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Abstract

robustloggamma is an R package for robust estimation and inference in the generalized
loggamma model. We briefly introduce the model, the estimation procedures and the
computational algorithms. Then, we illustrate the use of the package with the help of a
real data set.
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1. Introduction

The generalized loggamma distribution is a flexible three parameter family introduced by
Stacy (1962) and further studied by Prentice (1974) and Lawless (1980). This family is
used to model highly skewed positive data on a logarithmic scale and it includes several
asymmetric families, such as logexponential, logWeibull, and loggamma distributions, and
also the normal distribution. In the parametrization given by Prentice (1974) the three
parameters are location µ, scale σ, and shape λ. We denote the family by LG(µ, σ, λ), µ ∈ R,
σ > 0, λ ∈ R. If y is a random variable with distribution LG(µ, σ, λ) then y is obtained by
location and scale transformation

y = µ+ σu
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of the random variable u with density

fλ(u) =


|λ|

Γ(λ−2)(λ−2)λ−2 exp
(
λ−2

(
λu− eλu

))
if λ 6= 0,

1√
2π exp(−u2

2 ) if λ = 0,

where Γ denotes the gamma function. Hence, the density of y is fθ(y) = fλ ((y − µ)/σ) /σ
where θ = (µ, σ, λ). The normal model (λ = 0), logWeibull model (λ = 1), logexponential
model (λ = 1 and σ = 1), and loggamma model (σ = λ) are special cases. The generalized
gamma family is obtained by transforming back onto the original scale, i.e., t = exp(y);
in this situation the expectation η = E(t) = δΓ(α + 1/γ)/Γ(α) where α = λ−2, γ = λ/σ,
δ = exp(µ+ 2 log(λ)σ/λ) is an important parameter.
The R (R Core Team 2016) package robustloggamma (Agostinelli, Marazzi, Yohai, and Ran-
driamiharisoa 2016) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=robustloggamma. It provides density, distribution
function, quantile function and random generation for the loggamma distribution using the
common syntax [dpqr]loggamma. In Figure 1 we draw the density of some relevant distribu-
tions using the following code.

R> library("robustloggamma")
R> plot(function(x) dloggamma(x, mu = 0, sigma = 1, lambda = 0),
+ from = -8, to = 4, ylab = "density")
R> plot(function(x) dloggamma(x, mu = 0, sigma = 2, lambda = 1),
+ from = -8, to = 4, add = TRUE, col = 2)
R> plot(function(x) dloggamma(x, mu = 0, sigma = 1, lambda = 1),
+ from = -8, to = 4, add = TRUE, col = 3)
R> plot(function(x) dloggamma(x, mu = 0, sigma = 2, lambda = 2),
+ from = -8, to = 4, add = TRUE, col = 4)
R> legend("topleft", legend = c("normal(0,1)", "logWeibull(0,2)",
+ "logexponential", "loggamma(0,2)"), col = 1:4, lty = 1, inset = 0.01)

2. Robust estimation and inference
We consider the three parameter family LG(µ, σ, λ) with θ = (µ, σ, λ), and distribution
function Fθ(y) = F ∗((y − µ)/σ, λ). For 0 < u < 1 let Q(u,θ) be the u-quantile of Fθ(y).
Then, Q(u,θ) = σQ∗(u, λ)+µ, where Q∗(u, λ) = Q(u, (0, 1, λ)). Let y(1), . . . , y(n) be the order
statistics of a sample of size n from LG(µ0, σ0, λ0), and θ0 = (µ0, σ0, λ0) is the unknown vector
of parameters to be estimated. Since, y(j) is the quantile un,j = (j − 0.5)/n of the empirical
distribution, it should be close to the corresponding theoretical quantile σ0Q

∗(un,j , λ0) + µ0.
Hence, the residuals

rn,j(θ) = y(j) − µ− σQ∗(un,j , λ)
are a function of θ and they should be as small as possible. To summarize their size a scale s
is often used. Given a sample u = (u1, . . . , un), s is a function of u with two basic properties:
(i) s(u) ≥ 0; (ii) for any scalar γ, s(γu) = |γ|s(u). The most common scale is n∑

j=1
u2
j/n

1/2

,

https://CRAN.R-project.org/package=robustloggamma
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Figure 1: Density for some relevant members of the generalized loggamma family.

which is clearly non robust. To gain robustness we use a τ scale, τ(rn,1(θ), . . . , rn,n(θ)),
introduced by Yohai and Zamar (1988). A short review of τ scales can be found in Appendix A.
Then, the Qτ estimator is defined by

θ̃ = arg min
θ
τ (rn,1(θ), . . . , rn,n(θ)) .

