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Drivers of sociality in Gobiodon fishes: An assessment of phylogeny,
ecology and life-history

Abstract
What drives the evolution of sociality in animals? Many robust studies in terrestrial organisms have pointed
toward various kinship-based, ecological and life-history traits or phylogenetic constraint which have played a
role in the evolution of sociality. These traits are not mutually exclusive and the exact combination of traits is
likely taxon-specific. Phylogenetic comparative analyses have been instrumental in identifying social lineages
and comparing various traits with non-social lineages to give broad evolutionary perspectives on the
development of sociality. Few studies have attempted this approach in marine vertebrate systems. Social
marine fishes are particularly interesting because many have a pelagic larval phase and non-conventional life-
history strategies (e.g. bi-directional sex-change) not often observed in terrestrial animals. Such strategies
provide novel insights into terrestrially-derived theories of social evolution. Here, we assess the strength of the
phylogenetic signal of sociality in the Gobiodon genus with Pagel's lambda and Blomberg's K parameters. We
found some evidence of a phylogenetic signal of sociality, but factors other than phylogenetic constraint also
have a strong influence on the extant social state of each species. We then use phylogenetic generalized least
squares analyses to examine several ecological and life-history traits that may have influenced the evolution of
sociality in the genus. We found an interaction of habitat size and fish length was the strongest predictor of
sociality. Sociality in larger species was more dependent on coral size than in smaller species, but smaller
species were more social overall, regardless of coral size. Finally, we comment on findings regarding the
validity of the species G. spilophthalmus which arose during the course of our research. These findings in a
group of marine fishes add a unique perspective on the evolution of sociality to the excellent terrestrial work
conducted in this field.
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Highlights 

 A phylogeny for the genus Gobiodon was inferred from seven molecular markers and 

resolved several previously unresolved nodes 

 There is some evidence for a phylogenetic signal of sociality in the genus Gobiodon 

 A combination of ecological and life-history factors best predicts sociality in the genus 

Gobiodon 

 Phylogenetic analysis reveals potential issues surrounding the identification and validity of 

Gobiodon spilophthalmus 

Abstract 

What drives the evolution of sociality in animals? Many robust studies in terrestrial organisms have 

pointed toward various kinship-based, ecological and life-history traits or phylogenetic constraint 

which have played a role in the evolution of sociality. These traits are not mutually exclusive and the 

exact combination of traits is likely taxon-specific. Phylogenetic comparative analyses have been 

instrumental in identifying social lineages and comparing various traits with non-social lineages to 

give broad evolutionary perspectives on the development of sociality. Few studies have attempted 



 

 

this approach in marine vertebrate systems. Social marine fishes are particularly interesting because 

many have a pelagic larval phase and non-conventional life-history strategies (e.g. bi-directional sex-

change) not often observed in terrestrial animals. Such strategies provide novel insights into 

terrestrially-derived theories of social evolution. Here, we assess the strength of the phylogenetic 

signal of sociality in the Gobiodon genus with Pagel’s lambda and Blomberg’s K parameters. We 

found some evidence of a phylogenetic signal of sociality, but factors other than phylogenetic 

constraint also have a strong influence on the extant social state of each species. We then use 

phylogenetic generalized least squares analyses to examine several ecological and life-history traits 

that may have influenced the evolution of sociality in the genus. We found an interaction of habitat 

size and fish length was the strongest predictor of sociality. Sociality in larger species was more 

dependent on coral size than in smaller species, but smaller species were more social overall, 

regardless of coral size. Finally, we comment on findings regarding the validity of the species G. 

spilophthalmus which arose during the course of our research. These findings in a group of marine 

fishes add a unique perspective on the evolution of sociality to the excellent terrestrial work 

conducted in this field.  
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1. Introduction 1 

The question of how sociality first arose in animals has attracted much attention in the fields of 2 

evolutionary ecology and animal behaviour. Many mechanisms are thought to contribute to the 3 

evolution of sociality including ecological factors, life-history traits and phylogeny (Arnold and Owens, 4 

1998; Emlen, 1982; Hamilton, 1964; Hatchwell and Komdeur, 2000; reviewed in Hing et al., 2017; Kokko 5 

and Ekman, 2002). These features are not mutually exclusive and may be highly dependent on each 6 

other (Arnold and Owens, 1998; Chapple, 2003). Hamilton’s rule predicts that sociality should evolve 7 

under certain combinations of relatedness and costs and benefits of social actions and is widely 8 

regarded as a universal framework to study social evolution (Bourke, 2014; Hamilton, 1964). Ecology, 9 

life-history and relatedness change the costs and benefits conferred to individuals within the group. 10 

Under this framework, individuals should receive greater inclusive fitness benefits if they form social 11 

groups with close relatives (Briga et al., 2012; Hughes et al., 2008). Groups consisting of unrelated 12 

individuals are also possible if ecological or life-history factors alter the direct costs and benefits of 13 

group living such that the benefits outweigh the costs (e.g. Buston et al., 2007; Riehl, 2011).  14 

Phylogenetic relationships among taxa can constrain the evolution of sociality which may predispose 15 

species to sociality (e.g. Agnarsson, 2002; Nowicki et al., 2018; Schneider and Kappeler, 2014; 16 

Smorkatcheva and Lukhtanov, 2014). However, the extant state of sociality may depend on various 17 

ecological and life-history conditions (Chapple, 2003; Rubenstein and Lovette, 2007; Schürch et al., 18 

2016). For example, altered environmental conditions and extreme weather events could reduce habitat 19 

sizes for a normally social species, increasing animal density and increasing conflict within the group 20 

ultimately leading to a reduction in sociality (Hing et al., 2018). On the other hand, some species in 21 

which sociality has a strong phylogenetic signal (that is, sociality is highly constrained), may maintain 22 

their sociality regardless of other factors (Kruckenhauser et al., 1999; Nowicki et al., 2018; Shultz et al., 23 



 

 

2011). In either case, understanding the strength of the relationship between phylogeny and sociality 24 

can help us to understand what role phylogeny played in the evolution of sociality.  25 

The majority of studies of sociality have been conducted on birds, mammals and invertebrates wherein 26 

subordinates are usually related to dominants and display natal philopatry (Bourke, 2011; Hing et al., 27 

