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ABSTRACT This paper studies the detection problem for multistatic passive radar. We consider scenarios
where prior knowledge about the spectrum and peak-to-average ratio (PAR) of the non-cooperative illu-
minators of opportunity (IOs) is available. We develop several knowledge-aided (KA) detectors within the
framework of the generalized likelihood ratio test (GLRT) to exploit such prior knowledge. Particularly,
the knowledge about the bandwidth of the transmitted signal is employed to suppress the out-of-band noise,
and the knowledge about the PAR constraint is exploited to eliminate the remaining high-power noise. The
challenge of unknown spectrum condition is also addressed, where block sparse Bayesian learning (BSBL) is
exploited to derive the maximum-likelihood estimates (MLEs) of the unknown, temporally correlated signal.
The numerical results indicate that the proposed KA detectors offer significant performance improvements
compared with the traditional detectors, which do not exploit such prior information.

INDEX TERMS Target detection, multistatic passive radar, knowledge-aided detection, generalized
likelihood ratio test (GLRT).

I. INTRODUCTION
Passive radar exploits noncooperative and readily avail-
able illuminators of opportunity (IOs) to detect and track
targets of interests. Without an active transmitter, passive
radar possesses the advantages of low implementation costs,
stealth, and ability to avoid interference [1]–[6] and has wide
applications in military and civilian scenarios. For example,
[2], [3] study vehicular passive radar utilizing indoor
WiFi signals to monitor indoor area. In [7], passive radar is
exploited to protect the route safety through detecting poten-
tial dangerous aerial vehicles and birds around the airport.
In urban sensing applications, passive radar is used in traffic
control by relying on the existing high-power communication
signals as a potential IO to detect and track vehicles. This
avoids influencing the existing communication equipments
as the radar does not actively transmit signals.

In general, passive radar systems can be classified into
two categories according to whether a reference path (RP)
(i.e., the direct transmitter-radar path) is employed [8]–[11].
The first category utilizes only the surveillance paths (SP)

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

(i.e., the transmitter-target-radar path) to detect the potential
target signal while ensuring that the null of the antenna array
is steered towards the transmitter [8]. The other category
use the SP and RP jointly: The echoes from the RP can be
collected first as the prior information and then the echoes
from the SP and RP are jointly exploited to detect targets.
In this category, the prior information from RP is well lever-
aged to avoid its strong impact on target detection. According
to the number of distributed receivers, passive radarsmay also
be classified intomultistatic or monostatic systems [11]–[14].
Compared with monostatic systems, multistatic passive radar
can potentially improve the detection performance with more
degrees of freedom [15]. Furthermore, multistatic passive
radar is able to reduce the influence of target scintillations
caused by spatial properties of the targets’ radar cross section
(RCS). Therefore, distributed passive radars may benefit
from the enhanced spatial or geometric diversity to improve
target detection, as a result of statistically independent obser-
vations of the targets from different spatial angles [16].

It is of significant importance to sufficiently exploit the
low-power, non-cooperative signals from IOs for passive
radar. Fortunately, for passive radar systems that exploit com-
munications signals, e.g., from broadcast stations, mobile
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stations, andWiFi signals [17], [18], a prior knowledge about
the signal can be available. In particular, the bandwidth may
be used to suppress the noise and thus improve the ability of
detection [19]. Moreover, the peak-to-average ratio (PAR),
which is often controlled in communication systems [20]
to maintain the efficiency of power amplifiers and reduce
the out-of-band radiation, may help improve the estimate
of the transmitted signal. Exploiting such prior knowledge
may compensate for the loss due to the lack of coopera-
tion in passive radar and effectively improve the detection
performance [21], [22]. To the best of our knowledge, such
knowledge has not been exploited in the past studies in the
open literature. Consequently, the estimation of the unknown
signal can suffer significantly from noise, which may in turn
lead to a poor performance of the ‘‘cross-correlation’’ (CC)
detector [23]–[25].

In this paper, we investigate how to exploit the prior knowl-
edge about the bandwidth and PAR and develop knowledge-
aided (KA) detectors for multistatic passive radar with noisy
SPs and RPs. We resort to a generalized likelihood ratio
test (GLRT) and propose several bandwidth- and PAR-based
KA detectors. Two KA detectors are proposed for the case
where both the bandwidth and PAR constraints are consid-
ered, based on the power method and cyclic optimization,
respectively. We further discuss two detectors for constant
modulus signals, by applying upper and lower bounds to
the optimization problem. We also discuss the case where
knowledge about the bandwidth or PAR only is available
and show that the bandwidth knowledge can be exploited
to suppress a majority of noise and the PAR constraint can
eliminate the higher powered noise, which improves the
accuracy of the transmitting signal estimation. In addition,
the sparse Bayesian learning (SBL) algorithm is utilized to
tackle the case where the bandwidth is unknown. The pro-
posed detectors are evaluated for the distributed passive radar
system in different scenarios, which shows notable improve-
ment over the traditional detectors that do not exploit prior
knowledge.

The rest of this paper is organized as follows: Section II
describes the signal model and formulates the detection prob-
lem for multistatic passive radar systems. Section III intro-
duces the proposed GLRT-based detectors that exploit the
bandwidth and PAR knowledge. Section IV introduces sev-
eral special cases and also addresses the case with unknown
bandwidth. Simulations and analysis of the proposed detec-
tors are given in Section V. Finally, conclusions are drawn
in Section VI.
Notation: Rn and Cn denote the n-dimensional real and

complex vector space, respectively. Rm×n and Cm×n denote
them×n-dimensional real and complex matrix space, respec-
tively. (·)T , (·)∗, (·)†, vec(·), and λmax(·) denote the trans-
pose, complex conjugate, conjugate transpose, vectorization,
and largest eigenvalue, respectively. | · | denotes the mod-
ulus of a complex scalar. ‖ · ‖ denotes the `2 norm of
a vector. ‖ · ‖F denotes the Frobenius norm of a matrix.
⊗ denotes the Kronecker product. R(H) denotes the range

FIGURE 1. Configuration of a multistatic passive radar system with
colocated reference and surveillance antennas.

space of matrix H. Re(·) denotes the real part of a scalar,
vector or matrix.

