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ABSTRACT Spoofing attacks carried out using artificial replicas are a severe threat for fingerprint based
biometric systems and, thus, require the development of effective countermeasures. One possible protection
method is to implement software modules that analyze fingerprint images to tell live from fake samples.
Most of the static software—based approaches in the literature are based on various image features, each
with its own strengths, weaknesses and discriminative power. Such features can be seen as different and
often complementary views of the object in analysis, and their fusion is likely to improve the classification
accuracy. This paper aims at assessing the potential of these feature fusion approaches in the area of
fingerprint liveness detection by analyzing different features and different methods for their aggregation.
Experiments on publicly available benchmarks show the effectiveness of feature fusion methods, which
improve the accuracy of those based on individual features and are competitive with respect to alternative
methods, such as the ones based on Convolutional Neural Networks.

INDEX TERMS Fingerprint liveness detection, biometric counterspoofing methods, local image features,

feature fusion.

. INTRODUCTION

INGERPRINTS are frequently used as an authentica-
Ftion system in a plethora of applications ranging from
security to surveillance and forensic analysis [[1]. Today
fingerprint recognition systems are cost—effective solutions
that guarantee high recognition accuracy on large datasets of
millions of images. Thanks to these characteristics, they are
starting to be deployed in novel scenarios, such as granting
access to schools, health or leisure facilities, identifying pa-
tients in hospitals, developing pay—with—fingerprint systems
and unlocking consumer devices like notebooks or smart-
phones.

However, these systems are vulnerable to more or less
sophisticated forms of malicious attacks. Direct attacks op-
erate on the acquisition sensor by using fake biometric traits,
while indirect attacks target some of the inner modules of
the system. Clearly, direct attacks are easier to implement for
an intruder, since they only require access to the biometric
sensor without any knowledge of the system operation.

The most common direct spoofing method consists in
creating a mold of a latent or real fingerprint and then filling
it with materials such as gelatine, silicone or Play—Doh (
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[2]-[4]). These attacks can succeed in more than 70% of
the cases [3]], highlighting the need for specific protection
methods that are capable of identifying live samples and
rejecting fake ones.

Fingerprint liveness detection systems can be either hard-
ware or software based. The former integrate additional sen-
sors to extract the typical characteristics of a vital fingerprint,
such as temperature [6]], skin electrical conductivity [7]], pulse
oxometry [[8]] and skin resistance [[6]. While these methods
are effective in practice, several authors have mentioned that,
even if extra hardware is added to the system, it can be still
spoofed in various ways [8]|-[10]. A possible alternative is
to use software based methods, which rely on a software
module to detect the liveness of a fingerprint image. These
solutions are less invasive and more flexible, since they
can potentially tackle novel types of attack by updating the
software.

Software based approaches can be further divided into
dynamic and static ones. Dynamic methods analyze certain
phenomena like skin deformation [|11]] and perspiration [[12]
on a sequence of images. However, the acquisition of multi-
ple images increases the computational time. Static methods,
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on the contrary, focus their analysis on a single fingerprint
image, which makes them suitable for general use.

This work focuses on software static methods. Several
approaches have been proposed in the literature, most of
which are based on the analysis of individual image features.
Holistic methods process the image as a whole to derive some
global characteristics, such as the texture coarseness [13]]
and several first and second order statistics like mean, en-
ergy, entropy, variance, skewness [14] or Gray—Level Co-
Occurrence Matrices [15]]. However, as shown in [[16], the
discriminative power of holistic features is rather low. Better
performances are provided by local methods, which rely
on mathematical descriptors capable of capturing different
texture features on small regions surrounding an image point.

The common characteristic of all these features is that their
engineering was based on expert knowledge of the problem
under analysis. Thus, they can also be seen as different
observations of the same data from different viewpoints, each
of which focuses on specific characteristics of the samples.
Given their differences, these features often highlight com-
plementary properties of the analyzed objects. For this rea-
son, developing approaches that combine multiple features,
capable of mutually exploiting their strengths and, at the
same time, softening their weaknesses, could be a valuable
solution to improve both the accuracy and the generalization
properties of the classification system.

Feature fusion approaches, also referred to as multi—view
learning, have been applied in different computer vision
tasks, such as object classification [[17]] and human activity
recognition [[18]], face [[19] and facial expression recogni-
tion [20]], content—based image retrieval [21] and hyper-
spectral image classification [22]. These works show that
multi—view learning is effective and promising in practice.
In contrast, this approach has been relatively overlooked in
the context of fingerprint liveness detection.

Based on this observation, the rationale of the current work
is to analyze the effectiveness of feature fusion approaches as
anti—spoofing methods and to compare them with the state of
the art. This raises several research questions, such as which
features can be combined and how. Since an exhaustive
assessment of all the available features and feature fusion
methods would have been clearly unfeasible, our approach
has been to (i) select a subset of promising features, based on
the literature, and (ii) compare methods capable of dealing,
from a number of different perspectives, with the various
issues involved (e.g. when to fuse, how to cope with the curse
of dimensionality, how to provide a shared representation of
the different features, and so on).

Our work extends the analysis presented in previous pa-
pers tackling the liveness detection problem with multi—
view learning approaches, and our experimental results show
that feature fusion approaches are (i) effective and able
to generalize well, (ii) capable of improving the accuracy
of single-view methods, and (iii) competitive with deep
learning approaches. Another contribution of our work is
Spidernet, a novel two-stage deep neural architecture capable
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of effectively combining different general image descriptors.

A preliminary version of this work appeared in [23].
The following extensions are introduced: (i) we analyze a
larger number of different features; (ii) we compare four
different multi—view learning methods (two in [23]); and (iii)
we assess our approach on the eleven public benchmarks
made publicly available for the LivDet 2009 [2], LivDet
2011 [3]] and LivDet 2013 [4] competitions (four in [23]]) and
thoroughly compare it with other methods in the literature.

In the remainder of the paper, after an analysis of the
state of the art, we introduce the features and the multi—
view learning approaches selected for our research. Finally,
we present and discuss the results of our experiments before
drawing the conclusions.

Il. RELATED WORKS

As we stated in the introduction, our work is focused on
software based static methods, which leverage on the analysis
of individual images to tell a live from a fake sample. There
is a large literature related to this problem and the recent
availability of public benchmarks (such as [2]-[4]) allows
comparing the different approaches. Results on these datasets
highlight the complexity of the problem, as witnessed by the
fact that, usually, the same technique achieves large accuracy
differences among different sensors.

As a general remark, static approaches differ mainly in the
type of features extracted and if and how the integration of
different features is considered. As another option, recent
works proposed the use of Deep Convolutional Networks
to automatically learn the optimal features for the liveness
detection problem. In the following, we separately analyze
these three general approaches.

A. APPROACHES BASED ON INDIVIDUAL FEATURES
Image features can be roughly divided into holistic features,
computed analyzing the image as a whole, and local features,
extracted in small image patches centered on each image
pixel and eventually summarized into a unique feature vector,
usually by means of a histogram.

Some of the holistic approaches are based on the obser-
vation that, when captured by the same sensor, fake samples
produce image with lower quality than live samples. Thus,
trying to capture these quality differences could result in
highly discriminative features. In [13]] the texture coarseness
is used to highlight the blemishes present in fakes. In [24] it
is observed that live images exhibit higher frequencies than
fake ones and, consequently, that the modulus of the Fourier
Transform can be a valid liveness detector. A more de-
tailed characterization of the quality differences is attempted
in [25[], where 25 different quality measures are extracted.

