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System-time entanglement in a discrete-time model
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We present a model of discrete quantum evolution based on quantum correlations between the evolving system
and a reference quantum clock system. A quantum circuit for the model is provided, which in the case of a constant
Hamiltonian is able to represent the evolution over 2" time steps in terms of just n time qubits and n control gates.
We then introduce the concept of system-time entanglement as a measure of distinguishable quantum evolution,
based on the entanglement between the system and the reference clock. This quantity vanishes for stationary states
and is maximum for systems jumping onto a new orthogonal state at each time step. In the case of a constant
Hamiltonian leading to a cyclic evolution it is a measure of the spread over distinct energy eigenstates and
satisfies an entropic energy-time uncertainty relation. The evolution of mixed states is also examined. Analytical
expressions for the basic case of a qubit clock, as well as for the continuous limit in the evolution between two

states, are provided.
DOI: 10.1103/PhysRevA.93.062127

I. INTRODUCTION

Since the establishment of the foundations of quantum
mechanics, time has been mostly considered as an external
classical parameter. Various attempts to incorporate time in
a fully quantum framework have, nonetheless, been made,
starting with the Page and Wootters mechanism [1] and other
subsequent proposals [2,3]. This subject has recently received
increasing attention in both quantum mechanics [4-8] and
general relativity [9,10], where this problem is considered a
key issue in the connection between the two theories. In the
present work we introduce a simple discrete quantum model
of evolution, which, on one hand, constitutes a consistent
discrete version of the formalism in [1] and [9] and, on the
other hand, provides a practical means to simulate quantum
evolutions. We show that a quantum circuit for the model can
be constructed, which in the case of a constant Hamiltonian
is able to simulate the evolution over N = 2" times in terms
of just n time qubits and O(n) gates, providing the basis for a
parallel-in-time simulation.

We then introduce and discuss the concept of system-time
entanglement, which arises naturally in the present scenario, as
a quantifier of the actual distinguishable evolution undergone
by the system. This quantifier can be related to the minimum
time necessarily elapsed by the system. For a constant Hamil-
tonian we show that this entanglement is bounded above by
the entropy associated with the spread over energy eigenstates
of the initial state, reaching this bound for a spectrum leading
to a cyclic evolution, in which case it satisfies an entropic
energy-time uncertainty relation. Illustrative analytical results
for a qubit clock, which constitutes the basic building block in
the present setting, are provided. The continuous limit for the
evolution between two arbitrary states is also analyzed.

II. FORMALISM
A. History states

We consider a bipartite system S 4+ 7', where S represents
a quantum system and 7 a quantum clock system with finite

“rossigno@fisica.unlp.edu.ar

2469-9926/2016/93(6)/062127(7)

062127-1

Hilbert-space dimension N. The whole system is assumed to
be in a pure state of the form

1 N-—1
Uy = — o), 1
|>\W§wm (1)

where {|t), t =0, ...,N — 1}is an orthonormal basis of T and
{Iv:), t=0,...,N — 1} a set of arbitrary pure states of S.
This state can describe, for instance, the whole history of
evolution of an initial pure state |y) of S at a discrete set
of times ¢. The state |,) at time ¢ can be recovered as the
conditional state of S after a local measurement at 7' in the
previous basis with result 7,

Try [[W) (W] 1]

t [ B ——— 2
W) (Y | (0TI, ) (2)

where IT, = 1 ® |¢){¢|. In shorthand notation, |y,) o (¢t|¥).
If we write

1Y) = Utlo),

where U, are unitary operators at S (with Uy = 1), state (1)
can be generated with the schematic quantum circuit in Fig. 1.
Starting from the product initial state |)|0), a Hadamard-like
gate [11] at T turns it into the superposition \/Lﬁ va: 51 [Yo)lt),
after which a control-like gate ), U, ® |¢) (| will transform it
into state (1). A specific example is provided in Fig. 2.

From a formal perspective, state (1) is a “static” eigenstate
of the § + T translation “superoperator”

t=0,....,N—1, 3)

N
U= U ® ) =1, )

t=1

where U, ,_ = U, U:_l evolves the state of S from ¢t — 1 to ¢
(|1¥y) = U, s—1|¥—1)) and the cyclic condition |N) = |0), i.e.,
Uy n-1 = U,T\,_l, is imposed. Then

UW) =), (&)

showing that state (1) remains strictly invariant under such
global translations in the S + T space.