II. SIGNAL MODEL AND PROBLEM FORMULATION
Consider a multistatic passive radar system that employs
M distributively located stations, as shown schematically
in Fig. 1. Colocated reference and surveillance antennas are
deployed at each station, where the reference antennas point
to the transmitter while the surveillance antennas are steered
toward the direction to be surveyed. Assume that the signals
from the two paths are synchronized such that the relative
delay can be ignored, which may be achieved by estimat-
ing the time delays and matched filtering. We assume that
multipath, clutter and direct path signal can be removed by
some developed technologies, such as Digital Beam Forming
technology, Kalman filter in tracking method.

Assume that the signal is received and sampled by fre-
quency f0. Besides, we assume that different surveillance
and reference receivers use a same clock and collect all
received signals into a centralized signal processing station.
The received noise spread along whole spectrum compared
transmit signal and it is drawn from the circular Gaussian
distribution [4], [26]–[28]. Therefore, the hypothesis testing
problem can be formulated as

H0 :

{
Yr = sαT +Wr

Ys =Ws
H1 :

{
Yr = sαT +Wr

Ys = sβT +Ws,

(1)

where
• Yr =

[
yr,1, yr,2, . . . , yr,M

]
∈ CN×M denotes the

received signals from the RPs,
• Ys =

[
ys,1, ys,2, . . . , ys,M

]
∈ CN×M denotes the

received signals from the SPs,
• yr,m =

[
yr,m[1], yr,m[2], . . . , yr,m[N ]

]T ,
• ys,m =

[
ys,m[1], ys,m[2], . . . , ys,m[N ]

]T ,
• α = [α1, α2, . . . , αM ]T denotes the attenuation on RP,
• β = [β1, β2, . . . , βM ]T denotes the attenuation and the
RCS of the target to be detected,

• s = [s[1], s[2], . . . , s[N ]]T denotes the unknown signal
of opportunity,

• Wr and Ws denote the matrices of noise whose power
σ 2
m is assumed having the same noise power for
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simplifying derivations and also assumed equal for
each pair of RP and SP, and we define as W =

[w1,w2, . . . ,wM ],
• N denotes the length of observations, which is deter-
mined by the sampling rate and bandwidth.

Previous works do not consider any prior knowledge about
the signal s, and the CC detector is given by

M∑
m=1

∣∣∣y†r,mys,m∣∣∣ H1
≷
H0

ξ, (2)

where we use ξ to denote the generic detection threshold. The
performance of this detector may degrade when the RP or SP
are severely noisy. Note that in the remainder of this paper,
we reuse ξ to denote the threshold of a detector, whose value
may vary with the detectors.

We may employ prior knowledge about the unknown
signal s to improve the detection performance. Consider the
spectra decomposition of s:

s = H̃x̃, (3)

where

H̃ = [a(f1), a(f2), . . . , a(fN )] ∈ CN×N (4)

is the N × N Fourier transform matrix with a(fi) =[
1, e−j2π fi , · · · , e−j2π fi(N−1)

]
, i = 1, 2, · · · ,N where

fi = i−1
N is the normalized frequency, and x̃ denotes the

corresponding Fourier coefficient vector. The opportunity
signal usually originates from the broadcasting stations,
mobile stations, etc, and occupies a fixed frequency band
with a certain bandwidth. Assume that a band limited
signal s with frequency domain from fs1 to fs2. We can nor-
malize it by f0, and we can obtain signal s by Fourier matrix
[a(fs1/f0), · · · , a(fs2/f0)]. We define the number of columns
of the matrix is B. Therefore, we can impose a bandwidth
constraint on the unknown signal by assuming the following
subspace model [5]

s = Hx, (5)

where x is a B×1 coefficient vector and B < N is the dimen-
sion of the subspace. In this way, a bandwidth constraint is
imposed on the unknown signal x which can be uniquely
represented by x. Note that the matrix H ∈ CN×B can be
comprised of the Fourier matrix. Besides,H can also be other
prior spectrum based matrix. The value B also means the rank
of basis matrix H. When B = N , the matrix H is nonsingular
and the received signal vector s spreads the whole spectrum.

Furthermore, we may incorporate the prior knowledge
about the PAR into the multistatic passive radar detection
problem, which is defined as [29]

ρ(s) =
max
n
|s[n]|2

‖s‖2/N
. (6)

Clearly, ρ(s) is always equal to or greater than 1.

III. KA DETECTORS WITH PRIOR KNOWLEDGE ABOUT
BANDWIDTH AND PAR
Asmentioned earlier, the prior knowledge about the unknown
signal s may be obtained in various ways. In this section,
we investigate how to exploit the bandwidth and PAR infor-
mation for detecting targets in multistatic passive radar sys-
tems. Our treatments are based on the GLRT framework by
replacing unknown parameters with their maximum likeli-
hood estimates (MLEs). Two detectors employing the power
method and cyclic optimization will be presented. The special
case of constant-modulus transmitted signals will be treated
using upper and lower bound methods.

