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Abstract 

In this study we extend on behavioural evidence to examine the effect of time on 

EEG measures related to arousal and emotion/motivation in children with/without 

AD/HD.  Thirty children with AD/HD and 30 age- and sex-matched controls participated.  

EEG was recorded during an eyes-closed resting condition and divided into three 2.5 

minute blocks after pre-processing.  Time effects for absolute and relative alpha activity 

were found in healthy controls; these effects did not interact with AD/HD status. 

Interactions between time and AD/HD status were found for absolute theta, relative theta, 

and theta/beta ratio (TBR), with these EEG indices increasing over time in children with 

AD/HD.  Moreover, IQ played a role in the interaction between time and AD/HD status.  

These results are consistent with predictions from both the optimal stimulation model and 

the delay aversion model, and suggest important methodological considerations for future 

EEG research in children with/without AD/HD. 
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1．Introduction 

Attention-deficit/Hyperactivity Disorder (AD/HD) is a common neurodevelopmental 

disorder characterized by inattention, hyperactivity, and impulsivity (APA 2000).  The 

disorder often begins in early childhood and two-thirds of patients still show AD/HD 

symptoms in adulthood (Karam et al. 2015).  The electroencephalogram (EEG) has been used 

to quantify central nervous system (CNS) activity in the disorder for several decades (Barry 

et al. 2003).  Previous EEG studies reveal that patients with AD/HD typically show more low 

frequency activity and less high frequency activity than matched healthy controls during a 

resting state condition (Barry and Clarke 2009; Lenartowicz and Loo 2014); and these 

findings have been conceptualised as representing hypo-arousal, a maturational lag, or a 

developmental deviation (Barry et al. 2003; Saad et al. 2015).  However, debate continues 

about whether AD/HD can be reliably detected by EEG, as inconsistent results have been 

reported; e.g. AD/HD-control differences in the theta/beta ratio (TBR, Arns et al. 2013).  

Thus, EEG has not been regarded as a biological marker for the diagnosis of AD/HD (APA 

2013).    

Some factors are suggested to contribute to the inconsistent EEG results.  A 

significant feature of EEG in AD/HD is that the patients show heterogeneous EEG profiles 

(Clarke et al. 2011; Loo et al. 2017).  With this inter-individual variability, EEG comparison 

at the group level may be confounded.  Moreover, patients with AD/HD often have comorbid 

issues, and these variations influence AD/HD vs. control EEG comparisons (Clarke et al. 

2002; Loo et al. 2013).  Further, it has been suggested that habit changes in controls (e.g. 

sleep duration) may have resulted in changes from AD/HD-control EEG differences reported 

in early studies (Arns et al. 2013).   

More recently, EEG recording parameters have been considered as contributing to the 

inconsistent findings.  Kitsune et al. (2015) showed that the EEG recording context in relation 
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to other experimental demands influenced AD/HD-control EEG differences.  This study 

suggests that the differences in EEG recording parameters between studies may contribute to 

the inconsistent findings and encourages further exploration. One such parameter is the 

duration of the EEG recording.  Research shows that a minimum of 60-seconds of artefact-

free data can reliably quantify brain electrical activity for spectral power analysis (Thatcher 

2010).  In practice, typical recording lengths range from 2 to 5 minutes, and results from 

various recording durations are treated equally when compared between studies.  An 

important underlying assumption is that brain state is stable across the recording durations in 

typically developing and clinical children.   

 

However, behavioural findings from children in waiting situations indicate that this 

assumption – i.e. that brain activity is stable across time – may be violated.  During a resting 

EEG recording, the participant has no specific task and is required to keep stationary and 

remain alert in a quiet, stimulation-free environment.  This context is similar to a waiting task 

with no specific instructions or requirements in behavioural studies (e.g. Antrop et al. 2000, 

2002).  The behavioural research indicates that when children are asked to wait for a period 

in a low-stimulus situation, they show overactive and inattentive behaviours (Zentall and 

Zentall 1983; Antrop et al. 2000; Antrop et al. 2005) which increases frequently over time 

(Alberts and Van der Meere 1992; Imeraj et al. 2016).  Moreover, AD/HD status exacerbates 

these behaviours, with evidence from both laboratory situations (Antrop et al. 2000, 2002) 

and naturalistic observations (Antrop et al. 2005; Imeraj et al. 2016).  Taken together, the 

behavioural research suggests that children show inappropriate behaviours in waiting 

situations, and the effect is moderated by time and AD/HD status.   