Equation (5) holds for any choice of initial state |1) in
(1). The eigenvalue 1 of U/ then has a degeneracy equal to
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FIG. 1. Schematic circuit representing the generation of the
system-time pure state, (1). The control gate performs the operation
U, on S if T is in state |¢), while the Hadamard-type gate H creates
the superposition oc 31 " |).

the Hilbert-space dimension M of S, since for M orthogonal
initial states |1p0> (wo |1ﬁ0) = §;, the ensuing states |W!) are
orthogonal due to Eq. (3):

N-1

LS Wil =) =8 ©

t=0

(W) =

The remaining eigenstates of U are of the form |¥;) =
f Zt 0 U ei27nkt/N |y, 1) with k integer and represent the

evolution associated with operators UX = ¢/2"K/Ny,:

U = e 2N gy, k=0,...,N —1. (7)

All eigenvalues Ay = e *2"*/N are M-fold degenerate by the
same previous arguments. The full set of N eigenvalues and a
choice of M N orthogonal eigenvectors of U/ are thus obtained.
We may then write, for general U,,

U = exp[—iT], ®)

with J Hermitian and satisfying 7 |¥;) = 271% |Wy) for k =
0,...,N — 1. In particular, states (1) satisfy

Jw) =0, €))

which represents a discrete counterpart of the Wheeler-DeWitt
equation [9,12,13] determining state |W) in continuous-time
theories [9]. In the limit where f becomes a continuous
unrestricted variable, state (1) with condition (3) becomes,
in fact, that considered in [9]. Note, however, that here
J is actually defined just modulo N, as any J satisfying

p
) v Equ? = qu?*

o ——

~JurE ) System

n Time

qubits

o 1]

FIG. 2. Circuit representing the generation of system-time state

(1) for U, = (U)" and N =2". The n control gates perform the
operation U' = U 232142 on the system after writing ¢ in the binary
formz =31~ } 1;2/=!, while the n Hadamard gates lead to a coherent
sum over all values of the ¢;’s, i.e., over all #’s from 0 to 2" — 1.
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TN = 271(% + ng)| W) with ng integer will also fulfill
Eq. (8).

All |\I/k) are also eigenstates of the Hermitian operators
U =i5U + U")/2, with eigenvalues cos 21’\’/‘ and sin 21’\’,"
respectively, i.e., 1 and O for states (1). The latter can then also
be obtained as ground states of —{4; . An Hermitian operator H
similar to —2{,. but with no cyclic condition [H = —U, + Is ®
Ir, with T =U —U),_|0}(N — 1] + 15 ® (10)(0] + N —
1){(N — 1])] was considered in [6] for deriving a variational
approximation to the evolution.

B. Constant evolution operator
IfU, ;-1 = U Vt,then

= U) =exp[—iHt], t=0,...,N—1, (10)

where H represents a constant Hamiltonian for system S.
In this case state (1) can be generated with the first step of
the circuit employed for phase estimation [11], depicted in
Fig. 2. If N = 2", this circuit, consisting of just n time qubits
and m = log, M system qubits, requires only # initial single-
qubit Hadamard gates on the time qubits if initialized at |0)

N no 10)+I15)
(such that |0)r = ®'_10;) — ®J'=IIT = f Zt 0 Y1r)
for t =377,

1;2/71), plus n control U?"" gates acting on
the system qubits, which perform the operation U’|vg) =
[T5., U 527 1y0). A measurement of the time qubits with
result  makes S collapse to the state [y;) = e~/ |ys).

In addition, if U in (10) satisfies the cyclic condition UN =
1, which implies that H should have eigenvalues 27k /N with
k integer, Eq. (4) can be written as

U=UQV =expl-i(H®1r +15® P)], (1)

where V = exp[—i P] = Zf':l |£)(t — 1] is the (cyclic) time
translation operator. Its eigenstates are the discrete Fourier
transform (FT) of the time states |¢),

N—1
VIR = e PHNIE), 1Ry = —= D eV, (12)

fork =0,...,N — 1, such that P is the “momentum” associ-
ated with the time operator 7',
- k -
T|t) =t|t), Plk) =271N|k). (13)
Hence, in this case J = H ® 17 + 13 ® P adopts the same
form as that of continuous theories [9].

