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Abstract Abstract 
There is an urgent need for the discovery of effective new antimicrobial agents to combat the rise of 
bacterial drug resistance. High-throughput screening (HTS) in whole-animal infection models is a 
powerful tool for identifying compounds that show antibacterial activity and low host toxicity. In this 
report, we characterize the activities of four novel antistaphylococcal compounds identified from an HTS 
campaign conducted using Caenorhabditis elegans nematodes infected with methicillin-resistant 
Staphylococcus aureus (MRSA). The hit compounds included an Nhydroxy indole-1, a substituted 
melamine derivative-2, N-substituted indolic alkyl isothiocyanate-3, and pdifluoromethylsulfide analog-4 of 
the well-known protonophore carbonyl cyanide m-chlorophenyl hydrazone. Minimal inhibitory 
concentrations (MICs) of the four compounds ranged from 2 to 8 μg/ml against MRSA-MW2 and 
Enterococcus faecium and all were bacteriostatic. The compounds were mostly inactive against Gram-
negative pathogens, with only 1 and 4 showing slight activity (MIC= 32 μg/ml) against Acinetobacter 
baumanii. Compounds 2 and 3 (but not 1 or 4) were found to perturb MRSA membranes. In phagocytosis 
assays, compounds 1, 2, and 4 inhibited the growth of internalized MRSA in macrophages, whereas 
compound 3 showed a remarkable ability to clear intracellular MRSA at its MIC ( p < 0.001). None of the 
compounds showed hemolytic activity at concentrations below 64 μg/ml ( p = 0.0021). Compounds 1, 2, 
and 4 (but not 3) showed synergistic activity against MRSA with ciprofloxacin, while compound 3 
synergized with erythromycin, gentamicin, streptomycin, and vancomycin. In conclusion, we describe four 
new antistaphylococcal compounds that warrant further study as novel antibacterial agents against 
Gram-positive organisms. 
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Abstract 22 

There is an urgent need for the discovery of effective new antimicrobial agents to combat the rise 23 

of bacterial drug resistance. High-throughput screening (HTS) in whole-animal infection models 24 

is a powerful tool for identifying compounds that show antibacterial activity and low host toxicity. 25 

In this report, we characterize the activities of four novel anti-staphylococcal compounds identified 26 

from a HTS campaign conducted using Caenorhabditis elegans nematodes infected with 27 

methicillin-resistant Staphylococci aureus (MRSA). The hit compounds included: an N-hydroxy 28 

indole- 1, a substituted melamine derivative- 2, an N-substituted indolic alkyl isothiocyanate- 3, 29 

and  a p-difluoromethylsulfide analog- 4 of the well-known protonophore carbonyl cyanide m-30 

chlorophenyl hydrazone (CCCP). Minimal inhibitory concentrations (MICs) of the four 31 

compounds ranged from 2-8 µg/mL against MRSA-MW2 and Enterococcus faecium and all were 32 

bacteriostatic. The compounds were mostly inactive against Gram-negative pathogens, with only 33 

1 and 4 showing slight activity (MIC = 32 µg/mL) against Acinetobacter baumanii. Compounds 2 34 

and 3 (but not 1 or 4) were found to perturb MRSA membranes. In phagocytosis assays, 35 

compounds 1, 2 and 4 inhibited the growth of internalized MRSA in macrophages, whereas 36 

compound 3 showed a remarkable ability to clear intracellular MRSA at its MIC (p<0.001). None 37 

of the compounds showed hemolytic activity at concentrations below 64 µg/mL (p=0.0021). 38 

Compounds 1, 2 and 4 (but not 3) showed synergistic activity against MRSA with ciprofloxacin, 39 

while compound 3 synergized with erythromycin, gentamicin, streptomycin and vancomycin. In 40 

conclusion, we describe four new anti-staphylococcal compounds that warrant further study as 41 

novel antibacterial agents against Gram-positive organisms.  42 
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Introduction 43 

Antibiotic resistance is a major current and future threat to the global population, and new 44 

antibiotics are urgently needed to combat the inexorable rise of multi-drug resistant bacteria. 45 

Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen1 that can 46 

cause localized and systemic infections 2. Drug resistance in MRSA occurs primarily through the 47 

production of β-lactamases or altered penicillin binding proteins 3. According to the Center for 48 

Disease Control and Prevention (CDC), in the U.S. there are more than 11,000 deaths and 80,000 49 

severe cases of MRSA infection each year 4. Vancomycin has typically been the choice of 50 

antibiotic against serious multi-drug resistant Gram-positive bacterial infections but reports of 51 

vancomycin-resistant S. aureus are now common 5. Combination antimicrobial treatment is a 52 

promising strategy 6.  53 

Development of new antimicrobial agents has significantly declined in the past two 54 

decades due to challenging regulatory guidelines, perceptions around poor financial returns and 55 

difficulties in discovering the mechanism of action of new compounds 7. But, the whole animal 56 

Caenorhabditis elegans-based high throughput screening provides a powerful tool for identifying 57 

new antimicrobial agents, anti-virulence agents and immunomodulators. To identify novel 58 

antibacterial leads, we have employed C. elegans as a simple whole-animal host for studying 59 

infections of human pathogens 8. We recently completed a C. elegans high-throughput screen 60 

(HTS) to identify small molecules that are active against MRSA and show low host toxicity 9. This 61 

report details the broader antibacterial properties of four novel anti-staphylococcal hit compounds 62 

discovered during an MRSA-C. elegans high-throughput screening campaign. 63 

  64 
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Materials and Methods 65 

Bacterial and nematode strains. Bacteria were all from the Mylonakis laboratory collection 66 

(Table 1). S. aureus MW2 and Enterococcus faecium ATCC E007 were grown in tryptic soy broth 67 

(TSB) (BD Biosciences, Franklin Lakes, NJ, USA); Klebsiella pneumoniae ATCC 77326, 68 

Acinetobacter baumannii ATCC 17978, Pseudomonas aeruginosa PA14 and Enterobacter 69 

aerogenes EAE 2625 strains were grown in Luria-Bertani broth (LB) (BD Biosciences). All strains 70 

were grown at 37 °C. The C. elegans glp-4(bn2);sek-1(km4) double mutant strain was maintained 71 

at 15 °C on lawns of Escherichia coli HB101 on 10 cm plates 9. The glp-4(bn2) mutation renders 72 

the strain unable of producing progeny at 25 °C 10, and the sek-1(km4) mutation increases 73 

sensitivity to pathogens 11, reducing assay time. 74 

C. elegans-MRSA liquid infection assays. The C. elegans-MRSA infection assay has been 75 

described previously 9. In brief, C. elegans glp-4(bn2);sek-1(km4) worms were grown at 25 °C and 76 

harvested with M9 buffer. MRSA-MW2 was grown overnight at 37 °C in TSB under aerobic 77 

conditions and then transferred to anaerobic conditions at 37 °C. Bacteria were added at a final 78 

OD600 of 0.04 to 384-well assay plates (Corning, Corning, NY, USA) containing test compounds 79 

at a final concentration of 2.86 µg/mL. Adult sterile worms (15 were then added to each well using 80 

a Complex Object Parameter Analyzer and Sorter (COPAS, Union Biometrica, Holliston, MA, 81 

USA). After 5-days of incubation at 25 °C, the plates were washed (to remove bacteria) with a 82 

microplate washer and Sytox Orange (Life Technologies, Carlsbad, CA, USA) was added to 83 

selectively stain dead worms. After overnight incubation at 25 °C, the wells were imaged using an 84 