The behaviours in waiting situations are suggested to have their roots in atypical CNS 

activity.  The optimal stimulation model attributes the overactive and inattentive behaviours 
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in waiting situations to arousal level (Zentall 1975; Zentall and Zentall 1983).  According to 

this model, as sensory input and stimulation are reduced in waiting situations, CNS arousal 

level decreases over time.  Consequently, children perform excessive behaviours as a 

“compensation” for the decreasing arousal level (Zentall and Zentall 1983; Antrop et al. 

2000).  Children with AD/HD, who commonly show low CNS arousal, are more sensitive to 

the low stimulation level, and as a result, more overactive and inattentive behaviour is seen 

(Zentall and Zentall 1983).  In addition, for waiting situations in which participants are 

required to stay still over a period, the model predicts that arousal will more rapidly decrease 

as no “compensation” is received over time; which also interacts with AD/HD status (Zentall 

and Zentall 1983).   

An alternative explanation for the exacerbation of AD/HD symptoms in waiting 

situations is given in terms of motivation, via the delay aversion model (Sonuga-Barke 2003, 

2005).  Based on behavioural and imaging studies, the model hypothesizes in children with 

AD/HD a tendency to avoid delays as a result of impaired long-term reward systems.  The 

delay aversion in turn drives children with AD/HD to avoid or escape the situations in which 

there is no instant reward.  The attempts to avoid or escape are behaviourally manifested as 

overactivity and inattention (Sonuga-Barke 2005).  Following this perspective, the 

overactivity and inattention of children with AD/HD in waiting situations are attributed to 

motivational/emotional factors.  Moreover, for a waiting situation that restricts attempts to 

avoid and escape (e.g. keeping stationary) over time, the model predicts children with 

AD/HD will show an increasingly stronger motivational/emotional reaction.    

In the context of a resting EEG recording, participants are further instructed to stay as 

stationary as possible to reduce the influence of artifacts on the EEG traces.  In other words, 

the resting EEG recording context could be described as a waiting situation in which 

“compensation” and the attempts to avoid are further prohibited.  According to the optimal 
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stimulation model and delay aversion model, brain activity related to arousal and motivation 

may be altered in children over time, with this effect moderated by AD/HD status.   

As a tool to measure CNS activity, some EEG indices have been related to arousal 

level and motivational/emotional activity.  Skin conductance level (SCL) is considered as a 

gold standard measure of arousal level (Barry and Sokolov 1993).  Research has indicated 

that SCL is negatively correlated with absolute alpha EEG activity (Barry et al. 2004).  The 

result has been replicated in different age ranges (Barry et al. 2007; Barry et al. 2009a) and in 

a stimulant-modulation study (Barry et al. 2005).  Consequently, absolute alpha is regarded as 

an index to measure CNS arousal level (Barry et al. 2004).  For motivation/emotion, 

candidate measures in EEG are the slow waves such as delta and theta (Knyazev 2007), 

particularly from reports that theta and delta activity vary in response to motivation/emotion 

related tasks (Knyazev et al. 2009; Womelsdorf et al. 2010).   

Combining the above-mentioned behavioural findings and their CNS explanations, it 

is expected that EEG measures of arousal in children will vary over time, and this effect will 

interact with AD/HD status.  Also, EEG measures related to motivation/emotion will be 

altered in children with AD/HD over time.  More specifically, it is predicted that: a) there will 

be an increase in alpha activity across time in children; b) the increase will be larger in 

children with AD/HD compared to controls; and c) there will be an increase in EEG slow 

waves across time in children with AD/HD. 