We first study how to detect targets with a PAR constraint
ρ(s) ≤ γ and bandwidth constraint (i.e., s = Hx), where γ is
a constant. Adopting the MLEs of the unknown parameters,
the GLRT problem is formulated as

max
α,β,s∈R(H),ρ(s)≤γ

p1(Yr ,Ys|α,β, s)

max
α,s∈R(H),ρ(s)≤γ

p0(Yr ,Ys|α, s)

H1
≷
H0

ξ, (7)

where R(H) denotes the range space of H and the condi-
tional probability density function (PDF) pi(Yr ,Ys|α, iβ, s)
is assumed to follow a normal distribution as

pi(Yr ,Ys|α, iβ, s)

=

M∏
m=1

1
π2Nσ 4N

m

× exp
{
−

1
σ 2
m

[
‖ys,m − iβms‖2 + ‖yr,m − αms‖2

]}
,

(8)

with i = 0 and 1 for hypotheses H0 and H1, respectively.
By eliminating some constant terms, the GLRT in (7) can be
simplified to

min
α,s∈R(H),ρ(s)≤γ

M∑
m=1

‖n0,m‖2

− min
α,β,s∈R(H),ρ(s)≤γ

M∑
m=1

‖n1,m‖2
H1
≷
H0

ξ, (9)

where

‖n0,m‖2 =
1
σ 2
m

∥∥[ys,m, yr,m]− [0N , αms]
∥∥2

‖n1,m‖2 =
1
σ 2
m

∥∥[ys,m, yr,m]− [βms, αms]
∥∥2. (10)

The twominimization problems in (9) do not admit closed-
form solutions. We here provide two methods. One is based
on the power method with bandwidth constraint (PARPBC)
[30] and the other is the PAR cyclic optimization with band-
width constraint (PARCBC), which jointly estimate αm, βm
and s. The special case of unit PAR is also treated by using
two algorithms, i.e., the PARloBC and PARupBC, based on
upper bounding and lower bounding, respectively.

VOLUME 7, 2019 53465
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A. PARPBC DETECTOR
Plugging in the MLEs of the unknown amplitudes and incor-
porating the low-rank constraint, the GLRT problem of (9)
can be reduced as (see Appendix VI for details)

max
s,ρ(s)≤γ

s†PHR1PH s
s†s

− max
s,ρ(s)≤γ

s†PHR0PH s
s†s

H1
≷
H0

ξ, (11)

where

PH = H(H†H)−1H†

R0 =

M∑
m=1

ỹr,mỹ†r,m = Ỹr Ỹ†
r

R1 =

M∑
m=1

(
ỹs,mỹ†s,m + ỹr,mỹ†r,m

)
= ỸsỸ†

s + Ỹr Ỹ†
r , (12)

and we have restructured the vectors and matrices as

ỹr,m = yr,m/σm
ỹs,m = ys,m/σm
Ỹr =

[
ỹr,1, ỹr,2, . . . , ỹr,M

]
∈ CN×M

Ỹs =
[
ỹs,1, ỹs,2, . . . , ỹs,M

]
∈ CN×M . (13)

The maximization problems in (11) can be reformulated as

max
s

s†PHRiPH s

s.t. ρ(s) ≤ γ, ‖s‖2 = 1, (14)

for i = 0 or 1. This can be solved iteratively by solving a
sequence of nearest-vector problems

min
s(k+1)

‖s(k+1) − PHRiPH s(k)‖2

s.t. ρ(s(k+1)) ≤ γ, ‖s(k+1)‖2 = 1, (15)

where k is the number of iterations, s(k) denotes the value
of s at the k-th iteration, and the detailed solution is shown
in Appendix VI. The iteration is terminated when ‖s(k+1) −
s(k)‖2 < ε, where ε is a threshold small enough to guarantee
convergence.

Using the estimation method above, it can be shown that
the final PARPBC test can be formulated as

ŝ†1PHR1PH ŝ1

ŝ†1ŝ1
−

ŝ†0PHR0PH ŝ0

ŝ†0ŝ0

H1
≷
H0

ξ, (16)

where ŝ1 and ŝ0 are the solutions of (14) obtained under
the hypotheses H1 and H0, respectively. The proposed
PARPBC detector is summarized in Algorithm 1.
Remark 1: PH is equivalent to a bandpass filter with band-

width B, which allows to suppress the out-of-band noise.
Consider a mismatched situation where the true signal band-
width B′ is less than the filter bandwidth, i.e., B′ < B.
After bandpass filtering, the transmitted signal can fully pass
the filter but the noise can be suppressed. The signal-to-

noise ratio (SNR) of one path is ‖s‖
2

Bσ 2m
, which improves as

B approaches B′ due to the decrease of the noise level. For
the case B′ > B, the SNR becomes ‖PH s‖

2

Bσ 2m
. As B decreases,

both the noise and signal levels decrease.

Algorithm 1 PARPBC Test
Step A: Estimate ŝi under Hi for i = 0, 1:
Input: Ri, the PAR γ and bandwidth matrix PH .
1: Set k as the number of iterations. Initialize k = 0 and set

s(0)i to be an all-one vector.
2: while ‖s(k+1)i − s(k)i ‖

2 > ε do
3: Update s(k+1)i using the method of (15).

k ← k + 1;
4: end while
Step B: Conduct the test of (16).

B. PARCBC DETECTOR
The objective function of (9) is convex with respect to αm,
βm and s, respectively, and thus at least a local optimum
can be guaranteed. In the following, we discuss the iterative
PARCBC algorithm as summarized in Algorithm 2, which
optimizes part of unknown parameters alternatively while the
others keep fixed.