C. System-time entanglement

Suppose now that one wishes to quantify consistently the
“amount” of distinguishable evolution of a pure quantum state.
This measure can be related to a minimum time 7,, (number
or fraction of steps) necessarily elapsed by the system. If the
state is stationary, |V;) o |¥o)V ¢, the quantifier should vanish
(and 7,, = 0), whereas if all N states |{,) are orthogonal to
each other, the quantifier should be maximum (witht = N —
1), indicating that the state has indeed evolved through N
distinguishable states. We now propose the entanglement of
pure state (1) (system-time entanglement) as such a quantifier,
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with 7, an increasing function of this entanglement. In Figs. 1
and 2, such entanglement is just that between the system and
the time qubits, generated by the control U;.

We first note that Eq. (1) is not, in general, the Schmidt
decomposition [11] of state | W), which is

W) =Y /lk)slk)r, (14)
k
where |k) s(r) are orthogonal states of S and 7' (,, (k|k'),, = Sxx')
and py the eigenvalues of the reduced states of S and 7',
pscry = Trre) W) (W] = Z Prlk)scr)(k 15)

The entanglement entropy between S and 7 is then

E(S,T) = S(ps) = S(pr) = — Y _ pxlog, pr. (16)
k

where S(p) = —Trp log, p is the von Neumann entropy.

Equation (16) satisfies the basic requirements of an evolu-
tion quantifier. If the state of S is stationary, [v/;) = €% |v) Vt,
state (1) becomes separable,

W) = |w0>(ﬁ Zei%m), (17)

implying E(S,7) = 0. In contrast, if |y,) evolves through
N orthogonal states, then |W) is maximally entangled, with
Eq. (1) already its Schmidt decomposition and

E(S,T) = Enmax(S,T) =log, N. (18)
It is then natural to define the minimum time 7, as
T, =280 — 1, (19)

which takes the values 0 and N — 1 for the previous extreme
cases. The vast majority of evolutions will lie in between.
For instance, a periodic evolution of period L < N with N/L
integer, such that |/, ;) = e |[y;) V ¢, will lead to

—LX_:IW)IM, lt) = ,/ N/Xlee"V"|t+Lk>,
ﬁr:O k=0

(20)

with (t] |t,) = 8,». Hence, its entanglement E(S,T) will be the
same as that obtained with an L-dimensional effective clock,
as it should be. Its maximum value, obtained for L orthogonal
states, will then be log, L, in which case 7, = L — 1.

The Schmidt decomposition, (14), represents in this context
the “actual” evolution between orthogonal states, with py
proportional to the “permanence time” in each of them. A
measurement on 7" in the Schmidt basis would always identify
orthogonal states of § for different results (and vice versa),
with the probability distribution of results indicating the
permanence in these states. If in Eq. (1) there are n; times
t where |y,) « |k)g, with >, ny = N and |k)s orthogonal
states, then

Ny 1 .
=> " =ks|—= > ern|.
T VN VI sy

which is the Schmidt decomposition, (14), with p;  ng, i.e.,
proportional to the total time in state |k)g. Note also that
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Eqgs. (14)—(16) are essentially symmetric, so that the roles
of S and T can, in principle, be interchanged.

Quadratic entanglement

A simple quantifier for the general case can be obtained
through the entanglement determined by the entropy S»(p) =
2(1 — Trp?), which is just a linear function of the purity Trp?
and does not require evaluation of the eigenvalues of p [14-16]
(purity is also more easily accessible experimentally [17]). We

obtain, using ps = ~ Y, [¥:) (¥,
Ex(S,T) = Sx(pr) = Sa(ps) = 2(1 — Tr p5)

=282 1= = Y Il P | @D
t#t

which is just a decreasing function of the average pairwise
squared fidelity between all visited states. If they are all
proportional, E>(S,T) = 0, whereas if they are all orthogonal,
E»(S,T) = 221 is maximum. If S and T are qubits, E2(S,T)
is just the squared concurrence [18] of |W).