 

2．Materials and Methods 

2.1 Participants 

Participants in the AD/HD group were selected from a database from the Institute of 

Mental Health at Peking University Sixth Hospital.  The database included 102 cases and all 

cases were assessed and diagnosed with AD/HD by experienced senior psychiatrists based on 
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clinical observation and the results of the Clinical Diagnostic Interview Scale (CDIS, Barkley 

1998).  The CDIS is a structured clinical interview based on the DSM-IV.  The mandarin 

version of CDIS, which shows good sensitivity and specificity (Yang et al. 2004), was 

administered by a psychiatrist with the participants and their parents.  With the following 

inclusion criteria applied, thirty cases were selected from the database (25 males, age range 9-

14 years, M = 11.5 years, SD = 1.7).  The inclusion criteria included: 1) no comorbidity or 

history of psychiatric disorders described in the DSM-IV; 2) no history of head trauma with 

loss of consciousness; 3) no history of neurological illness or other severe disease; 4) naïve to 

any pharmacological treatment (the recordings were conducted when they were just 

diagnosed); 5) age ranging from 9 to 14; and 6) an IQ higher than 80 on the Wechsler 

Intelligence Scale III for children.  Twenty one children with AD/HD were diagnosed with 

the predominantly inattentive type (ADHD-I) and 9 with the combined type (ADHD-C).   

Thirty healthy controls were recruited from the hospital and local schools and were 

screened by the same psychiatrists using the same inclusion criteria.  They were matched by 

age and gender (25 males, age range 9-14 years, M = 11.9 years, SD = 1.5).  Controls did not 

meet the diagnostic criteria for AD/HD (i.e. they met less than 4 DSM-IV Inattention criteria 

and less than 4 DSM-IV Hyperactivity/Impulsivity criteria).  

2.2 Procedure 

Ethical approval was obtained from the Ethics Committee of Peking University 

Health Science Center and the University of Wollongong Human Research Ethics 

Committee.  Informed consent was obtained from the parent or guardian of each participant 

prior to accessing any record or testing.  

Data were collected for this study on a separate day after the assessment and 

diagnostic session, with children required to complete an IQ test (Wechsler Intelligence Scale 
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III) and neuropsychological tests accompanied by a psychiatrist in the morning, and resting 

EEG was recorded in the afternoon. This process lasted about 45 mins. 

2.3 EEG recording and pre-processing 

The EEG was recorded in a room with dimmed lighting which was free from 

distraction.  Participants were seated in a comfortable chair and were required to keep their 

eyes closed; the recording was paused if the participant showed restlessness.  EEG was 

recorded for between 7.5 and 10 minutes.  The EEG was acquired using a 128-channel 

system (HydroCel Geodesic Sensor Net, Electrical Geodesics, Inc., Eugene, OR). The 

impedance of all electrodes was less than 50 kΩ. All electrodes were physically referenced to 

Cz (fixed by the EGI system) and offline re-referenced to linked mastoids. The EEG was 

amplified with a band pass filter of 0.01 to 200 Hz, and digitized on-line at a sampling rate of 

1000 Hz.  The EGI data were converted to allow analysis using EEGLAB and Neuroscan 

software version 4.3. 

To follow previous research (e.g. Barry and Clarke 2009), nineteen channels were 

selected based on the international 10-20 system and pre-processing steps were undertaken.  

All channels were re-sampled at 256 Hz, and band-pass filtered from 1 to 70 Hz with a 50 Hz 

notch filter.  Periods of the EEG trace that were affected by gross artefacts were identified by 

visual inspection and were excluded.  The data then were subjected to an Independent 

Component Analysis in EEGLAB (Delorme and Makeig 2004) to identify and exclude 

components related to eye and muscle movements; this is a semi-automatic process aided by 

the ADJUST tool box in EEGLAB (Mognon et al. 2011).   