We note that, fixing λ, the values of µ and σ minimizing the τ scale are obtained by a simple
regression τ estimate for the responses y(j) and the regressors Q∗(un,j , λ). We also note
that n1/2rn,j(θ0) is approximately distributed according to N(0, v2(θ0, un,j)) (Serfling 1980),
where

v2(θ0, u) = σ2
0u(1− u)

f2
λ0

(Q∗(u, λ0))
.

Then, the variances of the regression errors can be estimated by

σ̃2
j = v2(θ̃n, un,j)

and the basic estimator can be improved by means of a weighted procedure. More precisely,
one defines the weighted Qτ estimator (WQτ), with the set of weights 1/σ̃1, . . . , 1/σ̃n, by

θ̃
w = arg min

θ
τ

(
rn,1(θ)
σ̃1

, . . . ,
rn,n(θ)
σ̃n

)
.

Monte Carlo simulations (Agostinelli, Marazzi, and Yohai 2014) show that both the Qτ and
the WQτ estimators perform well in the case where the model is correct and also when
the sample contains outliers. These empirical findings are corroborated by a theoretical



4 robustloggamma: Robust Estimation of the Generalized Loggamma Model in R

result showing that Qτ and WQτ have a 50% breakdown point (BDP; according to a special
definition of BDP – the finite sample distribution breakdown point – which is particularly
designed to asses the degree of global stability of a distribution estimate).

2.1. Weighted likelihood estimators
Unfortunately, Qτ and WQτ are not asymptotically normal and therefore inconvenient for
inference. Their rates of convergence is however of order n1/2 and this makes them a good
starting point for a one-step weighted likelihood (WL) procedure which is asymptotically
normal and fully efficient at the model. The package robustloggamma implements two WL
estimators: the fully iterated weighted likelihood and the one step weighted likelihood. Monte
Carlo simulations (Agostinelli et al. 2014) show that both these estimators maintain the robust
properties (BDP) of Qτ and WQτ .
In general, a weighted likelihood estimator (WLE) as defined in Markatou, Basu, and Lindsay
(1998) is a solution of the following estimating equations

1
n

n∑
j=1

w(yj ,θ)z(yj ,θ) = 0 ,

where z(y,θ) is the usual score function vector and w(y,θ) is a weight function defined by

w(y,θ) = min
(

1, [A(δ(y,θ)) + 1]+

δ(y,θ) + 1

)
,

where δ(y,θ) is the Pearson residual (Lindsay 1994), measuring the agreement between the
distribution of the data and the assumed model. It is defined as δ(y,θ) = [f∗(y)− f∗θ (y)] /f∗θ (y),
where f∗(y) =

∫
k(y, t, h) dFn(t) is a kernel density estimate of fθ (with bandwidth h),

f∗θ (y) =
∫
k(y, t, h)fθ(t) dt is the corresponding smoothed model density, Fn is the empirical

cumulative distribution function, and [x]+ = max(0, x).
The function A(·) is called residual adjustment function (RAF). When A(δ) = δ the weights
w(yj ,θ) = 1 and the WLE equations coincide with the classical MLE equations. Generally,
the weight function w uses the RAF that corresponds to minimum disparity problems (Lindsay
1994), see Appendix B for some examples.
The fully iterated weighted likelihood estimator (FIWL) is the solution of the weighted equa-
tions, while the one-step weighted likelihood estimator (1SWL) is defined by

θ̂ = θ̃ − J−1
n∑
j=1

w(yj , θ̃)z(yj , θ̃) ,

where J =
∫
w(y, θ̃)∇z(y, θ̃) dFθ̃(y) and ∇ denotes differentiation with respect to θ. This

definition is similar to a Fisher scoring step, where an extra term obtained by differentiating
the weight with respect to θ is dropped since, when evaluated at the model, it is equal to
zero. Further information on minimum distance methods and weighted likelihood procedures
are available in Basu, Shioya, and Park (2011).