Algorithm 2 PARCBC Test
Step A: Estimate si under Hi for i = 0, 1:
Input: Yi, the PAR γ and bandwidth matrix PH .
1: Set k as the number of iterations. Initialize k = 0 and set

s(0)i to be an all-one vector.
2: while ‖s(k+1)i − s(k)i ‖

2 > ε do
3: Update β(k)m and α(k)m by (17) for all m.
4: Update s̃(k+1)i by (19).
5: Calculate c(k+1)i by (20) and s(k+1)i by (21).
6: end while
Step B: Conduct the test of (22).

Let s(k), α(k)m , β(k)m be the values of the unknown parameters
at the kth iteration. For a fixed s(k), the MLEs of αm and
βm are given by (54) and included here for convenience

β̂(k)m =
(s(k))†ys,m
(s(k))†s(k)

, α̂(k)m =
(s(k))†yr,m
(s(k))†s(k)

, (17)

where β̂(k)m is used only under the H1 hypothesis. Let s(k) =
c(k)s̃(k), where s̃(k) denotes the signal with PAR constraint
ρ(s(k)) ≤ γ and ‖s(k)‖2 = c(k). For fixed {α(k)m } and {β

(k)
m },

each of the minimization problems in (9) is equivalent to

min
s̃,c
− 2
√
cRe

{
M∑
m=1

PH
(
iy†s,mβ

(k)
m + y†r,mα

(k)
m

)
s̃

}
+

M∑
m=1

(
i|β(k)m |

2
+ |α(k)m |

2
)
c

s.t. ρ(s̃) ≤ γ, (18)

which has employed the same treatment for the bandwidth
constraint in (11). The solution s̃(k+1) can be found by solving

min
s̃
‖s̃−

M∑
m=1

PH
(
iβ(k)∗m ys,m + α(k)∗m yr,m

)
‖
2

s.t. ρ(s̃) ≤ γ, (19)
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which admits a closed-form solution using the nearest-vector
algorithm, as shown in Appendix VI. Furthermore, the solu-
tion to c is computed as

c(k+1) =

Re
{

M∑
m=1

PH
(
iy†s,mβ

(k)
m + y†r,mα

(k)
m

)
s̃(k+1)

}
M∑
m=1

(
i|β(k)m |

2 + |α
(k)
m |

2
) . (20)

As such, the MLE of s for fixed (α(k)m , β(k)m ) can be written as

s(k+1) = c(k+1)s̃(k+1). (21)

We can now obtain the final PARCBC test as
M∑
m=1

‖n̂0,m‖2 −
M∑
m=1

‖n̂1,m‖2
H1
≷
H0

ξ, (22)

where n̂0,m and n̂1,m are the estimates of n0,m and n1,m by
plugging the estimates of s, {αm} and {βm} under H0 and H1
hypotheses into (10), respectively.

C. PARUPBC DETECTOR UNDER CONSTANT MODULUS
CONSTRAINT
The constant modulus constraint is a special case of the PAR
constraint where ρ(s) = 1, which is usually the case of phase
modulated or frequency modulated signal [31]. Therefore,
plugging in the MLEs of the estimated amplitudes in (17)
and employing the bandwidth information, the GLRT with
the constant modulus constraint can be expressed by

max
s,ρ(s)=1

s†PHR1PH s
s†s

− max
s,ρ(s)=1

s†PHR0PH s
s†s

H1
≷
H0

ξ. (23)

The constant modulus signal s can be written as s =
δ[ejφ1 , ejφ2 , · · · , ejφN ], where δ is a constant amplitude and
φn, n = 1, 2, · · · ,N , denote the phases. There is no closed-
form solution to s that maximizes s†PHRiPH s under the
constant modulus constraint. We resort to an upper bound to
approach the maximum objective function, which is given by

s†PHRiPH s =
N∑

p,q=1

rp,qej(φp−φq)

≤ ‖PHRiPH‖1, (24)

where rp,q denotes the (p, q)-th entry of PHRiPH , and

‖PHRiPH‖1 =
N∑

p,q=1
|rp,q|, we have assumed δ = 1 for

simplification, and the equality holds if and only if there
exists

φp − φq = − arg(rp,q) (25)

here arg(·) means argument. This way, the approximate
GLRT for the constant modulus signal is given by

‖PHR1PH‖1 − ‖PHR0PH‖1
H1
≷
H0

ξ, (26)

where the test utilizes an upper bound of s†PHRiPH s and we
name it as the PARupBC test.

D. PARLOBC DETECTOR UNDER CONSTANT MODULUS
CONSTRAINT
Another feasible approximation is based on rank-1 approxi-
mation which provides a lower bound for each of the maxi-
mization problem. Exploiting the fact that

max
s,ρ(s)=1

s†PHRiPH s ≥ max
s,ρ(s)=1

λmax(PHRiPH )s†uiu
†
i s

= λmax(PHRiPH )‖ui‖21, (27)

where ui is the principal eigenvector of PHRiPH , we can
obtain a lower bound-based test with the constant modulus
constraint (PARloBC) as

λmax(PHR1PH )‖u1‖21 − λmax(PHR0PH )‖u0‖21
H1
≷
H0

ξ. (28)

Remark 2: Specially, the PARloBC method in the monos-
tatic case with M = 1 suffers from heavy computations with
N × N matrix eigenvalue decomposition. To alleviate this
problem, some matrix manipulations are adopted to obtain
the final test as

1
λ1
‖[ỹ′r , ỹ

′
s]v1‖

2
1 − ‖ỹ

′
r‖

2
‖ỹ′r‖

2
1

H1
≷
H0

ξ, (29)

where

ỹ′r =PH ỹr , ỹ′s = PH ỹs, (30)

λ1=
1
2
( ‖ỹ′r‖

2
+‖ỹ′s‖

2
+

√
(‖ỹ′r‖2−‖ỹ′s‖2)2−4|ỹ

′†
s ỹ′r |2 ),

(31)

v1= [λ1 − ‖ỹ′s‖
2, 2ỹ′†s ỹ

′
r ]
T . (32)

The details are given in Appendix C.

