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On 5-torsion of CM elliptic curves

Laura Paladino1

1Dipartimento di Matematica, Università della Calabria, Ponte Pietro Bucci, Cubo
30B - 87036 Arcavacata di Rende (CS), Italy, e-mail: paladino@mat.unical.it

Keywords: elliptic curves; complex multiplication; torsion points;

Mathematics subject classification: 11G05; 11F80; 11G18

Abstract

Let E be an elliptic curve defined over a number field K. Let m be a positive integer.

We denote by E [m] the m-torsion subgroup of E and by Km := K(E [m]) the number field

obtained by adding to K the coordinates of the points of E [m]. We describe the fields K5,

when E is a CM elliptic curve defined over K, with Weiestrass form either y2 = x3 + bx
or y2 = x3 + c. In particular we classify the fields K5 in terms of generators, degrees and

Galois groups. Furthermore we show some applications of those results to the Local-Global

Divisibility Problem, to modular curves and to Shimura curves.

1 Introduction

Let E be an elliptic curve defined over a number field K with algebraic closure K̄. Let m be
a positive integer. We denote by E [m] the m-torsion subgroup of E and by Km := K(E [m])
the number field generated by the 5-torsion points of E , i.e. the field obtained by adding
to K the coordinates of the points of E [m]. Since Km is the splitting field of the m-division
polynomials, then Km/K is a Galois extension, whose Galois group we denote by G. For every
point P ∈ E , we indicate by x(P ), y(P ) its coordinates. Furthermore, for every positive integer
n, we indicate the n-th multiple of P simply by nP . It is well-known that E [m] ≃ (Z/mZ)2. Let
{P1 , P2} be a Z-basis for E [m]; thus Km = K(x(P1), x(P2), y(P1), y(P2)). To ease notation,
we put xi := x(Pi) and yi := y(Pi) (i = 1, 2). Knowing explicit generators for Km could
have a lot of interesting applications, for instance about Galois representations, local-global
problems on elliptic curves (see [17], [18] and [19]), descent problems (see for example [22] and
the particular cases [3] and [4]), points on modular curves (see [5], [6]) and points on Shimura
curves (see Subsection 8.3). Anyway there are not many papers about the argument (see also
[1], [16] and [7]). A recent and very interesting paper about number fields Q(E [m]) is [14].
The discussion there is restricted to the case when Q(E [m])/Q is an abelian extension, even
in the case of CM elliptic curves. Among other results (see also Remark 5.1), in particular
the authors prove that if E is an elliptic curve with complex multiplication and Q(E [m])/Q
is abelian, then m ∈ {2, 3, 4}. In this paper we will describe all possible extensions (even
not abelian) K(E [5])/K, for every K, when E is a CM elliptic curve. We will classify them in
terms of generators, degree and Galois groups. By Artin’s primitive element theorem, we know
that the extension Km/K is monogeneous and one can find a single generator for Km/K by
combining the above coordinates. Anyway, in general it is not easy to find this single generator.
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So, during the last few years we have searched for systems of generators easier to be found and
to be used in applications. For every m, by the properties of the Weil pairing em, we have that
the image zm := em(P1, P2) ∈ Km is a primitive m-th root of unity and that K(ζm) ⊆ Km (see
for instance [24]). When m is odd, another generating set for Km is showed in the following
statement (see [6]).

Theorem 1.1. In the notation as above, we have

Km = (x1, ζm, y2), (1)

for all odd integers m.

Of course, in general it is easier to work with the generating set as in (1). Furthermore, that
generating set is often minimal among the subsets of {x1, x2, ζm, y1, y2} (for further details see
[6]). For m = 3 and m = 4 there are explicit descriptions of all possible number fields K3 and
K4, in terms of generators, degrees and Galois groups (see in particular [6] and also [5]). Here
we give a similar classification of every possible number fields K5, for all elliptic curves with
complex multiplication, belonging to the families:

F1 : y
2 = x3 + bx, with b ∈ K and y2 = x3 + c, with c ∈ K.

We will treat separately the case of the family F1 : y
2 = x3 + bx, and of the family F2 : y

2 =
x3 + c, with c ∈ K. In the very last part of the paper, we show some applications (of those
results) to the Local-Global Divisibility Problem, to K-rational CM points of modular curves
and to K-rational CM points of Shimura curves.

2 Generators of K(E [5]) for elliptic curves y2 = x3 + bx

If E is an elliptic curve defined over K, with Weierstrass form y2 = x3 + bx + c, then the
abscissas of the points of order 5 of E are the roots of the polynomial

p5(x) := −5x12 − 62bx10 − 380cx9 + 105b2x8 − 240bcx7 + (240c2 + 300b3)x6 + 696b2cx5+

(1920bc2 + 125b4)x4 + (1600c3 + 80b3c)x3 + (240b2c2 + 50b5)x2 + (640bc3 + 100b4c)x+

256c4 + 32b3c2 − b6.

If E1 : y2 = x3+ c is an elliptic curve of the family F1, then the abscissas of the points of order
5 of E are the roots of the polynomial

q5(x) := −5x12 − 62bx10 + 105b2x8 + 300b3x6 + 125b4x4 + 50b5x2 − b6.

A factorization of q5(x) over K(ζ5) is

q5(x) = −5 · (x4 + (−8ζ35 − 8ζ25 + 2)bx2 + (−8ζ35 − 8ζ25 + 5)b) · (x4 + 2

5
bx2 +

1

5
b2)
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·(x4 + (8ζ3
5
+ 8ζ2

5
+ 10)bx2 + (8ζ3

5
+ 8ζ2

5
+ 13)b)

and a factorization of q5(x) over K(i, ζ5) is

q5(x) = −5·(x2+((−4i+4)ζ35+4ζ25−4iζ5−2i+5)b) ·(x2+(−4ζ35+(−4i−4)ζ25−4iζ5−2i+1)b)

·(x2 + ((4i+ 4)ζ3
5
+ 4ζ2

5
+ 4iζ5 + 2i+ 5)b) · (x2 + (−4ζ3

5
+ (4i− 4)ζ2

5
+ 4iζ5 + 2i+ 1)b)

·(x2+ −2i+1
5 b) · (x2+ 2i+1

5 b),

where as usual we denote by i a root of x2 + 1 = 0.