3. Algorithms and implementation
In the following sections, we describe the computation of the estimators implemented in the
main function loggammarob. We first recall its arguments, a reference chart is reported in
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Appendix C. The only required argument is x which contains the data in a numeric vector.
The argument method allows to choose among the available robust procedures. The default
method is "oneWL", a one step weighted likelihood estimator starting from WQτ . Other
alternatives are "QTau" (Qτ), "WQTau" (WQτ), "WL" (fully iterated weighted likelihood) and
"ML" (maximum likelihood). When method is not Qτ an optional numeric vector of length
3 (location, scale, shape) could be supplied in the argument start to be used as starting
value, otherwise, the default is WQτ for the likelihood based methods and Qτ for WQτ . By
default, weights in the WQτ are specified as described in the previous section, if a different
set of weights are needed the weights argument could be used. Fine tuning parameters are
set by the function loggammarob.control and passed to the main function by the control
argument.

3.1. Computation of Qτ and WQτ

To optimize the τ scale for a given value of λ, robustloggamma uses the resampling algorithm
described in Salibian-Barrera, Willems, and Zamar (2008). Let xj = Q∗(un,j , λ) and consider
the following steps:

1. Take a random subsample of size 2 made of the pairs (x(j1), y(j1)) and (x(j2), y(j2)).

2. Compute a preliminary estimate of µ and σ of the form

σ(0) =
y(j1) − y(j2)
x(j1) − x(j2)

, µ(0) = y(j1) − σ
(0)
i x(j1).

3. Compute the residuals r(0)
j = y(j) − σ(0)xj − µ(0) for j = 1, . . . , n.

4. Compute least squares estimates µ(1), σ(1) based on the n/2 pairs with the smallest
absolute residuals r(0)

j .

5. Compute the residuals r(1)
j for j = 1, . . . , n and the τ scale τ(r(1)

1 , . . . , r
(1)
n ).

Steps 1–5 are repeated a large number N of times and the values µ(1), σ(1) corresponding to
the minimal τ scale are retained. These values are then used as starting values of an IRWLS
algorithm, where the weights are defined, at each iteration, as wj = Wφj1 + φj2 and

W =
∑n
j=1 2ρ2(rj/s)− ψ2(rj/s)rj/s∑n

j=1 ψ1(rj/s)rj/s
, φjk = ψk(rj/s)/(rj/s), k = 1, 2.

ψk is the first derivative of the ρ function ρk (see Appendix A), and s is a scale which is
recursively updated as follows

s = s

 2
n

n∑
j=1

ρ1(rj/s)

1/2

with initial value s = median(|rj |)/0.6745.
This algorithm is used to compute µ(λ) and σ(λ) for all values of λ in a given grid λ1, . . . , λk.
The final value of λ is then obtained by minimizing the τ scale over the grid.
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The first part of the algorithm is implemented in Fortran while the IRWLS algorithm is
implemented in R. The initial random procedure uses the R uniform pseudo random num-
ber generator and can be controlled by setting the seed in the usual way. The function
loggammarob.control is used to set all the other parameters. tuning.rho and tuning.psi
set the constants c1 and c2 of the ρ functions ρ1 and ρ2. nResample controls the number of
subsamples N . max.it and refine.tol provide the maximum number of iterations and the
tolerance of the IRWLS algorithm. An equally spaced grid for λ is defined by the arguments
lower, upper and n with obvious meaning. While there are no boundaries on the values
of lower and upper we advice the users to avoid values outside the interval [−8, 8]. Values
outside this range might lead to numerical problems and to errors in the internal functions;
however, we notice that in most applications this is not a restriction. Default values, for the
tuning parameters can be inspected using

R> loggammarob.control()

Once a Qτ estimate θ̃ is obtained, the WQτ is easily computed by first evaluating a fixed set
of scales

σ̃2
j = v2(θ̃, un,j),

then the IRWLS is used with θ̃ as starting value and rj/σ̃j in place of rj .

