV | () )
]-"(U)—/Q () @ Az) ) d

4.1. Proof of Theorem[1.3l. We begin by proving the Palais-Smale condition for the functional
F, below certain level of energy.

Lemma 4.1. Assume that v < q. Let {uj}jen C Wol’p(x)(Q) a Palais-Smale sequence then
{uj}jen is bounded in Wol’p(m)(Q).

Proof. By definition
F(uj) = ¢ and F'(uj) — 0.
Now, we have
1 1
¢t 12 Fluy) = Flug) = —{(F(wy),u5) + ——(F'(u), uy),

where
g s) = [ VP~ a1 s

Then, if r(z) < g(x) we conclude

11 . 1
12 (2= 1) [ 9P - LI )l

We can assume that ||uj||Wl,p(gc)(Q > 1. As ||F'(u; )| is bounded we have that
0

)
1 1 - C
> 0 - ||P _ . N .
412 (2 = ) Il in )~ syt
We deduce that u; is bounded.
This finishes the proof. O

From the fact that {u;};en is a Palais-Smale sequence it follows, by Lemma [T, that {u;} en
is bounded in VVOl P (x)(Q). Hence, by Theorem [I.T] we have

(4.2) g1 = v = a1+ 3 v, v >0,
el
(43) VP > [VulP® + 3 s, i >0
i€l

(4.4) Syl < Mll/P(l‘z‘)'

Note that if I = ) then u; — u strongly in LI®)(Q). We know that {;}icr C A.

Let us show that if ¢ < (p% — q%) S™ and {u;}jen is a Palais-Smale sequence, with energy

A

level ¢, then I = (.

In fact, suppose that I # (. Then let ¢ € C§°(R"™) with support in the unit ball of R™.

Consider, as in the previous section, the rescaled functions ¢; () = ¢(*==).
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As F'(uj) — 0 in (Wol’p(x)(Q))’, we obtain that
lim (F'(uy), ¢i,cuz) = 0.

J—00

On the other hand,
(F'(ug), picuj) = /Q |V [P 20,V (¢ cug) — M) g™ e — |uy| 1P gy da

Then, passing to the limit as j — oo, we get

0= lim </ |Vu] |7’(:”)_2VujV(¢i,€)uj dﬂ?)
Q

j—o0

+ / bicdp — / biedv — / M) |u|" @ ¢; . da.
Q Q Q

By Holder inequality, it is easy to check that

j—0o0

lim [ [V, [P@2Vu;V (¢ )uj de = 0.
Q
On the other hand,
lim [ ¢icdp = pip(0), lim / bicdv =1;¢(0).
e—0 Q e—0 [¢)

and

lim [ Az)ul"® ¢, . dz = 0.

e—0 [¢)
So, we conclude that (u; — v4)¢(0) =0, i.e, u; = v;. Then,

SI/-l/p*(xi) < V}/P(xi)

so it is clear that v; = 0 or S™ < y;.
On the other hand, as r~ > pt,
1
c=lim F(uj) = lim F(uj) — —(F (uj), u;)

j—o0 j—o0 P+

= lim <L 1 \Vuj]p(x) dr +/ <L _ L) ‘uj‘q(r) dx
i—oo Jo \p(x) pt o \pt+ q(z)

11



12 J. FERNANDEZ BONDER AND A. SILVA

1 1 /
p+ q_A ) .A5 Z !

jel

Therefore, if

the index set I is empty.
Now we are ready to prove the Palais-Smale condition below level c.

Theorem 4.2. Let {uj}jen C Wol’p(x)(Q) be a Palais-Smale sequence, with energy level c. If
c< (1% - é) S™, then there exist u € Wol’p(x)(Q) and {u;, }reny C {u;}jen a subsequence such

that uj, — u strongly in Wol’p(m)(Q).

Proof. We have that {u;};jen is bounded. Then, for a subsequence that we still denote {u;};en,
uj — u strongly in LI®)(Q). We define F'(u;) := ¢;. By the Palais-Smale condition, with
energy level ¢, we have ¢; — 0 in (Wol’p(x)(Q))’.