Other holistic approaches are based on textural features
extracted from the images. In [[26] curvlet energy signatures
and corresponding co—occurrences are used to represent fin-
gerprints. Relevant features are selected by means of Se-
quential Forward Floating Selection. Then, a majority vot-
ing approach combines three different classifiers (Adaboost,
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Support Vector Machine (SVM), k-NN) to produce the final
decision. A different method [[14] gathers several first and
second order texture statistics and intensity based features
into a unique characteristic vector. Feature selection and
different classifiers are then combined to get the final results.
Gray-Level Co—Occurrence Matrix (GLCM) and wavelet
energy signature are analyzed in [[15] by first applying feature
selection and then fusing the decision of different classifiers.

Despite the efforts, comparisons on public benchmarks
show that the discriminative power of holistic features is
rather low, and better performances can be obtained by local
image descriptors ( [16]], [27]).

Local descriptors can be roughly divided into micro—
textural descriptors, which represent an input image by build-
ing statistics on the local micro—pattern variations, and rich
local descriptors, which provide a much stronger character-
ization of local patches [27]]. Most of these descriptors have
been initially designed for coping with different problems in
computer vision and quickly found effective applications for
fingerprint liveness detection. Examples are various micro—
textural descriptors, like Local Binary Pattern (LBP), Weber
Local Descriptor (WLD), Binary Statistical Image Features
(BSIF) and Local Phase Quantization (LPQ), and the whole
class of rich local descriptors, such as Scale-Invariant Feature
Transform (SIFT), DAISY and the Scale-Invariant Descriptor
(SID).

Recently, some novel micro—textural descriptors expressly
designed for fingerprint liveness detection have been pro-
posed. The Histogram of Invariant gradients (HIG) [28]] adds
to the rotation and translation invariance of Histograms of
Oriented Gradient the invariance to curvature and deforma-
tions, which characterize fingerprint images. Local Contrast
Phase Descriptor (LCPD) [16] is a joint distribution of WLD
and LPQ. Convolutional Comparison Pattern (CCP) [29]
is a rotation invariant descriptor based on the preliminary
segmentation of the fingerprint and on its orientation into a
reference direction. DCT based per—pixel binary codes are
then computed at multiple scales and summarized into an
histogram.

B. FEATURE FUSION APPROACHES

Since the various image features convey different and usu-
ally complementary information on the analyzed data, an
interesting perspective could be to improve accuracies by
integrating multiple features. However, few results based on
these feature fusion approaches have been reported.

In [30] various combinations of image features (LPQ,
LBP, curvelet GLCM and valley wavelets) were used to
train a linear SVM. Good results were obtained aggregat-
ing LPQ and LBP, but the accuracy was saturating adding
more features, thus highlighting the importance of carefully
selecting features according to both their performance and
complementarity.

Another approach [31] combines various image filters,
statistic measures and quality indexes. After feature selec-
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tion, Multilayer Perceptron with one hidden layer and SVM
were compared, showing higher accuracies for SVM.

Finally, the study in [32] compared the integration of
LBP+LPQ and LPQ+WLD. Individual features were chained
and fed to a linear kernel SVM. The results clearly highlight
that (i) any combination of multiple features provide better
accuracy than that of individual features, and (ii) the integra-
tion of WLD and LPQ is the optimal one.

C. OTHER APPROACHES
Recently, very good results have been obtained using Convo-
lutional Neural Networks (CNN). In [33]] CNN-based feature
extraction using random weights was compared to LBPs. In
both cases, PCA—compressed features were classified using
SVMs, showing the higher performances of CNN features.
In another interesting approach [34f], authors describe
spoofnet, a deep CNN architecture able to greatly improve
the results of other state—of—the—art approaches. Spoofnet has
been created by optimizing both the architecture hyperparam-
eters and the filter weights via back—propagation algorithm.
It is worth noting that the proposed approach relies on data
augmentation and dataset specific image cropping.

lll. IMAGE FEATURES

Given the demonstrated relevance of micro—textural and rich
local features to the fingerprint liveness detection problem (
[27]), we decided to focus our research on them. Speaking in
general, these features are characterized by different invariant
properties (e.g. to illumination, scale, rotation, translation,
blur and so on). When individual features are considered, it
is clear that the more invariance they express the better it is.
However, when multiple features are combined, this issue is
less pressing since we expect that the mutual contribution of
different features helps overcoming their individual limita-
tions.

Thus, our selection process was mainly based on the
discriminative power of the features, which we inferred from
both the results available in the literature and those of our pre-
liminary tests. Another selection criterion was the possibility
to apply a descriptor to all the experimental benchmarks. For
instance, we ruled out CCP [29] since it requires fingerprint
segmentation and, thus, it cannot be applied to one of our
benchmarks (Swipe) due to the lack of robust segmentation
algorithms capable of coping with the peculiar characteristics
of its images (details are given in Section[V-A).

In the following, we shortly describe the selected features
for each of the two main categories.

A. MICRO-TEXTURAL LOCAL DESCRIPTORS

These descriptors capture the statistical behavior of small
image patches, generally highlighting, as a pre—processing
step, the high frequency components of the signal. Such
descriptors are usually represented as binary codes and then
encoded into an histogram that describes the whole image.
Common parameters for these features are, therefore, the size
of the local patch and the number of code bits used.
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Several results in the literature ( [35[]-[38]]) show that
micro—textural features computed in a multi-scale fashion
(i.e. using different size of the local patches) usually provide
better accuracies than the same features computed at a single
resolution. Hence, when practicable, we also considered this

option (see Section [V-CIJ).

1) Co—occurrence of Adjacent LBPs (CoALBP)

In the context of local textural features, one of the most
famous descriptor is the LBP. Briefly, an LBP is a binary
pattern representing the intensity relations between a pixel
and its neighbors. One of the main drawbacks of the original
LBP formulation is that it lacks structural information. To
overcome this issue, in [36] the authors introduced a new
variant where the co—occurrence among multiple adjacent
LBPs is measured. A single-scale CoALBP histogram has
size 1,024.

2) Rotation—Invariant Co—occurrence of Adjacent LBPs
(RICLBP)

The CoALBP features can vary significantly depending on
the orientation of the target object. In order to cope with
this problem, a recent extension [37] introduces the concept
of rotation equivalence class of CoALBPs. This is achieved
by attaching a rotation invariant label to each LBP pair, so
that all CoALBPs corresponding to different rotations of the
same LBPs have the same value. Thus, the size of the final
histogram is reduced to 136.

3) Weber Local Descriptor (WLD)

WLD [35]] is built on two components computed on each
pixel: orientation and differential excitation. The orientation
is simply the angle of the local gradient, while the differential
excitation is the ratio between the sum of neighboring pixel
intensity and the intensity of the pixel itself. Typically the
orientation is quantized into 8 directions and the differential
excitation into 120 levels, both encoded into a histogram of
960 elements.