Image Xpress Micro automated microscope (Molecular Devices, Sunnyvale, CA, USA), capturing 85 

both transmitted light and TRITC (535 nm excitation, 610 nm emission) fluorescent images with 86 

a 2X objective. Images were processed using the open source image analysis software CellProfiler 87 
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(http://www.cellprofiler.org/). The ratio of Sytox worm area to bright field worm area and the 88 

resultant percentage survival data were calculated by the software for each well 9. Assays were 89 

completed in duplicate. 90 

Hit compounds. The compounds were an N-hydroxy indole (NHI) 1, a melamine derivative 2, 91 

indole isothiocyanate (ITC) 3 and a protonophore 4 related to carbonyl cyanide m-chlorophenyl 92 

hydrazone (CCCP). Compounds 1 (6-hydroxy-7,8,9,10-tetrahydro-[1,2,5]oxadiazolo[3,4-93 

c]carbazole) and 2 (2-N,4-N-ditert-butyl-6-hydrazinyl-1,3,5-triazine-2,4-diamine) were purchased 94 

from Asinex (Winston-Salem, NC, USA). Compound 3 (1-(2-isothiocyanatoethyl)-1H-indole) 95 

was purchased from Lifechemicals (Burlington, Canada) and compound 4 (3, 2-[[4-96 

(difluoromethylsulfanyl)phenyl] hydrazinylidene]propanedinitrile) was purchased from Enamine 97 

(Monmouth, NJ, USA). All compounds were dissolved in DMSO (Sigma-Aldrich, St. Louis, MO, 98 

USA) to obtain 10 mg/mL stock solutions that were diluted for experiments.  99 

Antibacterial susceptibility assays. In vitro antibacterial activities were tested using the broth 100 

microdilution method 12. Assays were carried out in triplicate using Müller-Hinton broth (BD 101 

Biosciences, Franklin Lakes, NJ, USA) in 96-well plates (BD Biosciences) with a total assay 102 

volume of 100 µL. Two-fold serial dilutions were prepared over the concentration range 0.01−64 103 

µg/mL. An initial bacterial inoculum was adjusted to OD600 = 0.06 and incubated with test 104 

compounds at 35 °C for 18 hours. OD600 was measured and the lowest concentration of compound 105 

that suppressed bacterial growth was reported as its MIC13. Broth cultures (10 µL) from the MIC 106 

assays were plated onto Müller-Hinton agar (BD Biosciences) and after overnight incubation at 37 107 

°C the lowest concentration at which colonies were not observed was reported as the minimal 108 

bactericidal concentration (MBC). 109 
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Time to kill assays. The antibacterial properties of 1-4 against MRSA-MW2 were further 110 

examined using time to kill assays, as previously described 14. Briefly, overnight cultures of S. 111 

aureus MW2 were diluted in fresh TSB to a density of 108 cells/mL and placed into 10 mL tubes 112 

(BD Biosciences). Test compounds at 4x MIC were added and the tubes incubated at 37 °C, with 113 

agitation. Aliquots were periodically drawn from the tubes over a 4 h period, serially diluted with 114 

TSB and plated onto tryptic soy agar (TSA; BD Biosciences). CFUs were then enumerated after 115 

overnight incubation at 37 °C. Assays were carried out in triplicate. 116 

Membrane permeabilization assays. Sytox Green (Life Technologies, Carlsbad, CA, USA) was 117 

used to probe the effects of 1-4 on MRSA-MW2 membrane permeabilization, as previously 118 

described 15. Assays were carried out in duplicate in 96 wells plates (Corning). Bacterial cells were 119 

harvested from logarithmically growing cultures by centrifugation at 3724 g for 5 minutes, washed 120 

twice with phosphate buffered saline (PBS, pH 7.4) and resuspended in PBS to OD595 nm = 0.2. 121 

Sytox Green was added at a final concentration of 5 µM and cells were incubated in the dark for 122 

30 min. Cell suspensions (50 µL) were added to 50 µL of compound (64 µg/mL in PBS), and the 123 

fluorescence intensity was measured (excitation 485 nm, emission 530 nm) periodically over 60 124 

minutes. DMSO was included as the vehicle control. Membrane effects of compounds were 125 

indicated by an increase in cellular fluorescence caused by enhanced permeability of the DNA 126 

staining, membrane impermeable dye.  127 

Intracellular MRSA killing assays. RAW 264.7 macrophages were used to examine intracellular 128 

killing of MRSA-MW2 by 1-4, as described by Schmitt et al 16. Macrophages were grown in 129 

Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Grand Island, NY, USA) supplemented 130 

with 10% fetal bovine serum (FBS) (Gibco) and 1% penicillin/streptomycin (Gibco) and 131 

maintained at 37 °C in 5% CO2 17,18. Cells (50,000) in antibiotic and serum free DMEM were 132 



7 Tharmalingam et al., 
 

seeded in 12-well plates 24 h prior to infection. MRSA-MW2 (multiplicity of infection (MOI) = 133 

50) were added to macrophages and phagocytosis allowed to proceed. Planktonic bacteria were 134 

removed after 2 h and DMEM supplemented with 200 µg/mL gentamicin was added for 2 h to 135 

eliminate extracellular bacteria. Antibiotic and serum-free DMEM with and without test 136 

compounds was added and the cells incubated in a 5% CO2. After 4, 8, 12, or 24 h SDS was added 137 

to a final concentration of 0.02 % to lyse the macrophages only (i.e. not ingested bacteria). Cell 138 

lysates were diluted serially with TSB, plated onto TSA plates and CFUs enumerated. Vancomycin 139 

(8 µg/mL) was used as a positive control and DMSO 0.1% as the negative control. Assays were 140 

carried out in triplicate 19. 141 

Human blood cell (RBC) hemolysis assays. Human erythrocytes (Rockland Immunochemicals, 142 

Limerick, PA, USA) were used to measure the hemolytic activity of the compounds, as described 143 

by Isnansetyo et al 20. Briefly, human erythrocytes (4%, in PBS, 50 µL) were added to 50 µL of 144 

serially diluted test compounds in PBS in 96-well plates. After incubating at 37 °C for 1 h, the 145 

plates were centrifuged at 500 x g for 5 min and 50 µL of the supernatant from each well was 146 

transferred to a second 96-well plate. Absorbance (540 nm) was used as a measure of hemolytic 147 

activity. Assays were carried out in triplicate. 148 

Cytotoxicity assay. Mammalian cell lines HepG2 (hepatic cell line), MKN-28 (gastric cell line), 149 

HKC-8 (renal cell line) were used to determine the cytotoxicity of the compound, as detailed 150 

elsewhere 17,21,22. Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, 151 

Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1% 152 

penicillin/streptomycin (Gibco) and maintained at 37°C in 5% CO2. Cells were harvested and 153 

suspended in DMEM, and 100 µl of cells were added to each well at a final concentration of 5 x 154 

104 cells. The compound was serially diluted in serum and antibiotic-free DMEM and added to the 155 
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monolayer and incubated at 37°C in 5% CO2 for 24 h. For the last 4 h of this 24 h incubation 156 

period, 10 µl of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium (WST-157 

1) solution (Roche, Mannheim, Germany) was added to each well. The WST-1 reduction was 158 

measured at 450 nm using Vmax microplate reader (Molecular Device Sunnyvale, CA, USA). This 159 

assay was done in triplicate, and the percentage of survival was calculated by comparing with 160 

DMSO-treated vehicle control. 161 

Checkerboard assays. Antibacterial synergy for combinations of compounds 1-4 with each other 162 

and clinical antibiotics from various class of antibacterial agents such as fluoroquinolone, 163 

tetracycline, aminoglycosides, macrolides and glycopeptides (ciprofloxacin, doxycycline, 164 

erythromycin, gentamicin, streptomycin and vancomycin) was tested for using checker board 165 

assays. Cultures of MRSA-MW2 were adjusted to OD600 = 0.06 and added to compound pairs that 166 

had been serially diluted in the same 96 well plates, vertically for one compound and horizontally 167 

for the other. Assays were carried out in triplicate as described for antibacterial susceptibility 168 

assays.  The combinatorial inhibitory concentration was indicated by fractional inhibitory 169 

concentration index (FICI) was calculated using the formula: MICA combination / MICA alone + 170 