Remark 2.1. Let φ1 denote the complex multiplication of E2, i. e. φ1(x, y) = (−x, iy). As
above, in many cases if P is a nontrivial m-torsion point, then φ1(P ) is an m-torsion point
that is not a multiple of P . In this case a basis for E [m] is given by {P, φ1(P )}. Anyway, in a
few special cases the point φ1(P ) is a multiple of P . For example, let ω1 := −(1 + 2i)/5, let
x1/2 = ±

√
ω1 and let P1 and P2 be the two 5-torsion points of E1, with abscissas respectively

x1 and x2. Since φ1(Pi) = 2Pi (for i = 1, 2), then {Pi, φ1(Pi)} is not a basis of E [5]. We would
have not this problem by choosing a root of q5(x), different from x1 and x2.

Theorem 2.2. Let

θ1 := −((−4i+ 4)z35 + 4z25 − 4iz5 − 2i+ 5).

Then K5 = K(ζ5, i,
√

(θ1 + 1)b
√
θ1b).

Proof. If x1 :=
√
θ1b, then by the factorization of q5(x) showed above, we have that x1 is

the abscissas of a 5-torsion point of E . Let P1 = (x1, y1), where y1 =
√

(θ1 + 1)b
√
θ1b.

By calculating φ1(P1) and the powers of P1, one sees that φ1(P1) is not a multiple of P1.
In addition observe that

√
θ1b ∈ K(ζ5, i,

√

(θ1 + 1)b
√
θ1b). Then the conclusion follows by

Remark 2.1.

Observe that [K5 : K] 6 2 · 4 · 2 · 2 = 32, for every b ∈ K. This is in accordance with the
fact that E has complex multiplication (x, y) 7→ (−x,−iy) and then the Galois representation

ρE,5 : Gal(K/K)→ GL2(Z/5Z)

is not surjective.

3 Degrees [K5 : K] for the curves of F1

Theorem 3.1. Let E : y2 = x3 + bx, with b ∈ K. Let θ1 as above. Consider the conditions

A. i /∈ K; C.
√

(θ1)b /∈ K(i, ζ5);

B1. ζ5 + ζ−1

5
/∈ K; D.

√

(θ1 + 1)b
√
θ1b /∈ K(i, ζ5,

√
θ1b).

B2. ζ5 /∈ K(ζ5 + ζ−1

5
);

The possible degrees of the extension K5/K are the following
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d holding conditions d holding conditions

32 5 among A, B1, B2, C, D 4 2 among A, B1, B2, C, D

16 4 among A, B1, B2, C, D 2 1 among A, B1, B2, C, D

8 3 among A, B1, B2, C, D 1 no holding conditions

Table 2

Proof. Consider the tower of extensions

K ⊆ K(i) ⊆ K(i, ζ5 + ζ−1

5
) ⊆ K(i, ζ5) ⊆ K(i, ζ5,

√

(θ1)b) ⊆ K(ζ3, ζ5,

√

(θ1 + 1)b
√

(θ1)b).

The degree of K5/K is the product of the degrees of the intermediate extensions appearing
in the tower. Clearly each of those extensions gives a contribution to the degree less than or
equal to 2. The final computation is straightforward.

4 Galois groups Gal(K5/K) for the curves of F1

Let E1 be a curve of the family F1, let G := Gal(K(E2[5])/K) and let d := |G|. Let θ1 and ω1

as above and let

θ2 := −(−4z35 + (−4i− 4)z25 − 4iz5 − 2i+ 1);

θ3 := −((4i + 4)z35 + 4z25 + 4iz5 + 2i+ 5);

θ4 := −(−4z35 + (4i− 4)z25 + 4iz5 + 2i+ 1);

ω2 := −
2i+ 1

5
b.

If P = (x, y) is a point of E , to ease notation, let us denote by iP the point φ1(P ) = (−x, iy).
The 24 points of exact order 5 of E2 are the following:

±P1 := (x1,±y1) =
(

√

θ1b,±
√

(θ1 + 1)b
√

θ1b

)

± iP1 := (−x1,±iy1);

±P2 := (x2,±y2) =
(

√

θ2b,±
√

(θ2 + 1)b
√

θ2b

)

± iP2 := (−x2,±iy2);

±P3 := (x3,±y3) =
(

√

θ3b,±
√

(θ3 + 1)b
√

θ3b

)

± iP3 := (−x3,±iy3);

±P4 := (x4,±y4) =
(

√

θ4b,±
√

(θ4 + 1)b
√

θ4b

)

± iP4 := (−x4,±iy4);

±P5 := (x5,±y5) =
(

√

ω1b,±
√

(ω1 + 1)b
√

ω1b

)

± iP5 := (−x5,±iy5);

±P6 := (x6,±y6) =
(

√

ω2b,±
√

(ω2 + 1)b
√

ω2b

)

± iP6 := (−x6,±iy6).

By the observations made in the previous sections about the generators of K5 and about the
degree [K5 : K], we have that The Galois group is generated by the following 3 automorphisms.
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i) The automorphism φ1 of order 4 given by the complex multiplication. We have φ1(x, y) =
(−x, iy), for all (x, y) ∈ K(E [5]). In particular, for every 1 6 j 6 6, the automorphism
φ1 maps

√

θjb to −
√

θjb (i. e. xj to −xj) and y1 to iy1. Thus φ1(Pj) = iPj , for all
1 6 j 6 6. Observe that φ2

1
= −Id.

ii) The automorphism ψ1 of order 4 mapping ζ5 to ζ2
5
. Observe that

P1

ψ17−→ P2

ψ17−→ P3

ψ17−→ P4

ψ17−→ P1,

as well as

iP1

ψ17−→ iP2

ψ17−→ iP3

ψ17−→ iP4

ψ17−→ iP1.

