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Abstract

Analytical calculations of radiative corrections in strong-field QED have hinted that in the pres-

ence of an intense plane wave the effective coupling of the theory in the high-energy sector may

increase as the (2/3)-power of the energy scale. These findings have raised the question of their com-

patibility with the corresponding logarithmic increase of radiative corrections in QED in vacuum.

However, all these analytical results in strong-field QED have been obtained within the limiting

case of a background constant crossed field. Starting from the polarization operator and the mass

operator in a general plane wave, we show that the constant-crossed-field limit and the high-energy

limit do not commute with each other and identify the physical parameter discriminating between

the two alternative limits orders. As a result, we find that the power-law scaling at asymptotically

large energy scales pertains strictly speaking only to the case of a constant crossed background

field, whereas high-energy radiative corrections in a general plane wave depend logarithmically on

the energy scale as in vacuum. However, we also confirm the possibility of testing the “power-law”

regime experimentally by means of realistic setups involving, e.g., high-power lasers or high-density

electron-positron bunches.
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I. INTRODUCTION

The predictions of QED agree with experiments with astonishing accuracy (see, e.g., Refs.

[1, 2]). The question as whether QED can be considered a truly fundamental theory, however,

relates to its behavior at asymptotic high energies. Now, the QED coupling α = e2/~c,

with e < 0 being the electron charge and in units where 4πε0 = 1, is about 1/137 at

ordinary energies of the order of, say, the electron rest energy mc2 = 0.511 MeV. At higher

and higher energies, the coupling α increases and features a pole, called Landau pole, at

ΛQED ∼ mc2 exp(3π/2α) ∼ 10277 GeV [3–6]. The existence of the Landau pole has profound

theoretical implications and, strictly speaking, prevents one from considering QED as a

fundamental theory. From a more pragmatic perspective, however, it is clear that, because

of its extremely large value, the existence of the Landau pole does not represent a real

limitation on the applicability of QED. Moreover, numerous experimental evidences have

already called for embedding QED into a more general theory, the Standard Model, at much

lower energies than ΛQED. The exceedingly large value of ΛQED is intimately related to the

fact that radiative corrections in QED increase logarithmically for increasing energies [3–6].

The great success of QED has been motivating to test the theory under more extreme

conditions as, e.g., those provided by intense background electromagnetic fields. The typical

electromagnetic field scale of QED is set by the so-called “critical” field of QED: Fcr =

m2/|e| = 1.3× 1016 V/cm = 4.4× 1013 G (from now on units with ~ = c = 1 are employed)

[5, 7, 8]. The vacuum becomes unstable in the presence of an electric field of the order of Fcr

and the interaction energy of the electron magnetic moment with a magnetic field of the order

of Fcr is comparable with the electron rest energy (note that the electric field experienced

by the bound electron in the experiment reported in Ref. [2] was about 10−3Fcr). Generally

speaking, the presence of intense background electromagnetic fields allows for testing QED

on a sector where nonlinear effects with respect to the background field strongly affect

physical processes and the dynamics of charged particles.

High-power optical laser facilities are a prospective tool to test QED at critical field

strengths, which correspond to laser intensities of the order of 1029 W/cm2. In fact, al-

though available lasers have reached peak intensities I0 of the order of 1022 W/cm2 [9] and

upcoming facilities aim at I0 ∼ 1023-1024 W/cm2 [10–12], the Lorentz invariance of QED im-

plies that the effective laser field strength at which a process occurs is the one experienced by
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the charged particles in their rest frame [13–18]. More quantitatively, if F µν
0 = (E0,B0) de-

notes a measure of the amplitude of the laser electromagnetic field and if a quantum process

is initiated by an electron/positron (photon) with four-momentum pµ = (ε,p) (kµ = (ω,k)),

the effective field strength in units of Fcr is provided by the gauge- and Lorentz-invariant

quantum nonlinearity parameter χ0 =
√
|(F0,µνpν)2|/mFcr (κ0 =

√
|(F0,µνkν)2|/mFcr) [13–

18]. Thus, the strong-field QED regime (χ0, κ0 & 1) can be entered already at intensities

of the order of 1023 W/cm2, if the laser field counterpropagates with respect to an elec-

tron/positron (photon) of energy of the order of 500 MeV.

Now, electron beams with energies of the order of 50 GeV have been already produced

[19, 20] and one can even imagine to enter a regime of unprecedented field strengths where

χ0, κ0 � 1 (see Refs. [21–23] for recent proposals to enter this regime via laser-electron

interaction [21, 22] and via beamstrahlung [23]). The regime χ0, κ0 � 1 is theoretically

extremely interesting especially due to the so-called “Ritus-Narozhny (RN) conjecture” [24–

27] about the high-energy behavior of radiative corrections in strong-field QED in a constant

crossed field (CCF) (see also Ref. [28] and the reviews in Refs. [29, 30]). We recall that

a CCF is a constant and uniform electromagnetic field (E0,B0) such that the two field

Lorentz-invariants E2
0 −B2

0 and E0 ·B0 vanish. The RN conjecture states that at χ0 � 1

(κ0 � 1) the effective coupling of QED in a CCF scales as αχ
2/3
0 (ακ

2/3
0 ). Since, apart

from irrelevant prefactors, the energy of the incoming particle enters radiative corrections

only through χ0 (κ0) at χ0 � 1 (κ0 � 1), the RN conjecture implies an asymptotic high-

energy behavior of strong-field QED in a CCF qualitatively different from that of QED in

vacuum. The physical relevance of the RN conjecture is broadened by the so-called local

constant field limit, stating that in the limit of low-frequency plane waves the probabilities

of QED processes reduce to the corresponding probabilities in a CCF averaged over the

phase-dependent plane-wave profile [14].

The aim of the present work is to show that the high-energy limit and the low-frequency

limit do not commute with each other and that consequently the power-law scaling of the

effective coupling constant at asymptotically large energy scales strictly speaking pertains

only to the CCF background field. Instead, in the case of a general plane wave the asymptotic

scaling of radiative corrections at high energies is shown to be logarithmic as in vacuum. It is

worth emphasizing here that, being an approximation, it is not surprising that under certain

circumstances the local constant field limit may give even qualitatively different results from
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FIG. 1. The one-loop polarization operator in an intense plane wave. The double lines represent

exact electron propagators in a plane wave (Volkov propagators) [5].

FIG. 2. The one-loop mass operator in an intense plane wave. The double lines represent exact

electron states and propagator in a plane wave (Volkov states and propagator, respectively) [5].

the exact theory in a plane-wave field. Indeed, we recall that the basic assumption behind

the local constant field approach is that the quantum process at hand is formed on a length

which is much smaller than the typical laser wavelength [14]. The analysis below shows

that in the high-energy limit this assumption is violated and that radiative corrections are

formed over much longer regions.

Our investigation starts from the one-loop polarization operator (see Fig. 1) and mass

operator (see Fig. 2) in a general plane wave.

The one-loop polarization operator in a general plane-wave background field has been

first evaluated in Refs. [31, 32]. However, it turned out to be technically more convenient

here to employ an equivalent expression of the polarization operator found more recently in

Ref. [33]. The corresponding expression of the mass operator has been found in Ref. [34].

In all these works the external plane-wave field has been taken into account exactly in the

calculations by employing the Furry picture [35], i.e., by quantizing the electron-positron

field starting from the Dirac Lagrangian in the presence of the background plane-wave field.

This is indicated in the diagrams in Figs. 1 and 2 by representing the electron states
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in the plane wave (Volkov states) and the electron propagator in the plane wave (Volkov

propagator) by means of double lines.

The paper is organized as follows. First, we investigate the polarization operator (Sec. II)

and then we pass to the technically more complicated case of the mass operator (Sec. III).