3.2. Computation of FIWL and 1SWL

Weights need to be evaluated for both 1SWL and FIWL. To compute the kernel density
estimate f∗(y), robustloggamma uses the function density with kernel = "gaussian", cut
= 3, and n = 512. The smoothed model f∗θ (y) is approximated by

1
K

K∑
k=1

k(y, yk, h),

where yk is the quantile of order (k − 0.5)/K of Fθ̃. The bandwidth h is adaptively fixed
to bw times the actual value of σ and K is controlled by the argument subdivisions. The
RAF is fixed by raf among several choices: "NED" (negative exponential disparity), "GKL"
(generalized Kullback-Leibler), "PWD" (power divergence measure), "HD" (Hellinger distance),
"SCHI2" (symmetric chi-square distance). tau selects the particular member of the family in
case of "GKL" and "PWD". Finally, weights smaller than minw are set to zero.
For 1SWL, J =

∫
w(y, θ̃)∇z(y, θ̃) dFθ̃(y) is approximated by

1
K

K∑
k=1

w(yk, θ̃)∇z(yk, θ̃) .

Here K is controlled by nexp. Furthermore, the step can be multiplied by the step argument
(with default 1).
To provide an overview of the efficiency of the algorithms we performed four Monte Carlo ex-
periments. We consider datasets generated from the generalized loggamma model with param-
eters µ = 0, σ = 1 and λ = 1 or λ = 5 and different sample sizes n = 50, 100, 500, 1000, 5000,
10000. For each of these we consider the case of no contamination and the one 10% con-
tamination, where the 10% largest observations are replaced by observations generated by a
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Figure 2: Execution time (seconds) for different sample sizes.

normal distribution with mean 20 and standard deviation 1. We recorded the execution times
of the function loggammarob, with default parameters, in 100 replications for each sample
size, hence Qτ , WQτ and 1SWL estimators are evaluated at each iteration. The results for
the case λ = 1 without contamination are reported in Figure 2 and they suggest an almost
linear relation between execution time and sample size, at least in the range explored. For
the other three experiments the results were very similar and hence they are not reported.
All the experiments were performed on SCSCF, a multiprocessor cluster system owned by
the Ca’ Foscari University of Venezia with cores at 2.3Ghz running under GNU/Linux.

4. An illustration
We illustrate the use of robustloggamma with the help of the data set drg2000 included
in the package. The data refer to 70323 stays that were observed in year 2000 in a group
of Swiss hospitals within a pilot study aimed at the implementation of a diagnosis-related
grouping (DRG) system. DRG systems are used in modern hospital management to classify
each individual stay into a group according to the patient characteristics. The classification
rules are defined so that the groups are as homogeneous as possible with respect to clinical
criteria (diagnoses and procedures) and to resource consumption. A mean cost of each group is
usually estimated yearly with the help of available data about the observed stays on a national
basis. This cost is then assigned to each stay in the same group and used for reimbursement
and budgeting.
Cost distributions are typically skewed and often contain outliers. When a small number of
outliers are observed, the classical estimates of the mean can be much different than when
none is observed. And since the values and the frequency of outliers fluctuate from year to
year, the classical mean cost is an unreliable estimate. Not surprisingly, since many DRGs
must routinely be inspected each year, automatic outlier detection is a recurrent hot topic
for discussion among hospital managers.
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AP-DRG Description
185 Dental & oral dis exc exctract & restorations, Age > 17
222 Knee procedures w/o cc
237 Sprain, strain, disloc of hip, pelvis, thigh
360 Vagina, Cervix & Vulva Procedures

Table 1: DRG code and description for the available categories in data set drg2000.

The data set has four variables: LOS length of stay, Cost cost of stay in Swiss francs, APDRG
DRG code (according to the “All Patients DRG” system) and MDC major diagnostic category.
Packages xtable (Dahl 2016) and lattice (Sarkar 2008) will be used during the illustration.

R> library("xtable")
R> library("lattice")
R> data("drg2000", package = "robustloggamma")

We will analyze the variable Cost on the logarithmic scale for the four DRGs as described in
Table 1.

R> APDRG <- c(185, 222, 237, 360)
R> index <- unlist(sapply(APDRG, function(x) which(drg2000$APDRG == x)))
R> DRG <- drg2000[index, ]

Figure 3, obtained with the following code, shows a density plot for each selected DRG:

R> print(densityplot(~I(log(Cost)) | factor(APDRG), data = DRG,
+ plot.points = "rug", ref = TRUE))

Summary statistics are:

R> lapply(split(DRG$Cost, DRG$APDRG), summary)

$`185`
Min. 1st Qu. Median Mean 3rd Qu. Max.
1228 2645 3462 5059 5047 55770

$`222`
Min. 1st Qu. Median Mean 3rd Qu. Max.