4) Local Phase Quantization (LPQ)

This operator [39] is invariant to contrast, illumination and
centrally symmetric blur, such as the one caused by linear
motion and out of focus. LPQ exploits the blur invariance
property of the phase spectrum and encodes phase informa-
tion in a way similar to the coding mechanism of LBPs.
LPQ codes are obtained by locally computing, for each image
pixel, the phase of the 2D Short Term Fourier Transform and
quantizing only some selected frequency components. LPQ
codes are represented with 8 bits and the final descriptor has
size 256.

Using this descriptor requires optimizing the trade—off
between the discrimination power of the LPQ descriptor
and its blur—tolerance. Decreasing the local patch size helps
capturing more detailed local information, but at the same
time it reduces the descriptor tolerance to blur.
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5) Rotation—invariant version of LPQ (RILPQ)

LPQs can be further improved by adding rotation invariance.
As shown in [40], this can be done by first applying a blur
insensitive filter that estimates the local texture orientation
at each location and, then, orient accordingly the phase
estimation step of LPQ.

6) Local Contrast Phase Descriptor (LCPD)

This descriptor has been expressly proposed in [16] to tackle
the fingerprint liveness detection problem. The idea behind
LCPD is, basically, to combine the best characteristics of
WLD and LPQ. We recall that WLD is characterized by two
components related to contrast and orientation. In LCPD,
the contrast is first computed with a Laplacian of Gaussian
operator, which helps better dealing with the intrinsic noise
of fingerprint images, and then quantized on N levels. The
orientation is computed with the RILPQ descriptor, which
guarantees higher robustness to noise and image rotation
compared to the gradient used in WLD. The final LCPD
descriptor has size N x 256, where we fixed N = 8 for all
devices and datasets according to the suggestions in [27].

7) Binary Statistical Image Features (BSIF)

BSIF [41] are histograms of binary codes obtained by apply-
ing to local image patches a set of filters learned from natural
images. Such filters are computed by maximizing the statis-
tical independence of their output using Independent Com-
ponent Analysis. The bits of the binary codes are obtained
by simply thresholding the filter responses. The statistical
independence of the filter outputs improves the representa-
tion capabilities of BSIF when compared with operators that
produce dependent output. Furthermore, these filters are not
built upon the training set of a specific benchmark and, thus,
they do not require to fine—tune their parameters for each
application. In order to allow the combination of different
scales, we used 10 bits for the binary codes, i.e. an histogram
of size 1,024 for each scale.

B. RICH LOCAL DESCRIPTORS
Compared with micro—textural features, these descriptors
provide a much stronger characterization of the local image
patches. To improve their distinctiveness, they are often
coupled with a feature—specific keypoint detector that returns
a local measure of the feature uniqueness, usually promoting
high—contrast regions of the image, such as object corners.
For tasks like image registration, object tracking and
recognition, robust matching algorithms can be applied to
pair keypoint descriptors obtained from different images.
However, when these descriptors are used for object clas-
sification, the common practice shows that better results
are obtained using a dense approach, i.e. computing a local
descriptor on every image pixel or on a regular grid. A com-
pact representation of this dense set can be obtained using
bag—of—-words (BoW) models. In our work, as suggested
in [27], we used for all features a basis of 600 words, which
were computed with vector quantization approaches from 30
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random training images picked from both live and fake sets
and different spoofing materials.

1) Scale Invariant Feature Transform (SIFT)

SIFT [42] is invariant to uniform scaling and rotation,
and partially invariant to affine distortion and illumination
changes. We computed SIFT in both a sparse and dense way.
The sparse version, referred in the following as keypoint—
SIFT (KSIFT), applies the detector to identify the keypoints
where descriptors can be computed. However, since com-
puting robust keypoint correspondences between fingerprint
images is virtually impossible, we transformed the extracted
descriptors into a normalized histogram using again a BoW
approach.

Dense—SIFT (DSIFT) were obtained computing a descrip-
tor for each image pixel. We note that DSIFT does not
guarantee scale—invariance, since the descriptor scale is not
obtained with the SIFT keypoint detector but it is fixed
beforehand.

2) DAISY

This is a descriptor specifically designed to be extracted in a
pixel-wise dense way [43]]. While providing distinctiveness
and robustness properties similar to SIFT, it is much faster
to compute. The name DAISY derives from the fact that
the descriptor is computed on a neighborhood organized in
concentric circles that resembles the flower shape.

3) Scale—Invariant Descriptor (SID)
Rich local descriptors deals with scale changes by using a
keypoint detector to provide a local estimate of their optimal
scale. However, this approach often reduces the locations
where a reliable estimate can be obtained (e.g. usually rul-
ing out object edges). SID [44] aims at overcoming this
issue with a two step approach. First, the image is log—
polar sampled around a point of interest, extracting samples
at varying scales proportional to the logarithmic distance
from the point of interest. This process converts scaling and
rotations into translations in log—polar coordinates. Then,
the variations related to these translations are removed by
computing and normalizing the Fourier Transform modulus
of the transformed signal.

We computed SID in a dense way, extracting a descriptor
per pixel.

IV. FEATURE FUSION APPROACHES TO FINGERPRINT
LIVENESS DETECTION

In this section we describe the different feature fusion ap-
proaches we experimented with. Since an exhaustive assess-
ment of all the feature fusion methods available in the liter-
ature would have been clearly unfeasible, we rather selected
different approaches capable of tackling, under different per-
spectives, the inherent challenges of feature fusion, such as:

« when combining multiple features, which is the best
strategy to follow between early fusion (i.e., fusion at
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feature level, Sections[[V-B| [[V-C| [[V-E) and lare fusion

(i.e., fusion at decision level [V-D)?

o given that different features have different character-
istics and belong to different representational spaces,
how can we harmonize or normalize them ([V-B] [V-C|
IVE)?

o since combining multiple views increases the number
of variables, which data reduction techniques, such as
feature selection (IV-B] [[V-D) or subspace transforma-
tions (IV-C] [V-E), are suitable to soften the curse of
dimensionality problem?

« rather than engineering methods to aggregate features
on the basis of some expert knowledge, can we exploit
Deep Learning approaches to automatically learn such

combinations (IV-E)?

In the discussion section we will try to provide answers to
these questions on the basis of our experimental results. For
the sake of clarity, we inform that in the following we will use
interchangeably the terms features and views, feature fusion
approaches and multi—view learning.

A. NOTATION

We introduce the notation that will be used throughout this

section. We denote with y = {y',..., 4%} a test sample

described under K views, where each view yk is defined

into its own representation space, a subset of R”**, and each
m K

sample y € R™, where m = >, my.

We also denote our training set as X = {X1 ... XX},
Here, X* = {XF,..., X*} is the training set for view k, .J
is the number of classes and X;-“ ={zjkit.i=1,...,n5

where n;, is the number of train samples for the k—th view
of the j—th class (thus, XJ’? € R™MkXnik),

B. FEATURE CHAINING

A simple but effective way of combining multiple represen-
tations of the same sample is to concatenate the characteristic
vector of each representation. The concatenated samples are
then classified by means of a linear SVM, an approach that
has shown to provide good results for a wide set of different
features ( [16], [27], [291], 301, [32], [34], [45]). The success
of linear kernels can be motivated by the high dimension-
ality of the chained features. This characteristic guarantees
a proper class separation without necessarily requiring their
expansion into a higher dimensionality space, as that pro-
vided by non-linear kernels (the interested reader can refer
to [46] for details). Linear SVMs also provide huge benefits
in terms of computational and memory requirements, since
(i) the separation hyperplane can be computed offline and (ii)
scoring reduces to a simple dot—product in feature space. Fi-
nally, the presence of a regularizer imposing a penalty on the
classification weights allows the model to implicitly select
the most discriminative features, thus making explicit feature
selection less relevant. Nevertheless, in our preliminary tests
we also investigated the effectiveness of an additional feature
selection step based on the Relief algorithm [47].
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FIGURE 1: Overview of MvDA method. The different views
(i.e. features) extracted from fingerprint images are projected
into a discriminant common latent space by computing a
proper linear transformation for each view. Here, samples
from different views are represented with distinct colors and
the letters denote the view class (F for fake and L for live).

