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Link between metformin and the
peroxisome proliferator-activated
receptor g pathway in the uterine tissue
of hyperandrogenized prepubertal mice
Chronic hyperandrogenism alters the peroxisome proliferator-activated receptor g (PPARg) pathway in the uterine
tissue of prepubertal mice. The gene and protein expression of PPARg is not modified, but the gene and protein
expression of 12-lipoxygenase (12-LOX), an enzyme that synthesizes PPARg ligands, is decreased. The antihyper-
glycemic drug metformin can prevent this adverse effect. (Fertil Steril� 2011;95:2534–7. �2011 by American
Society for Reproductive Medicine.)

Key Words: Lipoxygenases, metformin, peroxisome proliferator activated receptor gamma, polycystic ovary
syndrome, uterus
Polycystic ovary syndrome (PCOS) is a disease characterized by the adenosine 30:50 monophosphate (AMP)-dependent kinase

hyperandrogenism, hirsutism, oligomenorrhea or amenorrhea,
and anovulation (1). The excess of androgens has a detrimental ef-
fect on endometrial function, which can lead to infertility (2–4) and
even endometrial cancer (5–8). By the use of a hyperandrogenized
murine model, we previously found that the excess of androgens
induced embryo resorption of early pregnant mice (9–11) and
promoted the development of uterine structures that were closely
related to precancerous structures (7, 8).

N,N0-dimethylbiguanide metformin is one of the most common
drugs used for the treatment of type 2 diabetes.Metformin activates
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a (AMPK-a) pathway to decrease glucose production, increase
fatty acid oxidation, and promote the uptake of glucose by cells
(12–14). In PCOS patients, metformin decreases androgen levels,
improves the frequency of ovulation and menstrual cycles
(15–18), and prevents abortions (17, 19, 20). However, little is
known about the mechanisms by which metformin restores
uterine functions in women with PCOS. In this context, we
previously reported elsewhere that metformin prevents the
adverse effects induced by hyperandrogenism in uterine tissue,
including the appearance of abnormal endometrial structure (8).

Peroxisome proliferator-activated receptors (PPARs) are a family
of transcriptional nuclear factors with three isoforms, a, b, and g,
which regulate the expression of multiple genes (21). Lipoxygenase
(LOX) metabolizes arachidonic and linoleic acids, producing eicosa-
noids (22, 23). The primarymetabolites of arachidonic acid generated
by 1-LOXare the leukotrienes and lipoxines,whereas those produced
by 12-LOX and 15-LOX are hydroxyeicosatetraenoic acids (HETEs)
(24, 25). It is known that the uterine PPARg pathway regulates
implantation in mice by modulating the 12/15 LOX system (26).
These findings, together with the fact that metformin and the PPAR
system have been related in a synergistic action (27, 28), led us to
study the expression of PPARg, 12-LOX, and 15-LOX in uterine
tissue from hyperandrogenized mice and their relationship with the
metformin treatment.

The animal model (7–11) consisted of female prepubertal (25-day-
old)miceof theBALB/c strain.The dehydroepiandrosterone (DHEA)
group consisted of animals injected daily with DHEA (6 mg/100 g
body weight, dissolved in 0.10 mL sesame oil) for 20 consecutive
days, and the DHEA þ M group consisted of animals injected with
DHEA and given metformin orally (50 mg/100 g body weight in
0.05 mL of water, given orally with a cannula) for 20 days. The
controls consisted of two groups: [1] animals injected with oil (0.1
mL) and given water orally (0.05 mL) for 20 consecutive days (C
group) and [2] the metformin-alone group which consisted of mice
treated orally with 50 mg metformin/kg body weight in 0.05 mL of
water for 20 days (M group). Mice (10 per group) were housed under
0015-0282/$36.00
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controlled temperature (22�C) and illumination (14 hours light, 10
hours dark, with lights on at 05:00 hours), and they were allowed
free access to Purina rat chow and water. All the procedures involv-
ing animals were approved by the Consejo Nacional de Investiga-
ciones Cient�ıficas y T�ecnicas (CONICET) according to the
AnimalCare andUseCommitteeStatement ofCONICET, 1996.Af-
ter 20 days of treatment, the animals were killed by cervical disloca-
tion, and freshly dissected uteri from each group were immediately
frozen at –70�Cuntil both themessenger RNA (mRNA) and protein
determinations.