2017; Jennions and Macdonald, 1994; Jetz and Rubenstein, 2011; Rubenstein and Abbot, 2017). Habitat 28 

specialist fishes on the other hand provide a unique opportunity to study social evolution as they often 29 

reside in groups with low relatedness due to a pelagic larval phase (contrary to most terrestrial species; 30 

Avise and Shapiro, 1986; Buston et al., 2007; but see Buston et al., 2009). In particular, coral gobies of 31 

the genus Gobiodon are ideal for testing hypotheses about sociality as they display a wide variety of 32 

social phenotypes (Thompson et al., 2007; Wong et al., 2007), are easily observed because they occupy 33 

discrete habitat patches (Wong and Buston, 2013) and their phylogenetic relationships are reasonably 34 

well established (Duchene et al., 2013; Hing et al., 2017). 35 

Several previous studies have examined phylogenetic relationships among species of Gobiodon 36 

(Agorreta et al., 2013; Duchene et al., 2013; Harold et al., 2008; Herler et al., 2009; Thacker and Roje, 37 

2011). However, these studies have focused on relationships within the genus or more broadly at the 38 

family level (Gobiidae). To date, no studies have investigated the phylogenetic patterns of sociality in 39 

this genus. Duchene et al. (2013) examined the coevolution of Gobiodon species with their host corals 40 

and provides the most recent and comprehensive phylogeny of the Gobiodon genus. Likewise, there 41 

have been a number of studies investigating the causes and consequences of sociality in coral gobies 42 

(Gobiodon and Paragobiodon), but these studies have often focussed on a single species or a subset of 43 

species within the genus (Hing et al., 2018; Hobbs and Munday, 2004; Hobbs et al., 2004; Munday et al., 44 

2006; Thompson et al., 2007; Wong, 2010, 2011; Wong et al., 2007). Furthermore, no studies so far have 45 

examined the relationship between sociality and ecological and life history traits across the genus 46 

Gobiodon while controlling for phylogeny, and hence tested key hypotheses of social evolution.  47 



 

 

In this study we resolved the phylogenetic relationships within the genus Gobiodon at Lizard Island 48 

(Great Barrier Reef, Queensland, Australia) using seven molecular markers. Our reconstruction builds on 49 

the inferred phylogeny of Duchene et al. (2013) by increasing the number of molecular markers used,  50 

thereby inferring a phylogenetic tree with greater confidence. We then assessed the phylogenetic signal 51 

of sociality in the genus. Given previous work on Gobiodon demonstrated plasticity in social organization 52 

in response to extreme weather events (Hing et al., 2018), we expected to find a relatively weak 53 

phylogenetic signal of sociality. However, we did not know a priori what the strength of the signal would 54 

be and hence the extent to which shared evolutionary history of species would contribute to present 55 

day patterns of sociality. We therefore tested a range of ecological and life-history characteristics with 56 

phylogenetic structure in the models to assess the role these factors might have played in the evolution 57 

of sociality in Gobiodon.  58 

Previous studies have shown significant relationships between group size and the factors of habitat size 59 

and body size in closely related species of coral gobies and more broadly in other species of habitat 60 

specialist fish (Amphiprion percula, Buston, 2003; Paragobiodon, Gobiodon and Eviota, Thompson et al., 61 

2007; Paragobiodon xanthosoma, Wong, 2011). Most of the species in these previous studies form size 62 

based social hierarchies and habitat size and body size have been shown to predict group size in these 63 

species. A similar relationship has also been demonstrated between sociality and ecological generalism 64 

in snapping shrimp (Brooks et al., 2017). Coral gobies are generally considered to be highly specialized in 65 

their choice of corals (Munday et al., 1997). However, we observed considerable variation in coral 66 

choice for some species, especially after extreme weather events (Hing et al., 2018). We also observed 67 

some variation in social structure and therefore aimed to investigate whether a relationship existed 68 

between sociality and host generalization. Hence, we specifically focused on two ecological variables: i) 69 

host-coral size and ii) host coral generalization (the ability to inhabit a broad range of host coral species), 70 

and one life-history variable iii) body size, and assessed their relationship with sociality. 71 



 

 

Finally, we present findings on Gobiodon spilophthalmus concerning its phylogenetic placement, which 72 

arose during our analyses. This is the first study to assess the phylogenetic basis and ecological and life 73 

history correlates of sociality in Gobiodon and therefore provides an important starting point for 74 

understanding the evolution of sociality in marine fishes.  75 

2. Methods 76 

2.1. Ethics approvals and research permits 77 

All research activities for this study were conducted with the approval of the University of Wollongong 78 

Animal Ethics Committee (AE14-04, AE14-29). We conducted our research in the Great Barrier Reef 79 

Marine Park under permits G13/36197.1 and G15/37533.1.  80 

2.2. Field Sampling 81 

Tissue samples of fifteen species of Gobiodon were collected from 23 sites around Lizard Island between 82 

February - March 2014 and January – February 2016 (Table 1, Fig 1). However, G. spilophthalmus was 83 

removed from the analyses as barcoding analysis of the CO1 gene demonstrated the individuals 84 

collected were likely juvenile specimens of G. acicularis and G. ceramensis (Section 3.4). We searched all 85 

species of Acropora, Stylophora, Seratopora and Echinopora known to host Gobiodon fishes along 30 m 86 

transects in the study area (Munday et al., 1999). Transects were placed haphazardly at each site and 87 

only used as a reference to aid in the relocation of tagged corals (i.e. transects were not used for any 88 

kind of spatial analysis). In total, 21 species of coral were recorded.  89 



 

 

 90 

Fig 1. Map of study sites at Lizard Island, Australia. Dotted lines indicate reef structure. Site names are in 91 

regular font. Numbered sites are: Big Vickey’s Reef (1); Vickey’s Reef (2); Horse Shoe Reef (3); Palfrey 92 



 

 

Reef (4 – 4a); Loomis Reef (5); Trawler (6); Picnic Beach (7); Ghost Beach (8); Bird Island Reef (9); 93 