In order to make the presentation less abstract, the results are presented in the special case

of a single-cycled laser pulse. This gives one also the possibility of introducing the analytical

techniques and of understanding their region of applicability in a concrete case. Then, the

results are generalized to the case of an arbitrary finite pulse in Sec. IV. The conclusions of

the paper are presented in Sec. V.

After this paper was submitted, related calculations on the probability of single photon

emission and of photon helicity flip in a general plane wave, which are related to the imag-

inary part of the mass operator and of the polarization operator, respectively, appeared in

Ref. [36], whose conclusions are in agreement with ours.

II. HIGH-ENERGY ASYMPTOTIC OF THE ONE-LOOP POLARIZATION OP-

ERATOR IN A PLANE WAVE

As we have mentioned in the Introduction, we start here from the general expression of the

polarization operator in an arbitrary plane wave found in Ref. [33]. In order to emphasize the

difference between the CCF case and the plane-wave case, we choose here the most similar

conditions to the CCF case, i.e., a linearly-polarized plane wave and, in agreement to the

available results in a CCF [24–27], an on-shell incoming photon whose four-momentum kµ1

(k2
1 = 0) coincides with that kµ2 of the outgoing photon, i.e., kµ1 = kµ2 = kµ. The plane wave

propagates along a given direction n, such that kµ0 = (ω0,k0) = ω0(1,n) is the typical (on-

shell, k2
0 = 0) laser four-momentum, with ω0 being the central laser angular frequency (more

generally, this quantity can be interpreted as the inverse of a typical time scale characterizing

the plane wave). The direction n identifies a plane perpendicular to it, where we introduce

two unit vectors e and b perpendicular to each other and to n. By correspondingly defining

the two four-vectors eµe = (0, e) and eµb = (0, b), it is always possible to write the laser four-

potential Aµ0(ϕ) = (0,A0(ϕ)) in the form Aµ0(ϕ) = A0e
µ
eψ(ϕ), where the constant A0 > 0

relates to the amplitude F µν
0 of the plane wave as F µν

0 = A0(kµ0 e
ν
e − kν0eµe ), where the well-

behaved function ψ(ϕ) of the phase ϕ = (k0x) is arbitrary except that it vanishes sufficiently
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fast for ϕ→ ±∞. More precise conditions on the pulse-shape functions will be given below.

We only mention that we will not consider the idealized case of a monochromatic (infinitely

long) plane-wave field apart that briefly at the end of Sec. IV.A.

In the case under consideration the vacuum part of the polarization operator vanishes

after renormalization [5]. The field-dependent part of the polarization operator, instead, can

be written in momentum space as

P µν
f (k1, k2) = (2π)3δ2(k1,⊥ − k2,⊥)δ((k0k1)− (k0k2))

∑
l=e,b

Pl(k)Λµ
l (k)Λν

l (k), (1)

where we have extracted the usual light-cone delta-functions enforcing the conservation of

three components of the four-momenta for a process occurring in a plane wave depending

on ϕ = (k0x) and where Λµ
l (k) = (kµ0 e

ν
l − kν0e

µ
l )kν/(k0k) [32, 33]. Note that an additional

contribution to the polarization tensor P µν
f (k1, k2) has been ignored because in the case of

on-shell incoming and outgoing photons (k2
1 = k2

2 = 0) it turns out to be proportional to

kµ1k
ν
2 and, due to gauge invariance, would not contribute to any physical amplitude [33].

The scalar coefficients Pl(k) can be written in the form [32, 33]

Pe(k) =− α

2π
m2

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

∫ ∞
1

dρ

ρ3/2

1√
ρ− 1

〈
2ξ2

0 [X(ϕ, τ) + ρZ(ϕ, τ)]e
−i 4τρ

θ0
[1+ξ20Q

2(ϕ,τ)]

−i θ0

4τρ

{
e
−i 4τρ

θ0
[1+ξ20Q

2(ϕ,τ)] − e−i
4τρ
θ0

}〉
,

(2)

Pb(k) =− α

2π
m2

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

∫ ∞
1

dρ

ρ3/2

1√
ρ− 1

〈
2ξ2

0ρZ(ϕ, τ)e
−i 4τρ

θ0
[1+ξ20Q

2(ϕ,τ)]

−i θ0

4τρ

{
e
−i 4τρ

θ0
[1+ξ20Q

2(ϕ,τ)] − e−i
4τρ
θ0

}〉
,

(3)

where θ0 = (k0k)/m2 = (k0 + k)2/2m2 ≥ 0 is twice the square of the total energy of the

incoming photon and of a laser photon in their center-of-momentum system in units of m2,

where ξ0 = |e|A0/m is the classical nonlinearity parameter [14, 17], and where

X(ϕ, τ) =

[
1

2τ

∫ τ

−τ
dτ ′ψ(ϕ− τ ′)− ψ(ϕ− τ)

] [
1

2τ

∫ τ

−τ
dτ ′ψ(ϕ− τ ′)− ψ(ϕ+ τ)

]
, (4)

Z(ϕ, τ) =
1

2
[ψ(ϕ+ τ)− ψ(ϕ− τ)]2 , (5)

Q2(ϕ, τ) =
1

2τ

∫ τ

−τ
dτ ′ψ2(ϕ− τ ′)− 1

4τ 2

[∫ τ

−τ
dτ ′ψ(ϕ− τ ′)

]2

. (6)

It is worth observing at this point that the structure of the coefficient corresponding to the

additional term in the polarization operator mentioned above and to the others arising from
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considering a more general laser polarization is similar to those in Eqs. (2) and (3), and

their inclusion would not change the conclusions below.

The introduction of the two important gauge- and Lorentz-invariant parameters θ0 and

ξ0 (note that κ0 = θ0ξ0) allows us to quantitatively define the low-frequency or CCF limit

and the high-energy limit, and to ascertain, in particular, their commutativity.

We first consider the low-frequency/CCF limit, which physically has to correspond to

keeping the laser field amplitude and the external photon energy fixed and finite. This is

realized in a Lorentz invariant way via the double limit ξ0 → ∞ and θ0 → 0 such that

κ0 = θ0ξ0, remains fixed and finite. As it has been shown in Ref. [33], the expressions in

Eqs. (2) and (3), indeed reduce to the integrals over ϕ of the corresponding coefficients of the

polarization operator in a CCF [37], with the local expression of the quantum nonlinearity

parameter being given by κ(ϕ) = κ0|ψ′(ϕ)| (here and below, a primed function indicates

the derivative with respect to its argument). In fact, in the limit ξ0 → ∞ and κ0 constant

the phases in the coefficients Pe(k) and Pb(k) become very large and the main contribution

to the integral in τ comes from the region τ ∼ 1/ξ0 � 1 close to the origin. This allows

one to appropriately expand the functions X(ϕ, τ), Z(ϕ, τ), and Q2(ϕ, τ) for small values

of τ . The resulting integral in τ can be represented in terms of Airy and Scorer functions

Ai(·) and Gi(·) [38] and the coefficients Pe(k) and Pb(k) become (see the original Ref. [39]

although the expressions below are taken from Ref. [33]):

Pe,CCF(k) =− α

3π
m2

∫ ∞
−∞

dϕ

∫ ∞
1

dρ

ρ3/2

4ρ− 1√
ρ− 1

g

(
4ρ

κ(ϕ)

)
, (7)

Pb,CCF(k) =− α

3π
m2

∫ ∞
−∞

dϕ

∫ ∞
1

dρ

ρ3/2

4ρ+ 2√
ρ− 1

g

(
4ρ

κ(ϕ)

)
, (8)

where g(z) = z−2/3df(z)/dz and (see, e.g. Ref. [38])

f(z) = i

∫ ∞
0

dt e−i(tz+t
3/3) = π[Gi(z) + iAi(z)]. (9)

If one then performs the limit κ0 → ∞ in Eqs. (7) and (8), by exploiting the asymptotic

properties of the function g(·), one finds indeed that both Pe,CCF(k) and Pb,CCF(k) scale as∫
dϕκ2/3(ϕ). Now, as mentioned, the above procedure works if the phases in the integrands

of the coefficients Pe(k) and Pb(k) become very large and this requires that the parameter

r0 = ξ2
0/θ0 is much larger than unity [see Eqs. (2) and (3)]. In other words, under the CCF

limit of the polarization operator one implicitly assumes that r0 � 1. A similar observation
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has been already made in Ref. [40] in the case of photon splitting in a plane wave and in

Refs. [41, 42] in the case of nonlinear Compton scattering (in this latter case the validity

condition of the CCF needs to be modified at low light-cone energies of the emitted photon

[43]).