Seven and a half minutes of artefact-free data were then extracted.  Given the research 

purpose, EEG traces were chronologically divided into 3 blocks.  Each block contained 2.5 

minutes of EEG data and was segmented into 4-second epochs. The epochs then were Fourier 

transformed using a Hamming window.  These epochs were Fourier transformed using a 
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Hamming window, with EEG power obtained in four frequency bands: delta (1.5–3.5 Hz), 

theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–25 Hz).  Absolute power was 

calculated by summing the spectral power within each frequency band, and relative power 

was calculated by dividing absolute power in each frequency band by the total of the four 

bands. Also, the theta/beta ratio (TBR) was calculated as it is a measure of continued interest 

in AD/HD research.  

2.4 Statistical analysis 

The EEG data were subjected to mixed-design analyses of variance (ANOVAs) with 

Group (AD/HD, control) as a between-subjects factor and Time and Sagittal as within-

subjects factors.  The analyses were separately conducted for the each frequency band for 

both absolute/relative power and TBR.  The Time factor included 3 equal-length blocks 

(block 1 – T1, block 2 – T2, block 3 – T3).  To follow previous studies (e.g. Clarke et al., 

2011) the Sagittal factor consisted of frontal (Fp1, Fp2, F3, F4, F7, F8, Fz), central (C3, C4, 

Cz, T3, T4), and posterior (T5, T6, P3, P4, Pz, O1, O2) regions.   

Planned contrasts were examined for the within-subjects factors.  To describe trends 

within the Time factor, planned polynomial contrasts were used.  The planned contrasts were 

also used to examine EEG topography following previous studies (e.g. Clarke et al., 2006), 

comparing frontal (F) and posterior regions (P), and central region (C) with the mean of the 

frontal and posterior regions (F/P).  As the contrasts are planned, and there are no more of 

them than the degrees of freedom for the effect, no Bonferroni-type adjustment to α is 

required (Tabachnick and Fidell 2007).  Sagittal effects are reported only for interactions with 

Group or Group x Time interactions. 

 

3．Results 
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Demographic information for the AD/HD and control groups is listed in Table 1.  

There was no significant age difference between groups.  The control group had a higher IQ 

than the AD/HD group (F = 46.112, p < 0.001).  Although previous research showed that IQ 

level did not contribute to AD/HD-control EEG differences (Clarke et al., 2006), a recent 

study suggests that there may be an interaction between IQ and recording contexts on the 

differences (Kitsune et al. 2015).  Hence, analyses involving the Group factor were run first 

with IQ uncontrolled, in line with many previous studies (e.g. Barry et al. 2009b), and then 

the analyses were conducted with IQ as a covariate.    

The topographic maps for absolute power, relative power, and TBR for each Group 

over time are displayed in Fig. 1. 

- INSERT Table 1 HERE – 

- INSERT Fig. 1. HERE - 

3.1 Time effects  

No Time main effects were found.  Near significant interactions between Time and 

Sagittal topography were found for absolute alpha power (T3 > T1 × P > F, F = 3.200, p = 

0.079, 𝜂𝜂𝑝𝑝2 = 0.052) and relative alpha power (T3 > T1 × P > F, F = 3.832, p = 0.055, 𝜂𝜂𝑝𝑝2 = 

0.061).  A close inspection of the data indicated that alpha activity had a larger standard 

deviation in the AD/HD group, which may compromise the main effects.  Hence, to 

characterise the Time effects in typically-developing children without the influence of 

AD/HD status, the analysis was re-conducted in only healthy controls.  A Time × Sagittal 

interaction was present for absolute alpha power (T3 > T1 × P > F, F = 5.290, p = 0.029, 

𝜂𝜂𝑝𝑝2 = 0.154) indicating a linear increase of absolute alpha in the posterior region (Fig. 2).  A 

similar interaction was present for relative alpha power (T3 > T1 × P > F, F = 6.940, p = 

0.013, 𝜂𝜂𝑝𝑝2 = 0.193).  No effects were present for the other bands or TBR. 

3.2 Group effects  
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Compared to controls, children with AD/HD had more absolute delta (F = 4.992, p = 

0.029, 𝜂𝜂𝑝𝑝2 = 0.079), more relative delta (F = 7.426, p = 0.008, 𝜂𝜂𝑝𝑝2 = 0.105), and less relative 

alpha (F = 4.623, p = 0.036, 𝜂𝜂𝑝𝑝2 = 0.074).  No interactions with the Sagittal factor were 

found, indicating that these effects were global.  No effects were present for the other bands 

or TBR. 