MICB combination / MICB alone 23.   171 

Statistical analysis. Statistical analysis (Two-way ANOVA followed by Bonfererroni post-test) 172 

was carried out using GraphPad Prism version 6.04 (GraphPad Software, La Jolla CA, USA) and 173 

p values of <0.05 were considered significant. 174 

  175 
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Results  176 

HTS assay. We previously reported a C. elegans HTS assay for the identification of novel 177 

antibacterial hits against MRSA 9 and screened 3,930 compounds in Asinex 1 library and 3,892 178 

compounds in Life chemicals library 9,15. During the screening, we identified that compounds 1-4 179 

(Figure 1) prolonged the survival of C. elegans infected with MRSA-MW2 at a concentration of 180 

2.86 µg/mL compared to the DMSO control (Figure 2 A-D).  181 

Antibacterial susceptibility. The antibacterial activity of the four hits was evaluated against a 182 

panel of ESKAPE pathogens. All four compounds were found to inhibit the growth of the Gram-183 

positives MRSA-MW2 and E. faecium (MICs 2-8 mg/mL, Table 1). Compounds 1 and 4 were 184 

slightly active against A. baumannii (MIC = 32 µg/mL) but no other activity was observed against 185 

Gram-negatives. The MIC of vancomycin was 4 µg/mL against Gram-positives and polymyxin B 186 

was 2-8 µg/mL against Gram-negatives in the ESKAPE panel (Table 1). The minimum 187 

bactericidal concentrations (MBC) of 1 and 4 against MRSA-MW2 were 64 and 32 µg/mL, 188 

respectively, while the MBC of compounds 2 and 3 was > 64 µg/mL. The MIC of oxacillin, 189 

vancomycin, polymyxin B, was tested with various clinical S. aureus strains. All the clinical strains 190 

were resistant to oxacillin. The MICs of compounds 1-4 were listed in Table 2. Time to kill assays 191 

were used to further confirm the bactericidal/bacteriostatic properties of 1-4 against MRSA-MW2. 192 

When cells were exposed to the compounds at 4X MIC all showed only bacteriostatic activity 193 

relative to DMSO controls (Figure 3). While compounds 1, 2 and 4 inhibited bacterial growth, 194 

ITC derivative 3 was able to reduce CFU/mL counts by 2-log10.  195 

Membrane permeabilization. To evaluate the membrane effects of 1-4, uptake of the membrane-196 

impermeable DNA-binding fluorescent dye Sytox Green into MRSA-MW2 cells was monitored 197 
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in the presence/absence of the compounds. Exposure of cells to the compounds at 64 μg/mL 198 

identified that only 2 and 3 show effects on MRSA membranes, as indicated by increases in cellular 199 

fluorescence (Figure 4). Observing membrane effects with 2 and 3 was in agreement with previous 200 

reports on members from the melamine 24 and ITC classes 25. In contrast, compounds 1 and 4 201 

showed no changes in cellular fluorescence (Figure 4), indicating that they do not elicit their 202 

antibacterial effects through action on membranes. 203 

Killing of intracellular MRSA in macrophages.  It is known that S. aureus can act as an 204 

intracellular pathogen 26. To explore the effects of 1-4 on intracellular MRSA, RAW 264.7 205 

macrophages were exposed to MRSA-MW2 cells and treated with test compounds at 1x MIC, 206 

vancomycin (positive control, 8 µg/mL, 2x MIC) and 0.1 % DMSO (negative control). 207 

Compounds 1, 2 and 4 were found to significantly inhibit the growth of intracellular MRSA 208 

relative to DMSO (p<0.001). While vancomycin was able to produce a slight reduction in bacterial 209 

counts, compound 3 completely cleared intracellular MRSA after 8 hours of treatment (Figure 210 

5A). The difference observed between the time to kill kinetics and intracellular killing of MRSA 211 

when treated with compound 3, may due to limited duration (only 4 hours) of compound exposure 212 

to bacterial cells in time to kill kinetics. However, we treated MRSA-MW2 cells with compounds 213 