Entrance Bommie (10); Bird Bommie (11); Lizard Head Reef (12).  94 

 95 

Corals were searched by divers with the aid of an underwater light for the presence of gobies. Corals 96 

hosting gobies were identified to species and measured along three axes (length, width and height: Hing 97 

et al., 2018). Gobies were removed from the corals by anesthetising them with a clove oil solution and 98 

creating a current by hand (Munday and Wilson, 1997). The species and number (group size) of captured 99 

fish was recorded and brought to a boat for processing. On the boat, fish were placed into a large 100 

container of regularly refreshed seawater to maintain constant temperature and aeration. Each fish was 101 

anesthetised and measured to the nearest 0.01 cm with vernier callipers and a small caudal fin clip (~1-2 102 

mm) of each individual was preserved in ethanol. After processing, fish were released back to their 103 

original coral of capture.  104 

2.3. Ecological and life-history factors 105 

Coral size was calculated as the simple average diameter, (L + W + H)/3 as it provides a good 106 

representation of the major axis of the coral (Kuwamura et al., 1994). Ecological generalisation was 107 

assessed as the number of host-coral species each goby species was observed to occupy. We added 108 

observations from three subsequent field trips between August 2014 and February 2016 for the 109 

ecological generalisation analyses as two cyclones impacted the study site over this period (Hing et al., 110 

2018). We reasoned that these impacts had the potential to alter normal patterns of residency and 111 

species adhering to a ‘specialist’ strategy would possibly broaden their host-species range under 112 

extreme circumstances. We therefore wished to capture any variation these disturbances caused for 113 

this analysis.  114 



 

 

Body size was chosen as a life-history trait of interest for this study. We measured the standard length 115 

(tip of the snout to caudal peduncle) of each individual. Standard length was used rather than total 116 

length as many individuals had sustained damage to the caudal fin and an accurate measure of total 117 

length could not be obtained. 118 

2.4. Sociality index 119 

We used a sociality index proposed by Avilés and Harwood (2012). The index is an average for each 120 

species, of the proportion of groups in the study population, proportion of subordinates in the study 121 

population and proportion of the life-cycle spent in a group. The proportion of the life-cycle spent in a 122 

group may be an important indicator of delayed dispersal in some species. However, coral gobies 123 

undergo a pelagic larval phase prior to joining a group where they typically remain in a social queue to 124 

obtain breeding status (i.e. they do not delay dispersal, but do tend to remain in a group once settled). 125 

Therefore, we assumed the proportion of the life-cycle spent in the group was 1 for all species and the 126 

main variation in sociality in coral gobies was caused by the remaining two components of the sociality 127 

index. The proportion of groups in the study population is indicative of a species’ tendency to form 128 

groups, while the proportion of subordinates in the study population (associated with the proportion of 129 

groups) is an indication of behaviour in terms of the subordinate’s willingness to join a group and the 130 

dominant member’s willingness to tolerate them. The social index ranges from 0 to 1. Raw index values 131 

were used in the Generalized Least Squares analyses (Section 2.9). 132 

Table 1. 133 

Goby species observed at Lizard Island with number of tissue samples obtained. Number of host-coral 134 

species was used as a measure of host-generalization. Mean standard length (SL) and host-coral size (CS) 135 

were calculated for each species. 136 



 

 

Goby spp 
Tissue 
Samples (n) 

Coral species 
inhabited (n) Mean SL (cm) Mean CS (cm) 

G. acicularis 3 1 1.91 55.20 

G. aoyagii† 3 2 2.49 26.41 

G. axillaris 3 4 3.09 23.76 

G. brochus 4 9 2.54 16.50 

G. ceramensis 6 2 2.69 27.23 

G. citrinus 3 3 2.79 91.49 

G. erythrospilus 3 11 2.60 23.31 

G. fuscoruber†† 4 10 2.75 29.95 

G. histrio 3 10 2.80 23.22 

G. oculolineatus 3 9 2.44 23.86 

G. okinawae 3 11 2.12 43.95 

G. quinquestrigatus 6 11 2.49 21.33 

G. rivulatus 3 8 1.65 21.70 

G. spilophthalmus c.f.‡ 6 - - - 

G. species D 3 1 2.84 27.33 

P. xanthosoma 1 1 1.72 26.53 

† G. aoyagii was previously referred to as G. species A as a placeholder but has now been formally 137 

described by Shibukawa et al. (2013). 138 

†† G. unicolor (sensu Munday et al., 1999) was reassigned as G. fuscoruber by Herler et al. (2013). 139 

‡ Measurements of ecological and life-history factors were not obtained for G. spilophthalmus c.f. as 140 

they were determined to be juveniles of other species and excluded from analyses.  141 

2.5. DNA extraction, amplification and sequencing 142 



 

 

DNA was extracted from fin clips for two to three individuals of each species of Gobiodon and one 143 

individual Paragobiodon xanthosoma which was used as an outgroup to the Gobiodon genus (Table 1). 144 

We used a standard Proteinase-K salting out procedure to extract DNA (Aljanabi and Martinez, 1997). 145 

DNA was resuspended in 20-50 µl of TE solution (1 mM Tris-HCl, 0.1 mM ethylenediaminetetraacetic 146 

acid [pH 8]) and stored at 4 oC. We amplified nuclear recombination activating gene 1 (RAG1), nuclear 147 

zinc finger protein of the cerebellum 1 (ZIC1) and the mitochondrial cytochrome c oxidase subunit 1 148 

(CO1) gene using generic fish primers for each gene (primer sequences available in Supplementary Table 149 

S1; Holcroft, 2005; Li et al., 2007; Ward et al., 2005 respectively). Where weak amplification occurred, 150 

goby specific primers were designed using an alignment of the appropriate gene region made up of 151 

sequences obtained from species which showed strong amplification (Supplementary Table S1). 152 

Polymerase Chain Reactions (PCRs) were performed using MyTAQ Polymerase (Bioline, Australia) in 153 

accordance with the manufacturer’s instructions. The PCR conditions consisted of 2 minutes at 95 oC, 35 154 

cycles of 1 minute at 94 oC, 1 minute at 45 - 65 oC (optimised for each gene and species), 1 minute at 72 155 

oC and a final elongation of 5 minutes at 72 oC. PCR products were checked for length and strength of 156 

amplification using 1% agarose gel electrophoresis. ExoSAP-IT (GE Healthcare, Bucks, UK) was used to 157 

treat each PCR product prior to sequencing using the ABIPRISM BigDye Terminator v3.1 Cycle 158 