By definition (F'(u;), z) = (¢;,2) for all z € Wol’p(m)(Q), ie,

/Q\Vuj\p(x)_2Vusz dx — /Q ;92,2 da — AA(x)\uj\r(x)_2ujz dz = (¢;, 2).
Then, u; is a weak solution of the following equation.

{—Ap@c)uj = uj| 1@ =20 + A(@)|uj|" @20, + ¢ = f; in Q,

4.5
(4.5) u; =0 on 0f).

We define T': (Wol’p(x) Q) — Wol’p(x)(Q), T(f) := u where u is the weak solution of the following
equation.

A pu=f inQ
4.6 p(x) ’
(4.6) {u 0 on 0f).

Then T' is a continuous invertible operator.

It is sufficient to show that f; converges in (VVO1 P (x)(Q))/ . We only need to prove that
|7 =245 — |u]?®) =2y strongly in (Wol’p(x)(Q))’.
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In fact,
9610y = 20, 5) = [ (g 102, = [t -2uys o

< 19 o g =20 = [l 20)] .-
Therefore,
1720 = 200 oo gy = sp [ (R =l da

L/JGW(}'p(:C) (Q)
11 o) )=

-2 —2
< (1 792ty = [l 20|y
and now, by the Dominated Convergence Theorem this last term goes to zero as j — oo.
The proof is finished. O

We are now in position to prove Theorem [L3l

Proof of Theorem .3l In view of the previous result, we seek for critical values below level
c. For that purpose, we want to use the Mountain Pass Theorem. Hence we have to check the
following condition:

(1) There exist constants 1,7 > 0 such that when [lully150) ) = R, then F(u) >r

(2) There exist vy € WP (Q) such that F(vg) < 7.
Let us first check (1). We suppose that [|[Vull| se) ) < 1 and [Jul| jp@) ) < 1. The other cases
can be treated similarly.

By Poincaré inequality (Proposition B.1]) we have,

|Vu|p(x) |u|Q(~’U) |u|7“(x)
— N dx
/Q ) @ @

1 1 s
> _/ Tul® dx__/ 7@ d;p_%/ @ d
Pt Jo - r— Ja

1 HAH
> p—H\Wlll”+ =

C\|>\\|oo

>—H|V |||”+——|||V = — IVl

Lr(@)(Q) Lr(@) (Q

Let g(t) = p—1+tp+ - q%tq_ - %t"_, then it is easy to check that g(R) > r for some R,r > 0.
This proves (1).
Now (2) is immediate as for a fixed w € VVO1 P (x)(Q) we have

lim F(tw) = —oo.
t—o00

Now the candidate for critical value according to the Mountain Pass Theorem is

c¢=inf sup F(g(t)),
9€C ¢e0,1]

where C = {g : [0,1] — Wol’p(w)(Q): g continuous and g(0) = 0,g(1) = vp}.
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We will show that, if infyec 4, A(x) is big enough for some § > 0 then ¢ < <ﬁ — q%) S™ and
A
so the local Palais-Smale condition (Theorem [£.2)) can be applied.
We fix w € Wol’p(x)(Q). Then, if ¢ < 1 we have
p(z) q(x) r(x)
Ftw) < / e ywy @ Ty [
q+ r+
P trt
< — / |Vw|P@®) do — —/ M) |w|"® da
r4 Q
tp— trt
< / Vol® de — " [ A@)wl@ da
r—4+ As
tp— trt
< / V@ dz — / (inf A@))w["@ da
r—4+ As rEAs
We define g(t) := f;—:al — (infreq, M) i o " a3, where a1 and ay are given by a; = |||Vw|P® 21 (@)
and ag = [[|Jw|"@ || 11 (4;)-
1
The maximum of g is attained at ¢ty = (W) TP So, we conclude that there
exists A\g > 0 such that if (infyec 4, A(z)) > Ao then
1 1
P (L L)
Pt gy
This finishes the proof. O

Remark 4.3. Observe that if A\(z) is continuous it suffices to assume that \(x) is large in the
criticality set A.

4.2. Proof of Theorem Now it remains to prove Theorem So we begin by checking
the Palais-Smale condition for this case.

Lemma 4.4. Let {u;}jen C Wol’p(w)(Q) be a Palais-Smale sequence for F then {u;}jen is
bounded.