The other 5-torsion points are fixed by ψ1.

iii) The automorphism ρ1 of order 2 of the quadratic field of the complex multiplication, that
maps i to −i. Observe that such an automorphism swaps P1 and P3 and swaps P2 and
P4

P1

ρ1←→ P3 P2

ρ1←→ P4.

Furthermore

iP1

ρ1←→ −iP3 iP2

ρ1←→ −iP4;

P5

ρ1←→ P6 iP6

ρ1←→ −iP6.

By [25, Chapter II, Theorem 2.3], the extension K5/K(i) is abelian, thus 〈φ1, ψ1〉 ≃ Z/4 ×
Z/4, when all the conditions in the statement of Theorem 2.2 hold. Moreover, with a quick
computation, one verifies that ψ1 and ρ1 commute. On the contrary φ1 and ρ1 do not commute
in general, in fact

ρ1φ1((x1, y1)) = ρ1((−x1, iy1)) = (−x3,−iy3);

φ1ρ1((x1, y1)) = φ1((x3, y3)) = (−x3, iy3).
Instead we have ρ1φ1((P1)) = φ−1

1
ρ((P1)) and ρ1φ1((iP1)) = φ−1

1
ρ1((iP1)). Being {P1, iP1} a

generating set for K5, we can conclude ρ1φ1 = φ−1

1
ρ. Thus, when all the condition hold, we

have 〈φ1, ρ1〉 ≃ D8. We are going to describe the Galois groups G = Gal(K5/K), with respect
to the degrees [K5 : K].

d = 32 If the degree d of the extension K5/K is 32, then all the conditions hold. We have G =
〈φ1, ψ1, ρ1|φ41 = ψ4

1
= ρ2

1
= Id, φ1ψ1 = ψ1φ1, ρ1ψ1 = ψ1ρ1, φ1ρ1 = φ−1

1
ρ1〉 ≃ D8 × Z/4Z.

d = 16 If the degree d of the extension K5/K is 16, then only one condition does not hold.

If A does not hold, then ρ1 is the identity and we have an abelian group G = 〈φ1, ψ1〉 ≃
Z/4× Z/4.

If one among B1 and B2 does not hold, then G ≃ D8 × Z/2Z.

If one among C and D does not hold, then G ≃ Z/4Z × (Z/2Z)2.

5



d = 8 If the degree d of the extension K5/K is 8, then two conditions do not hold among the
ones as above.

If B1 and B2 do not hold, then G〈φ1, ρ1〉 ≃ D8. This is the only case in which the
Galois group G is not abelian.

If one among B1 and B2 does not hold and A does not hold, then G ≃ Z/4Z× Z/2Z.

If one among B1 and B2 does not hold and one among C and D does not hold then
G ≃ (Z/2Z)3.

If one among C and D does not hold and A does not hold, then G ≃ Z/4Z × Z/2Z
again.

d = 4 If the degree d of the extension K5/K is 4, then three conditions do not hold. If both
B1 and B2 hold or if both C and D hold, then G ≃ Z/4Z. Otherwise G ≃ Z/2Z×Z/2Z.

d 6 2 If the degree d of the extension K5/K is either 2 or 1, clearly the Galois group is
respectively Z/2Z or {Id}.

5 Generators of K(E [5]) for elliptic curves y2 = x3 + c

Let E2 : y2 = x3 + c be an elliptic curve of the family F2.

Remark 5.1. Let φ2 denote the complex multiplication of E2, i. e. φ2(x, y) = (ζ3x, y). In
many cases, if P is a nontrivial m-torsion point, then φ2(P ) is an m-torsion point that is
not a multiple of P . Therefore, in many cases a basis for E [m] is given by {P, φ2(P )} and
Km = K(x(P ), y(P ), ζ3). Anyway, in a few special cases, the point φ2(P ) is a multiple of P
over the field K(ζ3, ζ5). For example, the abscissas of the 3-torsion points of E1 are

x̃1 = 0; x̃2 =
3
√
−4c; x̃3 = ζ3x̃2; x̃4 = ζ23 x̃2.

Let P̃h be a point of abscissas x̃h, for 1 6 h 6 4. Clearly φ2(P̃1) = P̃1 and then {P̃1, φ2(P̃1)}
is not a basis of E [3]. On the other hand, {P̃h, φ2(P̃h)} is a basis of E [3], for 2 6 h 6 4. So we
have to take care in our choice of P , when we use such a basis {P, φ2(P )}. For elliptic curves
with complex multiplication φ2, a generating set {x(P ), y(P ), ζ3} is often easier to adopt than
the one in (1).

The abscissas of the points of order 5 of E are the roots of the polynomial

r5(x) := −5x12 − 380cx9 + 240c2x6 + 1600c3x3 + 256c4.

A factorization of ϕ1 over K(ζ5) is

r5(x) = −5 · (x6 + (−36ζ35 − 36ζ25 + 20)cx3 +
−288ζ3

5
− 288ζ2

5
+ 176

5
c2)

·(x6 + (36ζ35 + 36ζ25 + 56)cx3 +
288ζ3

5
− 288ζ2

5
+ 464

5
c2)

and a factorization of r5(x) over K(ζ3, ζ5) is
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r5(x) = −5 · (x3 +
(−132ζ3 + 24)ζ3

5
+ (36ζ3 + 108)ζ2

5
+ (−96ζ3 − 48)ζ5 − 48ζ3 + 116

5
c)

·(x3+ (−36ζ3−108)ζ35+(−132ζ3−156)ζ25+(−168ζ3−84)ζ5−84ζ3+8
5 c)

·(x3+ (132ζ3+156)ζ3
5
+(−36ζ3+72)ζ2

5
+(96ζ3+48)ζ5+48ζ3+164

5 c)

·(x3+ (36ζ3−72)ζ35+(132ζ3−24)ζ25+(168ζ3+84)ζ5+84ζ3+92
5 c)

Let

δ1 := −(
(−132ζ3 + 24)ζ3

5
+ (36ζ3 + 108)ζ2

5
+ (−96ζ3 − 48)ζ5 − 48ζ3 + 116

5
);

δ2 := −(
(−36ζ3 − 108)ζ3

5
+ (−132ζ3 − 156)ζ2

5
+ (−168ζ3 − 84)ζ5 − 84ζ3 + 8

5
);

δ3 := −(
(132ζ3 + 156)ζ3

5
+ (−36ζ3 + 72)ζ2

5
+ (96ζ3 + 48)ζ5 + 48ζ3 + 164

5
);

δ4 := −(
(36ζ3 − 72)ζ3

5
+ (132ζ3 − 24)ζ2

5
+ (168ζ3 + 84)ζ5 + 84ζ3 + 92

5
).

