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Abstract

Atmospheric particle properties were measured in the South Eastern coastal city

of Wollongong, Australia, during an intensive field campaign known as Measure-

ment of Urban, Marine and Biogenic Air (MUMBA), between 15th January and

16th February 2013. A scanning mobility particle sizer (SMPS) was operated to

measure particle number size distributions ranging from 14 nm to 660 nm in di-

ameter. Principal component analysis was applied to the entire data measured by

SMPS and, based on strong component loadings (value ≥ 0.75), three size fractions

(i) Small (NS) :15 nm < Dp < 50 nm, (ii) Medium (NM) :60 nm < Dp < 150

nm and (iii) Large (NL) :210 nm < Dp < 450 nm were revealed. The three size

fractions described 89% of the dataset cumulative variance. The daily pattern of

particle number size distribution revealed morning, afternoon and night peaks. Traf-

fic emissions and marine aerosols were the major contributors of particles observed

in the morning, when the NS fraction dominated. A mixture of marine aerosols and

secondary aerosols from photochemical oxidation was the main contributor during

the afternoon. The Port Kembla Steel Works and the urban areas were the major

contributors of particles at night. Secondary organic aerosols were identified by a

mass ratio of organic carbon to elemental carbon (OC/EC) of greater than 1, and

this was commonly observed. A weak correlation (R2 = 0.3) between OC and EC

indicated that there were multiple sources of both OC and EC.

Particle formation and growth events were observed from particle number size

distribution data in the range of 14 nm to 660 nm. Eight particle formation and

growth event days were observed (four Class I and four Class II), which is equivalent

to 25% of the total observation days (15th January to 16th February, 2013). The

events occurred during the day, starting after 8:00 Australian Eastern Standard time

with an average duration of five hours. The events also appeared to be positively

linked to the prevailing easterly to north easterly sea breezes that carry pollutants

from sources in and around Sydney. This suggests that photochemical reactions and

a combination of oceanic and anthropogenic air masses are among the factors that

influenced these events. However, no single factor could be identified that directly

influenced these particle formation and growth events.

Differential Slant Column Densities (DSCDs) and aerosol extinction were suc-
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cessfully retrieved using ultra-violet spectral measurements from a ground-based

instrument configured for Multi-Axis Differential Optical Absorption Spectroscopy

(MAX-DOAS). The oxygen collisional complex (O4) absorption in the ultra-violet

(UV) spectra region was used to retrieve the aerosol extinction profile using the

Heidelberg Profile (HEIPRO) algorithm. Measurements from the MAX-DOAS in-

strument give information on the marine environment compared to the rest of the

instruments deployed during the MUMBA campaign. A strong correlation (R2=

0.77) was observed between the vertical profile of aerosol extinctions retrieved from

MAX-DOAS and Light Detection and Ranging (LIDAR) on a chosen “clear day”

on the 7th February, 2013. Both instruments derived a significant scattering layer

(higher aerosol concentration) at a height of 300 m on this “clear day”. Surface

aerosol extinctions (of 200 m height and below) retrieved from MAX-DOAS were

uncorrelated with the in-situ PM2.5 mass concentrations (R2= 0.12). This result is

due in part to the low PM2.5 concentrations observed during the aerosol measure-

ment period.

Together, the analysis of aerosol size fractions, particle formation events and

vertical profile of aerosol distribution in this thesis provide one of the most detailed

characterisations of atmospheric aerosols in an urban-marine environment ever pre-

sented for an Australian city.
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Chapter 1

Introduction and Literature

Review

A campaign known as the Measurements of Urban, Marine and Biogenic Air took

place in the coastal city of Wollongong, New South Wales during summer 2013

(details are discussed in Chapter 2). A large range of measurements was made

during the campaign. Intensive analyses on trace gases were done and published by

Paton-Walsh et al. [2017] Guérette et al. [2017] and Guérette [2016].

However, analysis on the aerosol measurement obtained during the campaign

was still lacking. Therefore, this thesis focuses on the aerosol measurements in

order to provide a detailed characterisation of the atmospheric composition during

the campaign.

1.1 Description of the Air Pollution Issues

Air pollution is the presence of diverse pollutants in the atmosphere and is responsi-

ble for adverse effects on health and the environment [Brauer et al., 2012; Kim et al.,

2013; Kinney , 2008]. A 2018 report by the World Health Organisation (WHO) states

that air pollution is now the world
′
s largest environmental factor affecting human

health. The global estimate of total deaths caused by ambient air pollution and

household air pollution in 2016 was 4.2 and 3.8 million people, respectively [WHO ,

2018]. These deaths were mainly caused by aerosols and ozone, where aerosols were

the biggest single factor [WHO et al., 2013, 2016]. Approximately 7 million people,

in total, die every year from cardiovascular diseases caused by exposure to fine par-

ticles (particles of diameter of 2.5 µm or less (PM2.5)) [WHO , 2018]. The estimate

of total deaths from cardiovascular diseases attributable to ozone exposure was 254

000 (95% uncertainty interval of 97 000 - 422 000) globally in 2015 [Cohen et al.,

2017]. The estimated adult deaths globally due to cardiovascular disease resulting

1



Chapter 1. Introduction and Literature Review

from exposure to ozone were 1.23 million in 2015 [Malley et al., 2017]. These es-

timated values indicate that reducing air pollution could provide very significant

population scale health benefits. In addition to effects on human health, ambient

aerosols influence climate, cause visibility degradation and damage building materi-

als [Brimblecombe, 2015; IPCC , 2013; Seinfeld and Pandis , 2016].

Since air pollutants, especially aerosol particles, significantly impact on human

health and climate, research on these air pollutants is being intensively carried

out around the world to understand the sources of pollutants, their composition,

their formation mechanisms and their detrimental effects. The characteristics of

aerosols vary depending on their sources as well as meteorological, geographical and

topographical conditions. Studies on aerosol particle size in Australia include the

work of Cheung et al. [2011]; Mejia et al. [2007]; Pushpawela et al. [2018]; Salimi

et al. [2017], which focuses on sub-micron particles in the urban environment in

the north-eastern part of Australia. There have been similar studies in natural

environments in Australia. Particle size in Eucalyptus forests Ristovski et al. [2010]

and particle formation associated with natural emissions from the Eucalyptus forest

in south-east Australia Suni et al. [2008], as well as particle size in a sub-tropical

clean marine site in the coastal area of Eastern Australia Modini et al. [2009] and

the characteristics of particle size at a clean marine mid-latitude site Cainey et al.

[2007] have been investigated. Guo et al. [2008] conducted a study in the rural

environment of Eastern Australia.

Ultrafine particles (particles with diameters less than 100 nanometre (nm)) con-

tribute to a large fraction of the total particle number concentration globally [Kul-

mala et al., 2004; Spracklen et al., 2006]. New particle formation is one of the

sources of ultrafine particles [Kulmala et al., 2013; Wahlina et al., 2001]. Kulmala

et al. [2004] report that many studies have been conducted globally in order to

investigate particle formation processes in different environmental settings such as

urban, industrial, coastal and boreal polar regions. However, most of the studies

have been conducted in the Northern Hemisphere, at various locations from clean,

remote sites to polluted environments including Dada et al. [2017]; Dall
′
Osto et al.

[2018]; de España et al. [2017]; Mohr et al. [2017]; Németh et al. [2018]; Vehkamäki

et al. [2004]. The Northern Hemisphere includes the large continents of Asia, Eu-

rope and North America, while the Southern Hemisphere mainly consists of oceans.

This means that the approximately 68% of the Earth
′
s land mass is in the North-

ern Hemisphere. The Northern Hemisphere also has approximately 90% of the

global population and more industrial activity than the Southern Hemisphere. For

that reason, there is a much higher level of pollution in the Northern Hemisphere

[Pirie, 2018]. Many first-world countries, however, have cleaned up their atmosphere

through mitigation policies. These differences are likely to result in the different

2



Chapter 1. Introduction and Literature Review

aerosol properties experienced in the Southern Hemisphere. Hence more studies are

required to understand the characteristics of aerosols in the Southern Hemisphere

[Mitchell et al., 2017; Rotstayn et al., 2013].

1.2 Characteristics of Aerosols

Aerosols are suspended solid or liquid particles in the atmosphere [Boucher , 2015;

Seinfeld and Pandis , 2012]. Typically, the size of atmospheric particles can range

from 1 nanometre (nm) to 100 micrometre (µm)[Boucher , 2015; Hendricks et al.,

2012]. Aerosols are also referred to as particulate matter (PM) by the air quality

community Fuzzi et al. [2015].

There are several ways to classify the characteristics of aerosols. They include

size distribution, formation mechanisms and sources, which are discussed in sections

1.2.1 and 1.2.2.

1.2.1 Aerosol Size Distribution

The particle number size distribution is one of the important characteristics for

studying aerosol properties. Aerosol particles evolve continuously in the atmosphere,

therefore, their sources and transformation processes during the evolution period

provide information on aerosol properties [Birmili et al., 2010; Hinds , 2012; Seinfeld

and Pandis , 2016]. The general classification of particle size fractions includes coarse

particles (PM10), fine particles (PM2.5) and ultrafine particles as indicated along the

top of Fig.1.1. PM10 refers to particles with diameters of 10 µm or less. PM2.5 are

particles with diameters of 2.5 µm or less and ultrafine particles are particles with

diameters less than 0.1 µm.

Particle size distribution is usually illustrated in the form of a log-normal

distribution, because particle diameter (Dp) typically varies over several orders of

magnitude. Particle number normalized by range of log-transformed particle diam-

eter (dlogDp) of the interval is used in the y-axis of Fig. 1.1. The distribution of

particle size n(r) can be represented by a differential radius number density distri-

bution (dN) which represents the number of particles with radii between r and r +

dr per unit volume (Eq. 1.1) [MacCartney , 1976]:

n(r) =
dN(r)

dr
(1.1)

It is possible to use this distribution of particle number with radius to describe

particle volume. The distribution of particle volume V(r) can be represented by a

differential volume density (dV), which represents the volume contained in particles

3
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whose radii lie between r + dr per unit volume (Eq. 1.2) [MacCartney , 1976]:

V (r) =
dV

dr
(1.2)

Fig. 1.1: Particle size distribution plotted as number and volume distribution
for different modes. (Source: Seinfeld and Pandis [2016]).

Fine particles attract more attention because of the awareness of their negative

effects on health [Collins et al., 2014; Lee et al., 2018; Pope III and Dockery , 2006].

Generally, the composition of fine particles includes sulfate, nitrate and ammonium

salts as well as elemental and organic carbon. Fine particles also contain trace

metals such as lead, nickel and copper. Coarse particles generally contain dust,

crustal elements, nitrate, sodium, chloride and biogenic organic particles such as

pollen and spores [Harrison et al., 2011; Seinfeld and Pandis , 2016]. As shown in

this figure, the number concentration is dominated by ultrafine aerosols, while the

volume or mass concentration is dominated by larger aerosols. Most of the mass is

found in the size range between 0.1 µm and 10 µm.

Particles in the atmosphere in terms of number are generally dominated by

particles less than one micrometre (< 1 µm in diameter) [Petäjä et al., 2006; Seinfeld

4
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and Pandis , 2016]. Particles with a diameter of less than 1 µm are made up of three

modes: Nucleation mode, Aitken mode and Accumulation mode. Nucleation and

Aitken modes correspond to ultrafine particles. Other than these three modes,

there is a mode known as Coarse mode (Fig. 1.1). Each mode is characterised by

a diameter associated with the maximum value of the mode
′
s frequency function

curve [Hinds , 1999]. These modes are described below.

(a) Nucleation Mode

The nucleation mode includes particles with Dp less than 0.01 µm. Particles in

this mode are usually newly formed particles that are generated through gas-to-

particle conversion [Fuzzi et al., 2015; USEPA, 2004]. Gas-to-particle is a process

involving condensation of vapours which leads to either the nucleation conversion

of new aerosols or the condensation growth of existing particles [Tomasi and Lupi ,

2017]. These particles are formed from either biogenic or anthropogenic emissions

in many different environments including forests [Kulmala and Kerminen, 2008] and

coastal environments [O’Dowd et al., 2007, 2002].

(b) Aitken Mode

Particles in this mode have Dp in the range from 0.01 µm to 0.1 µm. Aitken

mode particles are also recently formed particles that are still actively undergoing

condensation of gases and water vapour. Initially this process is relatively fast [Shen

et al., 2011; USEPA, 2004]. These particles act as nuclei for the condensation of

low vapour pressure gaseous species causing them to grow towards the accumulation

mode.

(c) Accumulation Mode

The accumulation mode includes particles with Dp between 0.1 µm and 1.0 µm.

Particles in this mode are generated mainly through coagulation (two particles com-

bining to form one) of existing smaller diameter particles and from condensation (gas

molecules condensing on a particle) of vapours onto existing particles which induces

particle growth [Fuzzi et al., 2015; Shen et al., 2011; USEPA, 2004]. Accumulation

mode particles can also be introduced into the atmosphere through the incomplete

combustion of wood, oil, coal, gasoline and other fuels [Shen et al., 2011].

(d) Coarse Mode

The coarse mode includes particles with Dp between 10 µm and 2.5 µm[OEH ,

2005]. Coarse mode particles are introduce into the atmosphere from minerals,

crustal material and organic debris by mechanical processes (breaking up of large

5
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particles) through crushing, grinding and abrasion of surfaces [Fuzzi et al., 2015;

USEPA, 2004]. These particles are also emitted into the atmosphere from both

natural and anthropogenic sources [WHO et al., 2013]. The coarse mode may also

include sea salt and nitrates formed from the reaction of nitric acid with sodium

chloride. The evaporation of sprays and bursting of bubbles in the ocean produce

coarse particles of sea salt [Rasool , 2012]. The wind also picks up dust, soil and

biological particles and suspends them in the atmosphere [Wilson and Suh, 1997].

Anthropogenic coarse particles are introduced into the atmosphere through dust

from road surfaces, traffic emissions, and industrial and agricultural activities.

1.2.2 Primary and Secondary Aerosols

Sources and sinks of aerosols in the atmosphere is show in Fig. 1.2. Aerosols in the

atmosphere can be divided into primary and secondary aerosols. Primary aerosols

are those that are emitted directly from the emission source [Fuzzi et al., 2015; Har-

rison et al., 2011; Seinfeld and Pandis , 2012]. Primary aerosols can be emitted into

the atmosphere by natural/biogenic and anthropogenic sources (Fig. 1.2). Primary

aerosols from natural sources include sea spray/sea salt, biomass-burning particles,

wind-blown mineral dust and volcanic emissions, whereas those of biogenic sources

include plant fragments, micro organisms and pollen. Anthropogenic sources in-

clude combustion emissions (from transportation and industrial activities), fugitive

emissions (from wind erosion of storage piles, unpaved plant roads, materials han-

dling, loading and transfer operations) and non-industrial fugitive emissions (traffic

entrainment of dust from public roads, agricultural operations and constructions)

[Kim et al., 2015; Kumar et al., 2010; Pöschl , 2005; Seinfeld and Pandis , 2012;

Tomasi and Lupi , 2017].
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Fig. 1.2: Life cycle of aerosols in the atmosphere: emission, trans-
port and sink processes. (Source: Lecture notes on METEO 437:
ATMOSPHERIC PHYSICS II - Physics and Chemistry of Clouds
(https://www.ems.psu.edu/ lno/Meteo437/Aerosol.jpg)).

Once airborne, aerosol particles may undergo chemical transformation to form

secondary aerosols. These processes change the particle size, structure and compo-

sition [Pöschl , 2005; Seinfeld and Pandis , 2012]. There are two types of secondary

aerosols. The first type refers to aerosols that are formed through the condensa-

tion/reaction of gases on pre-existing particles. This leads to an increase in mass

concentration. The second type involves the formation of new nanometre particles.

This mechanism is known as new particle formation [Duh et al., 2008; Harrison

et al., 2011; Seinfeld and Pandis , 2012]. Examples of gaseous precursors that are

involved in the formation of secondary aerosols are sulfur dioxide (SO2) and nitro-

gen oxides (NOx) which are primarily emitted from the combustion of fossil fuels

[Hawkins and Russell , 2010]. Volatile organic compounds are also involved in the

formation of secondary aerosols [Carlton et al., 2006; Holzinger et al., 2007]. Several

processes make the transformation into secondary aerosols possible. They include

condensation of gases on the surface of aerosols, coagulation of aerosols and chemical

modification of the aerosol surface, which allows water to condense generating cloud

condensation nuclei which then form cloud droplets [Seinfeld et al., 2016]. Exam-

ples of secondary products are sulfates (e.g. from SO2), nitrates (e.g. from NOx)
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and aerosol organic carbon species [Kim et al., 2015]. Secondary aerosols are found

mostly in the fine particle fraction [WHO et al., 2013].

1.3 Atmospheric Lifetime of Aerosols

The atmospheric lifetime of aerosols in the atmospheric boundary layer is often on

the order of a day depending, not only on their size, but also on aerosol chemistry

and meteorological conditions. Aerosols masses are removed from the atmosphere

through deposition on the Earth
′
s surface (dry deposition) and incorporation into

cloud droplets during the formation of precipitation (wet deposition) (Fig. 1.2)

[Mohan, 2016].