We now turn to the high-energy limit, which physically has to correspond to an incoming

photon with higher and higher energy colliding with a laser field with given properties. This

limit is realized in a Lorentz invariant way via the double limit θ0 → ∞ and κ0 → ∞

such that the invariant field amplitude ξ0 = κ0/θ0 remains fixed and finite. This situation

is quite complementary to the CCF limit because now the phases in the integrands of the

coefficients Pe(k) and Pb(k) tend to become much smaller than unity, with the result that

the integral in τ receives a substantial contribution also for large values of τ . This remark

and an inspection at the phases in Eqs. (2) and (3) imply that, unlike in the CCF limit, the

parameter r0 is much smaller than unity in the high-energy limit. Below, we will show that

correspondingly the asymptotic behavior of the coefficients Pe(k) and Pb(k) is completely

different from that within the CCF limit at κ0 →∞.

The above analysis shows that the quantity r0 = ξ2
0/θ0 is precisely the parameter dis-

criminating between the CCF limit (r0 � 1) and the high-energy limit (r0 � 1), which also

clarifies why the two limits do not commute. Furthermore, this implies that from a physical

point of view it would be more appropriate to identify the limit κ0 → ∞ within the CCF

limit as the “high-field limit”, as it can be realized asymptotically for higher and higher

laser field strengths.

We pass now to analyze explicitly the asymptotic form of the coefficients Pe(k) and Pb(k)

in the high-energy limit θ0 → ∞ at fixed ξ0. From Eqs. (2) and (3) it is clear that it is

sufficient to consider the coefficient Pe(k). We first observe that all integrals in ρ can be

taken analytically because they have the form

In =

∫ ∞
1

dρ

ρ3/2−n
e−iaρ√
ρ− 1

, (10)

with n = −1, 0,+1 and Im[a] < 0 (recall that the prescription m2 → m2 − i0 is always
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understood [33]). The results are [44]

I−1(a) =
√
iπae−ia/2W−1,1(ia), (11)

I0(a) =
√
πe−ia/2W−1/2,1/2(ia), (12)

I1(a) =e−ia/2K0

(
ia

2

)
, (13)

where Wp,q(·) is the Whittaker function and Kp(·) is the modified Bessel function [38]. In our

case, it is either a = a0(τ) = 4τ/θ0 or a = a0(τ) +af (ϕ, τ), with af (ϕ, τ) = 4τξ2
0Q

2(ϕ, τ)/θ0:

Pe(k) = −αm
2

2π

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

{
2ξ2

0 [X(ϕ, τ)

× I0(a0(τ) + af (ϕ, τ)) + Z(ϕ, τ)I1(a0(τ) + af (ϕ, τ))]

−i θ0

4τ
[I−1(a0(τ) + af (ϕ, τ))− I−1(a0(τ))]

}
.

(14)

In order to be able to take the integral in ϕ explicitly, the pulse-shape function ψ(ϕ) has to

be assigned. Since we would like to consider the more realistic case of a pulsed field than

a monochromatic plane wave, for the sake of definiteness we choose the one-cycle, pulsed

function ψ(ϕ) = − sinh(ϕ)/ cosh2(ϕ) [45]. This is a very convenient prototype of finite pulses

because a single function encodes both the oscillation and the damping at ϕ→ ±∞ of the

field and the case of a general pulsed field will be considered in Sec. IV. In this way, all the

resulting integrals in the functions X(ϕ, τ), Z(ϕ, τ), and Q2(ϕ, τ) can be taken analytically

and, for the sake of convenience, we report their expressions:

IX(τ) =

∫ ∞
−∞

dϕX(ϕ, τ) =
1

τ 2
− 2τ

3 + cosh(4τ)

sinh3(2τ)
, (15)

IZ(τ) =

∫ ∞
−∞

dϕZ(ϕ, τ) =
2

3
+
τ coth(τ)− 1

sinh2(τ)
+
τ tanh(τ)− 1

cosh2(τ)
, (16)

IQ2(τ) =

∫ ∞
−∞

dϕQ2(ϕ, τ) =
2

3
− 1

τ 2
+

2

τ

1

sinh(2τ)
. (17)

In particular, the function af (ϕ, τ) for a finite pulse, i.e., such that the pulse-shape function

ψ(ϕ) is square-integrable (see also Sec. IV), is bound for all values of τ [see also Eq.

(6)]. This suggests that in the high-energy limit θ0 → ∞, one can expand the functions

In(a0(τ) + af (ϕ, τ)) for small af (ϕ, τ). It is interesting to notice, as we have also hinted

above, that, since the nonlinear dependence of the coefficient(s) Pe(k) (and Pb(k)) on ξ2
0

only arises through the function af (ϕ, τ), which is proportional to ξ2
0 , the high-energy limit

θ0 → ∞ ultimately corresponds to the perturbative limit ξ0 → 0. As we will see below,
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however, nonlinear effects in ξ2
0 are only logarithmically suppressed as compared to the terms

proportional to ξ2
0 . In fact, it is instructive to first consider the leading contribution in this

expansion, i.e., to replace I1(a0(τ) + af (ϕ, τ)) ≈ I1(a0(τ)), I0(a0(τ) + af (ϕ, τ)) ≈ I0(a0(τ))

and I−1(a0(τ) + af (ϕ, τ))− I−1(a0(τ)) ≈ I ′−1(a0(τ))af (ϕ, τ) in Eq. (14). As we have already

hinted above, all the integrals in ϕ can be taken analytically and we obtain

Pe(k) =− αm2ξ2
0

π

∫ ∞
0

dτ

τ
e−2iτ/θ0

{
K0

(
2iτ

θ0

)
IZ(τ)

+
√
πW−1/2,1/2

(
4iτ

θ0

)[
IX(τ)− 1

2
IQ2(τ)

]}
,

(18)

which, being proportional to ξ2
0 , coincides with the leading-order expression of the perturba-

tive limit ξ0 → 0. Now, we evaluate the above integral in τ in the asymptotic limit θ0 →∞.