C. MULTI-VIEW DISCRIMINANT ANALYSIS

Multi-view Discriminant Analysis (MvDA) has been pro-
posed in [48]]. It is a subspace learning approach that trans-
forms the different views describing a sample into a common
latent space L which is discriminant with respect to the clas-
sification variable. In other words, MvDA tries to compute a
latent space where the between—class variations (both intra—
view and inter—view) are maximized and the within—class
variations (again, both intra—view and inter—view) are min-
imized. Thus, MvDA performs a sort of (supervised) optimal
feature vector reduction and, at the same time, improves the
class separability, thus allowing for simpler classification in
the latent space (see Figure [I)).

In brief, MvDA computes the K linear transformations
wy, ..., wg that project each of the K views of a sample
into the latent space L. We recall that X = {a;,} is the
set of training samples for class j and view k. Each sample
Zjk; is projected into L as lj, = wkT * Tj;. Since the
common space should maximize the between—class variation
S!, and minimize the within—class variation S}, between all
views, the required projection matrices wj, can be obtained
by optimizing the following generalized Rayleigh quotient:

1
(wi,y...,wg) = argwlr’na%K Tr((gl )) (1)
The two scatter matrices S% and S}, are defined as:
K njk

ZZZ jk"L M] jk’L ,u'j) (2)

j=1k=1i=1

where p; = Zszl Sk leL is the mean of all samples
from the j—th class and k—th view in the common space, and

J
553 = Z (1
j=1

where n; = Zé{ 1 Mk is the total number of samples of
the j—th class over all views, u = 1 Z] 1 Zk LS Ui

)y — )" 3)

6

is the mean of all projected training samples and n =

J K . .
>_i=12_k=1 Tk is the number of all training samples.

After the projection matrices wi, ..., wx have been ob-
tained, the train and test samples are first transformed into
the latent space, i.e. each sample is transformed into a set of
points in L. These points are then concatenated to obtain the
characteristic vectors of the samples, which are finally fed to
a linear SVM for classification.

Details on the analytic solution of MvDA can be found
in [48]]. Summarizing, in the described method the within and
between class scatter matrices in the common space L are
expressed in terms of two matrices D and S in the feature
space as follows:

Sk, =wTDw
SL =wTsw
where W = [wT , wl ... w%k]T and D and S are derived

from, respectively, (2) and (3). Then the trace ratio problem
in @) is transformed into a more tractable ratio trace, which
can be solved through generalized eigenvalue decomposition.
The optimal dimension of the latent space L has been esti-
mated by means of cross—validation on the training set.

D. MULTI-VIEW REAL ADABOOST

Real Adaboost is an improvement of the original Adaboost
algorithm [49], which outperforms the standard formulation
in several practical cases and allows an effective combination
of different descriptors [S0], [51]]. The basic idea of Adaboost
is to build a highly accurate classifier by combining several
“weak” classifiers. The various Adaboost versions mainly
differ on the design of the weak classifiers and whether and
how confidence measures of their predictions are considered
to improve the overall robustness [|52]].

The first step of the multi-view Real Adaboost consists
in chaining the different features of each sample, i.e. y =
(yh,...,y%)and X = (X1, ..., XK). Each training sample
x; in X has an associated label ¢;. Since we have a two
class problem, we assume, without loss of generality, that
¢; € {—1,41}. The decision rule on a test sample y is then
implemented as:

T
H(y) = sign | > hu(y) )

where T is the total number of weak classifiers i; composing
the strong classifier H, and each of the h; is a real valued
function.

In brief, the method is iterative and at each iteration ¢ =
1,...,T it computes the classification function h, that better
discriminates the two classes. This is done by first defining
a set of classifiers and their confidence level. Then, the most
confident function is selected and the algorithm is iterated. At
each round, the misclassified samples are emphasized, so that
the classifier built on the next iteration can try to compensate
for errors in the previous steps.

In details, each sample z; {Vg}gzl,...7m is a real—
valued vector composed by m feature variables v}, where
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m is the sum of the size m;. of each view. Then, we define a
distribution w = {w;},_, _, that assigns a weighting value
to each training sample 7. The initial weights are 1/n for each
sample.

For each feature variable g, we also extract the lists v; =
{v/]ci =1} and v = {v{|c; = =1} of the values that it
assumes on, respectively, the positive and negative training
samples. Such sets are clearly constant for all the iterations.

Finally, we start constructing iteratively our weak classi-
fiers as follows. For each iteration ¢ and each feature variable
g:

1) compute the two conditional probabilities Png =
P,(v)) and P, = P,(v,) as the weighted his-
tograms of v; and v~ computed on a predefined num-
ber of bins (16 in our implementation); when applied
to sample y, P;r (P; ) returns the bin value of the
g—th feature variable of y in the positive (negative)

distribution;
2) define the following classification function for g:
1 Pr(y) + e)
h = —log | L—— 5)
o(8) = 5% (Pg (y) +e

where € avoids division by zero, and can be equal to
1/n; when applied to a test sample y the sign of h,
returns the label assigned to y;

3) compute the confidence of h, from the Chi square
distance between PgJr and P~ as:

Zy=1—-X*(Pf,P;) (6)

clearly, Z, is lower when the two distributions are
different (i.e., hy is more discriminant) and higher
when they are similar (i.e., hg is less discriminant);

Once the pool of m classification functions has been
created (one for each feature variable), we select the weak
classifier h; at step ¢ as the one with the lowest Z measure.
In other words, at each iteration ¢, the method greedily selects
the best view and its best variable to define /. As a result, the
final strong classifier will (in general) include classification
functions from different feature spaces.

Then, given h,, the sample weights are updated as follows:

Wi = w; - e—Cihi(w:) (7)

This update rule aims at increasing the weight of the
training samples that are wrongly classified by h;. Thus,
these samples will have, on the next iteration, an higher
influence on the probability distributions and Adaboost will
focus on trying to find a proper discriminant function for
them.

From this description, it is also clear that Real Adaboost
performs an (implicit) feature selection, since only the most
promising feature variables from the different views are
included into the final classifier.

As for the implementation details, the only parameter
of the algorithm is 7', the number of weak classifiers. We
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verified experimentally that the algorithm has a similar be-
havior for different attribute groups, reaching a plateau after
a certain number of iterations. We also found that the starting
value of this plateau is somewhat related to the discriminative
power of the different views. This observation allowed us
defining a heuristic rule to select 7" based on the residuals
from Principal Component Analysis on the training set (as a
note, usual 7" values range between 600 and 800).