Ultrafine particles, in terms of particle number, experience short atmospheric

lifetimes ranging from minutes to hours [Chang et al., 2004; Seinfeld and Pandis ,

2012]. Nucleation mode particles have the shortest lifetimes (minutes). These par-

ticles grow via coagulation and condensation. Accumulation mode particles expe-

rience atmospheric lifetimes ranging from days to weeks, significantly longer than

that of Nucleation and Aitken mode particles. Longer lifetimes result from less ef-

ficient removal mechanisms as the particles slowly grow to reach the Coarse mode.

Particles in the Coarse mode accumulate, form cloud droplets and are lost through

wet and also dry deposition. The lifetime of coarse particles in the atmosphere is

reasonably short (minutes to hours). Their relatively large size causes them to settle

out of the atmosphere by dry deposition, by fall out and scavenging by falling rain

drops [Seinfeld and Pandis , 2012; Selvam, 2010].

1.4 Effects of Aerosols

1.4.1 Effects of Aerosols on Human Health

Exposure to aerosol particles can cause health problems even when a small amount

of particles enters the lungs. These effects are often more pronounced in children

and the elderly. Several studies on epidemiology and toxicology identified a the cor-

relation between fine particulate matter and various health conditions, particularly

respiratory and cardiovascular health problems [Lee et al., 2018; Parker et al., 2018;

Xing et al., 2016]. Recently, Cohen et al. [2017] reported that ambient PM2.5 was the

fifth ranking mortality risk factor in 2015. The global estimate of mortality due to

ambient PM2.5 in 2015 was 4.2 million people (95% uncertainty interval of 3.7 - 4.8

million per year). These estimated values are based on the global burden of disease

attributable to ambient fine particulate matter exposure reported by Forouzanfar

et al. [2016] which included lower respiratory infections, cerebrovascular disease, is-
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chaemic heart disease, chronic obstructive pulmonary disease and lung cancer. In

addition to outdoor air pollution, a study by Lim et al. [2012] reported an estimated

3.5 million deaths per year due to indoor air pollution, which includes the use of

solid fuels for cooking and heating. Dadvand et al. [2013] compared air pollution

across 14 sites in 9 countries and found that there were positive correlations between

high levels of air pollution and low birth weights. Hoy et al. [2016] and Begg et al.

[2007] reported that about 3000 deaths in Australia are attributable to urban air

pollution each year. Among the studied diseases, coronary heart diseases was the

highest percentage (70%) of the total deaths due to air pollution in Australia.

Studies from the multi-country European Study of Cohorts for Air Pollution

Effects (ESCAPE) project have reported that long term exposure to particulate

matter has a negative impact on lung function [Adam et al., 2015; Gehring et al.,

2013] and resulted in an increase in chronic obstructive pulmonary disease [Mac-

Intyre et al., 2013]. Similar findings have been observed in Taiwan by Guo et al.

[2018]). Other health effects that associated with exposure to particulate matter re-

ported from ESCAPE project include acute coronary events [Cesaroni et al., 2014],

stroke [Stafoggia et al., 2014], childhood pneumonia [MacIntyre et al., 2013], low

birth weight [Pedersen et al., 2013] and lung cancer [Raaschou-Nielsen et al., 2013].

1.4.2 Effects of Aerosols on Earth Climate

Atmospheric aerosols play crucial direct and indirect roles in the energy balance of

the atmosphere.

Direct effect: The radiative forcing due to the interaction of aerosol (both

natural and anthropogenic) with radiation before any environmental adjustment

takes place is known as the “direct effect” [Boucher et al., 2013]. Generally, bright-

coloured aerosols reflect radiation in all directions and scatter sunlight back to space

which cools the Earth. However, darker-coloured aerosols absorb significant amounts

of light. This phenomenon both warms and cools the Earth
′
s surface. The warming

effect is caused by the absorbing properties of the aerosols. The cooling effect

is experienced because aerosols can also scatter and provide shade to the Earth
′
s

surface [IPCC , 2013; Voiland , 2010].

Indirect effect: The radiative forcing from aerosol-cloud interactions encom-

passes instantaneous effect on cloud characteristics due to changing concentrations

of cloud condensation and ice nuclei. All subsequent changes contribute to the “in-

direct effect” [Boucher et al., 2013]. This effect is caused by the impact of aerosols

on clouds due to some aerosols
′
hydrophilic properties. These hydrophilic properties

mean that these aerosols can act as cloud condensation nuclei (CCN). CCN affect the

characteristics of clouds by modifying the cloud droplet number concentration, the

9



Chapter 1. Introduction and Literature Review

cloud droplet size, the cloud lifetime as well as the precipitation processes [Boucher

et al., 2013; Rosenfeld et al., 2008]. The interaction between aerosol particles and

clouds is among the greatest of the uncertainties related to the quantification of

aerosol effects on climate [IPCC , 2013]. Indirect effects usually provide cooling.

Clouds in clean environments consist of a relatively high number of large droplets

as there is a low number of water soluble particles. As a result of the large droplets,

the clouds look dark and translucent (Fig. 1.3 (a)). Clouds in polluted air consist

of a high number of small droplets, because generally there is a high concentration

of water soluble particles. This makes polluted clouds look brighter (Fig. 1.3 (b)).

Brighter coloured clouds block sunlight from reaching the Earth
′
s surface which

then shades the planet and provides a cooling effect (which is also known as “cloud

albedo effect”) [IPCC , 2013; Voiland , 2010]. Smaller cloud droplets also reduce

precipitation efficiency [Lohmann and Feichter , 2005].

Fig. 1.3: Effects of aerosols particles on cloud properties: (a) low particle loading
(clean air) (b) high particles loading (polluted air). (Source: Voiland [2010]).

Owing to these radiative properties, aerosol are a major component of the energy

budget of the Earth. Hence, changes in aerosol population contribute to climate

change as detailed in the Synthesis Report of Fifth Assessment Report (AR5) by

Intergovernmental Panel on Climate Change (IPCC). The energy budget of the

Earth refers to the flow of energy into and out of the Earth
′
s atmosphere. The

major emitted pollutants that have changed since pre-industrial time (1750) that

impact upon the energy budget are shown in Fig. 1.4. Radiative forcing is the change

in energy flux caused by a driver and is calculated at the tropopause or at the top of

the atmosphere relative to pre-industrial conditions (defined as 1750) [IPCC et al.,

2014]. Radiative forcing is expressed in Watts per square meter (Wm−2) and can

be positive or negative. Positive radiative forcing refers to the Earth’s receiving

more incoming energy than it radiates out to space relative to 1750. This net gain
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of energy will cause warming. Negative radiative forcing means that Earth loses

more energy to space relative to 1750 (Fig. 1.4). Aerosols are the most uncertain

component of radiative forcing, which limits the ability to quantify and predict

the global climate [IPCC , 2013]. Aerosols are the second largest factor after CO2

influencing global radiative forcing, with the estimated value of 0.9 [uncertainty from

0.1 to 1.9] Wm−2 [IPCC , 2013].

Fig. 1.4: Global radiative forcing of atmospheric drivers from pre-industrial
times until 2011 (1750 to 2011). The radiative forcing is shown with bars. Atmo-
spheric drivers are illustrated in different colors. The letters VH = Very High; H
= High; M = Moderate; and L = Low (refer to the level of confidence that exists
in our qualification of the processes). Modified from IPCC [2013].

1.5 Optical Properties

Aerosols have optical properties which provide aerosols with the ability to interact

with the propagation of radiation by scattering and absorption. The optical proper-

ties depend on the aerosol chemical and physical characteristics and the wavelength
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of the light. The interaction of radiation with particles by scattering, absorption or

both, leads to extinction of the incident light [Brasseur and Jacob, 2017; Toon and

Pollack , 1980]. Extinction is the fraction depletion of radiance per unit path length

[Barry and Hall-McKim, 2014]. The resulting attenuation of radiation along a path

through the atmosphere is described by the Beer-Lambert law [Brasseur and Jacob,

2017] (Eq. 1.3).

I = Ioe
−βextL (1.3)

In Equation 1.3, Io represents the initial light intensity. I is the light intensity

after it passes through the sample. L is the path length of the light through the

aerosols and βext is the extinction coefficient characteristic of the aerosol which is

the sum of scattering and absorption coefficients (βext = βscattering + βabsorption).

Aerosol optical depth (AOD) is the integrated extinction coefficient over a col-

umn of air from the Earth
′
s surface to the top of the atmosphere. The values of

AOD reveal how much direct sunlight is prevented from reaching the ground by

particles in the atmosphere (i.e. dust, smoke, pollution). AOD is a dimensionless

number that is related to the number of aerosol particles in the vertical column of

atmosphere over the observation location. Low and high AOD correspond to clear

skies and hazy-cloudy skies, respectively [Barry and Hall-McKim, 2014; Brasseur

and Jacob, 2017; Khor et al., 2014; Toon and Pollack , 1980].

1.6 Particle Formation and Growth

As noted before, aerosol nucleation refers to the formation of stable particle clusters

(with diameters of approximately 1 nm) [Dall
′
Osto et al., 2018]. When a nucleated

particle grows to a detectable size this is known as a new particle formation event.

This differentiates it from nucleation as it is instrumentally defined, and depending

on the instrument used, the detectable particle size ranges from 1 nm to 10 nm

[Dall
′
Osto et al., 2018; Kulmala et al., 2004]. New particle formation is an important

source of atmospheric aerosols, and is a key factor for influencing the properties of

aerosol particles [Peng et al., 2017].

Both natural and anthropogenic sources contribute to new particle formation

processes [Kristensson et al., 2008]. New particles are generally formed via homoge-

neous or heterogeneous nucleation. Heterogeneous nucleation which is also known

as “nucleated condensation”, is the process of nucleation that takes place on already

existing stable particle clusters [Kulmala and Kerminen, 2008]. Homogeneous nu-

cleation is the process of nucleation that forms a new stable particle cluster [Kulmala

and Kerminen, 2008].
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Sulfuric acid (H2SO4) plays a significant role in new particle formation in the

atmosphere [Brus et al., 2017] for both binary and ternary nucleation Kürten et al.

[2015]. This is because H2SO4 has a low vapour pressure and has a strong affinity for

water [Duplissy et al., 2016]. H2SO4 originates in the atmosphere from the oxidation

of SO2. A binary reaction is a two-component system; an example is the reaction

between H2SO4 and water. A ternary reaction is a three-component system, such

as the reaction between H2SO4, water and the third chemical species [Kulmala and

Kerminen, 2008]. Examples of the third chemical species that are involved in ternary

reactions are ammonia Kirkby et al. [2011]; Merikanto et al. [2007]; Schobesberger

et al. [2015] and amines [Kürten et al., 2014].

These nucleation processes are then followed by particle growth processes. Mech-

anisms involved in particle growth include condensation and coagulation [O’Dowd

et al., 1998]. Condensation growth is the next most important process for parti-

cle growth after nucleation [Leppä et al., 2011]. Condensation occurs when vapour

molecules adhere to the particle
′
s surface, enhancing the particle size [Hinds , 2011].

Aerosol particles collide, forming larger particles [Hinds , 2011] and reduces the total

particle number concentration but does not affect the total volume of particles.

1.6.1 Classification of New Particle Formation

Surface plots, also known as contour plots of particle size distribution over time are

commonly used to illustrate these new particle formation events. In these plots, the

y-axis represents Dp, the x-axis represents time and the z-axis represents particle

number concentration which is often plotted in different colours (Fig. 1.5). Visually,

from these plots, new particle formation events are defined by the appearance of a

typical shape called a “banana shape” (seen inside the rectangular box presented in

Fig. 1.5). According to the classification developed by Dal Maso et al. [2005], new

particle formation events are generally classified as either Class I or Class II.

(i) Class I is the event where the “banana shape” can be observed and the growth

and information rate can be determined.

(ii) Class II is the event where the particle formation is still observable but due

to fluctuation in particle diameter, the growth is not clearly observed and

information rate is difficult to quantify.

Class I events can be sub-grouped into Class Ia and Class Ib. Class Ia occurs in an

environment with very few or no pre-existing particles. A very clear new particle

formation event is observed. Class Ib contains the rest of Class I events (Fig 1.5).
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Fig. 1.5: Example of contour plots of particle number size distribution.(a) Class
Ia event, (b) Class Ib event and (c) Class II event. The y- axis represents particle
diameter and note that the y-axis is in log format. The x-axis represents time
and the colour bar represents particle number concentration. The rectangular
box delineates the events (Source:Siakavaras et al. [2016])

1.7 Overview of Air Quality With A Focus on

New South Wales, Australia

Air quality in Australia is comparatively good, by global standards [Butler and

Whelan, 2018]. However, there are people living in certain areas of Australia that

still experience health problems due to high levels of air pollution, especially from the

combustion of fossil fuels from coal-burning power stations, wood for heating during

winter and vehicles in the large cities [Butler and Whelan, 2018]. A report by the

NSW Office of Environment and Heritage OEH [2017] states that the annual average

PM2.5 concentration in all the cities studied in Australia were below the advisory

reporting standard by the Australian National Environment Protection Measure for

Ambient Air Quality (Air NEPM, 8 µg m−3) and the World Health Organisation

guidelines (WHO,10 µg m−3) (Fig. 1.6). In comparison with many other places

studied in Europe, United States and Asian countries, Australia recorded a low

annual average PM2.5 concentration (Fig. 1.6).
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Fig. 1.6: Comparison of the annual average PM2.5 concentration between cities
in Australia and other cities globally. The comparison is based on 2014 measure-
ments. (Source: OEH [2017]).

In this work, Wollongong in the Illawarra, New South Wales, Australia was

the focus region. The NSW Office of Environment and Heritage reported that the

recent air quality (2012-2016) was generally good by world standards. The Air

Quality Index (AQI) was between the “very good or good” and “fair” categories for

83% to 91% of days in the Illawarra (Fig. 1.7). The AQI is a scale of air pollution

used in summarising air quality level in Australia. An AQI of 100 triggers an air

pollution health alert. A lower value of AQI (less that 100) indicates better air

quality and a higher value of AQI (more than 100) indicates unhealthy air quality.

Fig. 1.7: Air Quality Index categories as a percentage of time in New South
Wales sub-regions, between 2012 and 2016. (Source: OEH [2017]).
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The OEH [2017] reported that the “poor or worse” air quality index experienced

in NSW was due to particles and ozone. A study by Broome et al. [2015] reported

that PM2.5 and ozone were responsible for 2.1% and 0.8%, respectively of total

deaths per year in Sydney, Australia
′
s largest and rapidly growing city.

Generally, particle concentrations in the Illawarra are comparable with the levels

measured in other cities in Australia. However, these pollutants do exceed national

standards from time to time [OEH , 2015]. The maximum value for daily and annual

averages of PM2.5 sometimes exceeds the Australian Air NEPM, which is 25 µg m−3

and 8 µg m−3 respectively (Fig. 1.8). Frequent daily exceedences are observed

especially during bushfires and dust storms events (2002, 2003, 2006, 2009 and 2013).

The exceedences observed in the annual average PM2.5 are contributed by several

events including the dry El Nino season (2002-2007), regional dust storms (2009)

and bushfires (2013) [OEH , 2015]. The Office of Environment and Heritage, NSW

reported exceedences without exceptional events in order to account for natural

events in the air quality statement 2016 [OEH , 2016]. Exceptional events are those

events related to bush fires, hazard reduction burning and dust storms. All three

air quality monitoring stations in Illawarra met the PM2.5 daily goal in 2016 when

exceptional events are excluded.

Fig. 1.8: (a) Daily average and (b) Annual average of PM2.5 concentration in
Illawarra (Wollongong and Warrawong) 1992 to 2014. (Source: OEH [2015]).
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Air quality categorized as “poor” on the basis of the AQI in NSW in 2013 was

generally poorer relative to several previous years of very good air quality across

much of the State. The “poor” air quality was mainly related to warmer and drier

conditions and severe bushfires. January 2013 recorded the warmest maximum

temperatures on record in Sydney and across the State. During the months July to

October, dry conditions with above-average temperatures were recorded. The warm

and dry period that was accompanied by windy conditions between September and

October led to bushfire activity in western Sydney, the Blue Mountains, Wollondilly

and the Hunter Valley [OEH , 2015].

Major sources of PM2.5 and PM10 in the Illawarra region reported by OEH

[2015] included: (a) industrial activities contributing 70% of PM2.5 and 81% of

PM10, iron and steel production as well as mining and extractive activities were

major contributors. (b) domestic and/or commercial sectors contributed 12% of

PM2.5 and 20% of PM10, with wood heating in residential areas accounting for

over 90% of particle emissions. Other sources of aerosol particles included on-road

and non-road mobile sources. The air quality experienced in the Illawarra region

is also influenced by inter-regional transport of air pollutants, particularly from

air movement from the Sydney basin. At night, cold air and low vertical mixing

conditions allow pollutants to accumulate in the Sydney basin. In the early morning,

the south-westerly winds blow the accumulated air pollutants from Sydney inland

to the Sydney basin, picking up pollution from industrial and housing areas and

from transportation. In the presence of a north easterly wind (sea breeze), the

accumulated air pollutants in Sydney basin are blown down to the Illawarra region

[OEH , 2015].