It is clear that we can divide the computation into three integrals that, according to the

notation above, we will denote as IX , IZ , IQ2 :

IX =
√
π

∫ ∞
0

dτ

τ
e−2iτ/θ0W−1/2,1/2

(
4iτ

θ0

)
IX(τ), (19)

IZ =

∫ ∞
0

dτ

τ
e−2iτ/θ0K0

(
2iτ

θ0

)
IZ(τ), (20)

IQ2 =

∫ ∞
0

dτ

τ
e−2iτ/θ0W−1/2,1/2

(
4iτ

θ0

)
IQ2(τ). (21)

The simplest integral to evaluate is IX because it converges also in the limit θ0 → ∞ and

its asymptotic value is IX ≈ −2/3. The asymptotic values of the integrals IZ and IQ2

can be obtained by employing the standard technique of dividing the integration region into

two regions by means of a fixed τ0 such that 1� τ0 � θ0 [46]. In this way, in the integrals

from 0 to τ0, the functions of τ/θ0 in the integrands can be approximated for small values

of τ/θ0. Analogously, in the integrals from τ0 to ∞, the functions IZ(τ) and IQ2(τ) can be

approximated for large values of τ . The results are

IZ =
1

3
log2(θ0)−

(
2

3
γ + i

π

3
+ CZ,1

)
log(θ0) +

1

3

(
γ2 + iπγ − 5

12
π2 − log2 2

)
+
(
γ + i

π

2

)
CZ,1 +

1

2
CZ,2 +

2

3
CK ,

(22)

IQ2 =
4

3
√
π

[
log(θ0)− 2− γ − iπ

2

]
− 2√

π
CQ2,1, (23)
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where γ = 0.577 . . . is the Euler constant and where

CZ,1 =

∫ ∞
0

dτ log(τ)I ′Z(τ) ≈ −0.781 . . . , (24)

CZ,2 =

∫ ∞
0

dτ log2(τ)I ′Z(τ) ≈ 0.579 . . . , (25)

CK =

∫ ∞
0

dτ

τ
e−τ

[
K0(τ) + γ + log

(τ
2

)]
≈ 0.240 . . . , (26)

CQ2,1 =

∫ ∞
0

dτ log(τ)I ′Q2(τ) ≈ 0.218 . . . . (27)

At this point the last task is to verify whether the higher-order terms in the expansion of

the functions In(a0(τ) + af (ϕ, τ)) for small af (ϕ, τ) provide subleading order contributions

in θ0. In fact, we show explicitly that this is not the case for the function I1(a0(τ)+af (ϕ, τ)).

If we expand the function I1(a0(τ) + af (ϕ, τ)) we have that the series ĨZ of higher-order

terms can be written as

ĨZ =

∫ ∞
0

dτ

τ

∞∑
n=1

ξ2n
0

n!

(
4τ

θ0

)n
dnI1(a)

dan

∣∣∣∣
a=4τ/θ0

IZ,n(τ), (28)

where

IZ,n(τ) =

∫ ∞
−∞

dϕZ(ϕ, τ)Q2n(ϕ, τ). (29)

The functions IZ,n(τ) contain neither parameters nor large numerical coefficients and tend

to zero both for τ → 0 and for τ → ∞. As a result, they are different from zero only for

τ . 1, which can be also easily ascertained numerically. Thus, in the limit θ0 → ∞ the

remaining function of 4τ/θ0 can be expanded for small values of this quantity. Since it is

dnI1(a)/dan ∼ (−1)n(n− 1)!/an for a� 1 and n ≥ 1 [see Eq. (13) and Ref. [38]], we obtain

that the contribution of ĨZ is independent of θ0 and equal to

ĨZ ≡ ĨZ(ξ0) = −
∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ
Z(ϕ, τ) log[1 + ξ2

0Q
2(ϕ, τ)]. (30)

Note that the definition of Q2(ϕ, τ) in Eq. (6) implies that Q2(ϕ, τ) ≥ 0. A similar analysis

shows that the higher-order terms arising from the expansion of the functions I−1,0(a0(τ) +

af (ϕ, τ)) for small af (ϕ, τ) are indeed subleading in θ0. Thus, we obtain

Pe(k) =− αm2ξ2
0

3π

[
log2(θ0)− (2γ + iπ + 2 + 3CZ,1) log(θ0) + γ2 + iπγ − 5

12
π2 − log2 2 + 2

+3ĨZ(ξ0) +
(
γ + i

π

2

)
(3CZ,1 + 2) +

3

2
CZ,2 + 2CK + 3CQ2,1

]
,

(31)

Pb(k) =Pe(k)− 2αm2ξ2
0

3π
. (32)
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These expressions let us to conclude that the polarization operator features a leading double-

logarithmic behavior in the high-energy limit. Also, the dependence on the classical non-

linearity parameter is quadratic except that for the function ĨZ(ξ0), which depends on the

logarithm of the ratio between the local value of the square of the electron laser-dressed

mass and m2 [see Eqs. (30) and (6)], and contributes to the constant term in the asymp-

totics. On the one hand, this is certainly different from the corresponding vacuum case,

as the polarization operator vanishes for an on-shell photon and depends only logarith-

mically on the quantity |k2|/m2 for an off-shell photon with k2 6= 0 [5]. However, other

radiative corrections in vacuum like those corresponding to the vertex corrections show a

double-logarithmic dependence on |k2|/m2 [5]. More closely to our result, the amplitudes of

photon-photon scattering show a double-logarithmic dependence on the Mandelstam vari-

able s [5], which corresponds to 2θ0m
2 in our notation [see also the remark below Eq. (3)].

On the other hand, we confirm that this logarithmic dependence on the energy scale is

qualitatively different from the power-law dependence obtained in the CCF case in the limit

κ0 →∞. Since for sufficiently large values of θ0, the parameter r0 = ξ2
0/θ0 introduced above

will be at a certain point smaller than unity, we can conclude that the polarization operator

in a plane wave features a logarithmic behavior in the high-energy limit.

As a byproduct of the above analysis, we can determine the expression of the total

probability PBW (k) of nonlinear Breit-Wheeler pair production [16, 47–61] in the same

high-energy limit and for an unpolarized incoming photon, by applying the optical theorem

[5, 33]:

PBW =
1

m2θ0

Im

[
Pe(k) + Pb(k)

2

]
=
α

3

ξ2
0

θ0

[
log(θ0)− γ − 1− 3

2
CZ,1

]
. (33)

We have explicitly verified that the same expression can be obtained starting from the

probability of nonlinear Breit-Wheeler pair production as given, e.g., in Ref. [61]. It is

interesting to note that the dominating double logarithm appears only in the real part of

the polarization operator. Instead, in the CCF limit one finds that both the real and the

imaginary part of the polarization operator scale as κ
2/3
0 in the limit κ0 →∞.

Finally, we note that for any foreseeable laser intensity, in this limit the probability PBW

is much smaller than unity as it is proportional to the small parameter αr0 � 1 (assuming,

of course, that at the energies under considerations α is much smaller than unity and that

the logarithm does not compensate for the smallness of the quantity αr0).
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III. HIGH-ENERGY ASYMPTOTIC OF THE ONE-LOOP MASS OPERATOR IN

A PLANE WAVE

The analysis of the asymptotic behavior of the leading-order mass operator in a plane

wave (see Fig. 2) proceeds analogously as for the polarization operator. It is only technically

more involved.