Then the 12 roots of r5(x), i. e. the abscissas of the 5-torsion points of E1, are 3
√
δ1c,

3
√
δ1cζ3,

3
√
δ1cζ

2
3
, 3
√
δ2c,

3
√
δ2cζ3,

3
√
δ2cζ

2
3
, 3
√
δ3c,

3
√
δ3cζ3,

3
√
δ3cζ

2
3
, 3
√
δ4c,

3
√
δ4cζ3,

3
√
δ4cζ

2
3
.

Theorem 5.2. Let δ1 as above. We have K5 = K( 3
√
δ1c, ζ3,

√

(δ1 + 1)c).

Proof. If x1 :=
√
δ1c, then by the factorization of r5(x) showed above, we have that x1 is

the abscissas of a 5-torsion point of E . Let y1 :=
√

(δ1 + 1)c. Then P1 = (x1, y1) is a
5-torsion point of E . By calculating φ2(P1) and the powers of P1, one sees that φ2(P1) is
not a multiple of P1. In fact φ2(P1) = (x1ζ3, y1) = (

√
δ1cζ3, y1) and x(2P1) = x(3P1) =

((ζ3 + 2)ζ3
5
+ (−ζ3 + 1)ζ2

5
+ 1) 3
√
δ1c. Thus x(φ2(P1)) 6= x(nP1), for all 1 6 n 6 4 (recall that

x(4P1) = x(P1)). By Remark 5.1, then {P1, φ1(P1)} form a basis of E [5] and the conclusion is
straightforward.

Observe that [K5 : K] 6 3·2·4·2 = 48, for every c ∈ K. This is in accordance with the fact
that E has complex multiplication φ1 : (x, y) 7→ (ζ3x, y) and then the Galois representation

ρE,5 : Gal(K/K)→ GL2(Z/5Z)

is not surjective.

6 Degrees [K5 : K] for the curves of F2

As above, let K be a number field and let E be an elliptic curve defined over K.

7



Theorem 6.1. Let E : y2 = x3 + c, with c ∈ K. Let δ1 as above. Consider the conditions

A. ζ3 /∈ K;

B1. ζ5 + ζ−1

5
/∈ K(ζ3); C. 3

√

(δ1)c /∈ K(ζ3, ζ5);

B2. ζ5 /∈ K(ζ3, ζ5 + ζ−1

5
); D.

√

(δ1 + 1)c /∈ K(ζ3, ζ5).

The possible degrees of the extension K5/K are the following

d holding conditions d holding conditions

48 A, B1, B2, C, D 6 C and 1 among A, B1, B2, D

24 C and 3 among A, B1, B2, D 4 2 among A, B1, B2, D

16 A, B1, B2, D 3 C

12 C and 2 among A, B1, B2, D 2 1 among A, B1, B2, D

8 3 among A, B1, B2, D 1 no holding conditions

Table 1

Proof. Consider the tower of extensions

K ⊆ K(ζ3) ⊆ K(ζ3, ζ5+ζ
−1

5
) ⊆ K(ζ3, ζ5) ⊆ K(ζ3, ζ5,

3
√

(δ1)c) ⊆ K(ζ3, ζ5,
3
√

(δ1)c,
√

(δ1 + 1)c).

The degree of K5/K is the product of the degrees of the intermediate extensions appearing in
the tower. Each of those extension gives a contribution to the degree that is less than or equal
to 2, except the extension K(ζ3, ζ5,

3

√

(δ1)c)/K(ζ3, ζ5) that gives a contribution equal to 1 or
3. The final computation is straightforward.

7 Galois groups Gal(K5/K) for the curves of F2

Let E1 be a curve of the family F1 and let d := |Gal(K(E1[5])/K)|. To study the Galois group
G := Gal(K(E1[5])/K), we have to understand better the shapes of the coordinates of the
5-torsion points of E1. Let δ1, δ2, δ3, δ4 as in Section 5. The 24 torsion points of E with exact
order 5 are:

±P1 = (x1,±y1) =
(

3
√
δ1c,±

√

(δ1 + 1)c
)

;

±φ2(P1) = (ζ3x1,±y1) =
(

3
√
δ1c ζ3,±

√

(δ1 + 1)c
)

;

±φ2
2
(P1) = (ζ2

3
x1,±y1) =

(

3
√
δ1c ζ

2
3
,±

√

(δ1 + 1)c
)

;

±P2 = (x2,±y2) =
(

3
√
δ2c,±

√

(δ2 + 1)c
)

;

±φ2(P2) = (ζ3x2,±y2) =
(

3
√
δ2c ζ3,±

√

(δ2 + 1)c
)

;

±φ2
2
(P2) = (ζ2

3
x2,±y2) =

(

3
√
δ2c ζ

2
3
,±

√

(δ2 + 1)c
)

;

±P3 = (x3,±y3) =
(

3
√
δ3c,±

√

(δ3 + 1)c
)

;

±φ2(P3) = (ζ3x3,±y3) =
(

3
√
δ3c ζ3,±

√

(δ3 + 1)c
)

;

±φ2
2
(P3) = (ζ2

3
x3,±y3) =

(

3
√
δ3c ζ

2
3
,±

√

(δ3 + 1)c
)

;

8



±P4 = (x4,±y4) =
(

3
√
δ4c,±

√

(δ4 + 1)c
)

;

±φ2(P4) = (ζ3x4,±y4) =
(

3
√
δ4c ζ3,±

√

(δ4 + 1)c
)

;

±φ2
2
(P4) = (ζ2

3
x4,±y4) =

(

3
√
δ4c ζ

2
3
,±

√

(δ4 + 1)c
)

.