The content of proteins corresponding to the PPAR g1 and g2
isoforms were evaluated in uterine tissue byWestern blot analysis.
Each sample was applied to 12% sodium dodecyl sulfate (SDS)-
polyacrylamide gel, and separated proteins were transferred onto
nitrocellulosemembranes.After blocking, themembraneswere in-
cubated with rabbit polyclonal antibodies (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA) against PPARg using b-actin (1:500) as an
internal control. Rat skeletal muscle extract was used as a positive
control for PPARg. Negative controls were performed in the ab-
sence of the primary antibody. Individual bands were quantified di-
rectly frommembranes by densitometry by use of ImageJ software
(http://rsbweb.nih.gov/ij/).

We found that both PPAR g1 and g2 isoforms were present in
uterine tissue. We also found that neither DHEA nor DHEAþM
treatment modified the expression of PPARg protein when com-
pared with controls (Table 1). To study whether the gene expres-
sion of PPARg1 and PPARg2 isoforms was modified by DHEA
or DHEAþM treatments, the mRNA contents were measured by
reverse-transcriptase polymerase chain reaction (RT-PCR) anal-
ysis. Total mRNA from each group of uterine tissuewas extracted
using TriReagent (Invitrogen, Buenos Aires, Argentina). The
products were separated on 2% agarose and visualized with
ethidium bromide staining. The 18S protein gene was used as
an internal control. The analysis was performed by densitometry
scanning by use of an ImageQuant RT ECL (GE Life Sciences,
Piscataway, NJ). Bands were compared with internal control by
use of ImageJ. For amplification of PPARg cDNA, the primers
were sense 50-TGACACAGAGATGCCATT CTGG 30 and an-
tisense 50 GAG CTA GAC CCA ATG GTT GCT GAT TAC 30.

We found that PPARg mRNA levels were detectable in uterine
tissue and that neither DHEA nor DHEAþM treatment modified
the expression of PPARg mRNA when compared with controls
(Table 1). In view of these results, we were interested in determin-
ing whether hyperandrogenism and the treatment with metformin
were able to modulate the expression of 12-LOX and 15-LOX,
enzymes responsible for the synthesis of PPAR ligands. The
protein content of uterine 12-LOX and 15-LOX were evaluated
by Western blot analysis. The protocol was similar to that
described previously, with polyclonal antibodies (Santa Cruz
Biotechnology) against 12-LOX (1:100) and 15-LOX (1:100).

The DHEA decreased the protein expression of 12-LOX when
compared with controls (see Table 1), whereas metformin pre-
vented this effect (see Table 1). We also found that neither
DHEA nor DHEA þ M modified the protein expression of
15-LOX when compared with controls (see Table 1). To deter-
mine whether the effect of the treatments in the 12-LOX and
15-LOX proteins was a reflection of 12-LOX and 15-LOX gene
expression, the mRNA levels corresponding to both enzymes
were measured by RT-PCR. Using the same protocol as that
ertility and Sterility� 2535
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described earlier, for amplification of 12-LOX complementary
DNA (cDNA) the primers were sense 50-TGATCAGGTAGTGAG-
CACAGGT-30 and antisense 50-CCTTCACATACCTGGCAG
TGA-30. For amplification of 15-LOX, the primers were sense
50-TAGCCATCCAGCTCGAACTG-3 and antisense 50-GGTGTA-
GAGTAGGTGAGGAACTA-30.

Table 1 shows that DHEA decreased the gene expression of
12-LOX when compared with controls and that metformin was not
able to prevent this effect. We also found that neither DHEA nor
metformin modified the gene expression of 15-LOX (see Table 1
and Supplementary Fig. 1 [available online]).