Sequencing Kit (Applied Biosystems, Australia). Each PCR product was sequenced in both the forward 159 

and reverse direction. 160 

2.6. Sequence Alignment  161 

Alignment of RAG1, ZIC1 and CO1 genes was trivial, because there were no internal indels in the 162 

alignment – both ClustalW and MUSCLE (within MEGA7; Kumar et al., 2016) produced alignments with 163 

only leading and trailing gaps, where the length of reliable sequence was slightly different. The default 164 

settings for both ClustalW and MUSCLE were used.  165 



 

 

Once COI, RAG1 and ZIC1 sequences had been obtained for 2 to 3 individuals of each species, consensus 166 

sequences were established using Bioedit (Hall, 1999). We then constructed additional consensus 167 

sequences for 12S and 16S rRNA genes (obtained from GenBank, accession numbers available in 168 

Supplementary Table S2) for the species in our study and obtained further consensus sequences for the 169 

nuclear ribosomal protein S7 Intron 1 chromosome 2 (S7I1) gene and mitochondrial cytochrome b (cytb) 170 

from GenBank (Supplementary Table S2; Duchene et al., 2013; Harold et al., 2008; Herler et al., 2009). 171 

All seven genes (RAG1, ZIC1, S7I1, COI, cytochrome b, 12S and 16S) were concatenated for each species. 172 

2.7. Phylogenetic analysis 173 

Partitioning schemes and nucleotide substitution models were established with PartitionFinder version 174 

1.1.1 (Lanfear et al., 2012) using the corrected Akaike Information Criterion (AICc) and a heuristic search 175 

algorithm with branch lengths unlinked. We performed the analysis on 7 datablocks, one for each gene. 176 

Priors for the branching process and times were set as follows: the tree prior was a Yule model, the birth 177 

rate had a uniform prior, as did the clock rates for each of the gene partitions. A strict clock was set for 178 

each partition, but the clock rate was unlinked between partitions. Phylogenetic trees were then 179 

inferred from Bayesian analysis conducted on BEAST2 v2.4.2 (Bouckaert et al., 2014; Drummond et al., 180 

2012) in which unlinked partitions and a Markov Chain Monte Carlo (MCMC) process with a chain length 181 

of 100 million was specified. No calibration information was used as we only wished to examine relative 182 

estimates of branching times. Separate BEAST analyses were also conducted on the concatenated 183 

mitochondrial data (since the mitochondrial genes represent a single, linked locus), and each nuclear 184 

gene fragment. These trees are reported in the supplementary material. The trees recovered from the 185 

individual nuclear gene analyses were generally poorly resolved, with many nodes having low posterior 186 

probability support. This is not surprising given the relatively small size of these datasets. The 187 

mitochondrial tree was well resolved (with high posterior probability support), but differed in the 188 



 

 

placement of one clade (i.e. Fig 3, clade B) when compared with the ‘full data’ set. We focus here on the 189 

‘full data’ set, because it is larger and contains information from multiple (mitochondrial and nuclear) 190 

sources.  191 

Stationarity was assessed with Tracer v1.6 (Rambaut et al., 2018).  In initial BEAST analyses, stationarity 192 

was not reached after 100 million generations (expected sample sizes (ESS) values generally less than 193 

200), primarily because some parameter values were very close to zero. However, when the nucleotide 194 

substitution model for 6 of the 7 gene partitions was simplified (from GTR to HKY; in one of the gene 195 

partitions, PartitionFinder suggested JC69, and this was kept as JC69), stationarity was reached after 100 196 

million generations, with all EES values greater than 200. A maximum likelihood analysis was also 197 

conducted using “Randomized Axelerated Maximum Likelihood” (RAxML) version 8 (Stamatakis, 2014). 198 

The Gamma model of rate heterogeneity was used with branch lengths optimized per gene and the 199 

proportion of invariable sites estimated. A maximum likelihood search was then applied to find the best 200 

scoring tree.  201 

2.8. Phylogenetic signal 202 

Phylogenetic signal of sociality was calculated in R using the phylosig() function of the phytools package 203 

(Revell, 2012). We used the social index for each species and the Bayesian summary tree for the 204 

analyses. We calculated both Pagel’s lambda (Pagel, 1999) and Blomberg’s K (Blomberg et al., 2003) 205 

statistics and produced tests against a null hypothesis of no phylogenetic signal using a likelihood ratio 206 

test and randomization test respectively.  207 

2.9. Phylogenetic Generalized Least Squares models 208 

Phylogenetic Generalized Least Squares was used to assess relationships between sociality and 209 

ecological and life-history traits while taking into account phylogenetic non-independence between 210 

species. Sociality index was the dependent variable and the ecological and life-history traits were 211 



 

 

included as main and interacting effects. We used a summary of the Bayesian inferred phylogenetic tree 212 

for this analysis. All pGLS analyses were conducted using the nlme package in R (Pinheiro et al., 2018). 213 

Four models of trait evolution (Brownian motion, Pagel’s Lambda, Blomberg ACDC and Ornstein-214 

Uhlenbeck) available in the ape package (Paradis et al., 2004) were applied to each of the relationships. 215 

As we had no a priori expectations of the type of selection sociality might be under, we chose the best 216 

model to present by comparing Akaike’s Information Criterion (AIC). An analysis of deviance was 217 

conducted using the Car package (Fox and Weisberg, 2011) on the best model to identify factors that 218 

significantly deviated from the null model.  219 

2.10. Gobiodon spilophthalmus 220 

Gobiodon spilophthalmus was first described by Fowler (1944). However this description was based 221 

upon a single preserved specimen. We therefore based our identification on Munday et al. (1999) who 222 

provide a live specimen photo and describe G. spilophthalmus as uniform black in colour and only 223 

distinguishable from G. ceramensis (also uniform black as adults) in the juvenile phase. The juveniles of 224 