1.8 General Climate Conditions During Summer

in NSW, Australia

The climate in Australia varies considerably. The Bureau of Meteorology, Australia

BOM [2009], reported that Northern Australia encompasses equatorial and tropical

savannah climates. Southern Australia has a Mediterranean climate with warm, dry

summers and mild winters. Climates in the Western regions of Australia are hot

arid and semi-arid with dry summers followed by mild, rainy winters. East Aus-

tralia experiences a temperate climate. The automatic weather station at Bellambi,

operated by the Australian Bureau of Meteorology, is the nearest alternative site to

the MUMBA campaign site (Fig. 2.1(b)). The climate record from the nearest long-

term meteorological measurement site (Bellambi) shows that during the campaign

months, monthly averaged temperatures ranged from 19 oC to 26 oC. Wind direction
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is primarily from the southern sector in the morning and from the north-east sector

in the afternoon. Monthly average wind speed ranged from 16 km h−1 to 18 km h−1

in the morning and from 24 km h−1 to 25 km h−1 in the afternoon [BOM , 2018].

1.9 Objectives and Significance of the Research

The overall aim of this research is to understand the changeable atmospheric aerosols

resulting from an interaction between the urban, marine and biogenic environments.

Measurements used in this research are from a field measurement campaign known as

the Measurements of Urban, Marine and Biogenic Air (MUMBA) campaign, which

occurred during summer in the coastal city of Wollongong, Australia. Whilst the

trace gas compositions observed during this campaign have been analysed [Guérette,

2016; Guérette et al., 2017; Paton-Walsh et al., 2017, 2018], the characteristics of

the aerosol population had not be studied.

The results obtained from this research are also necessary to add to the current

understanding of atmospheric pollution and to fill the gap in knowledge of the

characteristics of aerosol populations in the Illawarra region (south east coast of

Australia). The conditions in the south east coast are similar to those on much of the

east coast of Australia, but less affected by local sources than those of more densely

populated regions such as Sydney. Therefore, the impact of other sources, such as

the large-scale eucalyptus forest and the ocean could be significant. Additionally,

the study of the aerosol vertical distribution is the first undertaken in the Illawarra

region. Therefore, this research has high potential for use as a basis for planning

improvements in air quality in the region, as well as a reference point for any future

studies.

This work uses the aerosol measurements made during MUMBA along with

measurements of the mole fraction of trace gases (including NOx, CO, O3 and volatile

organic compounds), the meteorological state and traffic volumes. The specific

objectives of this research are to analyse data from MUMBA campaign to:

(1) Interpret the characteristics of aerosol particle number size distribution.

(2) Interpret particle formation mechanisms.

(3) Assess the retrieval of aerosol properties by remote sensing techniques.

1.10 Outline of the Thesis

This thesis comprises six chapters. Chapter 1 describes the background and the

objectives of the study. Chapter 2 describes the various methods applied, includ-
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ing instrumentation and computational techniques used. Chapter 3 presents the

overview of the characteristics of aerosol populations observed from the aerosol

measurements (16th January to 15th February, 2013) during the campaign. This

chapter forms the framework to the published work: Dominick, D., S. R. Wilson,

C. Paton-Walsh, R. Humphries, E.-A. Gurette, M. Keywood, D. Kubistin, and B.

Marwick (2018), Characteristics of airborne particle number size distributions in a

coastal-urban environment, Atmos. Environ., 186, 256-265. Chapter 4 presents the

particle formation and growth events, which explains the frequency of occurrence of

the events and the factors that influenced the new particle formation events in the

complex coastal-urban-biogenic site. Chapter 5 presents the observation of aerosol

populations by a remote sensing technique provided by the Multi-Axis Differential

Optical Absorption Spectroscopy (MAX-DOAS) instrument. This instrument pro-

vides information on the aerosol vertical distribution. Finally, chapter 6 summarises

all the findings obtained from this study and suggests recommendations for future

research work.
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Materials and Method

2.1 Background of the Measurement Site

The MUMBA Campaign ran for approximately two months (21st December 2012 to

15th February 2013). This campaign was made possible by collaboration between

the Centre for Atmospheric Chemistry, University of Wollongong (UOW) and sev-

eral other teams of scientists from organisations and institutes including (i) CSIRO

Climate Science Centre, Aspendale, Victoria, Australia, (ii) Australian Nuclear Sci-

ences and Technology Organisation (ANSTO), New South Wales, Australia and (iii)

GNS Sciences, Avalon, Lower Hutt, New Zealand.

The study area was the seaside city of Wollongong located in the Illawarra region

of New South Wales, Australia, approximately 80 km south of Sydney (Fig. 2.1(a)).

Wollongong is New South Wales’ 3rd largest city after Sydney and Newcastle. Wol-

longong is also the 10th largest city in Australia. The estimated resident population

in 2013 in Wollongong council region and Ilawarra region reported by the Australian

Bureau of Statistics was 205,157 people and 295,957 people, respectively.

There were two measurement sites during the MUMBA campaign, the main

measurement site (labelled as “A”) was at University-based child care facility “Kids

Uni” (34.397 ◦S and 150.900 ◦E) and the secondary site (labelled as “Second site”)

was at the University of Wollongong East Campus (34.401 ◦S and 150.899 ◦E) (Fig.

2.1(b)). The distance between these two sites was approximately 400 meters. Other

measurement sites used in this study were located at the University of Wollongong,

main campus (34.405 ◦S and 150.878 ◦E) and at the Wollongong air quality monitor-

ing station operated by the Office of Environmental and Heritage (OEH) (34.419 ◦S

and 150.886 ◦E) (Fig. 2.1(b)). This OEH air quality monitoring station is in a

residential area and located approximately 3 km from the campaign site.
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(a)

(b)

Fig. 2.1: (a) Main MUMBA measuring site (labelled as “A”) and Bellambi Au-
tomatic Weather station and (b) Second MUMBA monitoring site, traffic viewer
stations, University of Wollongong (UOW) main campus and Office of Environ-
ment and Heritage (OEH) air monitoring station.
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The MUMBA campaign sites represented an urban area located near highways,

train lines and housing. To the northwest of the main site there is a suburban area

known as Fairy Meadow which contains a large strip for commercial and industrial

activities. A coastal nature reserve called Puckey’s Estate Reserve that is dominated

by wetland areas located to the east of the site. Thomas Dalton Park is located to the

northeast. Port Kembla, an industrial suburb and harbour with a large local steel

works industry is located approximately 10 km south of the site. The Wollongong

central business district is located 3 km south of the site. There is also a large

scale forest nature reserve known as the Illawarra Escarpment State Conservation

Area on a steep escarpment which begins approximately 3 km to the west of the

site. The forest covers 20 km east to west and 60 km north to south and consists

of diverse forest types including sub-tropical rainforest, eucalypts and indigenous

cedars [NSW , 2017].

2.2 Instrumentation

2.2.1 Aerosol Sampling

A wide variety of instruments was used during the MUMBA campaign. Instruments

used in this work can be divided into five categories (Table 2.1). Details of all

instruments deployed during the campaign as well as the data processing are given

in Paton-Walsh et al. [2017] and Guérette et al. [2017]. Data obtained from this

campaign have been published online at PANGAEA Guérette et al. [2017].

Two main instruments were relevant to this work. They were the Scanning

Mobility Particle Sizer (SMPS) and the Multi-Axis Differential Optical Absorption

Spectrometer (MAX-DOAS). They will be discussed in detail in Section 2.3 and

Section 2.4, respectively.
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Table 2.1: Summary of instruments and measured parameter(s) used in this
study

Category Measured parameter(s) Instruments Measurement time resolution

In-situ Aerosol

Particle number size

concentration with particle

diameters ranging

from ∼ 14 nm to ∼ 660 nm

Scanning Mobility Particle Sizer

(Model: TSI 3080 for electrostatic classifier,

TSI 3081 for differential mobility analyser and

TSI 3772 for condensation particle counter)

∼ 5 min

Total particle number concentrations

of diameter largers than 3 nm (CN3)

Ultrafine Condensation Particle Counter

(Model: TSI 3776)
∼ 1 s

Total number concentration of

cloud condensation nuclei (CNN)

Cloud Condensation Nuclei Counter

(Longmont, CO, USA)
∼ 1 s

PM2.5 mass concentration
eSampler aerosol monitor

(Model: Met One, 9800)
1 h

Carbonaceous aerosols in

PM2.5 fraction

Thermal Optical Carbon analyser

(Model: Met One, 2001A)

Daily:

04:00-09:00

10:00-18:00

In-situ

Reactive Gases
O3

Thermoelectron dual cell UV Ozone Analyser

(Model: Thermo 49i)
1 min

NO, NO+
2

Chemiluminescence, Molybdenum converter

(Model: Thermo 42i)
1 min

VOCs
Proton Transfer Reaction-Mass

Spectrometry (PTR-MS)(Model: Ionicon)
∼ 3min

In-Situ

GreenHouseGasses

(GHG)

CO2, CO, CH4, N2O

Fourier Transfer Infrared Spectroscopy

(FTIR) Analyser

(Model: UOW/Ecotech Spectronus)

∼3 min

Optical

Measurements

Integrated slant column and

vertical profile of NO2, O3,

O4, BrO, H2CO,H2O, IO and

aerosol loading and dominant

size mode in the lower

troposphere and stratosphere.

Multi-Axis Differential Optical

Absorption Spectroscopy (MAX-DOAS)

(Model: Avantes Avaspec, ULS3648)

∼ 20 min

Aerosol Optical depth

Direct beam solar radiation at 500 nm

Sun Photometer

(Model: Middleton, serial number: 1059 and 1029)

1 min

Boundary layer height

Elastic backscatter at 355 nm

Light Detection and Ranging (LIDAR)

(Model: Leosphere ALS-400)

∼ 30 s

Meteorological

parameters

Wind speed, wind direction,

temperature, relative humidity

and pressure

Weather Station,Campbell Scientific,

Easy weather

1 min,

5 min

In addition to SMPS and MAX-DOAS, an Ultrafine Condensation Particle

Counter (TSI model 3776, USA) was used to measure total particle number concen-

trations for particles with a diameter larger than 3 nm (CN3). Fine particle mass

(with an aerodynamic diameter of less than 2.5 µm, PM2.5) was measured by an

eSampler aerosol monitor (Met One Instruments model 9800, USA). The Droplet

measurement Technologies cloud condensation nuclei counter (Longmont, CO, USA)

was used to measure cloud condensation nuclei (CCN). The eSampler made dupli-

cates of measurements. Continuous real-time particle loadings were obtained by

light scattering measurements, calibrated using a gravimetric measurement of the

cumulative particle loading on filters which were changed weekly. Carbonaceous

aerosol measurements (elemental carbon (EC) and organic carbon (OC)) and ionic

substances were obtained from filter samples of total PM2.5 which were collected us-
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ing an Ecotech High Volume Air Sampler (model 3000). EC and OC were analysed

after the campaign using a Thermal Optical Carbon Analyser (model 2001A, Met

One Instruments, USA). Two Middleton Solar SP02 Sunphotometers (with serial

numbers # 1059 and # 1029) were deployed at the University of Wollongong, ≈
2 km southwest of the campaign site to measure aerosol optical depth of the at-

mosphere. An elastic backscatter aerosols Light Detection and Ranging (LIDAR)

(model: ALS-400, Leosphere, Orsay, France) was used to measure range-resolved

backscatter at 355 nm. The Klett inversion method Ansmann and Muller [2005];

Klett [1985] was used to derive range-resolved aerosol extinction at 355 nm from the

LIDAR signal under the assumption of a constant backscatter-to-extinction ratio,

known as the lidar ratio, of 25 steradian (sr). This value is within the range typical

for marine aerosols of 20-26 sr [Müller et al., 2007]. The particular implementation

of the Klett inversion was from the Single Calculus Chain software [Mattis et al.,

2016].

2.2.2 Trace Gases, Traffic Data and Physical Parameters

A range of measurements was used to assist in the interpretation of the aerosol

observations. Gas phase composition measurements, including the concentration of

NOx, CO, O3 and volatile organic compounds were used. Details of these supporting

data were reported by Paton-Walsh et al. [2017] and Guérette et al. [2017]. SO2 was

measured by OEH using a pulsed fluorescence spectrophotometer type Teledyne API

model T100. Traffic volume (number of vehicles per hour) was obtained from the

Road and Maritime Department, New South Wales, Australia. The traffic data were

recorded with hourly resolution (00:00 to 23:00 h) and collected from three nearby

traffic volume viewer sites as shown in Fig. 2.1 (b). Two meteorological datasets

were used in this study. The first set was measured on site during the MUMBA

campaign and the second set was measured by the Automatic Weather Station

operated by the Australian Bureau of Meteorology at Bellambi (34.37◦S, 150.93◦E)

(about 4 km northeast of the MUMBA campaign site)(Fig. 2.1(a)). Wind data from

the MUMBA campaign site and from the Bellambi weather stations demonstrated

that both stations experienced similar meteorological conditions [Guérette, 2016].

Meteorological parameters including temperature (◦C), relative humidity (%), wind

speed (m s−1) and wind direction (◦) together with global irradiance (W m−2) were

studied. It should be noted that global irradiance was measured using a solar radi-

ation sensor (Davis Instruments, Vintage Pro2, USA) located at the University of

Wollongong (Fig. 2.1(b)). The time zone used throughout this work was Australian

Eastern Standard Time, AEST (UTC +10).

24



Chapter 2. Materials and Method

2.2.3 Data Analysis and Air Masses

Descriptive and statistical analyses were carried out using R statistical analysis ver-

sion 3.3.1, 3.3.2, 3.3.3 and 3.5.1 [R Core Team, 2016]. The main package used in

R statistical analysis was “openair” version 2.4.2 [Carslaw and Ropkins , 2012]. A

built- in function in “openair” was used to average wind data. In this function, vec-

tor and scalar averaging are used for wind direction and wind speed, respectively.

In addition to R statistical analysis, the Statistical Package for the Social Sciences

(SPSS) software version 21 (IBM, USA) was used for multivariate analysis: Prin-

cipal Component Analysis (PCA) and Hierarchical agglomerative cluster analysis

(HACA).

Principal Component Analysis (PCA): PCA was used to determine the

most significant particle diameter ranges that accounted for the variance in the ob-

served particle size distributions. PCA is capable of reducing the dimensionality

of the dataset, by transforming a set of inter-correlated variables into a set of un-

correlated variables. In this present work, PCA with eigenvalues of more than one

are used in the varimax rotation to obtain the significant factors [Kim and Mueller ,

1987]. The variables are particle size distributions. The principal components can

be expressed as in Eq. 2.1 below:

Zij = a1ix1j + a2ix2j + .......+ anixnj (2.1)

where “Zij” is component score for component “i” for sample “j”, “a” is com-

ponent loading and “x” is the measured value of the variable. There are a total of

“n” variables.

Hierarchical agglomerative cluster analysis (HACA): Hierarchical clus-

tering is a method of building a hierarchy of clusters. A cluster is a group with

similar objects. Hierarchical Agglomerative clustering is an approach that starts

with each point in the dataset as a separate cluster. Then, two clusters that are

closest together are identified and merged into a new cluster. This step contin-

ues until all the clusters are merged together [Kaushik , 2016; Madhulatha, 2012;

Wilks , 2011]. The final product from HACA is a set of clusters where each clus-

ter is different (heterogeneity) from the other cluster, and the objects within each

cluster are similar (homogeneity) to each other [McKenna, 2003]. In this work,

objects/variables are concentration of trace gases and meteorological parameters.

HACA was performed using Ward’s method and the Euclidean distance was used

to measure any similarities [Lau et al., 2009]. The Euclidean distance is based on a

single linkage (also known as nearest neighbour). The distance between two clusters

was computed as the distance between the two closest elements in the two clusters

[Ibarra-Berastegi et al., 2009].
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Air masses: The path of air masses arriving at the monitoring site was stud-

ied using the Hybrid-Single Particle Lagrangian Integrated Trajectory (HYSPLIT)

model [Draxler and Rolph, 2003; Draxler et al., 2018]. The Global Data Assimila-

tion System (GDAS) analysis product, a ready formatted meteorological dataset was

used as the model data input. This dataset is publicly available from the National

Oceanic and Atmospheric Administration (NOAA) at ftp://ftpprd.ncep.noaa.gov//

pub/data/nccf/com/hysplit/prod/, the National Centre for Environmental Predic-

tion (NCEP)[Stein et al., 2015] and at www.ready.noaa.gov/archives.php for NOAA

Air Resources Laboratories (NOAA ARL). Back-trajectory calculations are one of

the most widely used features in HYSPLIT [Fleming et al., 2012].

Bivariate polar plots were also generated to study the dependence of measure-

ments on the local wind characteristics. Wind speed and wind direction data were

measured during the campaign at the height of approximately 10 m above ground

level [Guérette et al., 2017; Paton-Walsh et al., 2017].

2.3 Scanning Mobility Particle Sizer (SMPS)

The measurement of the particle number size distribution of the aerosol particles was

performed with a scanning mobility particle sizer (SMPS) spectrometer (TSI 3936).

This instrument measures the number of particles within 64 size bins with diame-

ters from 14 nm to 660 nm with a measurement time resolution of approximately

five minutes. The three major components of the SMPS spectrometer are: (i) an

electrostatic classifier (TSI 3080), (ii) a differential mobility analyser (TSI 3081) and

(iii) a condensation particle counter (TSI 3772). The explanation of the SMPS sys-

tem is based on the operation and service manual reports (TSI [2010, 2012, 2014])

and also on a previous study by Pettibone [2009]. Size distribution inversions were

performed using the Aerosol Instrument Management software, version 10.2.0.11 by

TSI.