The starting point is the general expression of the leading-order mass operator found

in Ref. [34]. However, analogously as in the previous section, we directly consider the

“diagonal” part of the mass operator for incoming and outgoing electrons having the same

on-shell four-momentum pµ1 = pµ2 = pµ = (ε,p) (p2 = m2) and average spin ζ1/2 = ζ2/2 =

ζ/2 in their (common) rest frame. Analogously to the polarization operator, the vacuum

part of the mass operator vanishes after renormalization [5], whereas the field-dependent

part can be written as Mf,ζ(p1, p2) = (2π)3δ2(p1,⊥ − p2,⊥)δ((k0p1) − (k0p2))Mζ(p), with

Mζ(p) =
∑5

j=1 Mj,ζ(p). The five functions Mj,ζ(p) have the form [34]

M1,ζ(p) =
α

2π
m

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

∫ ∞
0

dx

(1 + x)2

1 + 2x

1 + x

{
e
−i τx

2η0
[1+ξ20Q̃

2(ϕ,τ)] − e−i
τx
2η0

}
, (34)

M2,ζ(p) =
α

4π
mξ2

0

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

∫ ∞
0

dx

(1 + x)2
∆2(ϕ, τ)e

−i τx
2η0

[1+ξ20Q̃
2(ϕ,τ)]

, (35)

M3,ζ(p) =
α

4π
mξ2

0

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

∫ ∞
0

dx

(1 + x)2

x2

1 + x
R(ϕ, τ)e

−i τx
2η0

[1+ξ20Q̃
2(ϕ,τ)]

, (36)

M4,ζ(p) =
α

4π
mξ2

0

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

∫ ∞
0

dx

(1 + x)2
xS(ϕ, τ)e

−i τx
2η0

[1+ξ20Q̃
2(ϕ,τ)]

, (37)

M5,ζ(p) = i
α

4π
m

(sµf
∗µν
0 pν)

mη0

∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ

∫ ∞
0

dx

(1 + x)2

x

1 + x
∆(ϕ, τ)e

−i τx
2η0

[1+ξ20Q̃
2(ϕ,τ)]

.

(38)

Here, we have introduced the functions

∆(ϕ, τ) = ψ(ϕ− τ)− ψ(ϕ), (39)

Q̃2(ϕ, τ) =
1

τ

∫ τ

0

dτ ′∆2(ϕ, τ ′)− 1

τ 2

[∫ τ

0

dτ ′∆(ϕ, τ ′)

]2

, (40)

R(ϕ, τ) =

[
∆(ϕ, τ)− 2

τ

∫ τ

0

dτ ′∆(ϕ, τ ′)

]
1

τ

∫ τ

0

dτ ′∆(ϕ, τ ′), (41)

S(ϕ, τ) =
1

τ

∫ τ

0

dτ ′∆2(ϕ, τ ′), (42)

with

sµ =

(
p · ζ
m

, ζ +
(p · ζ)p

m(ε+m)

)
(43)
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being the spin four-vector [5] and f ∗µν0 = (1/2)εµνλρF0,λρ/Fcr, being the field pseudo-tensor

amplitude in units of the critical field, and the parameter η0 = (k0p)/m
2, which plays the

same role as the parameter θ0 = (k0k)/m2 in the case of the polarization operator. Note

that only the term M5,ζ(p) depends on the orientation of the average spin of the electron.

The strategy to find the high-energy asymptotic for η0 →∞ at ξ0 constant is analogous

to the one employed in the previous section. The integrals in x have all the form

In,d(a) =

∫ ∞
0

dx

(1 + x)2

xn

(1 + x)d
e−iax, (44)

with n and d being two non-negative integers and with Im[a] < 0. By introducing the

incomplete gamma function Γ(0, z) [38], the integrals that we need are

I0,0(a) = 1− iaeiaΓ(0, ia), (45)

I0,1(a) =
1

2
[1− ia− a2eiaΓ(0, ia)], (46)

I1,0(a) = −1 + (1 + ia)eiaΓ(0, ia), (47)

I1,1(a) =
1

2
[1 + ia+ a(a− 2i)eiaΓ(0, ia)], (48)

I2,1(a) =
1

2
[−3− ia+ (2 + 4ia− a2)eiaΓ(0, ia)]. (49)

In order to analyze the high-energy asymptotic behavior of each contribution Mj,ζ(p) to the

mass operator, it is convenient now to introduce the quantities ã0(τ) = τ/2η0 and ãf (ϕ, τ) =

τξ2
0Q̃

2(ϕ, τ)/2η0. As before, the strategy is based on the observation that the function

ãf (ϕ, τ) for a finite pulse is bound, such that it vanishes in the high-energy limit η0 →∞ and

ξ0 fixed. Analogously to the case of the polarization operator, we first consider the leading-

order contribution and we set ãf (ϕ, τ) = 0 in the terms from M2,ζ(p) to M5,ζ(p), whereas

we approximate I0,1(ã0(τ) + ãf (ϕ, τ)) − I0,1(ã0(τ)) ≈ I ′0,1(ã0(τ))ãf (ϕ, τ) and I1,1(ã0(τ) +

ãf (ϕ, τ))−I1,1(ã0(τ)) ≈ I ′1,1(ã0(τ))ãf (ϕ, τ) inM1,ζ(p). At this point, we perform the integrals

in ϕ and we already notice that the term M5,ζ(p) vanishes. Now, we have shown that

higher-order terms in M5,ζ(p) in the expansion with respect to ãf (ϕ, τ) provide contributions

subleading in η0, such that we will ignore M5,ζ(p) from now on. Concerning the other terms,
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we need the integrals

IR(τ) =

∫ ∞
−∞

dϕR(ϕ, τ) = −2

3
− 8

τ 2
+

4

sinh(τ)

[
τ

sinh2(τ)
+ coth(τ) +

τ

2

]
, (50)

IS(τ) =

∫ ∞
−∞

dϕS(ϕ, τ) =
4

3
+

4

τ

1− τ coth(τ)

sinh(τ)
, (51)

I∆2(τ) =

∫ ∞
−∞

dϕ∆2(ϕ, τ) =
4

3
+

8

sinh(τ)

[
τ

sinh2(τ)
− coth(τ) +

τ

2

]
, (52)

IQ̃2(τ) =

∫ ∞
−∞

dϕ Q̃2(ϕ, τ) =
2

3
− 4

τ 2
+

4

τ

1

sinh(τ)
. (53)

Now, we start from the term M1,ζ(p) and we can write it as

M1,ζ(p) =
α

2π
mξ2

0

∫ ∞
0

dτ
d

dτ

[
I0,1

(
τ

2η0

)
+ 2I1,1

(
τ

2η0

)]
IQ̃2(τ). (54)

From the asymptotic behavior of the integrand, we obtain that in the limit of large η0 it is

M1,ζ(p) ≈ −αmξ2
0/2π.

We pass now to the term M2,ζ(p), which is approximately given by

M2,ζ(p) =
α

4π
mξ2

0

∫ ∞
0

dτ

τ
I0,0

(
τ

2η0

)
I∆2(τ). (55)

In this case it is necessary to split the integral by choosing a τ0 such that 1 � τ0 � η0.

After approximating the functions of τ/η0 in the region 0 ≤ τ ≤ τ0 for small values of the

argument and the functions of τ in the region τ ≥ τ0 for large values of the argument, the

final result is

M2,ζ(p) ≈
α

3π
mξ2

0

[
log(2η0)− γ − iπ

2
− 3

4
C∆2

]
, (56)

with

C∆2 =

∫ ∞
0

dτ log(τ)I ′∆2(τ) ≈ −0.637 . . . (57)

The asymptotic expressions of the terms

M3,ζ(p) =
α

4π
mξ2

0

∫ ∞
0

dτ

τ
I2,1

(
τ

2η0

)
IR(τ) (58)

and

M4,ζ(p) =
α

4π
mξ2

0

∫ ∞
0

dτ

τ
I1,0

(
τ

2η0

)
IS(τ) (59)

can be determined with the same technique of splitting the integration region. We directly
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provide the asymptotic expressions:

M3,ζ(p) =− α

12π
mξ2

0

[
log2(2η0)− (3 + 2γ + iπ − 3CR,1) log(2η0)

+1 + 3γ + γ2 +
3

2
iπ + iπγ +

π2

4
− 3

2
(3 + 2γ + iπ)CR,1 −

3

2
CR,2

]
,

(60)

M4,ζ(p) =
α

6π
mξ2

0

[
log2(2η0)−

(
2 + 2γ + iπ +

3

2
CS,1

)
log(2η0)