1-4, and incubated as indicated in the macrophage assay and we observed that compound 3 killed 214 

the planktonic bacteria after prolonged incubation (Figure 5B).   215 

Human red blood cell lysis assays and cytotoxicity. Serial dilutions of 1-4 were added to human 216 

red blood cells to establish whether they show hemolytic activity. It was found that none of the 217 

compounds showed hemolysis at concentrations up to 64 µg/mL. Serially diluted triton-X (0.001 218 

to 1%) as a positive control were added to human RBCs caused substantial lysis (Figure 6A). 219 

Hepatotoxicity of the test compounds 1-4 was evaluated using the liver cell line HepG2, commonly 220 
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used to test the toxicity of compounds 14. In this series of experiments, the IC50 of the compound 221 

1-4 against HepG2 was 32, 16, 8, and 1 µg/mL respectively (Figure 6B). Also, we tested the 222 

cytotoxicity with gastric and renal cell lines and we observed similar results with hepatic cell lines. 223 

The IC50 of compounds 1-4 was against MKN-28 was 64, 32, 4 and 4 µg/mL respectively (Figure 224 

6C); and against HKC-8 was 64, 32, 2, 2 µg/mL respectively (Figure 6D). The IC50 of compounds 225 

3 and 4 were high in mammalian cell lines, however, we are working on the analogues to eliminate 226 

the cytotoxicity as well as sustain potent antimicrobial ability. In addition, we monitored the 227 

survival of macrophages in the presence of test compounds 1-4 at MIC level and observed that the 228 

compound 3 was harmful to macrophages (Figure 6E) and bacteria (Figure 5B).    229 

Antibacterial synergy. Use of paired combinations of drugs can reduce bacterial resistance and 230 

even restore clinical efficacy of some antibiotics 27. Checkerboard assays were performed to 231 

establish whether compounds 1-4 act synergistically against MRSA-MW2 when paired with one 232 

another and five clinical antibiotics from different class of antibacterials (i.e. ciprofloxacin, 233 

doxycycline, erythromycin, gentamicin, streptomycin and vancomycin). Paired combinations of 234 

compounds and their observed fractional inhibitory concentration indices (FICI) are listed in Table 235 

3. Synergistic effects, where the combined antibacterial activity of the two agents is more than the 236 

sum of their effects alone, were identified by FICI ≤ 0.5, antagonism by FICI > 4.0 and ‘no 237 

interaction’ by FICI > 0.5 -  4.0 28.  238 

Antagonism was not observed for any of the compound combinations. Compounds 1-4 239 

showed no interactions when paired with one another but all four compounds showed synergy with 240 

at least one antibiotic. Ciprofloxacin was synergistic with compounds 1, 2 and 4, with compound 241 

4 also showing synergy with doxycycline. Compound 3 showed no synergy with ciprofloxacin or 242 

doxycycline but synergized with all four of the antibiotics. Previous studies have reported that the 243 
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activity of natural ITCs is enhanced by clinical antibiotics 29-31, in agreement with our observations 244 

with 3. 245 

246 
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Discussion 247 

Bacterial resistance to antibiotics has become a major global public health threat, with drug-248 

resistant bacteria causing significant and increasing mortality and morbidity 32. There is an urgent 249 

need to develop new antibiotics, ideally with novel mechanisms of action to slow the onset of 250 

resistance. Lead antibacterials are usually either synthesized chemically or isolated from natural 251 

products that exhibits antibacterial activity 33,34. We completed a C. elegans-MRSA HTS study 252 

and identified four small molecules that rescued nematodes from MRSA infection at 2.86 µg/mL 253 

9.  254 

Compound 1 represents a [1,2,5]oxadiazolo derivative from the NHI class, which are 255 

known to have antibacterial activity against Gram-positive organisms 35. Natural products bearing 256 

the NHI group, such as the nocathiacins and thiazomycins and their semi-synthetic analogues, 257 

exhibit activity against Gram-positive bacteria by inhibiting protein synthesis through direct 258 

interactions with the bacterial 50s ribosome 35. The related 7-hydroxy indole reportedly shows 259 

anti-virulence effects against P. aeruginosa 36. 260 

Compound 2 was a derivative from the widely-studied melamine class, whose examples 261 

have found use in antimicrobial polymers 37 and as water and food disinfectants 38. Melamine 262 

derivatives related to compound 2 have found applications in biocidal polymers, in food industries, 263 

as water disinfectants and as additives in livestock feeds 37,39. Reports have described the 264 

antibacterial activity of melamine 40 and Weaver AJ Jr, et al. reported that melamine derivatives 265 

target the bacterial membrane via non-specific interactions 24.  266 

Compound 3 contained an alkyl ITC attached to an indole nitrogen via a 2-carbon linker. 267 