A basic schematic of how this instrument works is shown in Fig. 2.2. Poly-

disperse particles (a collection of non-uniform particles) enter the system and pass

through an inertial impactor. The inertial impactor is a filter which removes all

particles that are larger than a particular size. After passing through this filter, the

particles pass through the bipolar ion neutralizer, which replaces the unknown charge

distribution with a known charge distribution by creating positive and negative ions

in the air with well-defined concentration using a Krypton-85 (Kr-85) radioactive

source. The aerosol charge distribution is converted to the Fuch’s charge equilibrium

distribution [Fuchs , 1963] as the particles pass through the ionized air.
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Fig. 2.2: Basic schematic of SMPS working principle. Source TSI [2010].

Then the polydisperse aerosol particles enter the differential mobility analyser

(DMA) which operates on the principle of the mobility of a charged particle in an

electric field, hence particles are separated according to their electrical mobility.

The DMA is made up of two concentric metal cylinders: an inner cylinder (centre

rod/electrode) and an outer cylinder. The inner cylinder is maintained at a con-

trolled negative voltage and the outer cylinder is electrically grounded thus creating

an electric field between the two cylinders. The aerosol particles are separated from

the control electrode by the particle free sheath air flow (a laminar flow of particle-

free air which is injected around the centre electrode). Positively charged particles

move rapidly across the clean sheath air layer towards the negatively charged inner

electrode while, negatively charged particles are deposited on the outer wall. In this

stage, particles with high electrical mobility at the chosen voltage will be deposited

on the electrode. Neutral particles and those with low electrical mobility flow to

exit the DMA with the excess air. Only particles with the narrow range of electrical

mobility will pass through the output opening. After exiting the DMA, the classified

aerosols (monodisperse aerosols) flow on to the condensation particle counter.

The particles are counted in the condensation particle counter by growing them

to larger sizes and then detecting them using a light scattering technique. The

schematic of the basic working principle of a condensation particle counter is illus-

trated in Fig. 2.3. An aerosol sample is drawn into the sample inlet and passed
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through a region which is supersaturated using an external fluid source. In this

study, butanol was used. As the vapour molecules condense on the aerosol particles,

they grow and form liquid droplets. The particles then pass through a laser beam

and the scattered light is detected by a photodetector, which counts the individual

particles as flashes of light. The entire particle size distribution and number concen-

tration are measured by exponentially increasing the voltage of the inner electrode

in the DMA over a user-selected period of time.

Fig. 2.3: Schematic of basic the condensation particle counter (CPC) working
principle. Source TSI [2014].

2.3.1 Particle Number Concentration Calculation

An equation to normalize particle number concentration over the width of the bin

(Eq. 2.2) has been proposed by TSI [2012]. This equation is used to re-calculate

total particle number concentration at certain bin sizes.

dN

dlogDp

=
dN

logDp,u − logDp,l
(2.2)

Where dN is the particle number, Dp is the midpoint of the particle diameter

for the bin, logDp,u is the upper channel diameter and logDp,l is the lower channel

diameter.
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2.4 Multi-Axis Differential Optical Absorption

Spectroscopy (MAX-DOAS)

The MAX-DOAS is a passive remote sensing technique which measures scattered

sunlight in the ultraviolet and visible wavelengths (UV-VIS) at different elevation

angles. The experimental setup is simple as it detects a natural light source scattered

(sunlight) and can be fully automated for long-term deployment. Used together with

forward radiative transfer calculations, MAX-DOAS measurements can provide ver-

tical distribution information of aerosol extinction and trace gases concentration in

the lower troposphere [Hönninger and Platt , 2002; Hönninger et al., 2004; Wang

et al., 2016b]. MAX-DOAS analyses use the oxygen collisional complex (O4) ab-

sorption to retrieve aerosol properties. This is because O4 has a very well known

vertical concentration profile and numerous absorption bands observable over ultra-

violet and visible wavelengths, making it easy to detect [Frieß et al., 2006; Wagner

et al., 2004]. The O4 concentration has a well defined relationship with atmospheric

pressure and temperature as it is determined by the equilibrium of 2O2 � O4.

Aerosols change the average observation path through the atmosphere. In an at-

mosphere with low aerosol loading, light scattering is predominantly due to Rayleigh

(molecular) processes occurring meaning that the average scattering point is at a

distance from the observer. At a low observation angle, this gives a long path length

close to the ground. Therefore, a significant O4 retrieval amount is observed. When

there is a high aerosol loading, more scattering occurs so the scattering point on

average is closer to the observer, which creates a shorter observation path length.

Therefore, the O4 retrieval amount is decreased [Wagner et al., 2004]. The ability of

aerosols to change the average photon path length through the atmosphere for MAX-

DOAS observations is presented in Fig. 2.4. Once the aerosol scattering profile has

been estimated, the average path through the atmosphere is known. Absorption

features of other species can then be used to estimate their vertical concentration

distribution.
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Fig. 2.4: Diagram of the ability of aerosol loading to change the average ob-
servation path length for MAX-DOAS observations. (a) In an atmosphere with
low aerosol loading, the observed photons are mainly single scattered and more
sunlight penetrates to the ground surface because of less/no aerosol scattering
effect. The penetration depth of the direct sunlight is large and therefore the
observation path length (line of sight of the telescope) is longer. (b) In an atmo-
sphere with a high aerosol loading, mainly diffused photon scattering is observed
and less sunlight penetrates to the ground. The penetration depth of the incident
direct solar radiation is smaller and the observation path length (line of sight of
the telescope) is shorter. Adapted from Wagner et al. [2004].

There have been several studies of measurements of aerosols and trace gases

using MAX-DOAS. For example the work by Ryan et al. [2018] measured daytime

HONO, NO2 and aerosol distributions in Melbourne, Australia reported midday

peaks in the diurnal cycle of HONO surface concentrations and the source distri-

bution of HONO, NO2 and aerosol. Chan et al. [2018] measured aerosols and NO2

in Hong Kong over five years. The retrieved aerosols from MAX-DOAS showed a

good correlation with aerosol optical depth (AOD) of sun photometer observations.

Ground level NO2 mixing ratios from a long path DOAS measurement agreed well

with the MAX-DOAS NO2. Garcia-Nieto et al. [2018] retrieved the vertical distri-

bution of O4 and nitrous acid (HONO) in Madrid, Spain. They also studied the

temporal pattern of HONO and the contribution of HONO to the OH formation

through photolysis.. Wang et al. [2016b] in Madrid, Spain reported a good correla-

tion between the surface aerosol extinction coefficient as measured by MAX-DOAS

and in-situ PM2.5 concentrations. Gratsea et al. [2016] measured NO2, HCHO, gly-

oxal (CHOCHO) and O4 in the urban environment of Athens. Not only did they

obtain information on the temporal and spatial distribution as well as the diurnal,

weekly and seasonal variation of aerosols and the measured reactive trace gases, but

they were also able to determine the pollutant sources. Frieß et al. [2016] stud-

ied the intercomparison of aerosol extinction profiles retrieved from a number of

MAX-DOAS measurements. They reported that the time series of aerosol optical

thickness retrieved from MAX-DOAS showed a good match with the co-located sun

photometer measurements.
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2.4.1 Instrument Specification and Retrieval Settings

A MAX-DOAS instrument based on an Avantes Avaspec ULS3648 spectrometer

was deployed during this campaign. The MAX-DOAS instrument consisted of three

main parts, including a telescope, a spectrometer and a computer as the control

unit. The MAX-DOAS instrument made measurements from 266 nm to 538 nm

of scattered solar radiation at a range of elevations. The spectrometer used has

a Symmetrical Czerny-Turner design with a 75 mm focal length. A prism acted

as the vertical (elevation) scanning device which was driven by a stepper motor.

The scattered sunlight is then focused on to the optical fibre. The optical fibre is

connected to the spectrometer for spectral analysis. The MAX-DOAS schematic

diagram of the experimental setup is illustrated in Fig. 2.5.

Fig. 2.5: Schematic diagram of the MAX-DOAS setup during the MUMBA
campaign. (a) A stepper motor connected to a prism to collect scattered sunlight
from different elevation angles. (b) The sequence of the spectra measurements
from prism to the computer.

The telescope scanning system was mounted on the roof of a building, approx-

imately 20 m above ground level at the University of Wollongong East Campus

(34.401 ◦S and 150.899 ◦E) which is labelled as “Second site” in Fig. 2.1(b). The

telescope was pointed at a fixed azimuth angle (68◦), facing the open ocean (Fig.

2.6). A full measurement sequence consisted of elevation viewing angles of 1◦, 2◦,
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4◦, 8◦, 16◦, 30◦, 60◦ and 90◦. The full measurement sequence was preformed consec-

utively taking 20 min on average.

Fig. 2.6: Photo of MAX-DOAS taken during the campaign. The instrument
was positioned towards the open ocean looking towards the north-east (68◦).

MAX-DOAS measurement: A sketch of MAX-DOAS measurement is shown

in Fig. 2.7. Sunlight enters the Earth
′
s atmosphere at an angle (solar zenith angle,

(ϑ)) from the zenith and the instrument views the scattered light at angles between

the horizon (α). Scattered light at different elevation angles is collected by the tele-

scope and the signal is detected in the form of a spectrum by the spectrometer. The

light path through the upper atmosphere depends little on the viewing direction,

while in the lowest atmospheric layers, the light path increases as the viewing di-

rection approaches the horizon. The smaller the elevation, the larger the sensitivity

for species located near the ground [Hönninger et al., 2004; Sinreich, 2007].
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Fig. 2.7: Sketch of a MAX-DOAS measurement geometry. Adapted from Platt
and Stutz [2008].

Spectral analysis: The measured spectra were analysed using the DOAS

technique which is based on the Beer-Lambert law and can be used to describe

the attenuation of scattered sunlight along its atmospheric light path through the

atmosphere [Platt and Stutz , 2008]. The attenuation of the initial light inten-

sity (Io) due to absorption by an absorber with the concentration (c) along the

light path (L) can be expressed as in Eq. 2.3, where λ is the wavelength of in-

terest, I is the light intensity after passing through an absorber and σ(λ) is the

wavelength-dependent absorption cross-section of the absorber. A detailed descrip-

tion of the DOAS method and its applications can be found in Platt and Stutz

[2008]. The QDOAS software (version 2.108) used in these analyses was developed

by BIRA−IASB (http://uv-vis.aeronomie.be/software/QDOAS). The configuration

setup can be found in QDOAS software user manual by Danckaert et al. [2014].

I(L, λ) = Ioe
(−c.σ(λ).L) (2.3)

The wavelength interval between 350 nm and 389 nm was used here. There

were two O4 absorption bands in this range (360 nm and 380 nm). The selected

molecular spectral cross-sections chosen for this work have been used successfully

in previous studies. The temperatures were chosen based on what is available that

would be relevant for the lower troposphere at this site. The molecular absorption

cross-section files fitted were O4 at 298 K (Hermans et al. [1999]), O3 at 293 K

(Bogumil et al. [2003]), NO2 at 298 K (Vandaele et al. [1996]), HCHO at 297 K

33



Chapter 2. Materials and Method

(Meller and Moortgat [2000]) and BrO at 298 K (Wilmouth et al. [1999]). A 5th

order polynomial was included in the fit. The effect of Raman scattering by the

atmosphere, the so-called “Ring effect” [Grainger and Ring , 1962], was included by

fitting a calculated Ring spectrum as an additional absorber. The Ring spectrum file

was based on the method introduced by Chance and Spurr [1997], as implemented

in the QDOAS software.

DSCDs and Vertical profile retrieval: The MAX-DOAS measurements pro-

vide indirect information on the aerosol vertical profile. Therefore, inverse methods

are necessary for the retrieval procedure [Frieß et al., 2006]. The QDOAS retrieval

results are labelled as DSCDs denoting the difference between the slant column

densities of atmospheric trace gases measured at an elevation angle (α) and a refer-

ence measurement [Xing et al., 2017]. A zenith sky (90◦) measurement of the same

elevation sequence has been used as reference measurement in this work. These

DSCDs are then converted to aerosol vertical profiles by using a radiative trans-

fer model known as the Heidelberg profile (HEIPRO) developed by the Institute of

Environmental Physics (IUP) Heidelberg, Germany [Frieß et al., 2006, 2011, 2016].

The inversion algorithm was developed based on the Optical Estimation Method

[Rodgers , 2000] which employs the radiation transfer model SCIATRAN as the for-

ward model [Rozanov et al., 2005]. The Optical Estimation Method is based on

Bayesian statistics. Briefly, the maximum a posteriori (MPA) solution (x̂) is deter-

mined by minimizing the cost function (χ2), as is illustrated in Eq. 2.4:

X2(x) = [y − F (x, b)]TSε−1[y − F (x, b)] + [x− xa]TS−1
a [x− xa] (2.4)

The function F(x,b) is the radiative transfer model or forward function that

describes the measurement vector (y) (the DSCDs at different elevation angles) as

a function of atmospheric state (x ) (aerosol vertical profile). The vector b rep-

resents additional forward model parameters including meteorological parameters

(for example pressure and temperature), aerosol single scattering albedo as well as

the aerosol scattering phase function. The a priori atmospheric state vector, (xa)

serves as an additional constraint. Sε and Sa denote the diagonal measurement co-

variance matrices, representing the uncertainties in the measurements and of the a

priori state, respectively. The vertical resolution of the retrieval is quantified by the

averaging kernel matrix (A), shown in Eq. 2.5:

A =
δx̂

δx
(2.5)
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The variable A represents the sensitivity of the retrieved profile (x̂) to the

atmospheric state (x ). The retrieved profile (x̂) can be smoothed by the averaging

kernel matrix (A), as illustrated in Eq. 2.6:

x̂ = xa + A(x− xa) (2.6)

Aerosol inversion: In the forward radiative transfer model, the employed

atmospheric pressure and temperature profiles were adapted from a climatology

database employed in SCIATRAN, which contains various monthly and latitude

dependent trace gases vertical profiles [Hendrick et al., 2014; Wang et al., 2016b,

2014]. For the scattering process the aerosols were assumed to have an asymmetry

parameter of 0.72 and single scattering albedo of 0.93. Surface albedo was set at

0.05. The a priori a priori profile used in the aerosol retrieval was linearly decreasing

from the surface to higher altitude.
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Chapter 3

Characterisation of Aerosol

Particle Number Size Distribution

3.1 Introduction

This chapter provides an overview of particle populations measured during the

MUMBA campaign. The main objectives of this chapter are to analyse the char-

acteristics of the observed particle size and their temporal changes as well as, to

identify the potential particle sources. Measurements used in this chapter can be

divided into three categories: (i) aerosol particle data, (ii) trace gases and volatile

organic compound concentrations, and (iii) meteorological and traffic data. Aerosol

particle properties considered are the particle number concentration for particles

ranging in size from 14 nm to 660 nm (PNC14nm−660nm), the total particle number

concentration range from 3 nm to 2.5 µm (CN3) , the fine particle mass (with an

aerodynamic diameter of less than 2.5 µm, PM2.5), the carbonaceous aerosol compo-

sition (elemental carbon (EC) and organic carbon (OC)) and the secondary organic

aerosol concentration (SOA). Trace gas data include the mole fraction (ppb) of NOx,

CO, O3 and selected volatile organic compounds (benzene, toluene, isoprene). The

meteorological datasets include temperature, global irradiance, wind speed,wind di-

rection and relative humidity. This chapter focuses on four major topics. It begins

with an overview of the meteorological conditions experienced during the campaign

(Section 3.2). Second, the particle number concentration (cm−3) and particle mass

concentration (µg m−3) are characterised (Section 3.3). Third, the identification of

potential emission sources of the particles (Section 3.4) is considered and finally, the

variability (temporal changes) of particle number is presented in Section 3.5 and 3.6.

The work presented in this chapter forms the basis of the published paper Dominick

et al. [2018] entitled “Characteristics of Airborne Particle Number Size Distribution

in a Coastal-Urban Environment” in the journal of Atmospheric Environment.
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3.2 Meteorological Conditions

As mentioned in Chapter 2, the MUMBA campaign was run during the local Aus-

tralian summer. Fig. 3.1 (a-e) shows the diurnal cycle of temperature, global

irradiance, wind speed, wind direction and relative humidity. The mean diurnal

temperature ranged between 20 ◦C and 24 ◦C. Overall, clear days were experienced

during the campaign which resulted in a mean global irradiance of 700 W m−2

at noon. Wind speed increased steadily and it reached the maximum reading at

noon. In terms of wind direction during the campaign, westerly winds were ob-

served overnight and early in the morning (breeze blowing from the land to sea (i.e.

land breeze)) and easterly winds occurred in the middle of the day (breeze blowing

from the sea to land (i.e. sea breeze)). Full details of the meteorological conditions

during the campaign are given in the study by Paton-Walsh et al. [2017]. Overall,

most of the time during the measurement period, the site experienced air masses

blown in from the ocean with little input from the free troposphere. This is illus-

trated by the four clusters of 48-h backward trajectories at 100 m (Fig. 3.1 (f)) and

48-h backward trajectories at 500 m (Fig. 3.1(g)). This implies that oceanic air

masses were one of the sources that contributed to the atmospheric composition at

the monitoring site during the campaign.
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Fig. 3.1: The mean diurnal variation of meteorological parameters measured at
the site including global irradiance (a-e). The shaded area is the 95 % confidence
level. Figures (a-e) were plotted using R statistical analysis packaged ”openair”
(Carslaw and Ropkins [2012]). Fig. (f) and Fig. (g) created using the Hybrid-
Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and show
four mean clusters of 48-h backward trajectories at 100 m and 500 m, respectively.
The data used for these plots covered the aerosol measurements for the time period
(16thJanuary to 15th February 2013).