D. Relation to energy spread
In the constant case, (10), we may expand |¥) in the

eigenstates of U or H, |yo) = >, cklk) with H|k) = Eilk),
such that |,) = Y, cxe "5 |k) and

Zc e B )|t =

with |k)r = 2 e 'Ex|t). We can always assume all E;
distinct in (22) such that ¢ |k) is the projection of |yy) onto
the eigenspace with energy E;. In the cyclic case UV =1,
with Ey = 2mk/N,k =0, ...,N — 1, the states |k); become
the orthogonal FT states |—k) (12). Equation (22) is then the
Schmidt decomposition, (14), with py = |ci|? and

ES.T) == |cl*log, |cxl*. (23)
k

Z clk) k)7 (22)

For this spectrum, entanglement then becomes a measure of
the spread of the initial state |o) over the eigenstates of H
with distinct energies. The same holds in the quadratic case,
(21), where E»(E,T)=2), lce|2(1 — |cx|?). If there is no
dispersion, |1) is stationary and entanglement vanishes, while
if |¥) is uniformly spread over N eigenstates, it is maximum
[E(S,T) =log, N].

While Eq. (23) also holds for a displaced spectrum E; =
Eo+2rk/N, for an arbitrary spectrum {E;} it will hold
approximately if the overlaps  (k|K'); = + >, e "E=Ex) are
sufficiently small for k # k’. In general, we actually have the
strict bound

ES,T)< =) lal* log, e, (24)

k

since |¢|? = dow pel(k|k')s|?, with |k) the eigenstates of H
and |k’)s the Schmidt states in (14), which implies that the
|ck|?’s are majorized [19] by the py’s,

{lexl*} < {px)s (25)
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where {|ci|?} and {p;} denote the sets sorted in decreasing
order. Equation (25) (meaning Y i_, |cx|*> < > /_, pi for
j=1...,N —1) implies that inequality (24) actually holds
for any Schur-concave function of the probabilities [19], in
particular, for any entropic form Sy(p) = Tr f(p) with f(p)
concave and satisfying f(0) = f(1) = 0 [16,20], such as the
von Neumann entropy [f(p) = —plog, p] and the previous
Sy entropy [ f(p) = 2p(1 — p)I:

EfS.T)=Y f(p) <Y flal. (26)
k k

as can be easily verified. Equations (23)—(26) then indicate
that the entropy of the spread over Hamiltonian eigenstates of
the initial state provides an upper bound to the corresponding
system-time entanglement entropy than can be generated
by any Hamiltonian diagonal in the states |k). The bound
is always reached for an equally spaced spectrum Ej; =
2rk/N € [0,27]leading to a cyclic evolution, which therefore
generates the highest possible system-time entanglement for a
given initial spread {|ci|?}.

E. Energy-time uncertainty relations

For the aforementioned equally spaced spectrum, we may
also expand the state |1o) of S in an orthogonal set of uniformly
spread states,

N

- ~ 1 :
Vo) =Y all)s, |D)s= NG 3Ny, @)
k

=0

with & = J_ﬁ >, e 2"K/N ey the FT of the ¢¢’s in (22). Since

U'|lys = |l —t)s, it is verified that these maximally spread
states |I)g [which, according to Eq. (23), lead to maximum
system-time entanglement E(S,T) = log, N] indeed evolve
through N orthogonal states |/ —t)s. Moreover, Eq. (22)

becomes

W)=Y "all=nsn =y |i>s<Z &l — 1>>, (28)

1t ! t

showing that ¢; determines the distribution of time states |t)
assigned to each state |/)g, i.e., the uncertainty in its time
location. Being related through a finite FT, {c;} and {¢;} satisfy

various uncertainty relations, such as [21-23]
E(S,T)+ E(S,T) > log, N, (29)

where E(S,T) = — Y, ¢ log, || is the entropy character-
izing the time uncertainty and E(S,T) the energy uncertainty,
(23). If localized in energy [|cx| = &, E(S,T) = 0], Eq. (29)
implies the maximum time uncertainty [|;| = ﬁ’ E(S,T) =
log, N1, and vice versa. We also have n({c}) n({&;}) > N [24],
where n({a;}) denotes the number of nonzero «;’s. Bounds for
the product of variances in the discrete FT are discussed in [25].