The detrimental effects of the excess of androgens in the endo-
metrial function contribute to the infertility of women with PCOS
(2–4). We had previously reported that the excess of androgens
induced the development of uterine structures closely related to
the development of precancerous structures (7, 8). These adverse
effects are mediated by a proinflammatory status characterized
by an increased production of prostaglandins by the uterus
(7, 8). We also found that metformin partially prevented these
adverse effects (7, 8). These findings, together with the fact that
the activation of the PPAR system is related to the uterine
function (26, 29), the synergistic action of metformin þ PPAR
treatment described in PCOS (27, 28, 30, 31), and the role of
PPAR in regulating the prostaglandin pathway (32), led us to
evaluate the action of metformin and the PPARg system on
hyperandrogenized uteri.

We found that both PPAR g1 and g2 are expressed in uterine
tissue from prepubertal mice and that neither protein nor gene
expression of PPARg are regulated by the excess of androgen
and metformin. The fact that metformin alone increased PPARg
mRNA levels might be due to the fact that metformin is capable
of acting in basal conditions even in the absence of stimulus
(33). However, experiments are being designed to clarify this point.
536 Elia et al. Correspondence
Because the expression of PPARg was not affected by hyperan-
drogenism, we studied whether hyperandrogenism altered the
ligands of PPARg and consequently the activation of PPARg.
Here we demonstrated for the first time that protein and mRNA
corresponding to the enzymes 12-LOX and 15-LOX, which are
responsible for synthesizing ligands of PPARg (26, 34, 35), are
present in uterine tissue from prepubertal mice. In fact, this
metabolic pathway of PPARg activation has been described in
other systems, such as monocytes (36), macrophages (34), fibro-
blasts (35), and uteri (26). However, only the 12-LOX enzyme
was susceptible to the adverse action of hyperandrogenism and re-
sponded to metformin treatment, thus suggesting that 15-LOX
could be a constitutive enzyme in the synthesis of PPARg ligands.
The excess of androgens decreased both the gene and protein
expression of 12-LOX, but metformin was able to prevent the
decrease in the protein expression, although not the gene expres-
sion, of 12-LOX. These findings suggest that metformin might
be contributing with a posttranscriptional mechanism in the
regulation of 12-LOX expression. However, experiments are being
addressed to clarify this point.

The fact that rosiglitazone (synthetic PPARg ligand) activates the
PPARg system by increasing PPARg mRNA levels (37) together
with data presented here that metformin can modulate the enzyme
that synthesizes PPARg ligand could explain why the combined
treatment with glitazones and metformin is more effective in pre-
venting abortions than each separate treatment (28, 30, 31). It
appears that the direct relationship between 12-LOX activity and
implantation (26, 38) is due to the fact that 12-LOX regulates the
expression of progesterone receptor in uterine tissue during
implantation (38). We suggest that hyperandrogenism reduces uter-
ine receptivity, in part, by altering the PPARg pathway, an alteration
that seems to be focused on the enzyme 12-LOX. Metformin is able
to prevent the adverse effect of an excess of androgens by modulat-
ing the protein expression of 12-LOX.
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SUPPLEMENTAL FIGURE 1

(A) A representative gel corresponding to the protein of peroxisome proliferator-activated receptors type g (PPAR g1 and 2). (B) A
representative gel corresponding to the mRNA expression of PPAR g. The graphs correspond to the integrated optical density of bands, ***
P< 0.001 by analysis of variance. (C) A representative gel corresponding to the protein of 12 lipoxygenase (12- LOX). (D) A representative gel

corresponding to the mRNA expression of 12 lipoxygenase (12- LOX). The graphs correspond to the integrated optical density of bands,

*P< 0.05 by analysis of variance. (E) A representative gel corresponding to the protein of 15 lipoxygenase (15- LOX). (F) A representative

gel corresponding to the mRNA expression of 15 lipoxygenase (15- LOX). The graphs correspond to the integrated optical density of bands,
**P< 0.01 by analysis of variance.
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