3.2.1 Variation of Particle Number Concentration in Rela-

tion to Wind Direction

The monitoring station experienced air masses from the ocean and inland over the

campaign period as shown by HYSPLIT backward trajectories. Air masses from dif-
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ferent wind directions were considered to be generally representative of the area and

important for the understanding of their effects on particle number concentration

and potential particle sources. Wind data (10-min averages) and aerosol measure-

ments were reviewed. Wind directions were divided into eight wind sectors (Fig.

3.2 (a)) to get an overall idea on the variability of wind direction. By studying the

number of observations within each wind sector, the eight wind sectors (W1 to W8)

were then condensed into four major wind sectors S1 to S4 (Fig. 3.2 (b)). Sector

2 (S2) will be used as an example of how the four wind sectors were obtained. S2

covered the wind sector of 46◦≤ x ≤ 180◦ which is a combination of W2, W3 and W4

of the eight wind sectors (Fig. 3.2 (a)). W2, W3 and W4 have similar characteristics

in terms of frequency of occurrence. Distributions of particle number concentration

(PNC14nm−660nm) from the four wind sectors are illustrated in Fig. 3.2 (c). The

highest occurrence of particle distribution was observed in Sector 2 (34%), followed

by Sector 4 (23%) and Sector 1 (23%). The lowest was in Sector 3 (19%).

The aerosol sources expected in the four wind sectors can be summarised as

follows:

(i) Sector 1 (0◦< x ≤ 45◦): Air masses were transported by wind down the

coast from other regions including Sydney.

(ii) Sector 2 (46◦≤ x ≤ 180◦): Air masses approaching from this direction were

generally from the open ocean (Pacific Ocean). There could also be biogenic input

from the small coastal strip to the east of the measurement site.

(iii) Sector 3 (181◦≤ x ≤ 225◦): Anthropogenic sources were from urban areas

and industrial activities. In the southern direction, approximately 10 km from the

campaign site are an active industrial suburb and a harbour (Port Kembla) with a

large local steel works industry. Approximately 3 km to the south of the campaign

site is also the Wollongong central business district.

(iv) Sector 4 (226◦≤ x ≤ 360◦): Emissions from anthropogenic sources include

commercial and industrial properties, as well as main highways, roads and the South

Coast train line. Biogenic emissions from this direction were generally from a large

scale forest nature reserve known as the Illawarra Escarpment conservation area,

approximately 3 km from the site.
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Fig. 3.2: (a) Distribution of particle number concentrations (PNC14nm−660nm)
in the eight wind sectors. W1, W2, W3, W4, W5, W6, W7 and W8 covered wind
sectors of 0◦< x ≤ 45◦, 46◦≤ x ≤ 90◦, 91◦≤ x ≤ 135◦, 136◦≤ x ≤ 180◦, 181◦≤ x
≤ 225◦, 226◦≤ x ≤ 270◦, 271◦≤ x ≤ 315◦ and 316◦≤ x ≤ 360◦, respectively. (b)
Distribution of PNC14nm−660nm in the four wind sectors. S1, S2, S3, S4 covered
wind sectors of 0◦< x ≤ 45◦, 46◦≤ x ≤ 180◦, 181◦≤ x ≤ 225◦ and 226◦≤ x ≤
360◦, respectively. Box and whisker statistical information summarise the particle
distribution in each wind sector. The central line of each box is the median.
The lower and upper edges of each box are the 25% quartile and 75% quartile,
respectively. Whisker extended to the smallest of either the furthest data point
or 1.5 times the quartile value. Note that the y-axis is in log format. (c) The
occurrence frequency of particle number concentration (PNC14nm−660nm) at each
wind sector is shown. The figures are based on 10-min averaged data collected
at the MUMBA site covering the whole time frame of aerosol measurement (16th

January 2013 to 15th February 2013).
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3.3 Overview of Particle Populations

The daily variation of the total particle number concentration (Dp14nm−660nm) and

the total particle number concentration (3 nm to 2.5 µm (CN3)) over the period of the

campaign are shown in Fig. 3.3 (a)). There was evidence of morning, afternoon and

night peaks in both PNC14nm−660nm and CN3. The morning peak was around 6:00 to

7:00 AEST, while the afternoon and night peaks were observed from around 12 noon

to 14:00 AEST and 22:00 to 23:00 AEST, respectively. The greatest contributor to

particle number size distribution ranged from 14 nm to 660 nm over the measurement

period was ultrafine particle (< 100 nm) (Fig. 3.3 (b)). Bivariate polar plot shows

the relationship between wind direction and wind speed (Fig. 3.3 (c)). During

the campaign, high particle number concentrations were observed in the south and

northeast sectors at high wind speed. Under low wind speed conditions, high particle

number concentrations were observed in the south west and southeast. Factors that

contributed to this observation are discussed in Section 3.5.

Fig. 3.3: Total particle number concentration (measured from 16th January
2013 to 15th February 2013; (a) average diurnal variation of total particle number
concentration (PNC14nm−660nm) and total particle number concentration range
from 3 nm to 2.5 µm (CN3) with the 95 % confidence level shaded, (b) average
particle number size distributions from 14 nm to 660 nm and (c) dependence of
total particle number concentration (PNC14nm−660nm) on wind speed and wind
direction. Wind speed and wind direction are represented by the concentric circles
and coloured shape, respectively. Average particles counts are illustrated by the
colour bar. Note that 10-min averaged data were used.
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3.3.1 PM2.5

The daily mean mass concentration of PM2.5 from 24th January 2013 to 15th February

2013 during the aerosol phase of the MUMBA campaign was 6.1 µg m−3. The

maximum daily average was 22.1 µg m−3 (Fig. 3.4). The daily mean PM2.5 measured

at the nearby Office of Environment and Heritage (OEH) for the same time period

was 6.2 µg m−3. The OEH station is located approximately 3 km from the MUMBA

campaign site (Fig. 2.1(b)). This suggests that the two sites were exposed to similar

sources. The daily mean of PM2.5 obtained in this study was always below the

maximum allowable daily mean as specified by the Australian National Environment

Protection (Ambient Air Quality) Measure (Air NEPM) of 25 µg m−3 (not to be

exceeded) and by the United States Environmental Protection Agency, US EPA (35

µg m−3, 98th percentile, averaged over 3 years).

Fig. 3.4: Time series of daily average mass concentration of PM2.5 measured from
24th January 2013 to 15th February 2013. The blue dashed line is daily mean mass
concentration of PM2.5. The black dashed line is the maximum allowable daily
mean as specified in the Australian National Environment Protection (Ambient
Air Quality) Measure (Air NEPM) which is (25 µg m−3).

3.3.2 Characteristics of Particle Number Concentration

Particle size distribution is an important way of understanding aerosol properties

and their sources [Charron et al., 2008; Harrison et al., 2011]. While fine particle

(particle with diameter < 2.5 µm) are considered to be of a significant concern

for health, there is also an emerging focus on ultrafine particles (particle with a

diameter <100 nm) [Harrison and Yin, 2000; WHO et al., 2013]. The focus of this

study is on PNC14nm−660nm, CN3 and particle number ranged from 3 nm to 100 nm

(PNC3nm−100nm). Figure 3.5 (a) illustrates the time series of the 10-minute averaged

particle number concentration of PNC14nm−660nm and CN3. Number concentration

of PNC14nm−660nm ranged between 3.6 x 102 cm−3 and 1.8 x 105 cm−3, while CN3
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ranged from 4.6 x 102 cm−3 to 6.5 x 104 cm−3.

An extreme event was observed on the 16th of January 2013 (Fig. 3.5 (a))

at approximately 22:00 (Fig. 3.5 (b)). The 10-minute averaged particle number

concentration of PNC14nm−660nm at 22:00 was 1.8 x 105 cm−3. The monitoring site

experienced increase in wind speed between 18:30 and 21:00 (Fig. 3.5 (d)) and

wind blowing from the southwest sector (Fig. 3.5 (c)). After 21:00, wind speed

started to ease and this could have reduced the dilution of particle number number

concentration which then resulted in the extreme event.

Fig. 3.5: (a) Time series of PNC14nm−660nm and total particle number concen-
tration range from 3 nm to 2.5 µm (CN3) from 16th January 2013 to 15th February
2013 and (b) time series of PNC14nm−660nm on 16th January 2013. Figure (c) and
(d) are wind direction and wind speed on 16th January 2013, respectively. The
rectangular orange box delineates the extreme event. Note that 10-min averaged
data was used.

The mean of CN3 over the period of 16th January 2013 to 15th February 2013

was 7.4 x 103 cm−3 with a median value of 5.5 x 103 cm−3. During the aerosol

measurement period, aerosol populations were dominated by the ultrafine particles

(particle with a diameter <100 nm) as shown in Fig. 3.3(b). On that account,

there are a few assumptions made in this work including particle numbers with size

diameter ranging from 660 nm to 2.5 µm nm are negligible. Another assumption

was CN3 provides information on ultrafine particles (PNC3nm−100nm). Therefore,

the ultrafine particles concentrations in this study were calculated using Eq. 3.1 to

3.3. Particles from 3 nm to 14 nm (abbreviated as “a3nm−14nm”) were obtained by

subtracting PNC14nm−660nm from total CN3. Then “a3nm−14nm” was added to the
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sum of particle number from 14 nm to 100 nm (abbreviated as“b14nm−100nm”) to

obtain PNC between 3 nm and 100 nm (abbreviated as “c3nm−100nm”).

a3nm−14nm = Total CN3 − PNC14nm−660nm (3.1)

b14nm−100nm = Sum of PNC from PNC14nm to PNC100nm (3.2)

c3nm−100nm = a3nm−14nm + b14nm−100nm (3.3)

The observation of particle concentration over the size range of 14 nm to 660

nm measured by the SMPS in this study was compared with other studies at coastal

environments (Table 3.1). The mean and median of the 10-minute averaged particle

number concentration between 14 nm and 660 nm measured during the aerosol

measurements period were 5.2 x 103 cm−3 and 3.1 x 103 cm−3, respectively. The

mean value reported in this study was comparable to studies by Peng et al. [2014]

on a particle number ranging from 15 nm to 660 nm at a sub-urban coastal site

in China and by Sorribas et al. [2011] on particle number between 14 nm and 673

nm at a coastal-rural environment in Spain. However, the mean value of particle

number ranging from 14 nm to 660 nm in this study was lower than the study by Pey

et al. [2008] on particle number ranging from 13 nm to 800 nm at a coastal-urban

environment in Barcelona, with a mean value of 16.9 x 103 cm−3. One can conclude

that the particle number concentrations observed during this campaign fell within

range of the particle number concentration observed elsewhere in marine and urban

environments.

Table 3.1: Comparison between this study and other studies. PNC is particle
number concentration. NA is not available.

PNC x 103 (cm−3)

Study Site Size (nm) Mean Median
Quartile, Q1

(25% percentile)

Quartile, Q3

(75% percentile)

This study Urban-marine 3-100 7.0 5.2 2.7 9.5

This study Urban-marine 14-660 5.2 3.1 1.6 6.2

This study Urban-marine 3-2500 7.4 5.5 3.0 9.9

Cheung et al.(2011) Urban 4-110 9.3 NA NA NA

Peng et al. (2014) Coastal 15-660 5.7 3.9 NA NA

Sorribas et al. (2011) Coastal-rural 14-673 8.7 7.1 NA NA

The mean and median of ultrafine particles (PNC3nm−100nm) over the period of

16th January 2013 to 15th February 2013 were 7.0 x 103 cm−3 and 5.2 x 103 cm−3,

respectively which is comparable to the value reported by Cheung et al. [2011] for a

sub-tropical urban environment in Australia (Table 3.1). The calculated mean total

CN3 and PNC3nm−100nm shows that the particle population observed in this study

was dominated by ultrafine particles.
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3.3.3 Classification of Particle Number Concentration

Principal component analysis (PCA) (details in Section 2.2.3) was performed on the

total PNC14nm−660nm and the distribution of component loadings is illustrated in

Fig. 3.6. Component loadings (factor loadings), reflect the correlation between the

factors and variables (particle population in the individual size bins). In this study,

strong component loadings (value ≥ 0.75, [Liu et al., 2003] as dashed line in Figure

3.6) were chosen for result interpretation. That is, particle numbers were summed

across the size ranges “above the dashed line” and identified as Factor 1, Factor 2

and Factor 3 (Fig. 3.6).

Fig. 3.6: Distribution of component loadings on the entire 10-minute averaged
particle number concentration. Only component loadings that were equal to and
greater than 0.75 were used to interpret the results. Note: x-axis is in log scale.

Given their distribution, Factor 1 is labelled as the Small Factor (NS) (14 nm

< Dp < 50 nm), Factor 2 is labelled as the Medium Factor (NM) (60 nm < Dp <

150 nm) and Factor 3 is labelled as the Large Factor (NL) (210 nm < Dp < 450

nm). Factor 1 and Factor 2 described 31% of the variability, respectively meanwhile,

Factor 3 described 27% and all three size fractions described 89% of the cumulative

variance. The Small, Medium and Large factors used in this study are approximately

equivalent to Nucleation mode, Aitken mode and Accumulation mode, respectively.

It is worth mentioning that Nucleation mode sizes (Dp < 10 nm) were actually not

within the dataset used in this study (PNC14nm−660nm). The temporal variations in

these factors are discussed in Section 3.5.

3.4 Identification of Emission Sources

Probable sources were identified by relating the particle number concentrations to

carbonaceous aerosols concentrations. The characteristics of carbonaceous aerosols

can be generally interpreted by considering organic carbon (OC), elemental carbon
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(EC) and the sum of these, Total Carbon (TC = OC + EC). OC contains light

reflective species whereas, EC is the least reflective and most light absorbing com-

ponent [Pöschl , 2005]. Organic carbon includes all organic compounds, formed from

both primary sources and formed through secondary formation pathways. Elemen-

tal carbon is a primary pollutant released into the atmosphere mainly during the

incomplete combustion of fossil fuels and biomass [Tian et al., 2013].

Measurements of OC and EC were made during the campaign using a PM2.5 high

volume sampler (details in Paton-Walsh et al. [2017]). The high volume sampling

times were morning (4:00 to 9:00) and afternoon (10:00 to 18:00). Overall, the mean

masses of PM2.5 collected in the morning and afternoon were comparable (although

the measurement durations were different). The percentage of total carbon in PM2.5

was higher in the morning compared to the afternoon (Table 3.2 (a) and (b)). This

observation is due to the higher concentrations of EC measured, presumably due

to the morning traffic and low atmospheric mixing. This coincided with the clear

morning maximum observed in combustion products, such as CO, NOx, benzene

and toluene as well as the motor vehicle movement diurnal patterns (Fig. 3.7).

The low percentage of total carbon in PM2.5 in the afternoon was due to the low

concentration of combustion products as well as increased modulation from vertical

mixing and increases in wind speed.

Table 3.2: (a) Morning and (b) Afternoon mean mass concentrations of organic
carbon (OC), elemental carbon (EC), total carbon (TC), PM2.5, OC/EC and
secondary organic aerosols (SOA).

(a) (Morning, AM = 4:00 - 9:00)
Date OC EC TC PM2.5 OC/EC % of TC in PM2.5* SOA

27-01-13 1.30 0.20 1.50 3.50 6.50 24.10 1.50
28-01-13 0.70 0.10 0.80 22.90 7.00 12.86 1.10
29-01-13 4.70 2.70 7.40 NA 1.74 118.91 1.00
30-01-13 3.00 1.50 4.50 NA 2.00 72.31 1.00
31-01-13 1.30 0.10 1.40 NA 13.00 22.50 1.60
1-02-13 1.90 0.50 2.40 9.30 3.80 38.57 0.90
3-02-13 2.00 0.10 2.10 0.80 20.00 33.75 2.60
4-02-13 2.60 1.60 4.20 3.80 1.63 67.49 1.00
7-02-13 2.30 0.60 2.90 3.10 3.83 46.60 0.90
8-02-13 3.00 0.60 3.60 4.70 5.00 57.85 2.20
9-02-13 4.20 0.80 5.00 6.70 5.25 80.35 3.40
10-02-13 3.20 0.20 3.40 14.20 16.00 54.64 4.30
11-02-13 1.10 0.30 1.40 3.70 3.67 22.50 0.60
12-02-13 3.60 1.60 5.20 3.70 2.25 83.56 1.00
13-02-13 1.00 0.50 1.50 1.40 2.00 24.10 1.00
14-02-13 2.20 2.90 5.10 3.10 0.76 81.95 1.00

Mean 2.38 0.89 3.28 6.22 5.90 52.63 1.57
Median 2.25 0.55 3.15 3.70 3.82 50.62 1.00

Note: *The mean value of PM2.5 measured in the morning was used to calculate the percentage
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of TC in PM2.5 ((TC/6.22) x 100). NA = Not available. OC, EC, PM2.5 and SOA data
presented in the unit of µg m−3.