Proof. Let {uj}jen C Wol’p(x)(Q) be a Palais-Smale sequence, that is
F(uj) > ¢ and  F'(uj) — 0.
Therefore there exists a sequence €; — 0 such that

1P/ ()] < &l g for all w e Wy (@),

)

Now we have,

1 1
c+1>F(uy) — —_f'(Uj)Uj + —_f'(“j)“j

<_ _ _> / [V, |P® da:+/ (Aq(x) - i@) u;["® da + qi_}"’(ug')ua

v
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We can assume that [[[Vu|||fs@) ) > 1. Then we have, by Proposition and by Poincaré
inequality,

1 1 1 1
1 1 1 1
> (- q—) 195120 + M (q—_ - r) Tl 0y = = s g
from where it follows that ||uj||W1,p(gc)(Q is bounded (recall that p™ < ¢~ and r* < p™). O
0

)

Let {u;}jen be a Palais-Smale sequence for F. Therefore, by the previous Lemma, it follows
that {u;};cn is bounded in Wol’p(x)(Q).

Then, by Theorem [[.I] we can assume that there exist two measures u,v and a function
u € Wol’p(m)(Q) such that

(4.7 uj — u weakly in Wol’p(x)(Q),
(4.8) |Vu;[P®) — i weakly in the sense of measures,
(4.9) |u;]9®) — v weakly in the sense of measures,
iel
(4.11) > VulP® £ " i,
el

As before, assume that I # (). Now the proof follows exactly as in the previous case, until we
get to

1 1 1
02<F——>/]u\q da:+<p——q—>5"+”)\HL°° <—+— )/’“‘”

Applying now Holder inequality, we find

1 1 / 1 1
c>|——— uq(x)d$+<———>5"
<p+ Q‘> Q| | ptoa
1 1 (x _a
Iz (57 = 7 ) I oo |97

If H‘U’T(x)HLq(x)/r(x)(Q) > 1, we have

¢ > eiul"™ Hqu/(Z)/T(z)( o T3 M oo @2 )™ ater/rior e
so, if fi(z) == cpa(@/m” — [All oo (@)c2z, this function reaches its absolute minimum at o =
(Rl @
ci(q/r)~ '

On the other hand, if H|u|r(x)||Lq(:c)/7‘(:v)(Q) < 1, then

e alllul @ )+ €3 — IN L@ allul e )
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so, if fo(z) = clx(q/ "7 — || Al oo ()2, this function reaches its absolute minimum at zg =
[IMl oo () c2 (q/r)+71
ci(q/r)™ :

Then, we obtain

. G | [T
c> (— — —_> S™ + K min H)\HL‘IOJ(Q H)\HquoT(Q ,

P+ q

which contradicts our hypothesis.
Therefore I = ) and so u; — u strongly in L1®)(Q).

With these preliminaries the Palais-Smale condition can now be easily checked.

Lemma 4.5. Let (uj) C Wol’p(w)(Q) be a Palais-Smale sequence for F, with energy level c.

There exists a constant K depending only on p,q,r and Q0 such that, if ¢ < (p—1+ — q%) S+
(a/r)~ WT
K min H)\Hiqoﬁf()gfl A% (qm ' b, then there exists a subsequence {uj, }ren C {u;j}jen that con-

verges strongly in Wol’p(m)(Q).

Proof. At this point, the proof follows by the continuity of the solution operator as in Theorem
4.2l O

Assume now that [|[Vull| sy < 1. Then, applying Poincaré inequality, we have

1 [[All oo
F(u) = —JHVUHIUM H ullf a0 @) 7\\ ullzre @)

[[Allzoe )

1
—HIVUIII _HIV ull e @ riHlV o) = SUlIVulll o @)

Lp(w)

_ A oo _
where Jy(x) = +a:5”+ q@xq W@ = e recall that pt <qg andr” <rT <p <p .