+2γ + γ2 + iπ + iπγ +
π2

4
+

3

2

(
1 + γ + i

π

2

)
CS,1 +

3

4
CS,2

]
,

(61)

where

CR,1 =

∫ ∞
0

dτ log(τ)I ′R(τ) ≈ −0.347 . . . , (62)

CR,2 =

∫ ∞
0

dτ log2(τ)I ′R(τ) ≈ 0.154 . . . , (63)

CS,1 =

∫ ∞
0

dτ log(τ)I ′S(τ) ≈ 0.695 . . . , (64)

CS,2 =

∫ ∞
0

dτ log2(τ)I ′S(τ) ≈ 1.02 . . . . (65)

If we now analyze possible contributions of higher-order terms in the expansion with respect

to ãf (ϕ, τ), it is easily recognized that only the terms M3,ζ(p) and M4,ζ(p) undergo correc-

tions, which have to be taken into account here for consistency and which can be written

as δM3,ζ(p) = αmξ2
0ĨR(ξ0)/4π and δM4,ζ(p) = αmξ2

0ĨS(ξ0)/4π, with ĨR(ξ0) and ĨS(ξ0)

depending only on the parameter ξ0 (and on the pulse shape)

ĨR(ξ0) =−
∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ
R(ϕ, τ) log[1 + ξ2

0Q̃
2(ϕ, τ)], (66)

ĨS(ξ0) =−
∫ ∞
−∞

dϕ

∫ ∞
0

dτ

τ
S(ϕ, τ) log[1 + ξ2

0Q̃
2(ϕ, τ)]. (67)

In this way we obtain the complete asymptotics of the quantity Mζ(p) =
∑5

j=1Mj,ζ(p) in

the form

Mζ(p) =
α

12π
mξ2

0

{
log2(2η0) + [3− 2γ − iπ − 3(CR,1 + CS,1)] log(2η0) + 3[ĨR(ξ0) + ĨS(ξ0)]

+
3

2
[(2γ + iπ)(CR,1 + CS,1) + 3CR,1 + 2CS,1 − 2C∆2 + CR,2 + CS,2]

−7− 3γ + γ2 − 3

2
iπ + iπγ +

π2

4

}
.

(68)

16



The results above cannot be compared with the corresponding analytical asymptotic found

in Ref. [34] in the case of a circularly polarized monochromatic field. However, by applying

the same technique employed above, we have reproduced the asymptotic expression in Eq.

(3.42) in Ref. [34]. It is interesting to observe that, due to the infinite extension of a

monochromatic field, the asymptotic behavior of the mass operator is different from that

found above. Although, in fact, the asymptotics shows a double-logarithmic behavior as

here, the double-logarithm and the logarithm in the monochromatic case are evaluated at

the effective parameter η̃0 = (k0p)/m̃
2, where m̃2 = m2(1 + ξ2

0) is the effective electron mass

in the circularly polarized laser field.

As in the case of the polarization operator, the asymptotic behavior of the mass operator

in the high-energy limit θ0 →∞ and ξ0 fixed is logarithmic and qualitatively different from

the power-law behavior in the CCF limit η0 → 0 and ξ0 → ∞ (such that χ0 = η0ξ0 is

finite) at large values of χ0 [37]. In this case, the discriminating parameter between the two

asymptotic behaviors is s0 = ξ2
0/η0, such that the high-energy limit requires that s0 � 1

whereas the CCF limit requires that s0 � 1. We recall that in the vacuum case nonzero

radiative corrections in the mass operator (after renormalization) arise only for incoming

electrons with an off-shell four-momentum p2 6= m2 and also increase logarithmically with

the parameter |p2|/m2 [5].

Analogously to the total probability of nonlinear Breit-Wheeler pair production in the

case of the polarization operator, the imaginary part of the mass operator is related via the

optical theorem to the total probability of nonlinear Compton scattering [43, 45, 62–81].

In the case of an unpolarized incoming electron the high-energy asymptotic of the total

probability PC reads

PC = − 2

mη0

ImM0(p) =
α

6

ξ2
0

η0

[
log(2η0) +

3

2
− γ − 3

2
(CR,1 + CS,1)

]
. (69)

Finally, we also note here that for any foreseeable laser intensity, in this limit the prob-

ability PC is much smaller than unity as it is proportional to the small parameter αs0 � 1

(we also assume here that at the energies under considerations α is much smaller than unity

and that the logarithm does not compensate for the smallness of the quantity αs0).
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IV. GENERALIZATION TO ARBITRARY, FINITE PULSE SHAPES

In this section we generalize the above asymptotics to the case of an arbitrary pulse shape

ψ(ϕ) of the laser field, provided that it describes a finite pulse, i.e., that the integrals

Wψ =

∫ ∞
−∞

dϕψ2(ϕ), (70)

Wψ′ =

∫ ∞
−∞

dϕψ′ 2(ϕ), (71)

Wψ′′ =

∫ ∞
−∞

dϕψ′′ 2(ϕ) (72)

are finite and that

lim
τ→±∞

∫ ∞
−∞

dϕψ(ϕ)ψ(ϕ+ τ) = 0. (73)

This last assumption plays a role in order to ascertain the behavior at large values of τ of

integrals with respect to ϕ involving, e.g., the functions X(ϕ, τ) and Z(ϕ, τ) in the case of

the polarization operator. Note that all above integrals diverge for a monochromatic wave,

such that the analysis below is inapplicable to this case.

A. Polarization operator

Below the same notation as in Sec. II is employed for the integrals IX(τ), IZ(τ), and

IQ2(τ) as in Eqs. (15)-(17) but of course with the general expressions in Eqs. (4)-(6).

It is easily proved that for an arbitrary finite pulse the functions IX(τ), IZ(τ), and IQ2(τ)

tend to zero quadratically in the limit τ → 0 and, in particular, that

IX(τ) ≈ −Wψ′τ 2 for τ � 1, (74)

IZ(τ) ≈ 2Wψ′τ 2 for τ � 1, (75)

IQ2(τ) ≈ 1

3
Wψ′τ 2 for τ � 1. (76)

In the complementary limit τ →∞ we instead obtain

lim
τ→∞
IX(τ) = 0, (77)

lim
τ→∞
IZ(τ) = Wψ, (78)

lim
τ→∞
IQ2(τ) = Wψ. (79)
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These results already allow to carry out the asymptotic expansions of the integrals IX ,

IZ , and IQ2 in Eqs. (19)-(21) as above. Starting from the leading-order expansion of the

functions In(a0(τ) + af (ϕ, τ)) with respect to af (ϕ, τ), we obtain

IX =2

∫ ∞
0

dτ

τ
IX(τ), (80)

IZ =
Wψ

2

[
log2(θ0)−

(
2γ + iπ +

2

Wψ

CZ,1

)
log(θ0) + γ2 + iπγ − 5

12
π2 − log2 2

]
+
(
γ + i

π

2

)
CZ,1 +

1

2
CZ,2 +WψCK ,

(81)

IQ2 =
2Wψ√
π

[
log(θ0)− 2− γ − iπ

2

]
− 2√

π
CQ2,1, (82)

where the definitions of the constants CZ,1, CZ,2, CK , and CQ2,1 are as in Eqs. (24)-(27)

except, of course, that the numerical values of CZ,1, CZ,2, and CQ2,1 here depend on the

pulse shape.