G. spilophthalmus are white with black stripes along the body and black spots on the head (Fig 2 (i)). We 225 

collected specimens morphologically similar to those depicted in Munday et al. (1999) as G. 226 

spilophthalmus. During collection, we noted a small G. ceramensis changed colour upon capture from 227 

uniform black to the black and white stripes and spots similar to that described for juvenile G. 228 

spilophthalmus. This was observed again in 2019 by colleagues at One Tree Island, Australia (Froehlich 229 

pers. comm.; Fig 2 (v)). These observations prompted a closer examination of our G. spilophthalmus c.f. 230 

specimens. G. spilophthalmus c.f. specimens were found on the coral species Seriatopora hystrix and 231 

Echionopora horrida which are also inhabited (almost exclusively) by G. ceramensis and G. acicularis 232 

respectively (Fig 2 (iii, iv) photos). Other G. spilophthalmus c.f. specimens were sometimes observed 233 

associating with groups of G. ceramensis or G. acicularis. To investigate this further, we sequenced the 234 



 

 

barcoding region (COI) of individuals resembling G. spilophthalmus from independent colonies of S. 235 

hystrix and E. horrida, and compared them with individuals of G. ceramensis and G. acicularis. First, we 236 

conducted an Automatic Barcode Gap Discovery (ABGD) analysis which groups COI sequences into 237 

hypothetical species based on automatic detection of the ‘barcode gap’, the natural break in sequence 238 

divergence that occurs when within-species divergence is compared to between-species sequence 239 

divergence (Puillandre et al., 2012). We used the default settings and Kimura 2-P (K80) distances. We 240 

then conducted a Bayesian phylogenetic analysis of the COI gene of G. acicularis, G. ceramensis and G. 241 

spilophthalmus c.f. using BEAST2. In this analysis we coded each individual with the species of coral it 242 

was collected from. We used the same methods described above (sections 2.6 and 2.7) for sequence 243 

alignment and Bayesian analysis to infer a gene tree for this species group using G. okinawae as an 244 

outgroup. Furthermore, Gobiodon heterospilos is described as similar in appearance to G. 245 

spilophthalmus but lacking the black body stripes (presumably in the juvenile phase; Munday et al., 246 

1999). Steinke et al. (2017) deposited three COI sequences on the BOLD database for G. heterospilos 247 

from Lizard Island, however the photo attached to the only juvenile in their collection (BOLD record 248 

LIFS847-08) clearly possesses black body stipes. We therefore conducted a second Bayesian 249 

phylogenetic analysis using the same methods described above (sections 2.6 and 2.7) of our specimens 250 

of G. acicularis, G. ceramensis, G. spilophthalmus c.f. and the G. heterospilos sequences deposited by 251 

Steinke et al. (2017) in order to determine if G. heterospilos c.f. could be differentiated from species 252 

identified in our collection. 253 



 

 

 254 



 

 

Fig 2. Gobiodon spilophthalmus as depicted by Munday et al. (1999) (i) and G. heterospilos sample 255 

deposited by Steinke et al. (2017) on the BOLD database, record LIFS847-08 (ii). Specimens from our 256 

collection matching descriptions of juvenile G. spilophthalmus collected in 2014 from Seriatopora hystrix 257 

(ii) and Echinopora horrida (iv). A small G. ceramensis transitioning from the suspected juvenile spots 258 

and stripes pattern to the uniform black adult phase (v). 259 

 260 

3. Results 261 

Our results suggest a combination of ecological and life-history factors contributed to the evolution of 262 

sociality in the Gobiodon genus, but sociality by itself also has some evidence of a phylogenetic signal. 263 

Phylogenetic analyses by two methods inferred identical species composition of four clades giving high 264 

confidence in the phylogenetic tree used for pGLS analyses. Phylogenetic generalized least squares 265 

analyses then demonstrated coral size and mean body size of the species likely have a strong influence 266 

on the extant social state of a species (Section 3.3).  267 

3.1. Phylogenetic inference 268 

Both analyses; Bayesian and maximum likelihood, produced four clades (A-D; Fig 3) containing exactly 269 

the same Gobiodon species within each clade. The main difference between both analyses was the 270 

Bayesian tree inferred 2 main sister groups (A/B and C/D sister clades) with strong support (posterior 271 

probability 1.00) while the maximum likelihood tree was unresolved at the base of each sister clade 272 

(bootstrap support <50). However it still produced the same 4 clades with the same configuration. The 273 

two main sister groups inferred with the Bayesian tree each in turn formed two sister clades: clade A 274 

and B with moderate support (posterior probability 0.79) and the sister clades of C and D with strong 275 

support (posterior probability 0.99). Clade A resolved G. acicularis and G. ceramensis as sister species 276 



 

 

(posterior probability 1.00), and contained two other species, G. okinawae (posterior probability 1.00) 277 

and G. citrinus (posterior probability 1.00) (Fig 3). The species G. oculolineatus, G. quinquestrigatus, G. 278 

species D and G. rivulatus made up clade B with G. quinquestrigatus and G. species D as sister taxa 279 

(posterior probability 1.00) (Fig 3). Clade C contained a single sister species group made up of G. aoyagii 280 

and G. brochus (posterior probability 0.99) (Fig 3). Clade D contained two sister species groups, the first 281 

consisting of G. histrio and G. erythrospilus (posterior probability 1.00) and the second consisting of G. 282 

fuscoruber and G. axillaris (posterior probability 1.00) (Fig 3).  283 

 284 

Fig 3. Phylogeny of Gobiodon present at Lizard Island based on 7 molecular markers (4 mtDNA; COI, 285 

cytb, 12S, 16S and 3 nuclear DNA; RAG1, ZIC1, S7I1) produced with Bayesian (i) and maximum likelihood 286 



 

 

(ii) methods. Node values in (i) are posterior probability where * indicates a value of 1. Node values in 287 

(ii) are bootstrap percentages where * indicates a value of 100. 288 

 289 

In the maximum likelihood analysis, the node giving rise to the A/B/C group could not be resolved with 290 

any certainty (bootstrap support <50). However the configuration of the species within each clade was 291 

identical to the Bayesian analysis and resolved with moderate to strong bootstrap support (75 – 100). 292 