E. SPIDERNET

As a contribution to this comparative study, we propose
Spidernet, a novel two—stage Deep Neural Network (DNN)
architecture that, starting from general image descriptors
(fig. 2), is capable of simultaneously learning a suitable
transformation of the different features into a common latent
space (in the first stage) and carrying out a classification
based on the feature fusion in that space (in the second stage).

The input of the network consists of the stacked char-
acteristic vectors of the different views and the last layer
consists of two softmax activated units whose outputs can
be interpreted as class posterior probabilities. The first stage
is composed by hl; hidden layers, which are not fully con-
nected. Instead, the characteristic vector of each view is inde-
pendently propagated through a network “leg”, whose hidden
layers’ size is s;c4. This allows for a sensitive reduction of
the number of weights with respect to a fully connected ar-
chitecture and, consequently, of the overfitting issues caused
by the small number of training samples. The last layers of
each leg are then concatenated and used as inputs for a fully
connected architecture with hly hidden layers (of size s;¢q
times the number of views). Thus, intuitively, during training
the network jointly learns the feature transformation (in the
spider legs) and the aggregation and classification rules (in
the spider body).

The final classifier is built upon two steps: learning the
network weights (weight optimization) and estimating the
optimal architecture hyperparameters (architecture optimiza-
tion).

1) Weight optimization

The activation function of all hidden units is sigmoidal.
The network weights are initialized by training a Restricted
Boltzmann Machine (RBM) by means of Contrastive Diver-
gence (CD) [53]]. Stochastic Gradient Descent (SGD) with a
decreasing learning rate and momentum is then used to fine—
tune the network parameters [54]. For each dataset, the batch
size is one fortieth of the training set size. The objective func-
tion for fine—tuning is the negative cross—entropy between
network outputs and training labels.

Both dropout [55] and L2 regularization were used to
soften the overfitting issues. In our work, we used an effective
dropout strategy, proposed in [56]], with an initial dropout of
0.5 decreased at each epoch. The coefficient for L2 regular-
ization was set to 0.001.
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FIGURE 2: Spidernet architecture. In the first stage, each
view is independently processed by a network “leg” and
projected into a common latent space. In the second stage,
the transformed views are first combined and then classified.

2) Architecture optimization

We optimized the hlq, hly and s;4 hyperparameters in the
following way. For each benchmark, we equally divided the
training samples into a training and a validation set, taking
care into putting all samples of an individual into the same
set to enforce robustness to cross—individual variations. Then,
we defined a variation interval for each parameter as hl; €
(2,4], hly € [1,3] and s;¢4 € [30,200] with a step size of
ten. Finally, for each combination of the hyperparameters, we
computed a functional based on a weighted combination of
loss on the train set and accuracy on the validation set. The
architecture providing the lowest functional value was finally
re—trained on the whole training set and used to classify the
test set.

V. EXPERIMENTAL RESULTS

In the following, we describe the results of our experiments.
First, we introduce the experimental benchmarks, along with
information on the baselines used to assess the results (Sec-
tion [V-A). We then describe the strategy used to identify
the optimal feature combinations (Section [V-B). Finally, we
discuss the experimental results (Section [V-C).

A. LIVDET DATASETS

The benchmarks used in this work are those made publicly
available for the LivDet 2009 [2], LivDet 2011 [3] and
LivDet 2013 [4] competitions. These datasets have been
largely used in the literature and enable a comparison with
a great variety of methods.

Overall, the benchmarks consist in eleven sets of live and
fake fingerprints acquired with different devices (Table [T)),
all of which are equipped with flatbad scanners, with the
exception of Swipe, which has a linear sensor. Its images
are obtained by swiping the fingerprint and thus include a
temporal dimension as well. Each dataset is divided into sep-
arate training and test sets, and is characterized by a different
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image size and resolution, number of individuals, number
of fake and live samples and number and type of materials
used for creating the spoof artifacts. Nine out of the eleven
fake sets were acquired using a consensual method, where
the subject actively cooperated to create a mold of his/her
finger, increasing the challenges related to the analysis of
these datasets.

1) Baselines

According to the standard LivDet protocols, the results
are reported in terms of the half total error rate (HTER),
which is the average between the percentage of misclassi-
fied live (ferrlive) and fake (ferrfake) samples, i.e. HTER
— ferrlive4ferr fake

Different2 baselines, summarized in Table |Z|, were used
to assess our results. The first one (Baseline) includes the
best results achieved by the analysis of individual features
only and allows appreciating that feature fusion approaches
are indeed capable of outperforming single—view learning
methods. For each dataset, we provide a reference to the best
scoring attribute in the table. The second baseline (SOA)
collects the “best of the best results” selected from any
approach following the LivDet experimental protocol. This
second baseline determines if we are indeed competitive
against the state—of—the—art. Alternatively, it can highlight
limitations of our approach.

Since some authors (e.g. [27]) discarded the Crossmatch
2013 dataset, due to its generalization problems [4], we con-
sidered, for a fair comparison, two different average results
for each baseline: Avg, which includes all eleven datasets,
and Avgx pr-, which rules out Crossmatch 2013.

2) Image Preprocessing and Feature Extraction

For each benchmark we extracted all the attributes described
in Section [[IT] without applying any preliminary image seg-
mentation or pre—processing. This might appear a counter-
intuitive choice, especially when fingerprint segmentation is
not taken into account, since removing the background helps
to reduce the noise in the extracted features. The rationale of
this choice was twofold. First, to keep the problem tractable
since, besides optimizing the methods’ hyperparameters,
each combination of dataset, feature and classifier would also
have required the preprocessing pipeline to be optimized.
Second, our main target was to compare our results fairly
with previous approaches, most of which did not rely on any
pre—processing step.

The only exception is Crossmatch 2013. In our initial
tests we faced the same generalization problems experienced
by other authors. However, as carried out in other works
(e.g. [33[l, [34]), a simple reduction of the image size by
a factor four dramatically improved the accuracy for all
features and methods. A possible explanation is that these
images have a higher resolution, higher contrast and a better
quality than images of other benchmarks. This leads to higher
frequency components in smaller patches, which might have
a severe impact on local texture features, such as the one
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Dataset LivDet2009 LivDet2011 LivDet2013
Scanner Biom. XMatch Identix Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe
Res.(dpi) 569 500 686 500 500 500 500 569 500 500 96
Image size 312x372 480x640 720x720 312x372 355x391 640x480 352x384 312x372 800x750 480x640 1500x208
Live samples 1993 2000 1500 2000 2004 2000 2009 2000 2500 2000 2500
Fake samples 2000 2000 1500 2000 2000 2000 2037 2000 2000 2000 2000
Total subjects 50 254 160 200 82 92 200 45 64 45 70
Materials 1 3 3 5 5 5 5 5 5 5 5
Co-operative Yes Yes Yes Yes Yes Yes Yes No Yes No Yes

TABLE 1: Characteristics of the datasets used in the experiments.

considered in our work. Thus, it would seem that downsizing
the images helps attenuating this problem.

B. SELECTING OPTIMAL FEATURE GROUPS

One of our initial research questions was trying to understand
which are the most suitable combinations of attributes for
the compared algorithms. In particular, in our approach we
aimed at finding attribute groups capable of generalizing well
across all datasets and methods, rather than selecting the
optimal combination of features and method for each case,
an option that could lead to higher accuracies, as we will also
discuss in the following. The rational of our choice is that the
generalization property is desirable in several practical cases
(e.g., when the approach has to be applied to novel sensors or
classification methods, or when it has to tackle novel spoofing
materials).