Concerning the higher-order expansions of the functions In(a0(τ)+af (ϕ, τ)) with respect

to af (ϕ, τ), as it is clear from the discussion below Eq. (29), the results will be the same as

above because they only depend on the properties of the functions In(a0(τ)+af (ϕ, τ)). One

has only to keep in mind that if the pulse has a duration corresponding to a phase Φ� 1,

then the asymptotics will be valid if θ0 � Φ. The reason is that in this case the functions

IZ,n(τ) in Eq. (28) are significantly different from zero for τ . Φ [see Eqs. (29) and (6)]

such that the asymptotic expansion of the derivatives dnI1(a)/dan at a = 4τ/θ0 for small

values of the argument is valid only for θ0/Φ � 1. Under this additional assumption, we

obtain

Pe(k) =− αm2ξ2
0Wψ

2π

{
log2(θ0)−

(
2γ + iπ + 2 +

2

Wψ

CZ,1

)
log(θ0) +

2

Wψ

ĨZ(ξ0) + γ2

+ iπγ − 5

12
π2 − log2 2 + 4 + 2

(
γ + i

π

2
+ CK

)
+

2

Wψ

[(
γ + i

π

2

)
CZ,1 +

1

2
CZ,2 + CQ2,1 + IX

]}
,

(83)

Pb(k) =Pe(k) +
αm2ξ2

0

π
IX , (84)

and

PBW =
α

2

ξ2
0Wψ

θ0

[
log(θ0)− γ − 1− 1

Wψ

CZ,1

]
. (85)
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As a check about these results we recall that the angular frequency ω0 was introduced

by hand in the expression of the polarization operator P µν
f (k1, k2) in Eq. (1). Thus, this

quantity must be effectively independent of ω0, which is the case if the coefficients Pl(k) are

proportional to ω0. This can indeed be verified by noticing in particular that ξ2
0ψ

2(ϕ) =

e2A2
0(ϕ)/m2, that ϕ = ω0(t− n · x) and that all the occurrences of ω0 in the logarithms of

θ0 can be removed by means of a change of variable in the integrals in τ in the constants

CZ,1, CZ,2, and CQ2,1 [see also Eqs. (24)-(27)].

As an additional test on the validity of our method, we show in Figs. 3 and 4 the real and

the imaginary parts of the quantities Pe(k) and Pb(k) as functions of θ0 evaluated according

to the analytical asymptotics in Eqs. (83) and (84), respectively, and to the exact expression

in Eqs. (2) and (3), respectively. The pulse-shape function ψ(ϕ) = sin2(ϕ/2N) sin(ϕ) for

ϕ ∈ [0, 2Nπ] and zero otherwise has been employed. In order to show also the dependence of

the results on the pulse length, the results of two simulations are reported corresponding to

N = 5 and N = 10. Also, the parameter ξ0 is assumed to be sufficiently small as compared

to unity that nonlinear contributions in ξ2
0 to Pe(k) and Pb(k) can be neglected, and both the

approximated and the exact expressions of Pe(k) and Pb(k) are effectively proportional to

ξ2
0 . Thus, by conveniently plotting the quantities Pe(k) and Pb(k) in units of −αm2ξ2

0/π, it

is not necessary to specify a numerical value of ξ0 (keeping in mind the assumption ξ0 � 1).

The figures indicate the very good agreement between the analytical asymptotics and the

exact curves for large values of θ0 and, as expected, an approximated linear dependence on

N [see Eqs. (83) and (84)].

Now, we observe that, since the probability PBW is proportional to ξ2
0 , one can ask whether

it can be obtained starting from the cross section of linear Breit-Wheeler pair production [5]

(note that the first two terms of the expansion of the probability of nonlinear Breit-Wheeler

pair production for small ξ0 and in a monochromatic plane wave can be found in Ref. [14]).

However, the result in Eq. (85) has been obtained under the assumption of a finite laser

pulse, whereas the linear result is obtained for monochromatic photons. Thus, in order to

reproduce Eq. (85) starting from the cross section of linear Breit-Wheeler pair production,

one has to consider the incoming photon being in a coherent state according to the precise

shape of the laser field. Conversely, one can start from the general results in Eqs. (2) and

(3), expand the coefficients Pe(k) and Pb(k) for small ξ0 up to terms of the order of ξ2
0 , and

then employ a constant-amplitude pulse form ψ(ϕ) = cos(ϕ) for −Φ/2 ≤ ϕ ≤ Φ/2 and zero
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θ0

a) Re[Pe(k)]

θ0

b) Re[Pb(k)]

FIG. 3. Real part of the quantity Pe(k) (Fig. 3a) and of the quantity Pb(k) (Fig. 3b) in units

of −αm2ξ2
0/π. The pulse-shape function ψ(ϕ) = sin2(ϕ/2N) sin(ϕ) for ϕ ∈ [0, 2Nπ] and zero

otherwise has been employed. In Fig. 3a the continuous red curve (dotted black curve) and the

dashed blue curve (dash-dotted green curve) are obtained from the exact expression in Eq. (2)

and from the asymptotic expression in Eq. (83), respectively, and correspond to N = 5 (N = 10).

The same colors and styles have been used for the curves in Fig. 3b with the exact and asymptotic

expressions being given in Eq. (3) and in Eq. (84), respectively. The parameter ξ0 is assumed to

be sufficiently small that both the exact and the asymptotic expressions can be approximated to

be proportional to ξ2
0 .

otherwise, with Φ � 1 (and ultimately sent to infinity when the monochromatic limit is

considered). One finds that

IX(τ) ∼ −
{

1

2

[
1− sin2(τ)

τ 2

]
+

sin(2τ)

2τ
− cos2(τ)

}
Φ, (86)

IZ(τ) ∼ sin2(τ)Φ, (87)

IQ2(τ) ∼ 1

2

[
1− sin2(τ)

τ 2

]
Φ, (88)

where the symbol ∼ indicates that only the terms contributing to the diagonal part of the

polarization operator in momentum space are retained. The asymptotic behavior of the

functions IX(τ) and IZ(τ) for large τ is indeed very different from the corresponding ones

in a finite pulse and this explains why one cannot obtain Eq. (85) from the cross section of
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θ0

a) Im[Pe(k)]

θ0

b) Im[Pb(k)]

FIG. 4. Imaginary part of the quantity Pe(k) (Fig. 4a) and of the quantity Pb(k) (Fig. 4b) in

units of −αm2ξ2
0/π. The pulse-shape function ψ(ϕ) = sin2(ϕ/2N) sin(ϕ) for ϕ ∈ [0, 2Nπ] and zero

otherwise has been employed. In Fig. 4a the continuous red curve (dotted black curve) and the

dashed blue curve (dash-dotted green curve) are obtained from the exact expression in Eq. (2)

and from the asymptotic expression in Eq. (83), respectively, and correspond to N = 5 (N = 10).

The same colors and styles have been used for the curves in Fig. 4b with the exact and asymptotic

expressions being given in Eq. (3) and in Eq. (84), respectively. The parameter ξ0 is assumed to

be sufficiently small that both the exact and the asymptotic expressions can be approximated to

be proportional to ξ2
0 .

linear Breit-Wheeler pair production. However, by employing the results in Eqs. (86)-(88),

one finds that

Pe(k) =− α

π
m2ξ2

0Φ

∫ ∞
0

dτ

τ

∫ ∞
1

dρ

ρ3/2

e
−i 4τρ

θ0

√
ρ− 1

×
〈
ρ sin2(τ)−

{
3

4

[
1− sin2(τ)

τ 2

]
+

sin(2τ)

2τ
− cos2(τ)

}〉
,

(89)

Pb(k) =− α

π
m2ξ2

0Φ

∫ ∞
0

dτ

τ

∫ ∞
1

dρ

ρ3/2

e
−i 4τρ

θ0

√
ρ− 1

{
ρ sin2(τ)− 1

4

[
1− sin2(τ)

τ 2

]}
. (90)

The asymptotic expressions for large values of θ0 are obtained by working out first the

integral in τ and then that in ρ as above, and the result for the pair-production probability
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is

PBW =
α

4

ξ2
0Φ

θ0

[log(2θ0)− 1] . (91)

This expression can indeed be obtained starting from the cross section of linear Breit-Wheeler

pair production as given in Ref. [5] and taking into account the flux of laser photons.