849.2 4362.0 5288.0 6307.0 6801.0 47240.0

$`237`
Min. 1st Qu. Median Mean 3rd Qu. Max.
2038 3144 4100 4987 5169 28780

$`360`
Min. 1st Qu. Median Mean 3rd Qu. Max.
1620 2863 3502 4680 4428 51160
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Figure 3: Estimated densities of log(Cost) for selected DRGs.

A comparison between classical and robust measures of spread, indicates important differ-
ences:

R> lapply(split(DRG$Cost, DRG$APDRG), function(x) c(sd(x), mad(x)))

$`185`
[1] 6894.890 1374.874

$`222`
[1] 5095.599 1648.444

$`237`
[1] 4490.546 1494.891

$`360`
[1] 5066.084 1075.537

The differences are due to the presence of outliers. Therefore, it is convenient to analyze
the data with the help of robust methods. To begin with, we use the function loggammarob
to fit a generalized loggamma model to sample APDRG = 185. This function provides robust
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estimates of the parameters µ (location), σ (scale), and λ (shape) using the default method
1SWL:

R> Cost185 <- sort(DRG$Cost[DRG$APDRG == 185])
R> est185 <- loggammarob(log(Cost185))
R> est185

Call:
loggammarob(x = log(Cost185))

Location: 8.04 Scale: 0.4944 Shape: -0.6437 E(exp(X)): 4381

In addition, a summary method is available to calculate confidence intervals (based on the
Wald statistics) for the parameters and for selected model quantiles (argument p).

R> summary(est185, p = c(0.9, 0.95, 0.99))

Call:
summary.loggammarob(object = est185, p = c(0.9, 0.95, 0.99))

Location: 8.04 s.e. 0.09841
( 7.847 , 8.233 )
95 percent confidence interval

Scale: 0.4944 s.e. 0.05071
( 0.395 , 0.5938 )
95 percent confidence interval

Shape: -0.6437 s.e. 0.3005
( -1.233 , -0.05467 )
95 percent confidence interval

Mean(exp(X)): 4381 s.e. 426.7
( 3545 , 5218 )
95 percent confidence interval

Quantile of order 0.9 : 8.932 s.e. 0.2337
( 8.474 , 9.39 )
95 percent confidence interval

Quantile of order 0.95 : 9.2 s.e. 0.343
( 8.528 , 9.873 )
95 percent confidence interval

Quantile of order 0.99 : 9.774 s.e. 0.6505
( 8.499 , 11.05 )
95 percent confidence interval
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Robustness weights:
54 weights are ~= 1. The remaining 15 ones are summarized as

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05591 0.74150 0.88590 0.77530 0.99800 0.99890

The function also provides the robust weights that allow outlier identification. For instance:

R> which(est185$weights < 0.1)

[1] 1

reports the indices of the observations with weights smaller than 0.1, which in this case is the
first one only.
Robust tests on one or more parameters can be performed by means of the weighted Wald
test described in Agostinelli and Markatou (2001). For this purpose, we use the function
loggammarob.test. For instance, we test the hypothesis that the shape parameter is equal
to zero, i.e., that the lognormal model is an acceptable one:

R> loggammarob.test(est185, lambda = 0)

Weighted Wald Test based on oneWL

data:
ww = 4.5876, df = 1, p-value = 0.0322
alternative hypothesis: true shape is not equal to 0
95 percent confidence interval:
-1.23270104 -0.05466989

sample estimates:
[1] -0.6436855

To test the hypothesis that the location is zero and the scale is one we use:

R> loggammarob.test(est185, mu = 0, sigma = 1)

However, in these situations, the confidence intervals are not calculated.
The default estimation method in loggammarob is 1SWL (one-step weighted likelihood). How-
ever, alternative estimates are made available: Qτ , WQτ , WL, and ML. Qτ and WQτ , typi-
cally used as starting values for the weighted likelihood procedures, are obtained as follows:

R> qtau185 <- summary(loggammarob(log(Cost185), method = "QTau"))
R> wqtau185 <- summary(loggammarob(log(Cost185), method = "WQTau"))

The fully iterated weighted likelihood (FIWL) and the one-step weighted likelihood estimates
(1SWL) are obtained as follows:

R> fiwl185 <- summary(loggammarob(log(Cost185), method = "WL"))
R> oswl185 <- summary(loggammarob(log(Cost185), method = "oneWL"))
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Figure 4: Estimated models provided by ML, 1SWL and FIWL for the four data sets.