Clearly, the numbers involved made an exhaustive search
over all possible combinations and classification methods
unfeasible. Therefore, we opted for an empiric “trial and
error” approach, where we initially started creating attribute
groups with what we deemed to be the most appealing views.
Then, we started checking several variations, such as adding
or removing views, combining microtextural and rich local
features in different proportion, changing feature parameters
and so on. In creating such variations, we avoided including
“similar” features (e.g., KSIFT and DSIFT, CoALBP and RI-
CLBP, LPQ and RILPQ) in the same group. This choice was
based on the assumption that the complementary properties
of these features are minimal.

The groups were initially tested with linear SVM, which
is by far the less computationally demanding method, thus
allowing us to perform many experiments in a short time. The
remaining classifiers were evaluated only for the best scoring
groups. This protocol allowed us to spot common trends in
the results. As we will show in more detail in Section[V-C| the
different approaches obtain slightly different results, but their
error variations are strongly consistent. Basically, this finding
allowed us to increase the number of SVM-based tests and
to reduce the number of validations required, which involve
more computationally demanding methods.

Since we had groups with both fixed (non—parametric) and
parametric views, whose parameters were included in the
hyperparameters to be optimized, we ended up identifying a
set of “families”. A family is a group with both fixed and
parametric features and its members are created by vary-
ing the parameters of the non—fixed features. For instance,
KSIFT-SID-BSIF represent a family, whose members have
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a BSIF component computed at different scales or, in a multi—
scale fashion, using different numbers and values of scales.

Given the candidate view families, we first roughly identi-
fied the optimal ones according to the results achieved by the
classifiers introduced in Section Since we were mainly
interested in finding groups that showed good and coherent
behavior, we chose the mean of the average error over all the
benchmarks for each classifier as the ranking score. Then, in
our preliminary experiments, we noticed that the scores of the
family members varied in a small range and, thus, we selected
our optimal families according to the average score of a small
number (usually five) of randomly picked members.

Finally, given our optimal families, we analyzed all their
members and selected the one with lowest error as represen-
tative.

C. RESULTS AND DISCUSSION

The experimental results are summarized in Table @, where,
for the sake of brevity, we only reported the representatives of
the best six families. The table is divided into blocks, where
each block reports the error for each benchmark and method
(along with their two Avg and Avgy ;- averages) of the
best performer of a family. Results are sorted according to
their ranking scores (i.e., average error over all benchmarks
and classifiers). In addition, we marked with “«” or “f” all
results with a statistically significant difference (p < 0.05)
with, respectively, Baseline and SOA. Finally, for each group
we added the total number m of feature variables (i.e. the
sum of the length of each view composing the group) and a
label (Gxx) to facilitate the following discussion. Note that
parametric features are identified as well by the scale used to
compute them. For instance LPQ-5 means an LPQ descriptor
computed on a local patch of size 5 x 5 pixels.

1) Features

A first remark concerns the effects of the feature parameters
in a multi—view setting. We found that a multiscale version
with three scales for COALBP, RICLBP and WLD was the
best option in all the cases (as also suggested in [36], [37],
(57D).

As for LPQ, the multiscale approach was indeed effective
in finding a good tradeoff between its capability to discrim-
inate small details (for smaller scales) and the sensitivity
to blur (for larger scales). However, we could not find an
optimal formulation for all cases. In particular, it seems that
the interaction with other features requires different settings.
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Dataset LivDet2009 LivDet2011 LivDet2013
Sensors [ Biom. XMatch Identix | Biom.  Digital _Italdata Sagem [ Biom. XMatch Italdata Swipe  [[Avg  [Avgy |
Baselines
Baseline 1.0 33 0.5 4.9 2.0 11.0 2.7 1.1 17.5 13 2.8 4.4 3.1
LCPD [27] SID [27]  KSIFT [27]|LCPD |16] SID [27] LCPD [16]LCPD [16]| BSIF[27] CCP[29] LCPD [27] DAISY [27]
SOA 0.3 1.8 0.5 4.9 1.9 5.1 2.7 0.2 1.8 0.1 0.9 1.8 1.8
'WLD+LPQ [32]] Aug CNN [33] KSIFT [27][LCPD [16] CNN [33] CNN [33] LCPD [16][spoofnet 34| spoofnet [34] spoofnet [34] spoofnet |34
View Groups
G1: SID RICLBP LCPD DSIFT LPQ-3+LPQ-5 m = 4,424
AdaBoost 1.7 2.4 0.0+ 3.1 32 5.8 * 2.6 1.0 6.4 1.5 55 3.0 % 2.7
Linear SVM 1.7 1.8 0.9 1.8 % 14 4.3 2.2 0.7 3.9 % 13 2.7 2.1 % 1.9 =
Spidernet 1.5 2.1 % 0.3 237 14 2.1% 2.0 0.7 3.4« 0.9 1.6 1.7 = 1.5 =
MvDA 1.3 09t 0.0+ 0.7 t 0.7 = 4.9 = 2.3 0.5 4.4 = 0.5 1.3 1.6 1.3 7
G2: SID RICLBP LCPD DSIFT WLD LPQ-5+LPQ-7 m = 7,304
AdaBoost 2.1 2.0 % 0.0+ 3.0 % 33 5.8 % 2.2 0.9 5.8 % 1.5 6.4 3.0 2.7
Linear SVM 1.6 1.6 1.0 2.0% 14 3.8 = 2.1 0.7 3.9« 1.7 2.9 2.1 = 1.9
Spidernet 1.6 1.8 0.3 247 1.0 3.1% 1.5 1.0 3.7 * 1.0 1.6 1.7 = 1.5 =
MvDA 1.7 117 0.0+ 09t 0.7 1 5.3 % 2.2 0.4 3.9 % 0.4 = 1.6 1.7 = 147
G3: SID RICLBP LCPD DSIFT WLD BSIF-5 m = 17,816
AdaBoost 2.2 2.1 % 0.0+ 3.3 2.9 5.9 % 2.1 1.1 5.6 1.6 53 2.7
Linear SVM 1.7 1.5 = 1.0 1.8 7% 1.2 4.0 = 2.3 0.6 4.3 = 1.7 2.7 1.9 =
Spidernet 1.6 1.8 0.3 237 1.0 267 2.1 0.9 3.3 % 0.7 1.8 1.5
MvDA 1.9 1.17% 0.0t 1.2 % 0.8 6.7 2.1 0.4 4.7 % 0.4 1.0 = 1.8 1.6 =
G4: SID RICLBP LCPD DSIFT WLD m = 6,792
AdaBoost 23 2.1 * 0.0+ 3.2 3.1 5.8 * 2.2 1.0 5.6 * 1.3 53 2.9 % 2.6
Linear SVM 1.8 1.6 * 1.0 2.0% 1.3 3.5 2.2 0.7 4.7 * 1.8 2.8 2.1 % 1.9
Spidernet 1.9 1.8 = 0.3 2.0% 0.7 287 12 1.1 3.3« 1.1 1.8 1.6 + 1.5 =
MvDA 1.6 117 0.0+ 0.5 1 0.8 7 5.9 x 2.6 0.5 4.6 # 0.5 24 1.9 = 1.6 =
G5: SID RICLBP LCPD DSIFT RILPQ-3 m = 4,168
AdaBoost 23 24 % 0.0+ 3.5 35 6.0 2.9 1.3 6.3 1.4 5.1 2.8
Linear SVM 1.9 1.7 * 0.9 157 14 4.0 « 2.5 0.7 4.4 * 1.3 2.6 1.9
Spidernet 1.4 2.0 % 0.4 1.7 % 1.3 297 1.7 1.0 3.6 0.9 1.9 1.5 =
MvDA 1.2 1.0 7 0.0t 0.7 t 0.8t 4.7 = 2.3 0.5 4.3 * 0.6 1.8 147
G6: SID RICLBP LCPD DSIFT m = 3,912
AdaBoost 23 2.3 0.0+ 3.7 35 6.1 2.8 1.2 6.3 * 1.3 5.0 3.1 = 2.8
Linear SVM 2.1 1.7 * 0.9 1.8 % 1.5 3.8 24 0.7 4.8 * 13 2.6 2.1 % 1.9 %
Spidernet 1.6 2.0 = 0.3 227 1.1 317 2.2 1.1 3.5 % 0.7 2.1 1.8 1.6 =
MvDA 1.1 1.3« 0.0t 09t 0.8 4.9 « 2.5 0.5 5.2 % 0.4 2.0 1.8 s 147