IV. DETECTORS FOR SEVERAL DEGRADED CASES
This section discusses several degraded cases where only
part of the prior knowledge is available and proposes the
corresponding detectors. Furthermore, the challenge of unde-
termined bandwidth is tackled by using the SBL algorithm.

A. GLRT WITH PAR CONSTRAINT ONLY
In this sub-section, we derive several GLRT detectors that
consider only the PAR constraint, following the derivations of
the GLRT detectors in the previous section. The key problem
is to estimate the unknown signal under this constraint.

1) PARP DETECTOR
Employing the same technique as in Algorithm 1, a new
detector (named the PARP detector) can be obtained, which
has the same form as (16) but applies a different estimator

min
s

s†Ris

s.t. ρ(s) ≤ γ, ‖s‖2 = 1. (33)
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2) PARC DETECTOR
In addition, following Algorithm 2 of the PARCBC method,
the optimization problem (18) under the PAR constraint only
(named the PARC) can be formulated as

min
s̃,c
− 2
√
cRe

{
M∑
m=1

(
iy†s,mβ

(k)
m + y†r,mα

(k)
m

)
s̃

}

+

M∑
m=1

(
i|β(k)m |

2
+ |α(k)m |

2
)
c

s.t. ρ(s̃) ≤ γ. (34)

Substituting the estimates of s into the GLRT form yields the
same test as (22) with different estimators.

3) PARLO DETECTOR
For the detection of a constant modulus signal, we may
use the same approximation in (26) and obtain the PARlo
detector, i.e.,

‖R1‖1 − ‖R0‖1
H1
≷
H0

ξ. (35)

4) PARUP DETECTOR
Similarly, the PARup method under the constant envelope
signal condition can be recast as

λmax(R1)‖ũ′1‖
2
1 − λmax(R0)‖ũ′0‖

2
1

H1
≷
H0

ξ, (36)

where ũ′i denotes the principal eigenvector of Ri.

B. GLRT WITH BANDWIDTH CONSTRAINT ONLY
In this subsection, we consider detectors that assume only
the constraint on the bandwidth. Similarly, resorting to the
GLRT framework, the problem can be recast as

min
α,s∈R(H)

M∑
m=1

‖n0‖2 − min
α,β,s∈R(H)

M∑
m=1

‖n1‖2
H1
≷
H0

ξ. (37)

The test statistics can be expressed by

λmax(PHR1PH )− λmax(PHR0PH )
H1
≷
H0

ξ, (38)

which is derived in Appendix VI. We name the resulting
detector the bandwidth constraint (BC) detector.
Remark 3: Specially, for the momostatic case, i.e.,M = 1,

we can get

λmax(PHR0PH ) = ‖PH ỹr‖2 (39)

under H0 hypothesis, and

λmax(PHR1PH )

= λmax(PH (ỹr ỹ†r + ỹsỹ†s )PH )

=
1
2
( ‖PH ỹr‖2 + ‖PH ỹs‖2

+

√
(‖PH ỹr‖2 − ‖PH ỹs‖2)2 − 4|ỹ†sPH ỹr |2 ). (40)

for the H1 hypothesis. In this case, the BC detector can be
expressed by

‖PH ỹs‖2 − ‖PH ỹr‖2

+

√
(‖PH ỹr‖2−‖PH ỹs‖2)2−4|ỹ

†
sPH ỹr |2

H1
≷
H0

ξ. (41)

C. GLRT WITH UNKNOWN BANDWIDTH
In the previous discussion, it is assumed that the frequency
range of the unknown signal is known and the bandpass
filter, i.e., the Fourier matrix H, has a passband of the same
frequency range. In this sub-section, we assume that the fre-
quency band of the signal is unknown.We employ a Bayesian
model to estimate the unknown signal, which encourages the
sparsity in the frequency domain and automatically tunes the
filter passband.

Now the GLRT problemwith an unknown frequency range
is formulated as

min
α,s

M∑
m=1

‖n0,m‖2

s.t. sαT = H̄X̄0

‖X̄0,m‖0 = B, (42)

and,

min
α,β,s

M∑
m=1

‖n1,m‖2

s.t. s[αT ,βT ] = H̄X̄1

‖X̄1,m‖0 = B, (43)

where the overcomplete dictionary matrix

H̄ = [a(f1), a(f2), . . . , a(fD)] ∈ CN×D (44)

has a dimension of D� N , and the total number of non-zero
elements of each column of the Fourier coefficient matrix X̄
equals to the bandwidth B. The response due to the opportu-
nity signal in the received signals can be represented by H̄X̄i,
where X̄0 ∈ CD×M and X̄1 ∈ CD×2M are the unknown
coefficient matrices under hypotheses Hi, i = 0, 1. Note that
the columns of the sparse matrix X̄i share the same support
(i.e., the same indexes of nonzeros entries).We can thus apply
techniques for common sparsity recovery [32] to estimate X̄i.
The GLRT problem is now tackled by solving two

minimization problems minα,iβ,s
M∑
m=1
‖ni,m‖2 under Hi,

i = 0, 1, i.e.,

ˆ̄Xi = argmin
X̄i
‖Yi − H̄iX̄i‖

2
F , (45)

where the measurement matrices are

Y1 =

[
Ỹr , Ỹs

]
∈ CN×2M and Y0 = Ỹr ∈ CN×M . (46)