3.3 Group × Time interaction effects 

A Group × Time interaction (AD/HD > control × T3 > T1, F = 4.416, p = 0.040, 𝜂𝜂𝑝𝑝2 = 

0.071) indicated that absolute theta was similar at T3 and T1 for controls but was larger at T3 

than T1 in the AD/HD group (Fig. 3).  A similar interaction was present for relative theta 

(AD/HD > control × T3 > T1, F = 6.161, p = 0.016, 𝜂𝜂𝑝𝑝2 = 0.096) and indicated that relative 

theta was similar T3 and T1 for controls but was larger at T3 than T1 in the AD/HD group 

(Fig. 3).  The Group × Time interaction approached significance for TBR (AD/HD > control 

× T3 > T1, F = 3.615, p = 0.062, 𝜂𝜂𝑝𝑝2 = 0.059) and indicated that TBR was similar at T3 and 

T1 for controls but was larger at T3 than T1 in the AD/HD group (Fig. 3).  No topographic 

effect was found for these interactions.  No interactions were present for the other bands. 

Although age and gender were matched between the groups, we double-checked the 

effects reported with age as a covariate and when excluding female participants, and the main 

results were unchanged.  

- INSERT Fig. 2. HERE – 

- INSERT Fig. 3. HERE - 

3.4 Group main effects with IQ controlled 

With IQ as a covariate, children with AD/HD still showed more absolute delta with 

marginal significance (F = 3.948, p = 0.052, 𝜂𝜂𝑝𝑝2 = 0.065), more relative delta (F = 8.528, p = 

0.005, 𝜂𝜂𝑝𝑝2 = 0.130), and less relative alpha (F = 4.159, p = 0.046, 𝜂𝜂𝑝𝑝2 = 0.068). 

3.5 Group × Time effects with IQ controlled 
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With IQ as a covariate, the Group × Time interactions for absolute theta (F = 3.444, p 

= 0.069, 𝜂𝜂𝑝𝑝2 = 0.057) and relative theta (F = 3.681, p = 0.060, 𝜂𝜂𝑝𝑝2 = 0.061) only approached 

significance.  The interaction for TBR no longer approached significance (F = 0.547, p = 

0.463, 𝜂𝜂𝑝𝑝2 = 0.010).   

 

4. Discussion 

The current study aimed to explore time effects in EEG spectral power recorded 

during resting conditions.  EEG data were divided into 3 equal-length blocks.  In light of 

behavioural findings under waiting situations, the current study predicted a time effect on 

alpha activity in children, which is moderated by AD/HD status.  Also, a Time x AD/HD 

status interaction was expected for low frequency activity.  

The current study showed the effects of time on absolute and relative alpha in 

typically developed children.  An increase of alpha activity was observed in this study.  

Previous research reported that alpha activity is negatively correlated with CNS arousal level.  

The inverse relationship was initially found in a study reporting that individuals with higher 

arousal level have a decreased alpha level (Barry et al. 2004).  The result was subsequently 

replicated by findings that absolute alpha is negatively correlated with SCL in different ages 

(Barry et al. 2007, 2009a), and also by a study indicating that absolute alpha is suppressed 

with the intake of caffeine (Barry et al. 2005).  Hence, the alpha activity increase reported 

here suggests that arousal level decreased over time in children.  

The alpha increase is consistent with the predictions of the optimal stimulation model.  

The model hypothesizes that individuals tend towards an optimal arousal level - which is the 

peak zone in an inverse U-shape pattern relating arousal to comfort.  Also, the model 

describes the relationship between stimulus input and CNS arousal level – CNS arousal level 

increases with greater stimulus input and vice versa.  Stimulation modulation is the means to 
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approach the optimal zone (Zentall 1975; Zentall and Zentall 1983).  With low sensory 

stimulus input, stimulus-seeking behaviours (e.g. overactivity and inattention) are performed 

as a compensatory process to increase arousal level; without the compensatory behaviours, 

arousal level continues to decline.  In order to obtain relatively artifact-free data, participants 

are usually required to not move while sitting in a quiet EEG recording room alone.  In other 

words, the recording contexts are similar to waiting situations in which activity is further 

forbidden.  As predicted by the optimal stimulation model, the current study shows the 

measure related to arousal decreases in such a situation.   