F. Mixed states

Let us now consider that S is a bipartite system, A + B. By
taking the partial trace of (1),

prr = Tra (W) (W] =) A(j1¥)(W]j)a, (30)
i
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we see that the system-time state for a subsystem is a mixed
state. Of course, the state of B at time ¢, now setting I1, =
Ip ® |t)(t], is given by the standard expression

Trr pprIl
P8 = P = ey ) (. 31)

Tr ppr I,
If the initial state of S is [yg) = Zj Jai1J)alj)s (Schmidt
decomposition), Egs. (30) and (31) determine the evolution of
an initial mixed state ppo = Y i4j |j)B(j| of B, considered as
a subsystem in a purified state undergoing unitary evolution.
For instance, if just subsystem B evolves, such that U; = I, ®
Up,V t, Eq. (30) leads to

pr =Y ;%)) pr (W), (32)

J

where |W;)pr = %v Z;:OI Ug:|j)glt). Equation (31) is then
the mixture of the pure B 4 T states associated with each
eigenstate of ppg and implies the unitary evolution pp, =
Up:ppoU ;;, .

Since state (30) is, in general, mixed, the correlations
between 7 and a subsystem B can be more complex than
those with the whole system S. State (30) can, in principle,
exhibit distinct types of correlations, including entanglement
[26,27], discord-like correlations [28-31], and classical-type
correlations. The exact evaluation of the quantum correlations
is also more difficult, being in general a hard problem [32,33].
We here consider just the entanglement of formation [27]
E(B,T) of state (30), which, if nonzero, indicates that (30)
cannot be written as a convex mixture of pure product states
[26] |Wy) BT = |¥a) BlPa) 7. In this context the latter represent
essentially stationary states. Separability with time would then
indicate that pgr can be written as a convex mixture of such
states, requiring no quantum interaction with the clock system
for its formation.

III. EXAMPLES
A. The qubit clock

As an illustration, we examine the basic case of a qubit
clock (N = 2). Equation (1) becomes

W) = (1)|0) + [¥1)]1))/v/2

= JVp+1+H+H) +Vp-1—-), (33)
p+ = (L£ [(Yol¥1))/2,
where |Y) = Ulyp) and (33) is its Schmidt decom-

position, with |£)s = (|%) £ e |¥1))//Apx, |£)r =
(10) £ €7[1))/¥/2, and e = [{fusts. Hence, E(S,T)=
— > ,—4 Pvlogp, will be fully determined by the overlap
or fidelity |(y¥o|¥1)| between the initial and the final states,
decreasing as the fidelity increases and becoming maximum
for orthogonal states. The quadratic entanglement entropy

E>(S,T) becomes just
ExS.T) =4psp- =1 - |(Yoly) . (34)

These results hold for arbitrary dimension M of S.
The operator, (4), becomes i = U ® [1)(0| + U" ® [0)(1]
and is directly Hermitian, with eigenvalues ¢'%"/?> = £1 for

062127-4



SYSTEM-TIME ENTANGLEMENT IN A DISCRETE-TIME MODEL

k = 0 or 1, M-fold degenerate. Hence, in this case
J=aU-1)/2, (35)

involving coupling between S and T unless UT oc U.

For |y1) close to |¥¢), Eq. (34) becomes proportional to the
Fubini-Study metric [34]. If U = exp[—i€h], an expansion of
[¥o) in the eigenstates of A, |yo) = D, cklk) with hlk) =
&rlk), leads to

2

ExS,T)=1- ~ e ((h*) — (h)D), (36)

Z |Ck|2€7i€£k
k

where the last expression holds up to O(e?). Hence, for a
“small” evolution the system-time entanglement of a single
step is determined by the energy fluctuation (h%) — (h)? in
[Y0) ({(O) = (Yol O|¥o)), with E»(S,T) directly proportional
to it. For instance, if S is also a single qubit and ¢ — gy = &,
the exact expression becomes

ExSJv==4sm?(%;>wd2m”2 (37)
2 2
=4m9(%>91%jﬁl, (38)

which reduces to (36) for small €. It is also verified
that E»(S,T) < Sa(lcol?,|c1]?) = 4|col?|c1]?, i.e., it is upper
bounded by the quadratic entropy of the energy spread
[Eq. (26)], reaching the bound for E = €¢ = m, in agreement
with the general result, (23)—(24). Returning to the case
of a general S, we also note that E,(S,7T) determines the
minimum time required for the evolution from |) to |) in
standard continuous-time theories [34], which depends on the
fidelity |(¥o|¥1)| and can then be expressed in terms of E, as
hsin™'(VEL(S,T))/+/ (h?) — (h)2.