(b) (Afternoon, PM = 10:00 - 18:00)
Date OC EC TC PM2.5 OC/EC % of TC in PM2.5* SOA

24-01-13 1.70 0.10 1.80 5.30 17.00 31.47 2.30
27-01-13 1.50 0.10 1.60 5.40 15.00 27.97 2.00
30-01-13 2.00 0.20 2.20 NA 10.00 38.46 2.60
31-01-13 2.30 0.20 2.50 8.40 11.50 43.71 2.60
1-02-13 1.50 1.00 2.50 5.20 1.50 43.71 1.00
2-02-13 1.20 0.20 1.40 2.60 6.00 24.48 1.00
3-02-13 2.60 0.20 2.80 8.60 13.00 48.95 3.40
4-02-13 0.80 0.20 1.00 7.30 4.00 17.48 1.20
7-02-13 3.00 0.60 3.60 6.30 5.00 62.94 2.40
8-02-13 4.10 1.00 5.10 7.20 4.10 89.16 2.10
9-02-13 2.90 0.30 3.20 8.30 9.67 55.94 3.10
10-02-13 1.60 0.20 1.80 10.30 8.00 31.47 1.60
11-02-13 2.60 0.80 3.40 5.60 3.25 59.44 0.80
12-02-13 1.80 0.20 2.00 2.50 9.00 34.97 1.90
13-02-13 1.40 0.10 1.50 1.30 14.00 26.22 1.70
14-02-13 1.80 0.40 2.20 1.50 4.50 38.46 1.30

Mean 2.05 0.36 2.41 5.72 8.47 42.18 1.94
Median 1.80 0.20 2.20 5.60 8.50 38.46 1.95

Note: *The mean value of PM2.5 measured in the afternoon was used to calculate the percent-
age of TC in PM2.5 ((TC/5.72) x 100). NA = Not available. OC, EC, PM2.5 and SOA data
presented in the unit of µg m−3.

According to a study by Turpin and Huntzicker [1995], the sources of carbona-

ceous particles can be qualitatively estimated by determining the relationship be-

tween the OC and EC concentrations. The correlation between OC and EC should

be higher when a major fraction of both OC and EC are emitted by a dominant

primary source (e.g., biomass burning, coal combustion or motor vehicular exhaust).

Lin et al. [2009] used measurements at a coastal and urban area in Taiwan to define

a good correlation between OC and EC when R2 value is ≥ 0.80. They defined a

weak correlation for R2 as ≤ 0.40. In the present study, the R2 value obtained for

OC to EC was 0.3 (n=35) for the aerosol measurement period. This value suggests

that OC and EC are not from a dominant primary source. Similar observations

were made by Na et al. [2004] in a semi-rural area in California. However, Cao et al.

[2007] observed good correlation between OC and EC at Qingdao and Xiamen (both

developing coastal cities in China) with R2 value of 0.78 and 0.87, respectively.

The mass ratio of OC to EC (OC/EC) provides information about the emission

sources of aerosols. The mean (± standard deviation) value of all OC/EC (n=35)

calculated for the MUMBA campaign is 6.9 (± 5.2) with a median of 5.0. The mean

value obtained during the MUMBA campaign is comparable to the mean value of

6.1 (± 1.3) for a semi-rural area in California [Na et al., 2004] and the mean value
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of 6.5 (± 3) for a coastal site in the Southern Italy [Dinoi et al., 2017]. There

was significant variability in OC/EC values as presented in the standard deviation

obtained during the MUMBA campaign. The variation can be due to the multiple

sources of OC and EC.

Studies at urban and rural sites in North-Western Europe and north central

part of India, concluded that if the OC/EC ratio exceeds 1.0 or 2.0, respectively,

there is formation of SOA [Weijers and Schaap, 2013], Pachauri et al. [2013] and

Pani et al. [2017]. All OC/EC ratios (excluding the ratio on 14th February 2013 in

the morning) obtained at MUMBA ranged from 1.5 to 20.0 (Table 3.2(a) and (b)),

indicating the dominance of OC and hence the presence of SOA. The OC obtained

at MUMBA is therefore derived from both SOA and various combustion processes

including fossil fuel.

The amount of SOA has also been calculated using the method of Turpin and

Huntzicker [1995] with modification by Lim et al. [2003], as shown in Eq. 3.4.

SOA = 1.6[OC − (
OC

ECprimary
)× EC] (3.4)

where, OC/ECprimary is the average of OC/EC in freshly emitted combustion

aerosols, which in this analysis is the average of OC/EC in the morning. More details

about the OC/ECprimary calculation can be found in Keywood et al. [2011]. The cal-

culated SOA are presented in Table 3.2(a) and (b)). The concentration of calculated

SOA was higher in the afternoon than in the morning. As reported by Ding et al.

[2016], isoprene is an important volatile organic compound that plays a key role in

the formation of SOA. Isoprene is mainly emitted by biogenic sources (i.e. vegeta-

tion) [Claeys et al., 2004; Guenther et al., 2006]. In addition to biogenic sources,

isoprene is also emitted by anthropogenic sources (i.e. traffic emissions) [Borbon

et al., 2001; Kansal , 2009]. The correlation between the isoprene (as measured by

the proton transfer reaction-mass spectrometry) and SOA (as derived above) was

determined and the results are illustrated in Table 3.3. The isoprene concentration

used was the average of observations taken during the aerosol collection period.
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Table 3.3: Comparison of the relationship between SOA and isoprene in the
morning (4:00 to 9:00) and in the afternoon (10:00 to 18:00). Details of the
separation of sources for isoprene are given in Eq. 3.5 and 3.6. AnthroIso =
anthropogenic isoprene and BioIsop = biogenic isoprene. Anthropogenic isoprene
(AnthroIso), biogenic isoprene (BioIso) data are presented in the unit of mole
fraction (ppb). SOA data are presented in the unit of µg m−3. Definitions are
given in the text.

Isoprene SOA R2 Variables Morning Afternoon

R2

Morning Morning 0.6 SOA BioIso 0.6 0.1

Morning Afternoon 0.02 SOA AnthroIso 0.02 0.08

Afternoon Afternoon 0.1

Afternoon Morning 0.007

The R2 values observed between SOA and isoprene ranged from 0.007 to 0.6

(Table 3.3). The largest R2 was observed between isoprene and SOA which was

measured in the morning, which indicated the significant correlation of isoprene

concentrations to morning SOA. The relationship between SOA and other volatile

organic compounds measured by the proton transfer reaction-mass spectrometry

(i.e. monoterpene and formaldehyde) was examined for both the morning and in

the afternoon. Weak to moderate relationships were obtained (R2 < 0.5, details not

included in this work). To determine the sources that influenced the SOA formation,

biogenic and anthropogenic isoprene concentrations were calculated using equations

as shown in Eq. 3.5 and Eq. 3.6:

Anthropogenic isoprene = Benzene× 0.05 (3.5)

Total Isoprene = Biogenic Isoprene + Anthropogenic Isoprene (3.6)

The anthropogenic isoprene contribution calculation (Eq. 3.5) was determined

by using the method proposed by Borbon et al. [2001] and Duane et al. [2002]

in which assumes that the anthropogenic isoprene concentration is 5% of that of

benzene. The study by Borbon et al. [2001] was in Lille, France while the study

Duane et al. [2002] was in Insubria, Northern Italy. The results of this calculation

of biogenic and anthropogenic isoprene are presented in Table 3.4(a) and (b). The

percentages of the average anthropogenic contribution to isoprene in the morning

and in the afternoon were 3.2% and 1.6%, respectively, indicating a dominance of

isoprene. Paton-Walsh et al. [2017] reported on the biogenic influences on the high

levels of isoprene and monoterpenes observed which are important for both O3 for-

mation and secondary organic aerosol formation in the region. The biogenic sources

(e.g. isoprene and monoterpenes) were from the nearby Illawarra escarpment con-

servation area which is dominated by eucalypts forest. Studies by Emmerson et al.
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[2016] and Emmerson et al. [2018], which focused on estimates of biogenic emis-

sion from eucalypts for south eastern Australia, highlight the potential for eucalypt

forests to emit isoprene and monoterpenes.

Table 3.4: (a) Morning and (b) Afternoon mean values of benzene, isoprene,
anthropogenicisoprene (AnthroIso), biogenic isoprene (BioIso), and secondary or-
ganic aerosols (SOA).

(a) (Morning, AM = 4:00 - 9:00)
Date Isoprene Benzene AnthroIsop BioIsop SOA

27-01-2013 0.23 0.08 0.004 0.22 1.50
28-01-2013 0.12 0.13 0.007 0.12 1.10
29-01-2013 0.34 0.19 0.010 0.33 1.00
30-01-2013 0.16 0.15 0.008 0.15 1.00
31-01-2013 0.32 0.15 0.008 0.32 1.60
1-02-2013 0.23 0.27 0.013 0.21 0.90
3-02-2013 0.10 0.04 0.002 0.10 2.60
4-02-2013 0.22 0.18 0.009 0.21 1.00
7-02-2013 0.27 0.07 0.003 0.27 0.90
8-02-2013 0.47 0.18 0.009 0.46 2.20
9-02-2013 0.64 0.23 0.012 0.62 3.40
10-02-2013 0.63 0.32 0.016 0.62 4.30
11-02-2013 0.07 0.14 0.007 0.07 0.60
12-02-2013 0.14 0.20 0.010 0.13 1.00
13-02-2013 0.17 0.14 0.007 0.17 1.00
14-02-2013 0.37 0.46 0.023 0.35 1.00

Mean 0.28 0.18 0.009 0.27 1.57

Note: Benzene, isoprene, anthropogenic isoprene (AnthroIso), biogenic isoprene (BioIso) data
are presented in the unit of mole fraction (ppb). SOA data presented in the unit of µg m−3.

(b) (Afternoon, PM = 10:00 - 18:00)
Date Isoprene Benzene AnthroIsop BioIsop SOA

24-01-2013 0.68 0.11 0.006 0.67 2.30
27-01-2013 0.79 0.18 0.009 0.78 2.00
30-01-2013 0.41 0.08 0.004 0.41 2.60
31-01-2013 0.41 0.18 0.009 0.41 2.60
1-02-2013 0.07 0.13 0.006 0.06 1.00
2-02-2013 0.11 0.07 0.003 0.10 1.00
3-02-2013 0.20 0.06 0.003 0.20 3.40
4-02-2013 0.24 0.06 0.003 0.23 1.20
7-02-2013 0.38 0.15 0.008 0.37 2.40
8-02-2013 0.49 0.28 0.014 0.47 2.10
9-02-2013 0.41 0.26 0.013 0.40 3.10
10-02-2013 0.44 0.12 0.006 0.43 1.60
11-02-2013 0.13 0.16 0.008 0.12 0.80
12-02-2013 0.31 0.05 0.003 0.31 1.90
13-02-2013 0.42 0.05 0.002 0.42 1.70
14-02-2013 0.51 0.10 0.005 0.51 1.30

Mean 0.38 0.13 0.006 0.37 1.94
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Note: Benzene, isoprene, anthropogenic isoprene (AnthroIso), biogenic isoprene (BioIso) data
are presented in the unit of mole fraction (ppb). SOA data presented in the unit of µg m−3.

3.5 Temporal Variation of Particle Number

The diurnal patterns of the particle number concentration for the Small (NS),

Medium (NM) and Large (NL) size fractions are presented in Figure 3.7. For refer-

ence, several trace gas species have also been included. Three different time frames

were created based on the observed particles
′

temporal variation (Fig. 3.7) which

were also chosen to match the high volume sampler time periods. The three time

frames used were: (i) morning (4:00 to 9:00); (ii) afternoon (10:00 to 18:00) and

(iii) night (21:00 to 23:00). These time period definitions will be used for further

analyses.

Bivariate polar plots are a useful way to show the variation of a variable
′
s con-

centration with wind speed and wind direction in polar coordinates. Wind direction

together with wind speed can effectively cluster and discriminate different emission

sources. Hence, together with the time series, bivariate polar plots have been used

to study the sources of the particle number (Fig. 3.8, Fig. 3.10 and Fig. 3.11). In

a bivariate polar plot, wind speed is plotted as the distance from origin and wind

direction as the angle. The colour is the average value of the variable [Carslaw and

Ropkins , 2012; Uria-Tellaetxe and Carslaw , 2014].

3.5.1 Morning (4:00 to 9:00)

Concentration of all size fractions (NL, NM and NS) increased around 6:00 to 7:00

AEST. NM and NS show show a smaller increase in concentration, whereas NL has a

clear maximum in concentration (although the differences in number concentration

for the fractions should be noted). The increase in particle concentration probably

influenced by the morning local traffic emission (7:00 to 8:00 Australian Eastern

Daylight Time (UTC + 11)). A morning peak is also observed in the products of

combustion such as CO, NOx, benzene and toluene as well as in the number of motor

vehicles (Fig. 3.7). This agrees with the inference drawn from the EC observations,

where higher EC concentrations are observed in the morning compared to those in

the afternoon (Table 3.2 (a) and (b)), presumably due to the fossil fuel used. A

study by Mejia et al. [2007] observed a similar morning peak around 6:00 to 10:00

in the subtropical city of Brisbane, Australia.
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Fig. 3.7: Hourly diurnal variation derived from 10-minute average of particle
number concentration data measured from 16th January 2013 to 15th February
2013. Small (NS), Medium (NM ) and Large (NL) size fractions are in the unit of
cm−3. CO is measured in mole fraction (ppb) of dry air. Benzene, toluene, NOx,
O3 are measured in mole fraction (ppb) of ambient air. Motor vehicles data are
presented in number of vehicles per hour. The shaded area is the 95 % confidence
level.

Overall, it is concluded that all three size fractions were influenced by com-

bustion emissions, presumably from traffic. The obvious peak observed in NL can

be attributed to road traffic as well as growth of NM into bigger size particles. A

clear maximum concentration followed by a significant decrease in NL and combus-

tion products in the morning which were not observed in the NS and NM factors,

indicated that the NS and NM factors were influenced by other undefined sources.

Earlier studies including Morawska et al. [2008], reported that particles in the

size range 20 nm to 130 nm in suburban Brisbane, Queensland came from vehicle

emission. Ristovski et al. [2006] found that particles ranging from 20 nm to 60 nm

and 20 nm to 130 nm are related to petrol and diesel engine exhaust, respectively.

Harris and Maricq [2001] concluded that particle mean size diameters in the range of

40 nm to 80 nm correspond to petrol fuelled engines, while 60 nm to 120 nm particles

correspond to diesel fuelled engines. Other studies including Kittelson et al. [2000]
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reported that particles of sizes ranging from 50 nm to 300 nm are related to vehicle

emissions. Using these observations, one of the sources of particles < 1 µm is motor

vehicles.

The dependence of NS, NM and NL on wind speed and direction in the morning

(4:00 to 9:00) is presented in Fig. 3.8. NL reveals a high particle number concentra-

tion in the northwest and southeast. Observations in the northwest coincide with

the location of commercial and industrial properties, main highways, roads and the

South Coast train line. High particle number concentrations in the northwest are

not clear in NS and NM and this may be caused by additional sources masking the

traffic pattern. Observations in the southeast were due to the location of the active

industrial suburb and the Wollongong central business district which are located to

the south of the campaign site. The wind direction between 4:00 and 9:00 was from

the southwest and southeast (Fig. 3.9).

Fig. 3.8: Dependence of mean particle number concentration (cm−3), wind speed
and wind direction of Small (NS), Medium (NM ) and Large (NL) size fractions
in the morning (4:00 to 9:00). Wind speed and wind direction are represented by
the concentric circles and coloured shape, respectively. Average particles counts
are illustrated by the colour bar. Note that the colour scale varies between plots.
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Fig. 3.9: Hourly wind roses during the aerosol measurements which covers the
period of 16th January to 15th February 2013. Wind directions are represented
by the coloured “wedge” shape. The percentages of occurrence of the winds rep-
resented by the concentric circles. The strength of the wind speed is represented
by the colour bar.

3.5.2 Afternoon (10:00 to 18:00)

Afternoon peaks (≈ 11:00 - 14:00) coincided with the peak in global irradiance

and ground level ozone concentration and so may be associated with photochem-

istry. This is also consistent with the observed increased concentrations of secondary

organic aerosols (SOA) in the afternoon. The median SOA concentration in the af-

ternoon was approximately double the magnitude observed in the morning (Table

3.2 (a) and (b)). The generation of SOA is often photochemically initiated [Wang

et al., 2016a].

Meteorological conditions also played a role in the variability of the observed

afternoon peaks. Overall, the monitoring site experienced strong wind speed during

the afternoon (Fig. 3.1) with north easterly sea breezes capable of carrying particles

down from Sydney region (Fig. 3.9). This can contribute to the observed particle

number concentration variability. At the same time, the sea breezes can dilute

the concentration of particles if there is little urban influence in the incoming air.

Decreases in the particle number concentration can also be caused by the greater
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vertical mixing due to greater solar heating.

The distribution of NS, NM and NL shows relatively high particle number con-

centrations coming from the northwest during this time (Fig. 3.10). This is consis-

tent with the particle sources being near busy highways, roads and also the commer-

cial and industrial areas located in the northwest of the monitoring station. Another

potential source that could contribute to particle concentrations is biogenic emissions

released from the Illawarra escarpment. The Illawarra escarpment is dominated by

Eucalyptus species. Eucalypts are among the highest emitters of biogenic volatile

organic compounds in southeastern Australia [Emmerson et al., 2016; Winters et al.,

2009]. Although the measurement site rarely experienced northwest winds during

the aerosol campaign period (Fig. 3.9), high particle numbers were measured when

these conditions occurred. However, the limited data set hinders analysis. All size

fractions show reasonably high particle number concentrations at low wind speed

from the southeast as well as from the southwest for small and medium factors.