Thus we have the following four generating automorphisms of the Galois group G.

i) The automorphism φ2 of the complex multiplication permuting the abscissas as follows

3
√

δic 7→ 3
√

δicζ3 7→ 3
√

δicζ
2

3 7→ 3
√

δic,

for all 1 6 i 6 4, and fixing all the ordinates. Clearly φ2 has order 3.

ii) The automorphism ϕ1 of order 4 mapping ζ5 to ζ2
5
,, that consequentely maps

δ1 7→ δ2 7→ δ3 7→ δ4 7→ δ1,

i. e.

P1

ϕ17−→ P2

ϕ17−→ P3

ϕ17−→ P4

ϕ17−→ P1;

φ2P1

ϕ17−→ φ2P2

ϕ17−→ φ2P3

ϕ17−→ φ2P4

ϕ17−→ φ2P1;

φ22P1

ϕ17−→ φ22P2

ϕ17−→ φ22P3

ϕ17−→ φ22P4

ϕ17−→ φ22P1.

iii) The automorphism -Id of order 2, mapping
√

(δi + 1)c to −
√

(δi + 1)c, for all 1 6 i 6 4,
such that

P
−Id7−−→ −P,

for all P ∈ E [5].

iv) The automorphism ϕ2 of order 2 of the quadratic field of the complex multiplication
mapping ζ3 to ζ2

3
, and then swapping δ1 and δ3 and also δ2 and δ4. In particular

P1

ϕ2←→ P3 P2

ϕ2←→ P4;

φ2(P1)
ϕ2←→ φ22(P3) φ2(P2)

ϕ2←→ φ22(P4);

φ22(P1)
ϕ2←→ φ2(P3) φ22(P2)

ϕ2←→ φ2(P4).
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One easily verifies that all these authomorphisms commute, except φ2 and ϕ2.
Observe that ψ2 := φ2 ◦ϕ1 form an homomorphism of order 12 and that G = 〈ψ2, ϕ2,−Id〉.

The automorphism ψ2 and ϕ2 does not commute, since φ2 does not commute with ϕ2, instead
one can verify that ϕ2 ◦ ψ2 = ψ−1

2
◦ ϕ2.

Thus the group 〈ψ2, ϕ2〉 has a presentation 〈ψ2, ϕ2|ψ12
2

= ϕ2
2
= Id, ϕ2ψ2 = ψ−1

2
ϕ2〉 ≃ D24.

If all the conditions as in Table 1 hold, then we have a Galois group of order 48 G = 〈ψ2, ϕ2〉×
〈− Id〉 ≃ D24 × Z/2Z. By [25, Chapter II, Theorem 2.3], the extension K5/K(ζ3) is abelian.
Thus, if condition A does not hold, then we have an abelian group. In all cases the group G
is isomorphic to a subgroup of D24 × Z/2Z as follows.

d = 48 If the degree d of the extension K5/K is 48, then all the conditions hold. We have
G ≃ D24 × Z/2Z as above.

d = 24 If the degree d of the extension K5/K is 24, then condition C holds.

If A does not hold, then we have an abelian group. In this case G = 〈ψ2,−Id〉 ≃
Z/12Z × Z/2Z.

If A, B1, B2 and C hold and D does not hold, then G = 〈ϕ2, ψ2〉 ≃ D24.

If A, C and D hold and one among the conditions B1 and B2 does not hold, then
G = 〈ϕ2, ψ2,− Id〉, where ψ now has order 6 and 〈ϕ2, ψ2〉 is isomorphic to D12. We have
G ≃ D12 × 〈Z/2Z〉.

d = 16 If the degree d of the extension K5/K is 16, then all the conditions hold but C.
Thus φ2 is the identity. We have an abelian extension and an abelian Galois group
G = 〈ϕ1, ϕ2,− Id〉 ≃ Z/4Z × (Z/2Z)2.

d = 12 If the degree d of the extension K5/K is 12, then condition C holds.

If A does not hold, then we have an abelian group G = 〈ψ2,− Id〉 ≃ Z/6Z × Z/2Z.

If A and C hold, D does not hold and only one condition among B1 and B2 hold, then
G = 〈ϕ2, ψ2〉 ≃ D12 (now ψ2 has order 6).

If A, C and D hold, then G ≃ D6 × Z/2Z ≃ S3 × Z/2Z, where S3 is the symmetric
group of order 6.

d = 8 If the degree d of the extension K5/K is 8, then C does not hold and we have again an
abelian extension.

If D does not hold, then G ≃ Z/4Z × Z/2Z.

If A does not hold, then G ≃ Z/4Z × Z/2Z.

If one among B1 and B2 does not holds, then G ≃ (Z/2Z)3.

d = 6 If the degree d of the extension K5/K is 6, then C holds.

If A holds as well, then G ≃ D6 ≃ S3.
If A does not hold, then G ≃ Z/6Z.

d = 4 If the degree d of the extension K5/K is 4, then C does holds. If both B1 and B2 hold,
then G ≃ Z/4Z, otherwise G is isomorphic to the Klein group Z/2Z× Z/2Z.

d 6 3 If the degree d of the extension K5/K is 3 or 2 or 1, clearly the Galois group is respec-
tively Z/3Z, Z/2Z or {Id}.
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8 Some applications

We are going to show some applications of the results achieved in the previous sections. In
particular we will show an application to the local-global divisibility problem, an immediate
application to modular curves and another one to Shimura curves.

8.1 A minimal bound for the local-global divisibility by 5

We recall the statement of the Local-Global Divisibility Problem and some key facts about
the cohomology group that gives the obstruction to its validity in order to maintain the paper
more self-contained. For further details one can see [11], [10] and [20].

Problem 8.1 (Dvornicich, Zannier, 2001). Let K be a number field, MK the set of the places
v of K and Kv the completion of K at v. Let G be a commutative algebraic group defined
over k. Fix a positive integer m and assume that there exists a K-rational point P in G, such
that P = mDv, for some Dv ∈ G(Kv), for all but finitely many v ∈ MK . Does there exist
D ∈ G(K) such that P = mD?