The maximum likelihood estimate is also available:

R> ml <- summary(loggammarob(log(Cost185), method = "ML"))

We now compare the four samples. For this purpose, the function analysis available in the
supplementary material must be loaded before running the next command.

R> results <- sapply(APDRG, function(x) analysis(APDRG = x, data = DRG),
+ simplify = FALSE)

Three estimated densities provided by ML, FIWL, and 1SWL are shown in Figure 4. The
robust parameter estimates, their estimated standard errors, and their confidence intervals
are shown in Table 2. The table was obtained with the help of the the function maketable
available in the supplementary material. We note that outliers are present in all samples
(Figure 5). However, for APDRG = 185 and APDRG = 360 they do not have a significant
impact on the estimates and the associated inferences. On the contrary, for APDRG = 222 the
outliers markedly inflate the ML scale estimate and, for APDRG = 237 a single outlier has a
great impact on the ML estimate of lambda. For this sample, the robust parameter estimates
and their confidence intervals suggest that the lognormal density is a possible model. To
visualize the weights, we use the following code:
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Figure 5: Weights provided by 1SWL and FIWL.

R> weights <- function(x, results) {
+ os <- results[[x]]$os
+ wl <- results[[x]]$wl
+ ans <- t(cbind(os$weights, wl$weights, wl$data, x))
+ return(ans)
+ }
R> w <- as.data.frame(matrix(unlist(sapply(1:4,
+ function(x) weights(x, results = results))), ncol = 4, byrow = TRUE))
R> colnames(w) <- c("OSWL", "FIWL", "data", "drg")
R> w$drg <- factor(w$drg, labels = APDRG)
R> lattice.theme <- trellis.par.get()
R> col <- lattice.theme$superpose.symbol$col[1:2]
R> print(xyplot(OSWL+FIWL~data | drg, data = w, type = "b",
+ col = col, pch = 21, key = list(text = list(c("1SWL", "FIWL")),
+ lines = list(col = col)), xlab = "log(Cost)", ylab = "weights"))

Is the two-parameter gamma distribution an acceptable model for the four samples? To answer
this question, we test the hypothesis σ = λ. We use the function loggammarob.wilks with
weights provided by ML, 1SWL and, FIWL. The results are summarized in Table 3 provided
by the function extractwilks included in the supplementary material. The hypothesis is
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DRG ML 1SWL FIWL
185 statistic 45.882 29.1739 15.3918

p value 0 0 0.0001
µ0 8.5288 8.4277 8.3497
σ0 0.7281 0.5949 0.5502

222 statistic 52.3126 24.7611 10.8147
p value 0 0 0.0010
µ0 8.7494 8.6712 8.6563
σ0 0.5172 0.3208 0.2984

237 statistic 23.1627 1.7348 1.7679
p value 0 0.1878 0.1836
µ0 8.5146 8.3583 8.3567
σ0 0.5548 0.3527 0.3518

360 statistic 123.933 75.6255 62.5466
p value 0 0 0
µ0 8.4512 8.3543 8.3363
σ0 0.591 0.4654 0.4481

Table 3: Weighted Wilks test for the hypothesis σ = λ.

always strongly rejected for DRGs 185, 222, 360. For DRG 237, the presence of outliers leads
to strongly reject the hypothesis based on ML estimation, while the robust methods accept
it (µ0 and σ0 = λ0 are the estimated parameters under the null hypothesis).

R> wilks <- extractwilks(results)
R> wilks <- cbind(c("185", rep(" ", 3), "222", rep(" ", 3), "237",
+ rep(" ", 3), "360", rep(" ", 3)), rep(c("statistic", "$p$ value",
+ "$\\mu_0$", "$\\sigma_0$"),4), wilks)
R> xwilks <- xtable(wilks)

Finally, we draw Q-Q plots based on ML, 1SWL and FIWL (Figure 6) for the four data sets.
Darker points are associated with smaller weights. 90% confidence bands are provided to
check the adequacy of the model to the data.