We assume that all the rows of X̄i, denoted by X̄i,m are
mutually independent with the Gaussian density, given by

p
(
X̄i,m; γm,Bm

)
∼ N (0, γmBm), (47)
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TABLE 1. Test statistics under various prior knowledge.

where m = 1, . . . ,M , for i = 0, m = 1, . . . , 2M , for i = 1,
γm is a nonnegative hyperparameter controlling the sparsity
of X̄i, and Bm is an unknown positive definite matrix captur-
ing the correlation structure of each X̄i,m. Herein, we adopt
the block sparse Bayesian learning (BSBL) algorithm to
solve (45) and also learn the hyperparameter γm and the
correlation matrices Bm [32]–[34]. Finally, plugging in the
solutions of (45) into the GLRT, we can obtain the final test

‖Y0 − H̄0
ˆ̄X0‖

2
F − ‖Y1 − H̄1

ˆ̄X1‖
2
F

H1
≷
H0

ξ. (48)

V. NUMERICAL RESULTS
This section presents numerical results to evaluate the perfor-
mance of the proposed detectors. The test statistics for differ-
ent prior knowledge are listed in Table 1. We also compare
the proposed detectors with the CC detector given by (2),
the generalized canonical correlation (GCC) detector (with
knowledge of the noise power) in [13], and the GLRT-based
constant false alarm rate (GBC) detection in [10].

A. SIMULATION SCENARIO
For a fair comparison, we set the simulation setup of [13].
In addition, three kinds of signals are adopted in this sections.

1) SIGNAL WITH BANDWIDTH CONSTRAINT
Set x ∈ CB×1 is sampled from CN (0, I). The signal s
transmitted from the IO is modeled as

s =
Hx
‖Hx‖

, (49)

where H ∈ CH×B is the known bandwidth Fourier matrix.

2) SIGNAL WITH PAR CONSTRAINT
We assume the signal s is sampled from

find s

s.t. |s(n)| ≤ γ, n = 1, · · · ,N

‖s‖2 = 1, (50)

where γ =
√
Nρ(s). The solution of this problem can be

developed by the algorithm in [35], where the solutions are
random by random initial value. For the constant modulus
signal condition, the transmit signals are chosen as s =
δ[ejφ1 , ejφ2 , · · · , ejφN ].

3) SIGNAL WITH BANDWIDTH AND PAR CONSTRAINT
We assume the signal s is sampled from

find x

s.t. |s(n)| ≤ γ, n = 1, · · · ,N

‖s‖2 = 1

s = Hx, (51)

Similarly, the output of this problem can be solved by the
algorithm in [35].

We consider a multistatic passive radar network with one
transmitting station andM = 3 receiving stations, where each
receiving station possesses collocated reference and surveil-
lance antennas. Similar in [13], the reference and surveillance
channels noise are drawn from CN (0, σ 2

r I) and CN (0, σ 2
s I),

respectively. We fix ‖s‖2 = 1. Under each hypothesis,
the signal-to-noise ratio (SNR) of the received signal from
the RP is given by

SNRRP =

M∑
m=1
|αm|

2

Mσ 2 . (52)

For the SP signal, a similar SNR is defined as

SNRSP =

M∑
m=1
|βm|

2

Mσ 2 . (53)

We fix SNRRP = 5dB and different values of SNRSP are
considered. In the following, SNRSP will be abbreviated as
SNR. The probability of false alarm is set to Pfa = 10−3

and the number of independent trials is chosen to be 105.
αm and βm are scaled to achieve the desired SNRRP
and SNRSP. We show below the performance of the proposed
detectors under different constraints on the signal.
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FIGURE 2. Probability of detection versus SNR with N = 64 and the true
bandwidth B′ = 8.

FIGURE 3. Probability of detection versus SNR with different N and the
prior bandwidth B = B′ = N/10.

B. BANDWIDTH CONSTRAINT
Fig. 2 shows an example with the bandwidth constraint. The
number of samples N is 64, the true bandwidth is B′ = 8,
and the normalized bandwidth is B′/N = 0.125. The results
with bandpass filter PH of different bandwidths B are pre-
sented. It is seen that the best performance is achieved when
the knowledge of the bandwidth is perfect, i.e., B = B′.
Performance loss can be observed when the knowledge of
the bandwidth is imperfect, i.e., B 6= B′. The BSBL-based
detector, which learns the bandwidth from the data, outper-
forms the BC detector that sets B = N . In addition, all
the detectors above outperform the traditional GCC, GBC
and CC detectors which do not exploit any prior information
about signal.

Fig. 3 demonstrates the influence of the number of sam-
ples on the detection performance. Accurate knowledge of
the bandwidth, i.e., B = B′ = N/10, is assumed for the
CC detector with different numbers of samples. It is shown
that as the number of samples increases, the detection per-
formance improves. In addition, the proposed BC detector

FIGURE 4. Probability of detection versus SNR with the prior PAR
knowledge ρ ≤ 1.2 and different N .

FIGURE 5. Probability of detection versus SNR with the prior PAR
knowledge ρ = 1 and different N .

significantly outperforms the CC method, especially when
the number of samples is large.

C. PAR CONSTRAINT
Fig. 4 shows the detection performance with the prior knowl-
edge of PAR. Two detectors, i.e., the PARC and PARP, are
compared under the prior knowledge ρ ≤ 1.2 for different N .
It is shown that the performances of the two detectors PARC
and PARP are similar and improve when the number of
sample data increases.