TABLE 2: Baselines (Baseline and SOA) and experimental results. Numbers in bold represent an improvement of the
corresponding value in SOA, numbers in ifalic of that in Baseline. = denotes a statistically significant difference (p < 0.05)
with respect to Baseline, and 7 a statistically significant difference (p < 0.05) with respect to SOA.

We thus ended up with a two scale version, optimizing the
scales according to the characteristics of the view group.

We expected a similar behavior for RILPQ. On the con-
trary, we found that a single fixed size (a 3 x 3 neighborhood)
was the best choice for all combinations. The same observa-
tion holds true for LCPD (with a local scale of 9). For this
latter case, we suggest two possible explanations. First, the
orientation component of LCPD is computed with RILPQ
and, in some ways, it reflects its experimental behavior;
second, the size of a single—scale LCPD is 2,048 and a multi—
scale version is likely to incur in overfitting issues.

BSIFs were also tested in both single and multiscale ver-
sions. When tested individually, a multiscale version with
three scales, spanning uniformly the interval between 5 and
17, consistently outperformed other options on all bench-
marks. On the contrary, when combined with other features,
single scales provided better results. We assume this behavior
is related to the interplay with other group members.

Our results also offer an insight into the relevance of the
individual features in a multi—view setting. First, CoOoALBP
and KSIFT were consistently outperformed, in any possi-
ble group, by their direct peers (respectively, RICLBP and
DSIFT). This fact can be explained in terms of their char-
acteristics. Both CoALBP and RICLBP exploit the rich de-
scriptive characteristics of LBP, with the addition of rotation
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invariance for RICLBP. KSIFT computation relies on the
preliminary detection of the optimal keypoints. However, the
combination of noisy images together with our choice to
not discard the background might have led to a non optimal
choice of the keypoints. On the contrary, the dense approach
of DSIFT seems to be effective in softening the noise effects.

Final remarks concern the limited relevance of BSIFs
(which, apparently, were not factually contributing to other
views) and the lack of contribution of DAISY (indeed, sub-
stituting DAISY with any other rich local descriptor always
improved the accuracy).

2) Groups
All the best families in Table 2] are based on a common core,
i.e. the combination of SID, RICLBP, LCPD and DSIFT,
which is also represented by group G6. When adding more
features to this core, we noticed a saturation effect and, in
some cases, even an error increase. The best reduction of the
optimal average error was a mere 0.2% with MvDA when
LPQ based features where added. We also experienced con-
sistent accuracy drops (i.e. an average relative HTER increase
ranging from 3% to 65%) for any combination where one or
two core elements were removed or substituted with other
views.

These findings could suggest that the members of the G6
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kernel are indeed the ones, among those analyzed, which
express the most complementary information. Thus, their
combination appears effective in capturing the essence of the
liveness detection problem. Analyzing the core features, we
can notice that micro—textural (RICLBP and LCPD) and rich
local descriptors (DSIFT and SID) are equally represented,
which supports our choice of combining elements from the
two classes. What can we infer from the characteristics of
these individual features?

On the basis of the results in [27], we can see that, on
average, LCPD and SID express the best liveness detection
capabilities among the analyzed features, while the rank of
DSIFT and RICLBP is quite low. In other words, individual
performances are not sufficient to explain our results. As a
demonstration, if we combine the best four (average) ranking
features in [27]] (SID, LCPD, BSIF, CoALBP), we obtain a
65% relative increase of the optimal HTER.

We can speculate that the combination of DSIFT and SID
allows exploiting both the descriptive strength of SIFT and
the higher robustness to rotation of SID. This observation
might also explain the (lack of) contribution of DAISY,
which has a lower rotation invariance than SID and a lower
descriptive power than SIFT. In addition, (i) LCPD brings as
dowry the fact of being conceived specifically for fingerprint
images and, thus, of best exploiting expert knowledge on the
specific domain, and (ii) RICLBP contributes with its rotation
invariance, high descriptive ability and capability to adapt
well to images with different resolutions, when used in its
multiscale version.

The simpler explanation for the lack of significant im-
provements expanding the G6 core is the minimal or null
complementarity of the added views. LCPD is a stack of
eight RILPQ histograms, one for each quantization level of
the contrast component. Thus, it conveys somewhat similar
information to the LPQs-like views (G1, G2 and G5). The
combination of WLD and LPQ (G2) is already summarized
by LCPD, and BSIF (G3) was already noted for its limited
contribution.

3) Methods

As an initial remark, the four compared methods behave
consistently across the different groups, as can be appreciated
from the diagram in Fig. [3] Furthermore, with the exception
of AdaBoost, these techniques provide similar degrees of
accuracy, which suggests that the proper selection and engi-
neering of the feature group is more relevant than the choice
of the classification method.

The lowest average error (1.6) is obtained with both
MvVDA and Spidernet, which consistently outperform other
methods. In the discussion we picked as optimal model
MvVDA on GI since it provides a slightly lower number
of absolute errors when compared to Spidernet on G4 and
MvDA on G5 (respectively, 9 and 10 over a total number
of 29,896 samples across all test datasets). However, we
underline that this difference is not statistically relevant.
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FIGURE 3: Average classification errors (HTER) of the
classifiers on the different groups described in Table@

Concerning MvDA, these results are likely due to the fact
that MvDA projects all the features into a common latent
subspace taking into account not only inter—view variations,
but also intra—view variations. This has both the effect of
removing directions that are not useful for classification and
normalizing the different features, thus mitigating the issues
due to the presence of in—-homogeneous features.

As for Spidernet, the two—stage architecture allows reduc-
ing overfitting issues by decoupling feature processing and
classification. Combined with dropout and L2 regularization,
this allows Spidernet to match the performance of MvDA,
even though the amount of training data is very limited
(around one thousand patterns per class). We believe that
larger amount of training data would allow Spidernet to out-
perform the other methods. One possible question is whether
Spidernet does effectively exploit all the input features. A
view is totally discarded if (i) all the input weights of any
of the hidden layers of the corresponding network leg (first
stage) are null, or (ii) all the weights connecting the last
hidden layer of the view leg and the first hidden layer of
the second network stage are null. In all the experiments
reported, none of these conditions is ever verified.