ITC derivatives are known to show activity against Gram-positive and Gram-negative bacteria 41. 268 

ITCs are also present in several plant natural products 42 and can produce both bactericidal and 269 
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bacteriostatic activities against a range of bacterial pathogens 43. ITCs are known to react with 270 

amines and alcohols due to their highly electrophilic character 44, suggesting non-target specific 271 

mechanisms for compound 3. However, Breier et al., reported that ITCs can selectively inhibit the 272 

ATP binding sites of P-ATPase in bacteria via  reaction with a cysteine residue, suggesting the 273 

possibility of target-specific activity 45. Also, Sofrata et al., reported that benzyl isothiocyanate 274 

promotes outer membrane penetration in Gram-negative bacteria, leading to effects similar to those 275 

observed with cationic antimicrobial peptides 46. 276 

Compound 4 was a diarylacylhydrazone and close structural analog of the protonophore 277 

CCCP. Protonophores are molecules that dissipate the proton motive force in bacterial membranes 278 

leading to growth inhibition [27]. Compounds of this type were recently shown to exert non-279 

specific (protonophoric) antibacterial effects against the Gram-positive bacterium Clostridium 280 

difficle 47. Clinically used protonophores include the salicylanilide anthelmintics niclosamide, 281 

oxyclozanide and closantel, which are also known to show anti-staphylococcal activity 9,14. 282 

Characterization of the antibacterial properties of 1-4 here confirmed that they each show 283 

direct activity against two Gram-positives, inhibit intracellular growth of MRSA in macrophages, 284 

are non-hemolytic and synergize with clinical antibiotics. Future work focusing on the specific 285 

characteristics of each compound would likely provide further insights into their mechanisms of 286 

action. For example, studies exploring the effects of compound 1 on bacterial 50s ribosomes and 287 

its anti-virulence activity against S. aureus would be informative. Indole ITC 3 showed the most 288 

interesting activity of the four compounds, being able to clear intracellular MRSA from 289 

macrophages and synergizing with multiple antibiotics against MRSA, possibly due to its 290 

membrane permeabilizing properties (Figure 4). While it is unlikely that 3 could be developed into 291 

a drug for systemic MRSA infections due to the reactive ITC group, it would be interesting to 292 
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study its activity against skin and other body-surface MRSA infections in mammalian models, 293 

particularly in combination with the antibiotics it was shown here to synergize with.   294 

In conclusion, screening for novel antibacterial compounds using a whole-animal HTS 295 

identified novel small molecule hits with anti-staphylococcal activity. Combinatorial activity with 296 

clinical antibiotics might decrease the chances of emerging antimicrobial resistance and absence 297 

of antagonism with other compounds can be a valid credential of the hit compounds. Validation 298 

of the activity of the compounds here suggest further investigations and warrant further evaluation 299 

in mammalian models. 300 
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Figure Legends 445 

Figure 1. Chemical structures of compounds 1-4.  446 

Figure 2. Images from C. elegans-MRSA HTS. Worms observed in light microscope (left) are 447 

outlined in red and dead worms were identified in Sytox Orange-stained images (right) and were 448 

marked in green. Compounds were classified as hits based on extension of survival of MRSA-449 

MW2 infected worms. A compound 1; B compound 2; C compound 3; D compound 4; E 450 

Vancomycin; F DMSO. 451 

Figure 3. Time to kill assay. MRSA-MW2 cells were exposed to compounds 1-4 at 4X MIC and 452 

cell viability was monitored over 4 h. Data represent the mean ± SEM (n = 3). 453 