Fig. 5 shows the case of constant modulus signals,
i.e., ρ = 1. Adopting the constant modulus constraint,
the PARup and PARlo detectors are examined for different
numbers of samples N . It is shown that the two detectors
achieve similar performance. Comparisons between Fig. 4
and Fig. 5 reveal that all considered detectors achieve similar
detection performance with different N . However, in the con-
stant modulus case, the PARup and PARlo methods require
fewer computations as compared to the iteration-based PARC
and PARP detectors.
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FIGURE 6. Probability of detection versus SNR with the prior knowledge
B = B′ = N/10 and ρ ≤ 1.2 for different N .

FIGURE 7. Probability of detection versus SNR with the prior knowledge
B = B′ = 8 and ρ ≤ 1.2 for N = 64.

D. BANDWIDTH AND PAR CONSTRAINTS
Fig. 6 to Fig. 9 demonstrate examples where the prior knowl-
edge of the bandwidth and PAR are exploited simultaneously.
In Fig. 6 and 7, the PARCBC and PARPBC algorithms
are considered for an example of ρ ≤ 1.2. From Fig. 6,
the two detectors have similar performance for different N .
Fig. 7 demonstrates that our proposed detectors are able to
exploit the prior knowledge about the bandwidth and PAR to
improve the performance. Similarly, in Fig. 8, the PARupBC
and PARloBC detectors are compared for constant modulus
signals. Besides, Fig. 9 shows that both detectors can improve
the performance when both the PAR and constant modulus
knowledge are exploited.

The results in Fig. 7 and 9 indicate that the prior knowl-
edge of the bandwidth is more effective in improving the
performance as compared to the PAR knowledge. In order to
examine the effect of different constraints, the performance of
estimating the unknown signal is depicted in Fig. 10, where
one signal plus noise model sr = αs + w is considered

FIGURE 8. Probability of detection versus SNR with the prior knowledge
B = B′ = N/10 and ρ = 1 for different N .

FIGURE 9. Probability of detection versus SNR with the prior knowledge
B = B′ = 8 and ρ = 1 for N = 64.

with ‖s‖2 = 1. In particular, the bandwidth-constrained
estimator is given by the principal eigenvector PH srs

†
rPH .

The estimator under only the PAR constraint is given by (33)
and that under both constraints is given by (14). We can
see that the bandwidth constraint plays a more significant
role in the signal estimation which can eliminate a majority
of the influence of the noise. The PAR knowledge can fur-
ther suppress the high-power noise. Clearly, exploiting both
knowledge can obtain the most significant performance.

E. INACCURATE NOISE POWER ASSUMPTION
In this section, we examine an inaccurate noise power con-
dition, where we set that σ 2

r and σ 2
s are not equal. Besides,

the passive radar system assume the inaccurate noise power
as σ 2

r = σ
2
s = 1. Other parameters in the simulation are same

as condition of Fig. 7.
Fig. 11 shows detection performances of different detectors

under σ 2
r = 1 and σ 2

s = 2. Similarly, Fig. 12 is examined
under σ 2

r = 2 and σ 2
s = 3 condition. Compared with Fig. 7,
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FIGURE 10. Power spectrum with different constraints under
SNR = −10dB, N = 200, the bandwidth B′ = 50, and ρ ≤ 1.2.

FIGURE 11. Probability of detection versus SNR under σ2
r = 1 and σ2

s = 2
condition, with the prior knowledge B = B′ = 8 and ρ ≤ 1.2 for N = 64.

FIGURE 12. Probability of detection versus SNR under σ2
r = 2 and σ2

s = 3
condition, with the prior knowledge B = B′ = 8 and ρ ≤ 1.2 for N = 64.

the performances of the proposed detectors are degraded.
But, it is also shown that the proposed detectors have signif-
icant performance than others under inaccurate noise power
condition.

FIGURE 13. Probability of detection versus SNR under σ2
r = 1 and σ2

s = 2
condition, with the prior knowledge B = B′ = 8 and ρ = 1 for N = 64.

FIGURE 14. Probability of detection versus SNR under σ2
r = 2 and σ2

s = 3
condition, with the prior knowledge B = B′ = 8 and ρ = 1 for N = 64.

Under constant modulus condition, Fig. 13 and Fig. 14
present inaccurate noise power condition as σ 2

r = 1, σ 2
s = 2

and σ 2
r = 2, σ 2

s = 3. Although the proposed detectors have
degraded performances, it is also shown that the proposed
detectors have better performance than others without prior
knowledge.

VI. CONCLUSIONS
In this paper, we investigated the detection problem for mul-
tistatic passive radar with the prior knowledge about the
bandwidth and PAR, which may be learnt easily in practice.
Exploiting the bandwidth knowledge, we adopted the GLRT
approach and developed the BC detector, which achieves
significant performance improvement even with imperfect
knowledge about the bandwidth. To handle the case of
unknown bandwidth, the BSBL-based detector was proposed,
which shows similar performance. We also developed several
detectors that exploit the PAR knowledge, and studied the
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special case of constant modulus signals. We also developed
detectors that incorporate the knowledge of the bandwidth
and PAR simultaneously, which offer further gains in the
detection performance.