SVM with feature chaining has the advantage of pro-
viding a simple yet effective method for estimating cross—
correlations among different features. However, the fact that
our features can have very different characteristics seems to
adversely affect the classification. Experiments also show
that linear SVM is effective in controlling the influence
of non—discriminative features by imposing a penalty on
the combination weights, while the use of explicit feature
selection has a detrimental effect on accuracy and was, thus,
discarded.

As for Adaboost, its main advantage remains the fact that
it uses only a few number of features from the multi-view
space and the sample classification is computationally light.

Concluding, our experimental results allows us to provide
a preliminary answer to the questions raised in Section [[V]
We underline that, given the limited number of different
approaches compared, further work has to be done to achieve
more solid conclusions. Based on these premises, our results

11

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2017.2763419, IEEE Access

A.Toosi et al.: Feature Fusion for Fingerprint Liveness Detection: a Comparative Study

seem to suggest the following answers:

« as for the fusion level, fusion at feature level appears to
be more effective than fusion at decision level;

o as for the harmonization or normalization of the aggre-
gated features, the most effective methods seem to be
those based on a proper transformation of the different
views into a common latent space (i.e., the approach
followed by MvDA and Spidernet);

o in order to deal with the curse of dimensionality prob-
lem, subspace transformations appear to be more useful
for reducing the dimension of the classification space
than feature selection techniques, which, in some cases,
even appear to have a detrimental effect;

o finally, our idea to exploit deep learning approaches
to automatically learn how to aggregate different fea-
tures (Spidernet) seems to be an effective feature fusion
method.

4) Multiple features vs. individual features

Our main research question was to verify the effectiveness
of feature fusion approaches compared to the ones based on
individual features. At least three facts allow us to provide an
affirmative answer:

o in general, the compared multi-view approaches per-
form consistently better than those based on individual
features (these results were not reported for the sake
of brevity, although references can be obtained by ob-
serving that Baseline elements are most of the time
components of the groups G1-G6);

« if we compare our results averaged over all the bench-
marks with those reported in [27]], our best approach
(MvDA on group G1) significantly outperforms systems
trained with a single feature;

« our best model outperforms, on average, the Baseline.

Indeed, we can observe that MvDA on G1 provides a
64% relative reduction of average error (58% excluding
Crossmatch 2013) compared to models trained using the
optimal feature for each dataset (row Baseline of Table [2)).
This improvement is robust across different groups. Fur-
thermore, this approach consistently improves single—view
performances on 10 out of 11 benchmarks without requiring
to hand—pick different features for different datasets. In other
words, our combinations of features appear to generalize
well across different experimental conditions and different
sensors. It is worth noting that, using different feature groups,
we can also improve the results for the Biometrika 2009
dataset, where we score beyond the baseline. However, this
would result in higher errors over different datasets][|

5) Feature fusion approaches vs. state—of-the—art
As for the assessment of our work against the state—of—the—
art, it can be seen that our average results are comparable

A simple evidence of this statement is the SOA baseline for Biometrika
20009, i.e. the group WLD+LPQ classified with linear SVM, whose overall
accuracy drops significantly in the other benchmarks (see [32]]).
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Test Set
Trainset [ Biom. | Italdata | Digital |  Sagem
Biom. 0.7 42.1 32.5 29.8
Italdata 22.2 4.9 33.2 30.8
Digital 34.1 35.1 0.7 22.3
Sagem 22.5 39.7 29.0 23

TABLE 3: Cross-sensor interoperability results (obtained on
the LivDet 2011 datasets with MvDA and group G1).

with SOA and that, in the optimal case, we improve the
baseline in 6 out of 11 benchmarks. We can also observe that,
while we outperform the CNN-based approach in [33] in
all benchmarks except Crossmatch 2013, the spoofnet CNN
of [34], which was tested only on LivDet2013, achieves a
significant reduction in terms of error rates. However, we
should recall that (i) we looked for a solution capable of
generalizing well across all datasets and methods, although
better accuracies could be obtained selecting an optimal
group for each benchmark, and (ii) the approach in [34]
exploits dataset specific image pre—processing techniques,
including image cropping and data augmentation that could
also benefit our methods (although we did not apply them
for the reasons explained in Section @]) Furthermore, it
should be also noted that, while the relative improvement of
spoofnet compared to our best result looks relevant, if we
exclude Crossmatch 2013, it actually corresponds to a very
small difference in terms of absolute number of errors (11,
over a total of 6,157 test samples across 3 datasets), and thus
has little statistical significance.

6) Cross—dataset evaluation

Finally, we tested the interoperability performance of feature
fusion approaches, i.e. the capability of handling variations
in the biometric data introduced by different sensors. This is
a difficult task, due to the different hardware characteristics
of the capture devices. For this analysis, we performed cross-
datasets experiments on the LivDet 2011 datasets according
to the experimental protocol defined in [58]] and [59]: we
trained a classifier with the training set of sensor A (e.g.
Biometrika2011) and then we classified the test set of sensor
B (e.g. Italdata2011).

The results are summarized in the Table [3] where, for the
sake of conciseness, we simply reported the HTERs obtained
with MvDA and group G1 (which are anyway consistent with
those obtained by other combinations of classifier and feature
group). These results show large improvements with respect
to the one showed in [58]] (where the individual contributions
of LBP, LPQ and BSIF were analyzed) and [|59] (which uses
Multi-Scale LBP as features). However, they also confirm
other results available on cross-dataset experiments ( [60]—
[62]), which clearly show that the interoperability among
different sensors is still an open issue [38]].

VI. CONCLUSION
In this work we investigated the effectiveness of feature
fusion approaches for fingerprint liveness detection tasks. We
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addressed the issue of selecting a good set of complemen-
tary features, and we assessed the capabilities of different
classifiers over a wide set of publicly available datasets,
comparing our results with both single—view approaches and
state—of—the—art techniques. Our results show that feature
fusion approaches are effective and able to generalize well,
without the need for dataset—specific image pre—processing
and without requiring hand—picking of different features for
different datasets. Indeed, we found a consistent improve-
ment in terms of accuracy over single—view methods, even
when such systems are trained using the optimal feature for
each dataset. Furthermore, feature fusion methods are also
competitive with other state—of—the—art approaches based on
CNN, which rely on intensive image pre—processing steps.

Concerning the compared classifiers, both MvDA and
Spidernet proved to be the most effective for combining the
different features. As for the features, care has to be taken
when designing the groups, since the selection of features
should not be merely based on their individual performance,
but should also consider their ability to mutually complement
each other.

Finally, we stress the interesting results obtained by the
DNN architecture proposed with Spidernet. Even though it
did not outperformed MvDA in our tests, additional experi-
ments show that our architecture has the potential to provide
higher accuracy whenever larger training sets are available.
Future work will be devoted to improve the optimization of
the DNN architecture and the learning algorithms. Further
work will be also devoted to tackling the liveness detection of
other biometric traits, such as iris and faces, through feature
fusion approaches.
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