B. Mass operator

We can follow a similar reasoning in the case of the mass operator and of the functions

IR(τ), IS(τ), I∆2(τ), and IQ̃2(τ) introduced in Eqs. (50)-(53) and to be intended below

according to the general definitions in Eqs. (39)-(42). One can easily show that under the

already mentioned conditions on the pulse function ψ(ϕ), one obtains

IR(τ) ≈ − 1

72
Wψ′′τ 4 for τ � 1, (92)

IS(τ) ≈ 1

3
Wψ′τ 2 for τ � 1, (93)

I∆2(τ) ≈ Wψ′τ 2 for τ � 1, (94)

IQ̃2(τ) ≈ 1

12
Wψ′τ 2 for τ � 1, (95)

and

lim
τ→∞
IR(τ) = −Wψ, (96)

lim
τ→∞
IS(τ) = 2Wψ, (97)

lim
τ→∞
I∆2(τ) = 2Wψ, (98)

lim
τ→∞
IQ̃2(τ) = Wψ. (99)

Based on these results and on the results of Sec. III, it is straightforward to generalize

the asymptotic expressions of the terms M1,ζ(p), . . ., M4,ζ(p) up to the leading order in the
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expansion of the functions In,d(ã0(τ) + ãf (ϕ, τ)) for small values of ãf (ϕ, τ):

M1,ζ(p) =− 3α

4π
mξ2

0Wψ, (100)

M2,ζ(p) =
α

2π
mξ2

0

{
Wψ

[
log(2η0)− γ − iπ

2

]
− 1

2
C∆2

}
, (101)

M3,ζ(p) =− α

8π
mξ2

0Wψ

[
log2(2η0)−

(
3 + 2γ + iπ − 2

Wψ

CR,1

)
log(2η0)

+1 + 3γ + γ2 +
3

2
iπ + iπγ +

π2

4
− 1

Wψ

(3 + 2γ + iπ)CR,1 −
1

Wψ

CR,2

]
,

(102)

M4,ζ(p) =
α

4π
mξ2

0Wψ

[
log2(2η0)−

(
2 + 2γ + iπ +

1

Wψ

CS,1

)
log(2η0)

+2γ + γ2 + iπ + iπγ +
π2

4
+

1

Wψ

(
1 + γ + i

π

2

)
CS,1 +

1

2Wψ

CS,2

]
.

(103)

In this way the final result for the function Mζ(p) also including the contributions of high-

order terms in ãf (ϕ, τ) reads

Mζ(p) =
α

8π
mξ2

0Wψ

{
log2(2η0) +

[
3− 2γ − iπ − 2

Wψ

(CR,1 + CS,1)

]
log(2η0)

+
2

Wψ

[ĨR(ξ0) + ĨS(ξ0)]− 7− 3γ + γ2 − 3

2
iπ + iπγ +

π2

4

+
1

Wψ

[(2γ + iπ)(CR,1 + CS,1) + 3CR,1 + 2CS,1 − 2C∆2 + CR,2 + CS,2]

}
,

(104)

with all constants being defined as in Sec. III but, of course, for a general pulse-shape

function ψ(ϕ).

Finally, the asymptotic of the total probability of nonlinear Compton scattering in an

arbitrary finite pulse at high-energies reads

PC =
α

4

ξ2
0Wψ

η0

[
log(2η0) +

3

2
− γ − 1

Wψ

(CR,1 + CS,1)

]
. (105)

The two remarks about the appearance of the angular frequency ω0 and the agreement with

the cross section of the corresponding linear process (in this case linear Compton scattering)

can be verified also in Eqs. (104) and (105) (note that the first two terms of the expansion of

the probability of nonlinear Compton scattering for small ξ0 and in a monochromatic plane

wave can be found in Ref. [14]).

C. An additional remark

The results in Eqs. (83), (84), and (104) also confirm that the high-energy behavior

of the polarization (mass) operator depends logarithmically on the center-of-momentum
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energy of the incoming photon (electron) and a laser photon in a qualitatively similar way

as in vacuum. This behavior is consequently very different from the power-law behavior

observed in the CCF limit at large κ0 (χ0). In this respect, we would like to point out also

that, although the above theoretical analysis reconciles the high-energy behavior of QED

in vacuum and of QED in an intense plane wave, it does not prevent the experimental

verification of the interesting regime where the RN conjecture would apply [21–23]. In

fact, according to the above results, if the parametric conditions θ0 � 1, ξ0 � 1, and

κ0 = θ0ξ0 � 1 (in the case of an incoming photon) or η0 � 1, ξ0 � 1, and χ0 = η0ξ0 � 1 (in

the case of an incoming electron) are fulfilled at the given experimental conditions, then the

parameters r0 = ξ2
0/θ0 = κ2

0/θ
3
0 and s0 = ξ2

0/η0 = χ2
0/η

3
0 are automatically much larger than

unity and, according to the RN conjecture, the power-law increase of the effective coupling

constant can in principle be tested.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have shown that the one-loop polarization operator and mass operator

in an intense, finite plane wave feature a logarithmic behavior at high energies, similar to

other radiative corrections in vacuum. This is qualitatively different from the power-law

behavior in the regions κ0 � 1 and χ0 � 1, which is observed within the CCF limit. The

difference arises from the non-commutativity of the high-energy limit (either θ0 → ∞ and

ξ0 fixed or η0 → ∞ and ξ0 fixed) and of the CCF limit (either θ0 → 0 at κ0 fixed or

η0 → 0 at χ0 fixed). In the case of the polarization operator and of the mass operator the

discriminating parameters between the two regimes have been identified to be r0 = ξ2
0/θ0

and s0 = ξ2
0/η0, respectively, which should be much smaller (larger) than unity in order the

high-energy (low-frequency/CCF) limit to apply.

As a byproduct we have obtained the high-energy asymptotics of the total probabilities

of nonlinear Breit-Wheeler pair production and of nonlinear Compton scattering for an

unpolarized incoming photon and electron, respectively, and for an arbitrary, finite plane-

wave field. Both these probabilities are proportional to ξ2
0 , and depend as [ABW log(θ0) +

BBW ]/θ0 on θ0 (the pair-production probability) and as [AC log(η0) + BC ]/η0 on η0 (the

photon emission probability), with the values of the constants ABW , BBW , AC , and BC

depending on the pulse shape.
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The above analysis was carried out by considering an on-shell incoming particle for a

more consistent comparison with available results in a CCF also obtained for on-shell in-

coming particles. In the vacuum case the corresponding radiative corrections vanish after

renormalization and the high-energy behavior of the radiative corrections refers to incoming

particles with larger and larger “virtualities”, parametrized by the quantity |q2|/m2, with qµ

being the corresponding off-shell four-momentum. The analysis of this different asymptotic

region is extremely interesting but goes beyond the present study, and will be the subject

of a future investigation.
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P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Au-

debert, High Power Laser Sci. Eng. 4, e34 (2016).

[11] Extreme Light Infrastructure (ELI), https://eli-laser.eu/, (2017).

[12] Center for Relativistic Laser Science (CoReLS), https://www.ibs.re.kr/eng/sub02 03 05.do,

26



(2017).

[13] H. Mitter, Acta Phys. Austriaca XIV, 397 (1975).

[14] V. I. Ritus, J. Sov. Laser Res. 6, 497 (1985).

[15] F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, Rep. Prog. Phys. 72, 046401 (2009).
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