Alpha varying as a function of time suggests that recording length should be 

considered when explaining alpha activity derived from a resting recording in children.  To 

our knowledge, this is the first study to show EEG time effects in an arousal related measure 

recorded in children during resting conditions.  The arousal decrease over time is in line with 

a preliminary analysis revealing a time effect on arousal measured by SCL (Barry et al. 

2007).  Resting alpha activity is widely used in research with children, often being regarded 

as a baseline.  To obtain alpha activity immune to time effects, a minimum recording length 

that is long enough for quantifying data is recommended.  In cases where a lengthy recording 

is necessary, for example using both eyes-closed condition and eyes-open condition as 

baseline (Barry et al. 2009), a balanced design is suggested rather than a fixed order (e.g. 

eyes-closed data first, followed by eyes-open recording) to control the time effect.  Moreover, 

the context of resting EEG recording in fact represents a situation with low sensory input.  

The results may also be applied for EEG recorded during tasks in which participants are 

instructed to continuously process repetitive and simple stimuli.   

Inconsistent with our prediction, however, the time effect on alpha activity did not 

interact with AD/HD status.  According to the optimal stimulation model, children with 

AD/HD are more sensitive to situations with low stimulus input (Zentall 1975; Zentall and 
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Zentall 1983), thus a greater decrease in arousal level would be expected over time.  Our 

finding may be the result of compensation by the AD/HD group in response to low stimulus 

input not being well controlled.  According to the optimal stimulus model, inattention and 

overactivity react as compensation to a low level arousal state for children with AD/HD.  In 

our study, participants were required to keep as still as possible and only obvious movements 

were monitored.  However, research using actigraphy devices has reported that children with 

AD/HD have excessive fine movements, such as wrist- and ankle-related movements (Wood 

et al. 2009; Alderson et al. 2012; Gilbert et al. 2016).  These movements were not controlled 

here and may have been used as compensation to increase arousal in the AD/HD group.  In 

addition to physical activity, children with AD/HD may not be not mentally rest, which can 

also impact on arousal. 

An alternate explanation is the heterogeneous nature of AD/HD.  Prevailing models 

attribute the deficits of AD/HD to different sources (Sonuga-Barke 2005; Sergeant 2005; 

Castellanos et al. 2006).  Following this perspective, it is possible that not all children with 

AD/HD have a decreased arousal level, which is consistent with EEG findings that children 

with AD/HD show different profiles of alpha activity (Barry et al. 2003; Clarke et al. 2011).  

Indeed, larger variance in alpha activity across time was shown in the AD/HD group.   

Hence, the hypothesis may be possible only in children with AD/HD having the deficit of 

hypo-arousal.   

There was an interaction between time and AD/HD status for theta activity – 

compared to healthy controls, children with AD/HD showed an increasing trend of relative 

and absolute theta over time.  As beta activity remained similar across time, the marginal 

significance for TBR increasing over time is likely driven by the theta increase.  The theta 

finding is in line with the prediction derived from the delay aversion model, as theta activity 

is associated with motivational and emotional activity.  A substantial number of studies report 
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that theta activity is increased in the presence of emotional stimuli (Knyazev 2007; Knyazev 

et al. 2009; Uusberg et al. 2014) and in response to motivational activity (Knyazev 2007) 

such as during approach behaviours (Walden et al. 2015).  From this perspective, the 

increased theta activity reported here may reflect the increasingly activated 

motivational/emotional cortical activity in children with AD/HD over time, which is 

consistent with the prediction of the delay aversion model.  The model predicts that children 

with AD/HD have impaired long-term rewarding system and consequently avoid staying in 

situations without instant rewards (Sonuga-Barke 2005).  Hence, the long-period EEG 

recording in this study may act as a trigger that activates motivational/emotional response in 

children with AD/HD.   