These observations were likely driven by local sources of particles.

Fig. 3.10: Dependence of mean particle number concentration (cm−3), wind
speed and wind direction of Small (NS), Medium (NM ) and Large (NL) size
fractions in the afternoon (10:00 to 18:00). Wind speed and wind direction are
represented by the concentric circles and coloured shape, respectively. Average
particles counts are illustrated by the colour bar. Note that the colour scale varies
substantially between plots.

3.5.3 Night (21:00 to 23:00)

The night peak (22:00 - 23:00) which is clearly observed in NS, but is also evident in

NM and NL (Fig. 3.7), is probably linked to the accumulation of particles from traffic

and industrial activities. Increase in the particle number concentration can also be

caused by the stable conditions and low vertical mixing. High particle number

concentrations were observed in winds from the south for all three size factors as

illustrated in the distribution plots (Fig. 3.11). The source is likely to be from Port

Kembla, an active industrial area, and the Wollongong central business district.
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Fig. 3.11: Dependence of mean particle number concentration (cm−3), wind
speed and wind direction of Small (NS), Medium (NM ) and Large (NL) size
fractions in the night (21:00 to 23:00). Wind speed and wind direction are rep-
resented by the concentric circles and coloured shape, respectively. Average par-
ticles counts are illustrated by the colour bar. Note that the colour scale varies
between plots.

3.6 Particle Size Distribution

Particle size distribution in the four wind sectors was also investigated (Section

3.2.1). The average particle size distribution for the four wind sectors is illustrated

in Fig. 3.12. The maxima were observed in Sector 1 and Sector 2 at particle size

ranging from 43 nm to 48 nm and from 48 nm to 50 nm, respectively. Meanwhile,

the maxima were observed in Sector 3 and Sector 4 at particle sizes between 40 nm

and 43 nm (Fig. 3.12). T-test has showed that there is no significant correlation in

the size distributions for the four wind sectors however, Sectors 1 and 2 contained

slightly bigger particle sizes compared to particle populations in Sectors 3 and 4.

This is because Sectors 1 and 2 were influenced by marine air masses which contain

marine aerosols (i.e. sea salt aerosols). The pollution sources can be other regions

including Sydney and the open ocean. Meanwhile, Sectors 3 and 4 were influenced

by inland air masses. Pollution sources for these two sectors include industrial

activities, traffic emissions and local particle sources.
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Fig. 3.12: Particle size distribution of average particle number concentration at
four wind sectors: Sector 1 (0◦< x ≤ 45◦), Sector 2 (46◦≤ x ≤ 180◦), Sector 3
(181◦≤ x ≤ 225◦) and Sector 4 (226◦≤ x ≤ 360◦). Note that 10-min averaged
data measured from 16th January 2013 to 15th February 2013 were used. The
x-axis is in log format.

Size distribution was also classified by time of day. This is illustrated using the

average of particle number size distribution at three time frames as stated in Section

3.5: morning (4:00 to 9:00), afternoon (10:00 to 18:00) and night (21:00 to 23:00)

for the whole aerosol measurement period (Fig. 3.13).

Fig. 3.13: Particle size distribution of average particle number concentration
at different times: Morning (4:00 to 9:00), Afternoon (10:00 to 18:00) and Night
(21:00 to 23:00) to illustrate the effects of different sources on number size dis-
tribution. Note that 10-min averaged data measured from 16th January 2013 to
15th February 2013 was used and the x-axis is in log format.

In general, the afternoon data showed maxima at slightly different size ranges

compared to the morning and night data. Using a t-test it was concluded that only

the afternoon and morning data had a difference significant at the 95% confidence

level. Particles size maxima in the morning and night ranged from 40 nm to 43 nm
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and 39 nm to 40 nm, respectively (Fig 3.13). Meanwhile, concentration maxima for

particles of a diameter between 48 nm and 50 nm were observed in the afternoon.

Slightly bigger particles observed in the afternoon can be caused by air masses

experienced by the monitoring site in the afternoon (Fig. 3.9) which were generally

from the ocean which carried marine aerosols including sea salt aerosols.

Particle size distribution on the 22nd of January 2013 at specific times (“key

hours”) was also studied. The 22nd of January 2013 was used because larger particles

(Dp > 150 nm) were also observed on this day. The “key hours” were chosen based

on the diurnal variation of the three size fractions as illustrated in Fig. 3.7. Morning

is represented by data observed at 5:00 and 6:00. Midday/afternoon and night are

represented by data observed at 12:00 and 13:00 and 22:00 and 23:00, respectively.

Fig. 3.14: Effects of different sources on the particle size distribution. Average
particle number, AvgPNC presented in black dots. Particle number size distri-
bution on 22nd January 2013 at the “key hours” presented in purple dots. Note
that 10-min averaged data are used and the x-axis is in log format.

The particle concentration was maxima for particles ranging from 25 nm to 50

nm on the 22nd January 2013 at 5:00 and 6:00 as demonstrated by particle number
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distribution shown in Fig. 3.14. Observed peaks were probably driven by morning

traffic. Large particles in the size distribution were also measured on this day, how-

ever at much lower concentrations than for the smaller particles. Midday/afternoon

(12:00 and 13:00) peaks were approximately from 45 nm to 60 nm (Fig. 3.14). Ob-

served peaks were probably influenced by SOA as well as sea breezes. Peaks from

25 nm to 27 nm were observed at night (22:00 and 23:00) (Fig. 3.14). This was

fit with the diurnal pattern of 10-min averaged data measured between 16th Jan-

uary 2013 and 15th February 2013, where there was a clear peak observed in NS

(Fig. 3.7). Overall, different sources have been observed to influence the particle

number size distribution. The monitoring site experienced slightly bigger particle

size populations from oceanic air masses compared with inland air masses. In daily

variation terms (morning, midday/afternoon and night), slightly bigger particle size

populations were observed in the midday/afternoon compared to morning and night

time frames.

Aerosols derived from ocean air particles (sea spray) are produced at the ocean

surface from the interaction between wind and waves. Ocean-derived aerosols are

also produced through secondary processes involving the interaction between ocean

and atmosphere or through the interaction between the ocean and anthropogenic

combustion emission over the ocean [de Leeuw et al., 2014; Grythe et al., 2014].

On average, the monitoring station experienced increases in wind speed with north

easterly winds able to carry sea salt aerosols related to the transport of pollutants

down the coast from in and around Sydney in the midday/afternoon time frames

(Fig. 3.9). This is one of the factors that can explain the observation of a slightly

larger particle size population in the midday/afternoon and when the monitoring

site experienced oceanic air mass.

3.7 Summary and Conclusions

This chapter presents an analysis of the characteristics of aerosol populations as

measured during the MUMBA campaign. It also discusses the potential sources of

these aerosol populations at the time of the research. The findings are as follows:

(i) Particle number concentrations ranging from 14 nm to 660 nm showed an

unimodal distribution, dominated by ultrafine particles (particle diameter from

3 nm to 100 nm). The mean value of particle diameter ranging from 3 nm to

100 nm was 7.0 x 103 cm−3 ;

(ii) The monitoring site experienced low daily mass concentration of fine particles

(PM2.5). The mean daily mass of PM2.5 obtained during the aerosol measure-

ments period was 6.1 µg m−3 with a daily mass that was always below the
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maximum allowable daily mean as specified in the Australian National Envi-

ronment Protection (Ambient Air Quality) Measure (Air NEPM) which is (25

µg m−3, not to be exceeded);

(iii) Three size fractions were obtained from particle number size distributions rang-

ing from 14 nm to 660 nm in diameter using Principal Component Analysis.

Those three size fractions described 89% of the cumulative variance. The three

size fractions were Small Factor (14 nm < Dp < 50 nm), Medium Factor (60

nm < Dp < 150 nm) and Large Factor (210 nm < Dp < 450 nm);

(iv) Potential sources of particle populations measured during the aerosol phase

of MUMBA campaign were marine and forest environments which interacted

with urban air. The particles observed in the morning were found to be in-

fluenced by traffic emissions. A mixture of marine sources, local sources and

secondary aerosols production initiated by photochemical oxidation were the

main sources of particles in the afternoon. Industrial emissions such as from

local steel works and the urban environment were the major contributors of

particles at night; and

(v) Concentrations of carbonaceous aerosols were contributed by multiple sources

including combustion processes (for example fossil fuel) and secondary forma-

tion processes (secondary organic aerosols).
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Chapter 4

Observation of Particle Formation

Mechanisms

4.1 Introduction

New particle formation and growth involves the formation of stable molecular clus-

ters (new particles) and the growth of this cluster to detectable sizes [Kerminen

et al., 2018]. New particle formation takes place almost anywhere and any time in

the atmosphere, and varies depending upon the surrounding environment [Kulmala

et al., 2004, 2014]. To investigate the new particle formation mechanisms, aerosol

data obtained from the MUMBA campaign were analysed (refer to Chapter 2).

Aerosol data included the particle number concentration ranging from 14 nm to 660

nm (PNC14nm−660nm) and the total concentrations of particles ranging from 3 nm

to 2.5 µm (CN3). Auxiliary data included concentration (dry air) mixing ratio of

CO, concentrations (ambient air) mixing ratio for NOx,O3, SO2 and volatile organic

compounds (such as isoprene, benzene, toluene, xylenes) and meteorological dataset

included temperature, global irradiance, wind speed, wind direction and relative

humidity.

Until this study, there were little research on new particle formation conducted in

a mixed environment setting where the air quality depends on the interplay between

different sources. This chapter presents the occurrence frequency, characteristics and

the factors that enhance new particle formation processes. A multivariate statistical

technique known as hierarchical agglomerative cluster analysis (HACA) was applied

to cluster the factors that correlated to the new particle formation events.
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4.2 Particle Formation Event Characteristics

Particle formation events are identified as a burst of particles growing from small (<

10 nm) into larger size particles by the processes of condensation and/or coagulation

[Kulmala et al., 2004]. The particle formation events observed in this work focus

on Class I events. The criteria for Class 1 events used in this study as proposed by

Dal Maso et al. [2005] are (i) a new mode of particles (30 nm) must be observed, (ii)

the event must occur over a time span of hours and (iii) the new mode must show

signs of growth. The Class I type events as indicated in Chapter 1 were investigated.

Contour plots of particle number size distribution during the aerosol measurements

period during the MUMBA campaign are illustrated in Fig. 4.1 and 4.2.

Fig. 4.1: Contour plots of particle number size distribution during the aerosol
measurements period. Note that the y-axis is in log format. GMD is geometric
mean diameter. Ten-minute averaged data were used.
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Fig. 4.2: Continued from Fig. 4.1. Contour plots of particle number size dis-
tribution during the aerosol measurements period. Note that the y-axis is in log
format. GMD is geometric mean diameter. Ten-minute averaged data were used.

A significant increase in the small particle number concentration over time is a

useful marker for new particle formation events. With the limitation of the available

SMPS instrument, it was not possible to measure particles with a diameter less

than 14 nm in this campaign. To overcome this problem, the method reported

by Mej́ıa and Morawska [2009] was used, by assuming that the new particles were

formed earlier and grew until reaching a measurable size. In this present study,
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CN3 and PNC14nm−660nm were used to test this assumption. The total particle

number concentration above 660 nm was taken as negligible because the particle

populations measured at aerosol phase of the MUMBA campaign were dominated by

ultrafine particles (particle diameter from 3 nm to 100 nm) as discussed in Chapter

3. The difference between these two measurements provided information on small

particles (3 nm < Dp < 14 nm) which were involved in the newly formed particles

through gas-to-particle conversion. This method was used in a study by Humphries

et al. [2015] for similar purposes. The concentration of small particles (3 nm <

Dp < 14 nm) can be illustrated by the ratio of CN3 and total particle number

measured by SMPS (PNC14nm−660nm). An increase in the ratio value relative to the

CN3 indicates a higher number concentration of small particles relative to the total

particles population and a marker of particle growth.

Growth rate is one of the most relevant variables in identifying particle formation

events and it is defined as the change in particle diameter due to particle population

growth [Sorribas et al., 2015]. This growth rate was computed using Eq. 4.1 as used

in studies of Kulmala et al. [2004]; Modini et al. [2009]; Pushpawela et al. [2018]. The

geometric mean diameter (GMD) is used to define a “characteristic size”. Changes

in GMD are used to calculate growth rate. The GMD values were retrieved using

the Aerosol Instrument Management software, version 10.2.0.11 by TSI.

Growth rate =
(Dpgend

−Dpgstart)

(tend − tstart)
(4.1)

Where Dpgend and Dpgstart represent the geometric mean diameter at time tend

and t start, respectively when a clear particle formation pattern is observed.

4.3 Results and Discussion

The characteristics of Class I event were compared with several other events to

identify the factors that contribute to the occurrence of new particle formation and

growth. Several other events used for comparison are discussed in Section 4.3.4.

4.3.1 General Characteristics and Occurrence of Particle

Formation Events

Four Class I particle formation events were identified visually during the 31 sampling

days of this campaign. The occurrence frequency of particle formation events was

therefore 13% of the total number of days. There was one event observed in January

2013 (22nd January) and three more observed in February 2013 (6th, 7th and 8th

February) (Table 4.1). All Class I events occurred during the day, approximately
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between 8:30 and 14:30 with an average time duration of 5 hours (Fig. 4.3). During

the Class I event days, total particle number concentration increased from about

3000 cm−3 to 15 000 cm−3, on average.

A study on new particle formation during the Sydney Particle Study campaign

at Sydney Cope et al. [2014], identified 50% of the days displaying new particle

formation events (Class I and Class II ) under summer conditions. For a more

meaningful comparison, the Class II new particle formation events (refer to defi-

nition in Chapter 1) were included in this analysis. There were four Class II new

particle formation events identified during MUMBA (17th, 27th, 29thJanuary and

9th February, 2013) (Fig. 4.1 and Fig. 4.2), which gave a total of eight new par-

ticle formation events identified in this study. These eight days therefore show an

occurrence of 25% over the total number of days. The 24-hr backward trajecto-

ries calculated for the entire aerosol measurement period revealed that 50% of the

sampled air masses arriving at 10:00 AEST were from north and northeast sectors.

The 10:00 AEST was chosen because the particle formation and growth event days

(Class I and Class II) were observed at this time. This observation indicates that

air mass from the north and northeast sectors correlate with the Class I and Class

II event days identified during the MUMBA campaign.

Table 4.1: Summary of particle formation events during the MUMBA aerosol
measurement period. GMD is geometric mean diameter and GR is growth rate

Date Time Time Duration Primary (GMD) Final GMD GR

(Start) (End) (hours) (nm) (nm) (nm/hr)

22-Jan-2013 8:30 14:00 6.3 30.0 70.0 6.3

6-Feb-2013 10:00 13:00 3.0 25.0 50.0 8.3

7-Feb-2013 10:00 14:00 4.0 24.0 55.0 7.8

8-Feb-2013 8:30 14:30 6.0 30.0 60.0 5.0

Average 4.8 27.2 58.8 6.9

(± 1.5)
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Fig. 4.3: Contour plots of particle number size distribution on Class I event days
(Jan 22nd, Feb 6th, Feb 7th and Feb 8th, 2013). The rectangular box represents
the relevant time of particle formation events. Note that the y-axis is in log scale.
GMD is geometric mean diameter. Ten-minute averaged data were used.

[Zhang et al., 2004] described the classification of particle formation and growth

events using the rate of change of total particle number concentration (dN/dt), where

N is the number of particles in the nucleation mode (i.e. particles of diameter of

less than 10 nm). In this study, particles in the size range of PNC3nm−14nm were

used (Table 4.2) as the nucleation mode. A “strong” particle formation event is an
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event with N > 10 000 cm−3 for at least one hour and dN/dt > 10 000 cm−3 hr−1.

A “weak” particle formation event is typically classified as an event with 5000 <

N < 10 000 cm−3 for at least one hour and 5000 < dN/dt < 10 000 cm−3 hr−1.

There were missing CN3 data on the 22th of January and on the 8th of February,

2013 which made the classification of the event difficult. On the 6th of February,

2013, there were times that particle number for PNC3nm−14nm were more than 10

000 cm−3, however it lasted for less than an hour. The events on February 6th and

7th, 2013 were classified as “weak” particle formation events.

Table 4.2: Summary of particle number concentration ranging from 3 nm to
14 nm (PNC3nm−14nm) on the Class I event days during the MUMBA aerosol
measurement phase.

Date

(Time of the Class I event observed)

PNC3nm−14nm, (cm−3)

(Minimum to maximum)

22-Jan-2013

(8:30 - 14:00)
1323 to 5174

6-Feb-2013

(10:00 - 13:00)
1587 to 56 915

7-Feb-2013

(10:00 - 14:00)
1937 to 6436

8-Feb-2013

(8:30 - 14:30)
2229 to 6062

Next, the growth rates of these new particles and the possibility that the new

particles were activated as cloud condensation nuclei were studied. Kulmala et al.