The classical question is considered for all commutative algebraic groups, but in our situation,
we can confine the discussion only to elliptic curves E over K. Let P ∈ E [m] and let D ∈ E(K̄)
be a m-divisor of P , i. e. P = mD. For every σ ∈ G = Gal(K5/K), we have

mσ(D) = σ(mD) = σ(P ) = P.

Thus σ(D) and D differ by a point in E [m] and we can construct a cocycle {Zσ}σ∈G of G with
values in E [m] by

Zσ := σ(D)−D. (2)

Such a cocycle vanishes in H1(G, E [m]), if and only if there exists a K-rational m-divisor of
P (see for example [11] or [10]). In particular, the hypotheses about the validity of the local-
dividibility in Problem 8.1 imply that the cocyle {Zσ}σ∈G vanishes inH1(Gal((Km)v/Kv), E [m]),
for all but finitely many v ∈MK . Let Gv denote the group Gal((Km)v/Kv) and let Σ be the
subset of MK containing all the v ∈ MK , that are unramified in Km. Then Gv is a cyclic
subgroup of G, for all v ∈ Σ. Moreover, in [11] Dvornicich and Zannier observe that by the
Chebotarev Density Theorem, the local Galois group Gv varies over all cyclic subgroups of G
as v varies in Σ. Thus, they state the following definition about a subgroup of H1(G, E [m])
which portrays the hypotheses of the problem in this cohomological context and essentially
gives the obstruction to the validity of such Hasse principle (see also [12]).

Definition 8.2. A cocycle {Zσ}σ∈G ∈ H1(G, E [m]) satisfies the local conditions if, for every
σ ∈ G, there exists Aσ ∈ E [m] such that Zσ = (σ − 1)Aσ . The subgroup of H1(G, E [m])
formed by all the cocycles satisfying the local conditions is the first local cohomology group
H1

loc
(G, E [m]).

Thus

H1

loc(G, E [m]) =
⋂

v∈Σ

(kerH1(G, E [m])
resv−−−−→ H1(Gv , E [m])). (3)

The triviality of H1

loc
(G, E [m]) assures the validity of the local-global divisibility by m in E

over K.
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Theorem 8.3 (Dvornicich, Zannier, 2001). If H1

loc
(G, E [m]) = 0, then the local-global divisi-

bility by m holds in E over k.

In [11] the authors showed that the local-global divisibility by 5 holds in E over k, for all
l > 1 (see also [27]). Anyway in that paper, as well as in all the other papers (of various
authors) about the topic, there is no information about the minimal number of places v for
which the validity of the local divisibility by a prime p in E over Kv is sufficient to have the
global divisibility by p in E over K.

For the first time, here we show such a lower bound for the number of places v when p = 5, in
the case of the curves belonging to the families F1 and F2.

By Theorem 8.3, the triviality of the first cohomology group H1

loc
(G, E [m]) is a sufficient

condition to have an affirmative answer to Problem 8.1. We have already recalled that by the
Tchebotarev Density Theorem, the group Gv varies over all the cyclic subgroups of G, as v
varies among all the places of K, that are unramified in Km. Observe that in fact we have

H1

loc(G, E [m]) =
⋂

v∈S

(kerH1(G, E [m])
resv−−−−→ H1(Gv , E [m])),

where S is a subset of Σ such that, for all v,w ∈ S, with v 6= w, the groups Gv and Gw
correspond to distinct cyclic subgroups of G. If we are able to find such an S and to prove that
the local-global divisibility by 5 holds in E(Kv), for all v ∈ S, then we get H1

loc
(G, E [m]) = 0

(and consequently the validity of the Hasse principle for disivibility by 5 in E over K). Observe
that in particular the set S is finite (on the contrary Σ is not finite). So it suffices to have the
local-global divisibility by 5 for a finite number of suitable places to get the global divisibility
by 5.

In view of the results achieved for the Galois groups Gal(K5/K) for elliptic curves of the
families F1 and F2, we can prove that S could be chosen as a subset of S with a cardinality
surprisingly small.

Theorem 8.4. Let m be a positive integer. Let E be an elliptic curves defined over a number
field K, with Weierstrass equation y2 = x2 + bx, for some b ∈ K. Let S be a subset of MK of
places v unramified in Km, with cardinality |S| = 7, such that Gv varies among all the cyclic
subgroups of G, as v varies in S. Let P ∈ E(K) such that P = mDv, for some Dv ∈ E(Kv),
for all v ∈ S. Then there exists D ∈ E(K) such that P = mD.

Proof. Let s be the number of distinct cyclic subgroups of G. Since the group Gv varies
over all the cyclic subgroups of G, as v varies in Mk, we can choose S as a subset of Mk with
cardinality s, such that Gv and Gw are pairwise distinct cyclic subgroups of G, for all v,w ∈ S,
v 6= w. We have just to show that s = 7. We have proved in Section 4, that for every E ∈ F1,
the Galois group G is isomorphic to a subgroup of D8 × Z/4Z. The group D8 has 5 cyclic
subgroups, namely 〈φ1〉 ≃ Z/4Z, 〈φ2

1
〉 ≃ Z/2Z, 〈ρ〉 ≃ Z/2Z, 〈φ1ρ〉 ≃ Z/2Z, 〈φ2

1
ρ〉 ≃ Z/2Z. In

addition we have the cyclic subgroups 〈ψ1〉 ≃ Z/4Z and 〈ψ2
1
〉 ≃ Z/2Z. Thus G has at most 7

cyclic subgroups and we get the conclusion.