The strong support for the nodes within each clade in both analyses signifies reasonable confidence in 293 

the species composition of each clade. The Bayesian analysis produced a tree with very high posterior 294 

probabilities (with the exception of the node relating clades A and B). We therefore based all further 295 

analyses on the Bayesian analysis.  296 

3.2. Phylogenetic signal 297 

There was some evidence of a phylogenetic signal of sociality in the Gobiodon genus. We found little 298 

evidence of a phylogenetic signal of sociality in the genus using Pagel’s lambda (λ = 0.614, P = 0.349). 299 

However, Blomberg’s K displayed some evidence of a phylogenetic signal of sociality (K = 0.802, P = 300 

0.035). Although the value of K represents a relatively low signal, the significant test result indicates it 301 

was stronger than expected under a random distribution of the trait (sociality).  302 

3.3. Phylogenetic generalized least squares 303 

There was a significant interaction between coral size and mean fish length in the pGLS model predicting 304 

sociality (analysis of deviance, df = 1, χ2 = 4.845, λ = 1.043, P = 0.028). The model predicted coral size 305 

would have little impact on sociality for smaller species, but smaller species would generally be more 306 

social (social index approximately 0.75, Fig. 4). On the other hand, sociality in larger species was much 307 

more dependent on host-coral size (Fig 4). In other words, smaller species overall are predicted to be 308 



 

 

more social than larger species regardless of the size of coral they inhabit, whereas larger species are 309 

predicted to exhibit sociality only when corals are large. 310 

 311 

Fig 4. Model predictions for the interacting effects of host-coral size and fish length on sociality index. 312 

Raw data are pair-forming species (circles) and group-forming species (triangles). Modelled species 313 

sizes, indicated by different line types (figure legend), range from 1.5 cm (solid) to 3.5 cm (dotted). 314 

 315 

There were no significant interactions between coral size and host generalization or mean fish-length 316 

and host generalization on sociality in the respective models (df = 1, χ2 = 0.781, λ = 1.073, P = 0.377; df = 317 

1, χ2 = 0.024, λ = 1.073, P = 0.878 respectively, Fig 5). This means there was no significant difference in 318 

the relationship between sociality and host-coral size between species that adhere to either specialist or 319 

generalist host strategies. Likewise, there was no significant difference in the relationship between 320 

sociality and fish-length between host-specialist and -generalist species. The main effect of host 321 



 

 

generalization alone was also non-significant (df = 1, χ2 = 0.063, P = 0.803) indicating that the ability to 322 

occupy a greater host-range is not likely to facilitate sociality in these species.  323 



 

 

 324 



 

 

Fig 5. Interacting effects of mean coral size and host-generalization (a) and mean fish length and host-325 

generalization (b) on sociality. Lines in a) are different average coral sizes from 10 cm (solid line) to 75 326 

cm (dotted line). Lines in b) are different mean fish length from 1.5 cm (solid line) to 3.5 cm (dotted 327 

line). Both (a) and (b) raw data are individual species conforming to group-forming (triangles) or pair-328 

forming (circles) strategies.  329 

 330 

While the detection of a phylogenetic signal of sociality was somewhat unconvincing in the test of 331 

Pagel’s Lambda and Blomberg’s K (Section 3.2), the pGLS analyses showed a strong indication of 332 

phylogenetic signal (λ > 1). Taken together these results indicate there is some phylogenetic signal of 333 

sociality, but other effects (such as ecology and life-history) are probably equally, if not more important 334 

in determining the extant social state of a species.  335 

3.4. Gobiodon spilophthalmus 336 

Our analyses revealed the G. spilophthalmus c.f. specimens were likely juveniles of G. acicularis or G. 337 

ceramensis depending on which coral species they were collected from. The ABGD analysis revealed two 338 

distinct species groups, with the G. spliophthalmus c.f. specimens collected from S. hystrix grouping with 339 

G. ceramensis and those collected from E. horrida grouping with G. acicularis. This pattern was also 340 

supported in the Bayesian analysis of these COI sequences (Fig 6). This phylogeny showed G. 341 

spilophthalmus c.f. grouping with both G. ceramensis and G. acicularis, depending on their respective 342 

host corals. Gobiodon ceramensis did split into two groups in this analysis, but HKY distances ranged 343 

from 0.2% to 0.7% indicating extremely low divergence in the COI sequences, a strong indication they 344 

should be considered a single species. When we included the G. heterospilos sequences deposited by 345 

Steinke et al. (2017) into a Bayesian phylogenetic analysis with our G. spilophthalmus c.f., G. ceramensis 346 

and G. acicularis specimens, the G. heterospilos samples were placed in the same groups as G. 347 



 

 

spilophthalmus c.f. (collected from S. hystrix) and G. ceramensis (posterior probability 0.999). We 348 

therefore suspect Steinke et al. (2017) understandably misidentified these specimens in their study and 349 

we did not include them in further analyses. These analyses indicate the specimens we collected, which 350 

were morphologically similar to G. spilophthalmus, were most likely juveniles of either G. ceramensis or 351 

G. acicularis and could be reliably differentiated by the species of coral they were collected from. We 352 

therefore did not include G. spilophthalmus in our broader phylogenetic analyses.  353 

 354 

Fig 6: Phylogenetic tree produced with Bayesian analysis showing G. acicularis grouping with specimens 355 

resembling G. spilophthalmus, and the two groups of G. ceramensis also recovered with specimens 356 

resembling G. spilophthalmus. Node values are posterior probabilities. Values for internal nodes of each 357 

species group are not displayed as the placement of individuals within each group is irrelevant. Species 358 



 

 

names are abbreviated to acic (G. acicularis), spil (G. spilophthalmus c.f.), cera (G. ceramensis) and the 359 

outgroup, oki (G. okinawae). Letters immediately following each species abbreviation indicates the coral 360 

species the specimen was collected from; Echinopora horrida (E), Seriatopora hystrix (h) and Stylophora 361 

pistillata (p). The last three characters are an individual identifier. The outgroup was a consensus 362 

sequence (cons) of the COI gene. 363 

 364 

4. Discussion 365 

Our analyses provide evidence of some phylogenetic signal of sociality in the coral-gobies, Gobiodon. In 366 

contrast to several other vertebrate groups which display strong phylogenetic signals of sociality, our 367 

findings suggest factors such as ecology, life-history or both, likely have a stronger impact on which 368 

species display sociality at any given time (Kruckenhauser et al., 1999; Nowicki et al., 2018; Shultz et al., 369 