Consistent with a previous study (Clarke et al. 2006), this study showed that the 

Group effect was not influenced by IQ.  However, with IQ controlled the previous significant 

Time x Group interactions for relative and absolute theta remained but reduced to a trend 

level, and a substantial influence was shown for TBR with the previously significant 

interaction trend disappearing.  These changes indicate that IQ interacted with the Time and 

AD/HD status had an influence on theta activity and TBR.  TBR has been suggested as a 

biomarker to differentiate AD/HD (Snyder and Hall 2006); however, inconsistent results are 

reported (Arns et al. 2013).  As children with AD/HD typically show lower IQ, this study 

suggests that IQ should be controlled when long period EEG data are analysed.  

Some of the issues emerging from the theta and TBR findings relate to differentiating 

children with AD/HD from controls.  EEG offers hope of objectively diagnosing AD/HD 

(Barry and Clarke 2009); however, inconsistent results have been reported, for example in 

theta and TBR (Arns et al. 2013; Barry and Clarke 2009; Lenartowicz and Loo 2014).  The 

current findings suggest that recording length together with IQ affects theta activity and 

consequently TBR.  Hence, the role of recording length interacting with IQ could be 
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considered to reconcile the inconsistent results, as these factors were not strictly controlled in 

previous research.  Meanwhile, this study also contributes to research considering the optimal 

recording situation to reveal AD/HD-control differences – raised by a recent study (Kitsune 

et al. 2015).  This current study suggests that the group differences for theta and TBR tend to 

enlarge when the groups are exposed to a long resting EEG recording.  In this case, the 

duration of the resting EEG recording is added as a factor to elicit the difference between the 

groups. 

The generalisability of this study is subject to certain limitations.  The 3 blocks were 

divided after raw EEG data had been screened to exclude artefacts-related EEG traces.  

Hence, the 3 blocks do not necessarily exactly represent the first 2.5-minutes period, the 

second 2.5-minutes period, and the third 2.5-minutes period.  In addition, although 

participants were instructed not to move and their activity was monitored, an additional 

uncontrolled aspect is that it is unknown whether children with AD/HD performed more fine 

motor activities, which may be a compensation for the decreasing arousal as introduced 

above.  Moreover, theta activity in this study was explained based by the framework of its 

relationships with motivation/emotion (Knyazev 2007).  However, theta activity may also 

reflect other internal processing such as working memory (Sauseng et al. 2010), which leads 

to the possibility that the theta increase is driven by processing other than 

motivation/emotion.  Thus, studies may further explore the mechanism of the theta increase. 

In conclusion, with the similarity between EEG recording contexts and waiting 

situations, this study examined time effects on EEG measures in children with/without 

AD/HD.  An effect of time on alpha activity was observed in children.  In addition, the effect 

of time on theta activity and TBR was moderated by AD/HD status.  Moreover, IQ played a 

role in the interaction between time and AD/HD status.  Overall, these findings have 

methodological implications for EEG research in children with/without AD/HD. 
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Table 1 Demographic information for the groups. Numbers in brackets represent standard 

deviation.  

 
 Gender Age IQ AD/HD 

subtype IN HI 

AD/HD 25 M; 5 F 11.5 (1.7) 105.6 (12.1) 21 I; 9 C 26.9 (3.6) 21.2 (6.2) 

Controls 25 M; 5 F 11.9 (1.5) 124.3 (8.9) - - - 

Abbreviations: IN and HI, the inattention score and the hyperactivity-impulsivity score in 

AD/HD Rating Scale. 
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Fig. 1. The topographic maps for absolute power (μV2), relative power (%), and TBR for 

each group over time. 
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Fig. 2. The Time × Sagittal interaction of absolute alpha power (left panel) and relative 

alpha power (right panel) in the controls.   
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Fig. 3. The Group × Time interactions of absolute theta power (top left panel), relative 

theta (top right panel), and TBR (bottom panel) 
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