Theorem 8.5. Let m be a positive integer. Let E be an elliptic curves defined over a number
field K, with Weierstrass equation y2 = x2 + c, for some c ∈ K. Let S be a subset of MK of
places v unramified in Km, with cardinality |S| = 13, such that Gv varies among all the cyclic
subgroups of G, as v varies in S. Let P ∈ E(K) such that P = mDv, for some Dv ∈ E(Kv),
for all v ∈ S. Then there exists D ∈ E(K) such that P = mD.
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Proof. Let s be the number of distinct cyclic subgroups of G. As in the proof of Theorem 8.4
we can choose S as a subset with cardinality s, such that Gv and Gw are pairwise distinct
cyclic subgroups of G, for all v,w ∈ S, with v 6= w. We have just to show that s = 13. We have
proved in Section 7, that for every E ∈ F2, the Galois group G is isomorphic to a subgroup
of D24 × Z/2Z. The group D24 has 11 cyclic subgroups, namely 〈ψ1〉 ≃ Z/12Z, 〈ψ2

1
〉 ≃ Z/6Z,

〈ψ3
1
〉 ≃ Z/4Z, 〈ψ4

1
〉 ≃ Z/3Z, 〈ψ6

1
〉 ≃ Z/2Z, 〈ϕ2〉 ≃ Z/2Z, 〈ψ1ϕ2〉 ≃ Z/12Z, 〈ψ2

1
ϕ2〉 ≃ Z/6Z,

〈ψ3
1
ϕ2〉 ≃ Z/4Z, 〈ψ4

1
ϕ2〉 ≃ Z/3Z, 〈ψ6

1
ϕ2〉 ≃ Z/2Z. In addition, we have the cyclic subgroups

〈− Id〉 ≃ Z/2Z and 〈ψ4
1
, 〉 × 〈− Id〉 ≃ Z/6Z. Thus G has at most 13 cyclic subgroups and we

get the conclusion.

8.2 Remarks on modular curves

We recall some basic definitions about modular curves; for further details one can see for
instance [13] and [23]. As usual, we denote by H = {z ∈ C : Imz > 0} the complex upper
half plane. It is well-known that the group SL2(Z) acts on H via the Möbius trasformations

(

a b
c d

)

z =
az + b

cz + d
.

For every positive integer N , the principal congruence group of level N is the set

Γ(N) =

{

A =

(

a b
c d

)

∈ SL2(Z) | A ≡
(

1 0
0 1

)

(mod N)

}

.

A congruence group is a subgroup Γ of SL2(Z) containing Γ(N), for some N . When N is
minimal, the congruence group is said to be of level N . For every N , the most important
congruence groups of level N are Γ(N) itself and the groups:

Γ1(N) =

{

A =

(

a b
c d

)

∈ SL2(Z) | A ≡
(

1 ∗
0 1

)

(mod N)

}

,

and

Γ0(N) =

{

A =

(

a b
c d

)

∈ SL2(Z) | A ≡
(

∗ ∗
0 ∗

)

(mod N)

}

.

The quotient H/Γ of H by the action of Γ, equipped with the analytic structure induced by
H, is a Riemann surface, that is denoted by YΓ. The modular curve XΓ , associated to Γ, is
the compactification of YΓ by the addition of a finite set of rational points corresponding to
the orbits of P1(Q) under Γ, i. e. the cusps.
The modular curves associated to the groups Γ0(N) and Γ1(N) are denoted respectively by
X0(N) and X1(N). The modular curve associated to Γ(N) is denoted by X(N).

The curves X(N), X1(N) and X0(N) are spaces of moduli of families of elliptic curves
with an extra structure of level N as follows (for further details see for example [13], [15] and
[23]).

Theorem 8.6. Let N be a positive integer and let X(N), X1(N) and X0(N) as above. Then

i) non cuspidal points in X(N) correspond to triples (E , P,Q), where E is an elliptic curve
(defined over C) and P , Q are points of order N generating E [N ];

ii) non cuspidal points in X1(N) correspond to pairs (E , P ), where E is an elliptic curve
(defined over C) and P is a point of order N ;
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iii) non cuspidal points in X0(N) correspond to couples (E , CN ), where E is an elliptic curve
(defined over C) and CN is a cyclic subgroup of E [N ] of order N .

A point on a modular curve, which corresponds to an elliptic curve with complex multiplication
is called a CM-point.

We can deduce the following facts from what showed in the previous sections (see in
particular Theorem 5.2 and Theorem 2.2).

Proposition 8.7. Let K be a number field. Let E1 ∈ F1 and let P ∈ E1[5] such that {P, φ1(P )}
is a basis of E1[5] (as above φ1 denotes the complex multiplication of E1). Then

the pair (E1, 〈P 〉) defines a non-cuspidal K-rational CM-point of X0(5),

if and only if (E1, P ) defines a non-cuspidal K-rational CM-point of X1(5),

if and only if (E1, P, φ1(P )) defines a K-rational CM-point of X(5).

Proposition 8.8. Let K be a number field. Let E2 ∈ F2 and let P ∈ E2[5] such that {P, φ12P )}
is a basis of E2[5] (as above φ2 denotes the complex multiplication of E2). Then

the pair (E2, 〈P 〉) defines a non-cuspidal K-rational CM-point of X0(5),

if and only if (E2, P ) defines a non-cuspidal K-rational CM-point of X2(5),

if and only if (E2, P, φ2(P )) defines a K-rational CM-point of X(5).

8.3 Remarks on Shimura curves

We are going to describe two curves, the Shimura curves named X0(N) and X1(N), which
are generalizations of the modular curves X0(N) and X1(N), i. e. they are moduli spaces of
certain abelian varieties of dimension 2, with some N -level structures.

We firstly recall that a central K-algebra is an algebra over K with center K. Furthermore
a simple K-algebra is an algebra over K with nontrivial two-sided ideals. A division K-algebra
is an algebra A over the field K, in which for every a1, a2 ∈ A, with a2 6= 0, there exists b ∈ A

such that a1 = a2b.

Definition 8.9. A quaternion algebra over K is a central simple algebra over K of dimension
4.

By Wedderburn’s Theorem (see [26]), every central simple K-algebra is a matrix algebra over
a central division K-algebra. The division central K-algebra are classified by the Brauer group
Br(K) = H2(Gal(K̄/K), K̄).

One of the simplest example of a quaternion K-algebra is the set M2(K) of 2 × 2 matrices
with entries in K. The quaternion algebra B = M2(Q) over Q is important in the definition
of Shimura curves.