Let us now assume that S = A + B is a two qubit-system,
with U = I4 ® Up. As previously stated, starting from an
initial entangled pure state of A + B (purification of pp),
state (33) will determine the evolution of the reduced state of
B, leading to

o5 = plUDNv?| + vl )

where p +¢ = 1, (Y1¥3) = 0, and |y]) = Uplyyg) for j =
0,1. The reduced state, (32), of B + T becomes

per = p[Wo) (ol 4 q[W1) (Wi, (40)

with |¥;) = %(W&)IO) + |¥{)1)). Since (40) is a two-qubit
mixed state, its entanglement of formation can be obtained
through the concurrence [18] C(B,T), whose square is just
the entanglement monotone associated with the quadratic
entanglement entropy E, [C*(B,T) = E»(B,T) for a pure
B + T state]. It adopts here the simple expression

CXB.T) = (p— (1 - |[wi|vi)). @1

where [(y 1Y) = (¥ |UglYg) is the same for j =0 or
1 in a qubit system if (wgwé) = 0. Equation (41) is then
the pure-state result, (34), for any of the eigenstates of
ppo diminished by the factor (p — ¢)?, vanishing if ppo is
maximally mixed (p = ¢). Remarkably, Eq. (41) can also be

9 1= Oa19 (39)
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written as

C*(B,T) =1 — F*(ppo,ps1)s (42)

where F(pgo,081) =Tr,/pl];{)2p31p;/02 is again the fidelity

between the initial and the final reduced mixed states of B
(F = |{(Yoly1)| if ppo and pp; are pure states). Note also that
the total quadratic entanglement entropy is here

Ex(S,T) = 1 — | plf|w) + a{v!|vg)

satisfying E,(S,T) > C%*(B,T), in agreement with the
monogamy inequalities [14,35], coinciding iff pg = 0 (pure
case).

2

s

B. The continuous limit

Let us now assume that system S is a qubit, with T of
dimension N (t =0, ...,N — 1). This case can also represent
the evolution from an initial state |) to an arbitrary final state
[ ) in a general system S of Hilbert-space dimension M if all
intermediate states |1/;) belong to the subspace generated by
[¥0) and |1 (), such that the whole evolution is contained in a
two-dimensional subspace of S. Writing the system states as

V1) = a,|0) + B [1),

with (0]1) = 0 and |e,|> + |B:]*> = 1, we may rewrite state (1)

t=0,....N—1, (43

as
1
W) = ﬁ[m (Zam) + |1><Z ﬂ,mﬂ
= «[0)|¢o) + BI1) 1) (44)
where o) = = M aulr), 1) = i X Bilr)  are

normalized (but not necessarily orthogonal) states of 7 and
all sums over ¢ are from 0 to N — 1, with

1 1
2 _ L 2 2 L 2 _ 1.2
a_NEl Iazl,ﬂ—NEtlﬂzl—l . (45)
The Schmidt coefficients of state (44) are given by

pe = 3(1£ V1 —4a?B2(1 — [($1]¢0)2).  (46)

‘We then obtain

Ex(S.T) = 4pip_ =4’ B*(1 — |($11¢ho)*)

1

= 4P =D, v =D Bl @)
t
a result which also follows directly from Eq. (21).
Let us consider, for instance, the states

¢t . ¢t
= 0 1), 48
1) cos(N_1 0) +sin (== ). @8)

such that S evolves from |1y) = |0) to

[ ) = cos ¢|0) 4 sin¢p[1)

in N — 1 steps through intermediate equally spaced states
contained within the same plane in the Bloch sphere of S. The
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S-T entanglement of this N-time evolution can be evaluated
exactly with Egs. (45)—(47), which yield

in2 (N
Ex(S,Ty)=1— M
N2 sin? (%)

(49)

For N =2 (single step) we recover Eq. (34) [Ex(S,T») =
1—cos’¢ =1 —[(YolY ). If ¢ € [0,7/2], Ex(S,Ty) is a
decreasing function of N (and an increasing function of ¢)
but rapidly saturates, approaching a finite limit for N — oo,
namely,

sin® ¢

#?