Figure 4. Bacterial membrane permeabilization assay. Cellular fluorescence of MRSA-MW2 454 

cells treated with Sytox Green and compounds 1-4 (64 µg/mL) was monitored over a 1 h period.  455 

Figure 5. A. Killing of intracellular MRSA-MW2 in macrophages. MRSA-MW2 cells were 456 

exposed to RAW 264.7 macrophages, treated with test compounds 1-4 at 1X MIC and the killing 457 

of internalized bacteria was measured by CFU enumeration. Vancomycin (8 µg/mL) was used as 458 

a positive control and DMSO 0.1% as the negative control. Data represent the mean ± SEM (n = 459 

3). ***p<0.001, two-way ANOVA with Bonfererroni post-test comparing DMSO control at 24 460 

hour time point. B. Killing of planktonic MRSA-MW2. MRSA-MW2 cells were exposed test 461 

compounds 1-4 at 1X MIC and the CFU was measured. 462 

Figure 6. Cytotoxicity of compounds 1-4. A. Hemolytic activity. Human RBCs were exposed 463 

to 2-fold serial dilutions of compounds and hemolysis was measured after 1 hour. Serially diluted 464 

triton-X (0.001 to 1%) was included as a positive control. B-D. Cytotoxicity. Mammalian cells 465 

(HepG2, MKN-28, HKC-8) were treated with 2-fold serial dilutions of compounds and the 466 
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cytotoxicity was measured after 24 h by WST-1. B. HepG2 cells; C. MKN-28; D. HKC-8. Data 467 

represent the mean ± SEM (n = 3).   468 
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Table 1. Antibacterial activity (µg/mL) of compounds 1-4 against ESKAPE pathogens. 

  

 1 2 3 4 Vancomycin Polymyxin B 

 MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC 

Staphylococcus 
aureus 4 64 8 >64 8 >64 2 32 4.0 16 >64 >64 

Enterococcus 
faecium  
 

8 ND 8 >64 8 >64 2 >64 4.0 64 >64 >64 

Acinetobacter 
baumanii 32 >64 >64 >64 >64 >64 32 >64 >64 >64 4 8 

Enterobacter 
aerogens  
 

>64 >64 >64 >64 >64 >64 >64 >64 >64 >64 8 8 

Klebsiella 
pneumoniae  >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 8 8 

Pseudomonas 
aeruginosa  
 

>64 >64 >64 >64 >64 >64 >64 >64 >64 >64 2 4 



Table 2. Antibacterial activity (µg/mL) of compounds 1-4 against clinical S. aureus 
pathogens. 

  

 MIC (µg/mL)  

   
 1 2 3 4 Vancomycin PolymyxinB Oxacillin 

S. aureus BF1 4 8 8 2 2 >64 >64 

S. aureus BF2 4 8 8 2 2 >64 >64 

S. aureus BF3 4 8 8 2 2 >64 32 

S. aureus BF4 4 8 8 2 2 >64 16 

S. aureus BF5 4 8 8 2 2 >64 >64 



Table 3. Fractional inhibitory concentration index (FICI) of compounds 1-4 used in paired 
combinations with each other and with antibiotics. 

 
 

Compound 

FICI 
Compound Clinical antibiotics 

1 2 3 4 CIP DOX EMN GMN STN VAN 
1  0.75 1.0 0.75 0.5 1.0 0.75 0.75 2.0 2.0 
2 0.75  1.0 0.75 0.5 1.0 1.0 1.0 0.625 1.0 
3 1.0 1.0  1.0 1.0 0.75 0.5 0.5 0.5 0.5 
4 0.75 0.75 1.0  0.5 0.5 0.75 1.0 1.0 1.0 

 

CIP- Ciprofloxacin; DOX- Doxycycline; EMN- Erythromycin; GMN-Gentamicin; STN- Streptomycin; 
Van- Vancomycin.  

Synergy FICI ≤ 0.5, antagonism FICI > 4.0, no interaction 0.5 > FICI ≤ 4.0 28. 
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