T
As J; attains a local, but not a global, minimum (J; is not bounded below), we have to
perform some sort of truncation. To this end let xg, 21 be such that m < xyp < M < x1 where m
is the local minimum and M is the local maximum of J; and Ji(x1) > Ji(m). For these values
xo and z1 we can choose a smooth function 71 (z) such that 7(z) = 1 if z < xg, 7 (x) = 0 if
x>z and 0 < 7(z) < 1.

I [|[[Vul[| o) () > 1, we argue similarly and obtain

Al 2o ()
F(u) 2 —IHVU\HLM(Q = IHV \HW)(Q ri(H\V 70w @y = Tl Vel oo o)
where Jy(z) = p%a:f — q@x‘ﬁ M ™. As in the previous case, J, attains a local but

not a global minimum. So let a;o,azl be such that m < xyp < M < x; where m is the local
minimum of j and M is the local maximum of Jo and Jo(z1) > Ja2(m). For these values xg and
x1 we can choose a smooth function 7 (z) with the same properties as 77. Finally, we define

{7’1(3)) ifz <1

(@) = To(z) ifx>1.
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Next, let (u) = 7([[|Vull| p=) () and define the truncated functional as follows

£() — yvu‘p(r) . ‘u,q(w) o) do Mur(x)
P = [ S de [, et = [ S

Now we state a Lemma that contains the main properties of F.

Lemma 4.6. F is C', if F(u) <0 then Hu||W01,p(z)(Q) < xo and F(v) = F(v) for every v close

enough to u. Moreover there exists A1 > 0 such that if 0 < [[A[|ec(q) < A1 then F satisfies a
local Palais-Smale condition for ¢ < 0.

Proof. We only have to check the local Palais-Smale condition. Observe that every Palais-
Smale sequence for F with energy level ¢ < 0 must be bounded, therefore by Lemma if A
(a/m)~ (a/m)*

verifies 0 < <ﬁ — %) S™ + K min {H)\H (q/”f*l A% (q/”+ ! }, then there exists a convergent

subsequence O

The following Lemma gives the final ingredients needed in the proof.
Lemma 4.7. For every n € N there exists € > 0 such that
WF ) =n
where F~¢ = {u € Wol’p(m)(Q): F(u) < —¢} and ~ is the Krasnoselskii genus.

Proof. Let E,, C VVO1 P (x)(Q) be a n-dimensional subspace. Hence we have, for u € E,, such that

HUH 11’(9”)(9) 17
|V (tu) P tu |p |tu|9() / A(z) (@)
tu)de — | —=|tu]"\" dx
=) <>“) o @)
</ ‘V tu ‘p / ’tulq(x /M|tu|r(x) dr
“Ja P o 1t '
If t < 1, then

- P p(x) qt |y, 1a(2) ;
F(tu) < / %dm—/ %dw—/ mfxe{i)\(x)tﬁ]u\r(x) I
Q Q q Q r

p
A , trr
T
where
_ (z) . _
a, = inf { /Q |u|? dx: u € E,, Hu||W01,p(z)(Q) = 1}
and
_ r(x) . _
b, = inf { /Q lu|"* dx: u € By, Hu||W01,p(z)(Q) 1}.
Now,we have
T , r tr tr
F(tu) < — — —a, — inf \(z )—b < — — inf AMz)—b,

p~  qt rSy) D Ery) rt
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Observe that a, > 0 and b, > 0 because E,, is finite dimensional. As r™ < p~ and t < 1 we
obtain that there exists positive constants p and e such that

F(pu) < —e  for u € E,, ||u||W01,p(z)(Q) =1.

Therefore, if we set S, = {u € E, : ||u| = p}, we have that S,,, C F~. Hence by monotonicity
of the genus

7(]}_6) > V(Sp,n) =n
as we wanted to show. O

Theorem 4.8. Let
¥={AC Wol’p(x)(Q) —0: A is closed, A= —A},
Yr={ACX:y(4) >k},

where v stands for the Krasnoselskii genus. Then

¢, = inf sup F(u
A€y UEE ( )

is a negative critical value of F and moreover, if c = ¢y, = - -+ = Cgyr, then v(K.) > r+1, where
K. = {uec W"@(Q): F(u) = ¢, F'(u) = 0}.

Proof. The proof now follows exactly as in that of [I1] using Lemma [4.7 O
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