Therefore, system-time entanglement decreases as the number
of steps through intermediate states between |y) and [ f)
is increased, reflecting the lower average distinguishability
between the evolved states, but remains finite for N — oo.
In this limit it is still an increasing function of ¢ for ¢ €
[0,7/2], reaching 1 — 4/7'[2 ~ 0.59 for ¢ = /2, i.e., when
the system evolves to an orthogonal state (|y/s) = [1)), and
decreasing to ~¢2/3 for ¢ — 0. Hence, compared with a
single-step evolution (N = 2), the ratio E»(S,Tx)/E>(S,T3)
increases from 1/3 for ¢ — 0 to ~0.59 for ¢ — 7/2.

If ¢ is increased beyond /2, the coefficients «; and
B; cease to be all positive and entanglement can increase
beyond ~0.59 due to the decreased overlap y, reflecting
higher average distinguishability between evolved states.
Entanglement E,(S,T,) in fact reaches 1 at ¢ =  (and also
km, k > 1 integer), i.e., when the final state is proportional to
the initial state after having covered the whole circle in the
Bloch sphere, since for these values the time states |¢g) and
|¢1) become orthogonal and with equal weights. Note also
that for ¢ > m /2, E»(S,Ty) is not necessarily a decreasing
function of N or an increasing function of ¢, exhibiting
oscillations: E»(S,Ty) =1 for ¢ = kan(N — 1)/N, k #IN,
and E»(S,Ty) — O for ¢ — In(N — 1), [ integer.

Ey(S.Too) =1 -

(50)

IV. CONCLUSIONS

We have proposed a parallel-in-time discrete model of
quantum evolution based on a finite-dimensional clock en-
tangled with the system. The ensuing history state satisfies a
discrete Wheeler-DeWitt-like equation and can be generated
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through a simple circuit, which for a constant evolution
operator can be efficiently implemented with just O(n) qubits
and control gates for 2" time intervals.

We have then shown that the system-clock entanglement
E(S,T) is a measure of the actual distinguishable evolution
undergone by one of the systems relative to the other. A
natural interpretation of the Schmidt decomposition in terms of
permanence in distinguishable evolved states is also obtained.
For a constant Hamiltonian leading to a cyclic evolution, this
entanglement is a measure of the energy spread of the initial
state and satisfies an entropic uncertainty inequality with a
conjugated entropy which measures the time spread. This
Hamiltonian was rigorously shown to provide the maximum
entanglement E(S,7) compatible with a given distribution
over Hamiltonian eigenstates. For other Hamiltonians, E(S,T)
[and also general entanglement entropies E ¢(S,T)] are strictly
bounded by the corresponding entropy of this distribution. We
have also considered the evolution of mixed states. Although
in this case the evaluation and interpretation of system-clock
entanglement and correlations become more involved, in the
simple yet fundamental case of a qubit clock coupled with a
qubit subsystem, such entanglement was seen to be directly
determined by the fidelity between the initial and the final
states of the qubit. A direct relation between this entanglement
and energy fluctuation was also derived for the pure case.
Finally, we have also shown that E(S,T") does remain finite
and nonzero in the continuous limit, i.e., when the system
evolves from an initial to a final state through an arbitrarily
large number of closely lying, equally spaced intermediate
states.

The present work opens the way to various further de-
velopments, starting from the definition of a proper time
basis according to the Schmidt decomposition. It could also
be possible in principle to incorporate other effects such
as interaction between clocks [7] and explore possibilities
of an emergent space-time or a qubit model for quantum
time crystals [36]. At the very least, it provides a change
of perspective, allowing us to identify a qubit clock as a
fundamental “building block” of discrete-time-based quantum
evolution.
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