2011). In support of this, Hing et al. (2018) showed the mean group size of social species of Gobiodon 370 

displayed plastic responses following multiple major ecological disturbances, suggesting sociality may be 371 

quite flexible in Gobiodon species rather than phylogenetically constrained.  372 

While Hing et al. (2018) did not delve into any species-specific trends, it is possible the observed social 373 

plasticity was driven by a few key species (e.g. G. acicularis, G. erythrospilus, G. fuscoruber, G. histrio and 374 

G. okinawae). These particular species have social indices close to 0.5 (the value exactly half-way 375 

between theoretically perfect sociality and completely solitary) because there was a relatively even 376 

proportion of groups and pairs in the study population (Hing et al., 2018). This indicates a certain level of 377 

social plasticity in these species – when conditions allow, they will form groups, but they are also able to 378 

survive as a breeding pair. These species are therefore prime candidates for further study of social 379 

plasticity.  380 



 

 

Like many cryptobenthic fishes, Gobiodon species have a pelagic larval phase where the larvae are 381 

mixed with other nektonic organisms (Brandl et al., 2018). It therefore seems likely that relatedness 382 

within the group would be low, as for other marine fishes (Avise and Shapiro, 1986; Buston et al., 2007; 383 

but see Buston et al., 2009), although this is yet to be empirically tested. Low relatedness reduces the 384 

value of ‘r’ in Hamilton’s rule and hence the likelihood of sociality evolving, all else being equal (Bourke, 385 

2014; Hamilton, 1964). For sociality to evolve in such groups, there must therefore be other factors 386 

which alter the direct costs and benefits of group living. This was recently demonstrated in freshwater 387 

cichlids by Dey at al. (2017) who found direct benefits provided from group living, biparental care and 388 

diet type, were more influential than relatedness (associated with social monogamy) in the evolution of 389 

cooperative breeding, a complex form of sociality. This contrasts with many other vertebrate lineages 390 

which often form groups of closely related individuals and in which indirect (kin) benefits are likely to 391 

have heavily influenced the evolution of social groups (Bourke, 2014; Halliwell et al., 2017; Lukas and 392 

Clutton-Brock, 2012; While et al 2009; but see Riehl, 2013). This emphasis on direct costs and benefits 393 

represents an alternate pathway to complex sociality to the kinship-based pathway often proposed in 394 

the vertebrate literature. Alternatives such as this are worthy of further exploration as they offer novel 395 

insights into the evolution of sociality (Dey et al. 2017; Riehl, 2013).  396 

We tested factors known to provide direct fitness benefits in other closely related species, namely the 397 

effects of host coral size, host coral generalization (ecological factors) and body size (life-history factor) 398 

on sociality (Buston, 2003; Thompson et al., 2007; Wong, 2011). We found there was a significant 399 

interaction between host coral size and body size on the degree of sociality when phylogenetic 400 

correlation was accounted for. The relationship between host coral size and sociality was stronger for 401 

lager species. This makes intuitive sense as individuals of larger species would presumably take up more 402 

physical space in a coral. Hence, for larger bodied species to form groups, they would need to inhabit 403 

larger corals on average. On the other hand, smaller species could potentially form larger groups in a 404 



 

 

much larger size-range of corals before the habitat becomes saturated and group members are forced 405 

to disperse from the group. Group sizes of various social fish species are not only influenced by habitat 406 

size, however, and are instead related to size differences maintained between adjacent ranked 407 

individuals (Mitchell & Dill, 2005; Buston et al. 2006; Ang & Manica 2010; Wong 2011). Thus, it is also 408 

possible that smaller bodied species of Gobiodon maintain larger size ratios (smaller size differences) 409 

between adjacent ranked group members than larger bodied species, which would be an important 410 

avenue of future research. 411 

Although smaller species showed less of a relationship between sociality and host-coral size, they were 412 

more social overall than larger species. This may indicate that smaller species obtain greater direct 413 

fitness benefits from social living or face greater constraints of dispersal or greater costs of solitary 414 

living. For example, smaller species might be more prone to predation or less competitive for vacant 415 

habitat compared to larger species, thus limiting dispersal opportunities and enhancing the benefits of 416 

remaining within a group (Helfman and Winkelman, 1997; Munday and Jones, 1998). This finding is 417 

again at odds with other terrestrial vertebrate systems which generally exhibit a positive relationship 418 

between sociality and body size (Armitage, 1981; Bekoff et al., 1981). This discrepancy between 419 

terrestrial and marine vertebrates highlights the importance of studying animal groups with varying life-420 

history strategies.  421 

While host generalization has been proposed as a driver of sociality in some habitat specialist marine 422 

species (Brooks et al., 2017), we found no evidence that it played a role in Gobiodon sociality. There was 423 

considerable variation in the number of host-coral species inhabited by each species of Gobiodon but 424 

this variation showed no discernable pattern in association with sociality. Munday et al. (1997) 425 

demonstrated Gobiodon species have distinct coral preferences. However, our research suggests some 426 

species appear to be more capable of relaxing this preference than others (especially during intense 427 



 

 

ecological disturbance; e.g. Hing et al., 2018). This ability does not however, appear to be related to 428 

sociality. The coral preferences displayed by many Gobiodon species may be due to properties of 429 

particular coral species such as complexity, branch length or inter-branch distances (Untersteggaber et 430 

al., 2014). Sociality might therefore be influenced by coral properties, not measured in this study rather 431 

than variation in host-preference. For example more complex corals might increase the benefits of 432 

remaining in the group (for example by offering greater protection from predators) and thereby 433 

promote sociality. A similar pattern of increasingly complex habitat and a higher density of lizard 434 

aggregations has been documented by Michael et al. (2010). Untersteggaber et al. (2014) demonstrated 435 

that coral occupancy by G. histrio and G. rivulatus was related to coral size and branch length. Given our 436 

findings on sociality and coral size, coral architecture would be an interesting factor to consider in future 437 

studies of Gobiodon sociality.  438 

To date, there have been few comparative studies of marine fishes looking at phylogenetic, ecological 439 

and life-history correlates of sociality across multiple species (Hing et al., 2017; but see Nowicki et al., 440 