Definition 8.10. Let R be the ring of integers of K. An order of a quaternion K-algebra A

is a R-lattice, which is also a subring. A maximal order of a quaternion K-algebra A is an
order that is not contained in any other order, i. e. it is a R-lattice of rank 4, which is also a
subring. An Eichler order is given by the intersection of two maximal orders.

14



For example, the set M2(R) of 2× 2 matrices with entries in R is a maximal order of M2(K).
In particular M2(Z) is a maximal order of M2(Q). Let N be a positive integer. Observe that
the subgroup O′

N of M2(Q), formed by the matrices

(

a Nb
N−1c d

)

is conjugate to M2(Z) by

(

N 0
0 1

)

.

Thus O′
N is a maximal order too and ON := M2(Z) ∩ O′

N is an Eichler order. We have that
ON is the subset of M2(Z), formed by the matrices of the form

(

a b
Nc d

)

.

Observe that ON is an analogous in M2(Z) of Γ0(N) in SL2(Z) in the case of modular curves.

Definition 8.11. For every order O, we denote by O1 the subset of its, formed by the elements
of norm 1.

Definition 8.12. The quotient X (O) := H/O1 is called a Shimura curve. In particular we
denote by X (1) the Shimura curve obtained by the order O =M2(Z) of B.

In the literature, the curve X (1) is also denoted by MB or simply by M. It turns out that
the Shimura curves are connected and compact. So we do not need to add cusps as in the
case of modular curves. Indeed, we have such a moduli interpretation of the curve X (1) (see
for example [8] and see also [23]).

Theorem 8.13. The curve X (1) is the moduli space of the couples (A, ι), where A is an
abelian surface principally polarized such that either A is simple or A = E × E, where E is a
CM elliptic curve defined over K, and ι : O → End(A) is an embedding.

When an abelian surface A admits an embedding ι : O → End(A), one says that A has a
quaternion multiplication or that A is a QM -abelian surface. Sometimes A is also said a
O−QM -abelian surface, to underline that the quaternion multiplication is given by the order
O.

By Theorem 8.13, it is clear the strong relation between CM elliptic curves and Shimura
curves. The points on Shimura curves parametrizing squares of CM elliptic curves are often
called CM points.

For a positive integer N , the Shimura curve X (ON ) := H/O1

N is similar to the Shimura
curve X (1), but with an extra structure of level N . Because of the connection between ON
and Γ0(N), the curve X (ON ) is often denoted by X0(N) (and sometimes by MB

0
(N), as for

instance in [2]). We recall the moduli interpretation for X0(N) (see again [8] and also [23]).
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Theorem 8.14. Let O =M2(Z). The curve X0(N) is the moduli space of the triples (A, ι,W ),
where A is a QM -abelian surface principally polarized such that either A is simple or A = E×E,
where E is a CM elliptic curve defined over K, the quaternionic multiplication is given by
ι : O → End(A) and W ∈ A[N ] is a cyclic O-submodule of order N2, which is isomorphic to
(Z/NZ)2 as an abelian group.

In a similar way as for ON , one can take the Eichler order

O1,N :=

{

A =

(

a b
c d

)

∈M2(Z) | A ≡
(

1 ∗
0 1

)

(mod N)

}

,

which is an analogous of Γ1(N). In this case we get the Shimura curve X (O1,N ), that is
denoted by X1(N) (and sometimes by MB

1
(N)). Let e1, e2 denote two standard idempotents

for M2(Z/NZ). The moduli interpretation for X1(N) is the following (see [8] and see also
[23]).

Theorem 8.15. Let O = M2(Z). The curve X1(N) is the moduli space of the 4-tuples
(A, ι,W,P ), where A is a QM -abelian surface principally polarized such that either A is simple
or A = E × E, where E is a CM elliptic curve defined over K, the quaternionic multiplication
is given by ι : O → End(A), W ∈ A[N ] is a stable O-module and P = e1W is a point of order
N .

Observe that if (A, ι,W,P ) corresponds to a CM point of X1(N), then A = E × E (for some
CM elliptic curve) and W = P ×Q ∈ E2[N ], with P = e1W ∈ E [N ] and Q ∈ E [N ].

For some Shimura varieties and certain fields F it is known that the set of F -rational points
is empty (see for instance [21] and [9]). For j ∈ {0, 1}, let Xj(5)(K) denote the sets of the
K-rational points of the Shimura curve Xj(5). Let θ1 as in Section 2 and δ1 as in Section 5.
We have that the sets X0(5)(K) and X1(5)(K) are nonempty whenever K = K5 is one of the
fields Q(ζ5, i,

√

(θ1 + 1)b
√
θ1b) and Q( 3

√
δ1c, ζ3,

√

(δ1 + 1)c).

More precisely, by the results achieved about the fields K5 for elliptic curves of the families F1

and F2, we can make the following remarks about the points of the curves X0(5) and X1(5).

Proposition 8.16. Let K be a number field, let E1 ∈ F1 and let P1 =
(√

θ1b,±
√

(θ1 + 1)b
√
θ1b

)

.

In particular (P1, φ1(P1)) ∈ E1 × E1. Let O =M2(Z) and let ι : O → End(E1 × E1). Then

i) the triple (E1 × E1, ι, (P1, φ1(P1)) corresponds to a CM-point of X0(5);

ii) the 4-tuple (E1 × E1, ι, (P1, φ1(P1)), P1) corresponds to a CM-point of X1(5).

Proposition 8.17. Let K be a number field, let E2 ∈ F2 and let P1 =
(

3
√
δ1c,±

√

(δ1 + 1)c
)

.

In particular (P1, φ2(P1)) ∈ EndE2 × E2. Let O =M2(Z) and let ι : O → End(E2 × E2). Then

i) the triple (E2 × E2, ι, (P1, φ1(P1)) corresponds to a CM-point of X0(5);

ii) the 4-tuple (E1 × E1, ι, (P1, φ1(P1)), P1) corresponds to a CM-point of X1(5).
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