R> quant <- function(x, method, results) {
+ res <- results[[x]][[method]]
+ n <- length(res$data)
+ q <- qloggamma(p = ppoints(n), mu = res$mu, sigma = res$sigma,
+ lambda = res$lambda)
+ qconf <- summary(res, p = ppoints(n), conf.level = 0.90)$qconf.int
+ ans <- t(cbind(q, qconf, res$data, res$weights, x, method))
+ return(ans)
+ }
R> q1 <- matrix(unlist(sapply(1:4, function(x)
+ quant(x, method = 1, results = results))), ncol = 7, byrow = TRUE)
R> q2 <- matrix(unlist(sapply(1:4, function(x)
+ quant(x, method = 2, results = results))), ncol = 7, byrow = TRUE)
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Figure 6: Q-Q plots and 90% confidence bands (grey line). Darker points are associated with
smaller weights.

R> q3 <- matrix(unlist(sapply(1:4, function(x)
+ quant(x, method = 3, results = results))), ncol = 7, byrow = TRUE)
R> q <- as.data.frame(rbind(q1, q2, q3))
R> colnames(q) <- c("q", "qlower", "qupper", "Cost", "weights", "drg",
+ "method")
R> q$drg <- factor(q$drg, labels = APDRG)
R> q$method <- factor(q$method, labels = c("ML", "1SWL", "FIWL"))
R> print(xyplot(Cost ~ q | drg + method, data = q,
+ xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles",
+ fill.color = grey(q$weights), q = q,
+ panel = function(x, y, fill.color, ..., subscripts, q) {
+ fill <- fill.color[subscripts]
+ q <- q[subscripts, ]
+ panel.xyplot(x, y, pch = 21, fill = fill, col = "black", ...)
+ panel.xyplot(x, y = q$qupper, type = "l", col = "grey75")
+ panel.xyplot(x, y = q$qlower, type = "l", col = "grey75")
+ }))
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A. τ scale regression
In this section we briefly review the definition of τ scale and τ regression. For a detailed
description see Maronna, Martin, and Yohai (2006).
Let ρ be a function satisfying the following properties (A): (i) ρ(0) = 0; (ii) ρ is even; (iii) if
|x1| < |x2|, then ρ(x1) ≤ ρ(x2); (iv) ρ is bounded; (v) ρ is continuous.
Then, an M scale (Huber 1981) based on ρ is defined by the value s satisfying

1
n

n∑
j=1

ρ

(
uj
s

)
= b ,

where b is a given scalar and 0 < b < a = sup ρ. Yohai and Zamar (1988) introduce the family
of τ scales. A τ scale is based on two functions ρ1 and ρ2 satisfying properties A and such
that ρ2 ≤ ρ1. To define a τ scale, one considers an M scale s2

1(u) based on ρ1. Then, the τ
scale is given by

τ2(u) = s2
1(u) 1

n

n∑
j=1

ρ2

(
uj

s1(u)

)
.

τ scale estimators can be extended easily to the linear regression case. Let us consider the
regression model

yj = β>xj + ej , 1 ≤ j ≤ n ,

where β = (β1, . . . , βp)> and xj = (xj1, . . . , xjp)>. For a given β, let rj(β) = yj − β>xj be
the corresponding residuals. The scale τ2(r1(β), . . . , rn(β)) may be considered as a measure
of goodness-of-fit. Based on this remark, Yohai and Zamar (1988) define robust estimators
of the coefficients of a regression model by

β̂ = arg min
β
τ (r1(β), . . . , rn(β)) .