2018). In contrast, numerous studies in other vertebrate systems have been instrumental in developing 441 

our current understanding of how ecology (Brown, 1974; Emlen, 1982; Kokko et al., 2002; Kokko and 442 

Ekman, 2002; Stacey and Ligon, 1991) and life-history (Arnold and Owens, 1998; Hatchwell and 443 

Komdeur, 2000; Rowley and Russell, 1990) have influenced the evolution of sociality in these systems 444 

(reviewed in Hing et al., 2017). For example, phylogenetic reconstructions of sociality in other vertebrate 445 

systems have revealed non-random clustering in birds and mammals (Arnold and Owens, 1998; Briga et 446 

al., 2012; Edwards and Naeem, 1993). Closer examination at the genus level has revealed likely 447 

ecological and life-history correlates of sociality (e.g. Armitage, 1981; Faulkes et al., 1997). We have now 448 

added a comparatively understudied group of vertebrates with non-conventional life-histories (marine 449 

fishes) to this knowledge base. Unconventional life-history strategies (such as bi-directional sex change 450 

observed in several species of Gobiodon; Cole, 2011; Cole and Hoese, 2001; Munday et al., 1998; 451 



 

 

Nakashima et al., 1996) likely alter the costs and benefits of group living in these social systems and 452 

therefore represent a unique perspective on social evolution (Buston and Wong, 2014; Hing et al., 2017; 453 

Wong and Buston, 2013).  454 

4.1. Comparison of taxonomic structure  455 

We built upon the phylogeny of Duchene et al. (2013) by adding additional molecular markers. Our 456 

Bayesian analysis inferred similar species composition (albeit with fewer species as we did not sample 457 

from the Red Sea) of each clade to that of Duchene et al. (2013), but the placement of the clades 458 

relative to each other varied between the two studies. Both studies inferred two sister species groups 459 

with high posterior probability. However, the sister clades C/D in our study, inferred with strong 460 

support, were not sister to each other in Duchene et al. (2013). Instead clade C was sister to cade A and 461 

the other group consisted of clades B/D in Duchene et al. (2013). Our tree provides very strong support 462 

for the sister group C/D while the node relating clades C and A in Duchene et al. (2013) is inferred with 463 

moderate support. However the A/B group in our study was not strongly supported. It seems there is 464 

broad agreement in the species composition of each clade. However, further research into the 465 

relationships between the clades is clearly required to discern the true genetic structure of the genus.  466 

4.2. Gobiodon spilophthalmus 467 

We determined our G. spilophthalmus c.f. specimens were in fact juveniles of either G. ceramensis or G. 468 

acicularis depending on the host-coral they were collected from. To our knowledge this is the first 469 

record of these species having juveniles of similar appearance to each other and to those described as G. 470 

spilophthalmus (Fowler, 1944; Munday et al., 1999). Our findings raise several possibilities. First, G. 471 

spilophthalmus may not be a valid species. The phylogeny produced by Duchene et al. (2013) shows very 472 

low support for the node relating G. spilophthalmus to G. ceramensis indicating there was difficulty 473 

delineating these samples as separate species. Harold et al. (2008) recognise G. spilophthalmus as a valid 474 



 

 

species, but do not include it in their phylogeny of Indo-Pacific Gobiodon species. Second, G. 475 

spilophthalmus could be a valid species but is not present at Lizard Island. We cannot rule this possibility 476 

out with our data, but we find it unlikely that a species described from the New Hebrides (Vanuatu) 477 

would not be present at Lizard Island especially given the broad distribution of its congeners (Fowler, 478 

1944; Munday et al., 1999). Additionally, Munday et al. (1999) describe G. spilophthalmus as occurring 479 

throughout the range of their collections which includes the Great Barrier Reef and Papua New Guinea. 480 

Third, G. spilophthalmus is a valid species and is present at Lizard Island, but we did not sample any. 481 

Although we sampled as many reefs as possible at Lizard Island, fourteen goby colonies may not be 482 

representative of the whole Lizard Island population, especially if G. spilophthalmus is rare. Additionally, 483 

there is clearly confusion around the identification of G. heterospilos and G. spilophthalmus in the 484 

literature (Fowler, 1944; Munday et al., 1999; Steinke et al., 2017), assuming both are indeed valid 485 

species as recognized by Harold et al. (2008). 486 

Assuming G. spilophthalmus is a valid species, it appears to have diverged very recently and is therefore 487 

very closely related to its sister species, G. ceramensis (Duchene et al., 2013). It is likely the genetic 488 

markers used in our analysis (COI) and other studies featuring G. spilophthalmus, are evolving more 489 

slowly than this clade is speciating and thus not capable of fully capturing the true genetic structure of 490 

these species. The conflicting possibilities presented above and this issue of recent speciation outpacing 491 

divergence in the COI marker, highlight the need for a full genomic study of this clade to determine the 492 

validity of these species. Detailed ecological observations would also be highly desirable to establish 493 

field identification guidelines for each species, if indeed they can be reliably differentiated in the field.  494 

5. Conclusion 495 

The phylogenetic signal of sociality in Gobiodon could not be conclusively resolved. However, we found 496 

a combination of life-history and ecological effects best predicted sociality in these species. Previous 497 



 

 

research suggests that sociality is probably quite plastic in Gobiodon and supports the idea of 498 

phylogenetic independence of sociality (Hing et al., 2018). Our study revealed a relationship between 499 

sociality and the interaction between ecological and life-history factors. This provides good evidence for 500 

a link between these correlates and sociality in this genus, which should now be tested experimentally in 501 

order to demonstrate causality. We also highlight the need for full genomic studies of G. spilophthalmus, 502 

G. acicularis and G. ceramensis which have caused substantial confusion in the literature at the time of 503 

writing. With continued advances in genomic sequencing we anticipate this study will encourage future 504 

research to resolve the validity of these species. Issues of species identification aside, this study 505 

complements the admirable body of research conducted on terrestrial organisms by presenting a novel 506 

perspective of ecological and life-history traits which have likely influenced the evolution of sociality. 507 

Work on terrestrial organisms has been instrumental in developing theories of social evolution. 508 

However, these terrestrially derived theories have only recently been tested against organisms 509 

displaying non-conventional life-history strategies.  510 
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