APPENDIX A PROOF OF (11) AND (38)
First, we present the MLEs of the unknown amplitudes and
signal under both hypotheses. The MLEs of βm and αm
conditioned on s can be calculated as

β̂m =
s†ys,m
s†s

, α̂m =
s†yr,m
s†s

, (54)

where β̂m is used for H1 hypothesis only, and α̂m for both H1
and H0 hypotheses. Substituting (54) into (9), we can obtain
a new test conditioned on s:

max
s∈R(H),ρ(s)≤γ

M∑
m=1

1
σ 2
m

(
|y†s,ms|2

s†s
+
|y†r,ms|2

s†s

)

− max
s∈R(H),ρ(s)≤γ

M∑
m=1

1
σ 2
m

(
|y†r,ms|2

s†s

)
H1
≷
H0

ξ. (55)

For simplicity, the GLRT problem can be reformulated as

max
s∈R(H),ρ(s)≤γ

s†R1s
s†s
− max

s∈R(H),ρ(s)≤γ

s†R0s
s†s

H1
≷
H0

ξ. (56)

Noticing the constraint s ∈ R(H) under two hypotheses,
the solution is given by

max
s∈R(H),ρ(s)≤γ

s†Ris
s†s

= max
s∈R(H),ρ(s)≤γ

s†(PH + P⊥H)Ri(PH + P⊥H)s

s†s

= max
s,ρ(s)≤γ

s†PHRiPH s
s†s

, (57)

where PH = H(H†H)−1H† is the projection matrix onto the
subspace of the columns of H and P⊥H = I− PH .
We next derive (38) for the case with only the band-

width constraint, i.e., there is no constraint on the PAR. The
maximization problem of (57) becomes a classical Raleigh
quotient problem. The solution is given by

max
s

s†PHRiPH s
s†s

= λmax(PHRiPH ). (58)

Finally, using the MLEs obtained above, the GLRT can be
given by

λmax(PHR1PH )− λmax(PHR0PH )
H1
≷
H0

ξ, (59)

which is the BC detector.

APPENDIX B SOLUTION OF (15) AND (19)
Both of the problems (15) and (19) can be reformulated as

min
s
‖s− t‖2

s.t. ρ(s) < γ, ‖s‖2 = 1, (60)

where t = [t[1], t[2], . . . , t[N ]]T is assumed to be measure-
ment data. This is also equivalent to

max
s

N∑
n=1

|s[n]||t[n]|

s.t. |s[n]| < ε
N∑
n=1

|s[n]|2 = 1, (61)

where the magnitude of s is considered, and ε =
√
γ /N . The

phase part of s is set as

arg(s[n]) = arg(t[n])+ (2k + 1)π, ∀k = 0,±1, . . . .

(62)

to minimize the objective problem.
Without loss of generality, we assume that |t[1]| ≥ . . . ≥
|t[N ]|, and the number of nonzero elements of t is l. Then the
solution to (61) is as follows [36].
Case 1 (lε2 ≤ 1): We set s[n] = ε, for n = 1, . . . , l. For

n = l + 1, . . . ,N , we have
∑N

n=l+1 |s[n]|
2
= 1 − lε2, and

0 ≤ |s[n]| ≤ ε. Thus, there are multiple solutions to (61) for
this case and one of them is given by

|s[n]| =


ε, n = 1, . . . , l,√
1− lε2

N − l
, n = l + 1, . . . ,N .

(63)

Case 2 (lε2 > 1): The solution to (61) is given by

|s[n]| = min {β|t[n]|, ε}, (64)

where

β ∈ { β|

N∑
n=1

min
{
β2|t[n]|2, ε2

}
= 1,

β ∈ [0,
ε

min{|t[n]| | |t[n]| 6= 0}
] } (65)

Since the function g(β) =
∑N

n=1min
{
β2|t[n]|2, ε2

}
is

strictly increasing within [0, ε
min{|t[n]| | |t[n]|6=0} ] and g(0) = 0,

only one unique β exists. Numerically, the bisection method
can be adopted to find the unique β with high accuracy.
Therefore, the solution to (60) is obtained as

s = PS (t), (66)

where

PS (t) = −
(
1R+ (1− lε

2)
)
εul � ej arg(t)

−

(
1R− (1− lε

2)
)
min{β|t|, ε1} � ej arg(t), (67)
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min{·, ·}, | · | and ej arg(·) are element-wise operations, and

1A(x) =

{
1, if x ∈ A,
0, otherwise,

(68)

um = [1, . . . , 1,︸ ︷︷ ︸
l

√
1− lε2

Nε2 − lε2
, . . . ,

√
1− lε2

Nε2 − lε2︸ ︷︷ ︸
N−l

]T .

(69)

APPENDIX C SOLUTION OF (29)
To derive (29), we should obtain λmax(PHR1PH ), u1,
λmax(PHR0PH ), u0 in the case M = 1. In this case,
R0 = ỹr ỹ

†
r and R1 = ỹr ỹ

†
r + ỹsỹ

†
s . Firstly, we can get

λmax(PHR0PH ) = ‖ỹ′r‖
2, (70)

u0 = ỹ′r , (71)

and

λ1= λmax(PHR1PH )

=
1
2
( ‖ỹ′r‖

2
+‖ỹ′s‖

2
+

√
(‖ỹ′r‖2 − ‖ỹ′s‖2)2 − 4|ỹ′†s ỹ′r |2 ).

(72)

Correspondingly, we can calculate u1 using the singular value
decomposition (SVD) of Y1 = [ỹ′r , ỹ

′
s] ∈ CN×2, i.e.,

UDV†
= Y1, (73)

where the columns of U = [u1, . . . ,uN ] are the eigenvectors
of Y1Y

†
1, D = [6, 0] ∈ CN×2, 6 =diag{λ1, λ2}, and V =

[v1, v2], in which

v1 = [λ1 − ‖ỹ′s‖
2, 2ỹ′†s ỹ

′
r ]
T , (74)

v2 = [λ2 − ‖ỹ′s‖
2, 2ỹ′†s ỹ

′
r ]
T . (75)

Thus, we have

ui = Y1
vi
λi
. (76)
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