These estimators are called τ regression estimators. If a/b = 0.5, the τ estimators have
breakdown point (BDP) close to 50% (Yohai and Zamar 1988). Moreover, we note that, if
ρ2(u) = u2, τ2(u1, . . . , un) = ave(u2

j ) and the regression τ estimator coincides with the least
squares estimator. Therefore, taking as ρ2 a bounded function close to the quadratic function,
the regression τ estimators can be made arbitrarily efficient for normal errors. If the errors
ej are heteroscedastic with variances proportional to σ2

j , the efficiency of β̂ can be improved
by means of a weighted procedure. A regression weighted τ estimator is given by

β̂ = arg min
β
τ (r∗1(β), . . . , r∗n(β)) ,

where r∗j (β) = rj(β)/σj .
Usually, one chooses ρ1 and ρ2 in the Tukey biweight family

ρ(u, c) =
{

3(u/c)2 − 3(u/c)4 + (u/c)6 if |u| ≤ c ,
1 if |u| > c ,

using two values c1 and c2 of the tuning parameter c. For example, one can take c1 = 1.548
and c2 = 6.08. With b = 0.5, these values yield regression estimators with breakdown point
0.5 and normal efficiency of 95%.
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B. Residual adjustment functions
The literature provides several proposals for selecting the RAF. In the following, we recall
two of them. The RAF based on the power divergence measure (PWD; Cressie and Read
1984, 1988), is given by

Apdm(δ, τ) =
{
τ
(
(δ + 1)1/τ − 1

)
τ <∞,

log(δ + 1) τ →∞.

Special cases are maximum likelihood (τ = 1), Hellinger distance (τ = 2), Kullback-Leibler
divergence (τ →∞), and Neyman’s chi-square (τ = −1). The RAF based on the generalized
Kullback-Leibler divergence (GKL; Park and Basu 2003) is given by:

Agkl(δ, τ) = log(τδ + 1)
τ

, 0 ≤ τ ≤ 1 .

Special cases are maximum likelihood (τ → 0) and Kullback-Leibler divergence (τ = 1). This
RAF can be interpreted as a linear combination between the likelihood divergence and the
Kullback-Leibler divergence. A further example is the RAF corresponding to the negative
exponential disparity (NED; Lindsay 1994)

A(δ) = 2− (2 + δ) exp(−δ),

which, for discrete models, is second order efficient.

C. Reference chart
Hereafter we provide the reference chart for the main function loggammarob. The usage has
the following form

R> loggammarob(x, start = NULL, weights = rep(1, length(x)),
+ method = c("oneWL", "WQTau", "WL", "QTau", "ML"), control, ...)

where
x is a numeric vector, which contains the data.
start is NULL or a numeric vector containing the starting values of location, scale, and shape
to be used when method is "WL", "oneWL" and "ML". Method "QTau" does not require starting
values. When start is NULL, the methods "QTau" and "WQTau" are called in a series to compute
the starting values.
weights is a numeric vector containing the weights for method "QTau".
method is a character string to select the method. The default is "oneWL" (one step weighted
likelihood estimate starting from "WQTau"). Others available methods are "WL" (fully iterated
weighted likelihood estimate), "WQTau" (weighted Qτ estimate), "QTau" (Qτ estimate), and
"ML" (maximum likelihood estimate).
control is a list, which contains an object as returned by the function loggammarob.control.
... further arguments that can be directly passed to the function.



Journal of Statistical Software 21

The function returns an object of class ‘loggammarob’. This is a list with the following
components:
mu: location parameter estimate.
sigma: scale parameter estimate.
lambda: shape parameter estimate.
eta: estimate of E(exp(x)).
weights: the final weights.
iterations: number of iterations.

Affiliation:
Claudio Agostinelli
Department of Mathematics
University of Trento
Trento, Italy
E-mail: claudio.agostinelli@unitn.it

Alfio Marazzi
University of Lausanne
Lausanne, Switzerland
E-mail: Alfio.Marazzi@chuv.ch

Víctor J. Yohai
University of Buenos Aires
Buenos Aires, Argentina
E-mail: victoryohai@gmail.com

Alex Randriamiharisoa
University of Lausanne
Lausanne, Switzerland
E-mail: Alex.Randriamiharisoa@chuv.ch

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
May 2016, Volume 70, Issue 7 Submitted: 2013-10-23
doi:10.18637/jss.v070.i07 Accepted: 2015-04-11

mailto:claudio.agostinelli@unitn.it
mailto:Alfio.Marazzi@chuv.ch
mailto:victoryohai@gmail.com
mailto:Alex.Randriamiharisoa@chuv.ch
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v070.i07

	Introduction
	Robust estimation and inference
	Weighted likelihood estimators

	Algorithms and implementation
	Computation of Qtau and WQtau
	Computation of FIWL and 1SWL

	An illustration
	Tau scale regression
	Residual adjustment functions
	Reference chart