[2004] reported that particle diameter growth rates differed according to environ-

mental conditions and varied from 1 nm hr−1 to 20 nm hr−1. In this study, particle

growth rates were between 5.0 nm hr−1 and 8.3 nm hr−1 with an average value of

6.9 nm hr−1. These observed growth rates were within the range reported for other

urban environments of between 0.5 nm hr−1 to 9.0 nm hr−1 Kulmala et al. [2004]

and similar to those for a remote, sub-tropical coastal environment in Australia of

1.8 nm hr−1 to 8.2 nm hr−1 with a average value of 6.4 nm hr−1 [Modini et al.,

2009]. Overall, the growth rates in this study are comparable with the growth rates

obtained in other studies within urban and coastal environments.

The possibility that in this study the new particles formed on particle formation

and growth event days were activated as CCN was investigated using CCN data, par-

ticle number size distributions and particles’ GMD. The CCN data were measured

by Droplet measurement Technologies (Longmont, CO, USA) and were activated at

a supersaturation of 0.55% (details in Paton-Walsh et al. [2017]). The particle size

range of 14 nm to 150 nm was used because particle formation and growth events
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were observed in this particle size range (Fig. 4.3). Figure 4.4 illustrates the com-

parison of CCN, GMD and particle number size distributions from 14 nm to 150

nm on Class I event days. Particles that are less than 50 nm are inefficient as cloud

condensation nuclei [Dusek et al., 2006; Petters and Kreidenweis , 2007]. Studies by

Dusek et al. [2006] and Seinfeld and Pandis [2012] report that particles of a diameter

of 50 nm - 100 nm have a high potential to be activated and act as CCN. A study by

Lihavainen et al. [2003] in Finland noted that the formation of CCN was related to

particle growth and ceased when particle growth stopped. Overall, particles formed

on Class I event days identified during the aerosol measurements of the MUMBA

campaign could increase and/or decrease the number of CCN (Fig. 4.4). In terms

of particle diameter, there is no clear pattern that particles with GMD equal to and

larger than 50 nm observed on Class I event days were activated as cloud conden-

sation nuclei (Fig. 4.4). One can conclude that particles of diameter ranging from

50 nm to 100 nm observed during the Class I event days inefficiently contribute to

the concentration of CCN during the MUMBA campaign.
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Fig. 4.4: Time series of cloud condensation nuclei (CCN), geometric mean di-
ameter (GMD) and particle number size distributions from 14 nm to 150 nm
(PNC14nm−150nm) on Class I event days (Jan 22nd, Feb 6th, Feb 7th and Feb 8th,
2013). The rectangular box represents time of the particle formation and growth
events. Ten-minute averaged data were used.
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4.3.2 Particle growth from smaller size particles

Measurements of CN3 were used to study whether there was evidence that smaller

particles emerged earlier and grew until reaching a detectable size by SMPS. CN3

was compared with PNC14nm−660nm. Presuming that particle numbers > 600 nm

are small, the ratio of CN3 to PNC14nm−660nm (CN3 / PNC14nm−660nm) is useful in

quantifying the proportion of the smaller particles in the sample. A high value of

CN3 / PNC14nm−660nm indicates a large proportion of small particles (3 nm < Dp <

14 nm) in the particle population. The time series observations of PNC14nm−660nm

and CN3 / PNC14nm−660nm on Class I event days are illustrated in Fig. 4.5. As there

were missing CN3 data on the 22th of January 2013 and on the 8th of February 2013

(Fig. 4.5(a) and (d), respectively), the growth of smaller sizes could not be studied

on these days.

On the 6th of February 2013 (Fig. 4.5 (b)), no peak was observed in the CN3

/ PNC14nm−660nm ratio before 7:00. There was also no particle growth observed

in the contour plot (Fig. 4.3). This suggests that particle formation and growth

processes did not occur for sizes > 3 nm at this time. However, from 8:00, the

CN3 / PNC14nm−660nm ratio did increase, then followed by a decrease in the CN3 /

PNC14nm−660nm ratio at 10:00 due to a relative decrease in smaller particle concen-

tration. Subsequently, a particle growth process was observed in the contour plot

after 10:00 (Fig. 4.3).

On the 7th of February 2013 (Fig. 4.5 (c)), there were peaks observed in the CN3

/ PNC14nm−660nm ratio before 7:00. However, there was no particle growth observed

in the contour plot (Fig. 4.3). This suggests that there was a high concentration of

smaller particle (> 3 nm) but growth processes did not occur for sizes > 3 nm at

this time. After 7:00, the CN3 / PNC14nm−660nm ratio increased again and slowly

decreased at around 10:00 due to a relative decrease in smaller particle concentration.

Subsequently, a particle growth process was observed in the contour plot after 10:00

(Fig. 4.3).

These observations illustrate that particle growth can be observed in the size

range 3 nm to 14 nm prior to being a detectable by SMPS.
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Fig. 4.5: Time series of the total particle number between 14 nm and 660 nm
(PNC14nm−660nm) and the ratio of total particle concentrations with diameters
larger than 3 nm (CN3) to PNC14nm−660nm (CN3 / PNC14nm−660nm) on the Class
I event days. The black rectangular box represents the relevant time of particle
populations before, during and after the event. Five-minute averaged data were
used in these plots.
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4.3.3 Conditions that Favoured Particle Formation on Class

I Event days

Local meteorological variables including temperature, relative humidity, wind speed,

wind direction and global irradiation were analysed to study their relationship to

the particle formation events. Global irradiance was measured at the University

of Wollongong, ≈ 2 km southwest of the campaign site (Fig. 2.1 (b)). All the

meteorological variables used, excluding global irradiation are in 10-min averaged

datasets. Global irradiance was averaged hourly.

Wind direction is one of the important variables that is closely related to air

mass sources which influence particle distribution. The 24 hr-backward trajectories

produced by HYSPLIT arriving at 10:00 AEST at 100 m above the site indicated

that air masses during the Class I events arrived at the sampling point after travelling

over the South Pacific Ocean and populated urban areas including Sydney (Fig.

4.6). Air masses from the ocean and urban areas could be one of the factors that

contribute with the observed Class I event days. Wind roses were plotted using

wind data from the MUMBA campaign obtained on the Class I event days which

revealed that the monitoring site experienced air masses from north and northeast

directions (Fig. 4.7) which is consistent with the back trajectories.

Fig. 4.6: The 24 hr-backward trajectories produced by HYSPLIT at 100 m above
the site for Class I event days (Jan 22nd, Feb 6th - 8th, 2013), a Class II event
(Feb 9th, 2013) and a hot day (Jan 18th, 2013). The monitoring site received the
air masses at 10:00 AEST (+10 UTC). The choice of the Class II event and the
hot day are discussed in Section 4.3.4.
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Fig. 4.7: Hourly wind roses during the aerosol measurements on the Class I event
days (Jan 22nd, Feb 6th, Feb 7th and Feb 8th, 2013). Only measurements from
7:00 to 15:00 AEST (+ 10 UTC) were plotted. 10-minute averaged data were
used in this plot. Note the missing data for Feb 6th, Feb 7th and Feb 8th, 2013.
Wind directions are represented by the coloured ‘wedge’ shape. The percentages
of occurrence of the winds are represented by the concentric circles. The strength
of the wind speed is represented by the colour bar.

Hierarchical Agglomerative Cluster Analysis (HACA) was applied on the me-

teorological variables and trace gases measured on the four identified Class I event

days. HACA is a useful analysis to group data matrices into clusters with simi-

lar characteristics within the groups but with different characteristics between the

groups as indicated in Chapter 2. As some meteorological data measured at the

MUMBA campaign site was not available on Class I particle formation and growth

event days, meteorological variables measured by the Automatic Weather Station

operated by the Australian Bureau of Meteorology at Bellambi (34.37◦S, 150.93◦E)

(about 4 km northeast of the MUMBA campaign site) (Fig. 2.1 (a)) were used.

Wind direction and global irradiation were not included in this analysis because

all four days experienced similar conditions: air masses were from the north and

northeast and there was generally sunny weather.
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Overall, HACA clustered wind speed of all Class I event days into one group and

similar results were observed for temperature (Fig. 4.8(a)). However, relative hu-

midity and CO measurements were clustered into two different groups: 6th February

and 7th February 2013 into the first group and 22nd January and 8th February 2013

in the second group. In terms of the other trace gases, no separation was achieved

for NOx and O3 (Fig. 4.8(b)). These results show that there were dissimilarities

in the characteristics of relative humidity and CO measurements during the Class I

event day which lead to the separation. Therefore, relative humidity and CO were

two of the factors that correlated with the Class I events.

Fig. 4.8: Dendrogram of (a) meteorological variables and (b) gases on the Class I
event days (Jan 22nd, Feb 6th, Feb 7th and Feb 8th, 2013) produced by Hierarchical
Agglomerative cluster analysis (HACA). Ten-minute averaged data were used in
this analysis. Only measurements from 7:00 to 15:00 AEST were plotted.

The time series of meteorological variables (temperature, relative humidity, wind

speed, wind direction and global irradiance) (Fig. 4.9) and trace gases (of CO, NOx

and O3)) (Fig. 4.10) on Class I event days were then analysed to evaluate the factors

that drove the groupings obtained from HACA.

Air temperature experienced during the Class I event days ranged from 21 ◦C

to 26 ◦C with an average of 24 ◦C. Relative humidity varied between 50% and 86%

with average and median values of 70% and 72%, respectively. The average values

of wind speed were 6 m s−1 with a minimum value of 2 m s−1 and a maximum

value of 13 m s−1. Generally, it was sunny during the event days except for broken

clouds on the 6th February 2013 in the morning and on the 22nd January 2013 in the
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afternoon. The maximum global irradiance observed during the event days was 1033

W m−2 with average and median values of 690 W m−2 and 753 W m−2, respectively.

The monitoring site experienced air masses from the north and northeast sectors

during the event days. On the four event days, relative humidity was higher on 22nd

January and the 8th February 2013 than on the 6th February and the 7th February

2013 (Fig. 4.9).

Fig. 4.9: Time series of temperature, relative humidity, wind speed, wind direc-
tion and global irradiance on Class I event days (Jan 22nd, Feb 6th, Feb 7th and
Feb 8th, 2013). Measurements from 7:00 to 15:00 AEST (+ 10 UTC) were plot-
ted. All the meteorological variables used, excluding global irradiation were in
10-min averaged datasets. Global irradiance was averaged hourly. Measurements
from north and east sectors were plotted for wind direction.

The dependence of particle formation events on combustion (markers such as

CO and NOx) and formation of secondary pollutants from photochemical reactions

(markers such as ozone (O3)) are illustrated in Figure 4.10. Concentrations of CO

and NOx increased before the particle formation and growth events. The concen-

trations observed for CO and NOx were lower on the 6th February and 7th February

2013 between 8:00 and 10:00, than for 22nd January and 8th February 2013. The

particle formation events on the 22nd January and 8th February 2013 were detected

starting at 8:30. On the 6th February and 7th February 2013, they were detected at

around 10:00 (Table 4.1). Overall, most of the O3 observations were greater than the
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median value of observed O3 in the entire aerosol measurements period (16.4 ppb).

On the Class I event days, a steady increase in O3 concentration was observed from

7:00 which was followed by a slow decrease after 14:00 on average (Fig. 4.10). This

observation suggests that photochemical reactions occurred during the campaign

and could be one of the factors that favours particle formation events.

Fig. 4.10: Time series of CO, NOx and O3 on Class I event days (Jan 22nd,
Feb 6th, Feb 7th and Feb 8th, 2013). 10-minute averaged data were used in these
plots. Measurements from 7:00 to 15:00 AEST (+ 10 UTC) were plotted.

Analyses from HACA and the time series revealed that events in the second

group (22nd January and 8th February 2013) involved higher CO and NOx concen-

trations, and RH, experienced earlier onset and longer event duration times com-

pared to event days mentioned in the first group (6th and 7th February 2013) (Table

4.1). These differences between Class I event days highlight that they are not dis-

tinguishing features of Class I events.

4.3.4 Comparison between Class I Event Days and Several

Other Cases

This section examines the characteristics of specific cases including:

(i) comparison between event days of Class I and a day where a Class II event

occurred;

(ii) comparison between the hottest day in the data series and Class I event days

and a day where a Class II event occurred and

(iii) bursts of small particles (nucleation mode) without particle growth events.
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The purpose of this analysis is to identify additional factors that contribute to the

occurrence of the Class I event. Hourly averaged data of global irradiance and 10-

min averaged data of temperature, wind speed, wind direction, relative humidity,

trace gases and particles were used in these analyses.

Case 1: Class I Event Days versus a Class II Event Day

As mentioned in Chapter 1, a Class II event is one where particle growth is ob-

served, but due to data fluctuation, the growth and formation rate is questionable.

The selected day of Class II event was on the 9th February 2013. On this day, me-

teorological conditions, particularly wind direction (Fig. 4.7) and global irradiance

(Fig. 4.12), were similar to the Class I event days. However, there was no clear

Class I particle formation event observed in the contour plot (Fig. 4.11 (d).

Particle number size distributions: To investigate if there is a difference

in size distributions between Class I event days and the selected Class II event day,

particle number ranging from 3 nm to 100 nm were studied. As illustrated in the

contour plots of the Class I event days, particle formation and growth was observed

at particle size ranging from 14 nm to 150 nm (Fig. 4.3). Therefore, particle number

concentrations for diameters ranging from 14 nm to 30 nm (PNC14nm−30nm) were

used to represent smaller size particles while particles ranging from 30 nm to 150 nm

(PNC30nm−150nm) were used to represent the larger size particles. A study by Mej́ıa

and Morawska [2009] also used PNC14nm−30nm to represent smaller size particles.

Figure 4.11 (a-b) shows the comparison of PNC14nm−30nm and PNC30nm−150nm

for the Class I event days and the Class II event day (Feb 9th, 2013). Both the Class

I event and Class II event days demonstrated a clear peak for PNC14nm−30nm just

after 8:00 and an increase from 9:00 to the middle of the day. The PNC14nm−30nm

recorded for the Class I event days were lower than for the Class II event day.

PNC14nm−30nm on four Class I event days ranged from 2 x 102 cm−3 to 10 x 103

cm−3 with median values ranging from 1 x 103 cm−3 to 3 x 103 cm−3. The Class

II event day recorded PNC14nm−30nm ranging from 1 x 103 cm−3 to 14 x 103 cm−3

with a median value of 3 x 103 cm−3 (Fig. 4.11(a)).

The PNC30nm−150nm on the Class I event days increased at around 10:00 and

then began to decrease at around 13:00. Meanwhile, PNC30nm−150nm for the Class II

event did not show a clear trend. Interestingly, there was a sharp peak observed for

PNC30nm−150nm on the Class II event day with a particle number concentration of 13

x 103 cm−3. PNC30nm−150nm recorded just after 8:00 for the Class I event days were

ranged from 2.1 x 103 cm−3 to 4.5 x 103 cm−3. The Class II event recorded max-

imum particle number concentrations for both PNC14nm−30nm and PNC30nm−150nm

observed just after 8:00 (Fig. 4.11 (b)).
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Fig. 4.11: Time series of (a) PNC14nm−30nm and (b) PNC30nm−150nm on the
Class I event days (Jan 22nd, Feb 6th, Feb 7th and Feb 8th, 2013) and on the
Class II event (Feb 9th, 2013). (c) Time series of the total particle number
between 14 nm and 660 nm (PNC14nm−660nm) and the ratio of total particle
concentrations with diameters larger than 3 nm (CN3) (CN3 / PNC14nm−660nm)
on 9th February 2013. The black rectangular box represents the relevant time of
particle populations before, during and after the Class II event. (d) Contour plot
of particle number size distribution on the Class II event. Note that the y-axis
is in log format. GMD is geometric mean diameter. The rectangular box (black
solid line) represents the Class II events. 10-min averaged data were used for Fig.
(a, b and d). Five-min averaged data were used in Fig. (c).
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On the Class II event day (9th February, 2013), there was an increase in CN3

/ PNC14nm−660nm ratio just after 8:00 which indicated that the particle number of

smaller particles (> 3 nm) was higher than that of larger particles (PNC14nm−660nm)

(Fig. 4.11 (c)). However, instead of the number of these small size particles de-

creasing (i.e. decrease in CN3 / CN14nm−660nm ratio value) and larger size particles

increasing (i.e. increase in PNC14nm−660nm value) as observed on Class I event days

(at least on the 6th and 8th February, 2013 where observations were complete), both

the larger size particles and the smaller size particles continued to increase in number

(i.e. increase in both PNC14nm−660nm and CN3 / PNC14nm−660nm). This was followed

by an unclear particle growth process in the contour plot from approximately 9:00

(Fig. 4.11 (d)).

Meteorological Conditions: The time series of meteorological variables on

the four Class I event days were compared with those of the Class II event (Fig.

4.12). Both Class I event days and the Class II event day experienced increases in

temperature and wind speed at around 7:30 to 9:00. Similar observations were made

for global irradiance on the 9th February, 2013 and on the 22nd January, 2013 when

days were sunny in the morning and there were broken clouds in the afternoon. The

Class II day experienced stable relative humidity between 7:30 and 9:00, which was

around 80%. Relative humidity experienced on Class I event days ranged from 55%

to 75%. The studied meteorological variables therefore are similar during the Class

I and Class II measurement periods except for a slightly higher relative humidity on

the Class II event day.

Relative humidity can interfere with particle formation and growth processes.

Relative humidity is able to increase coagulation, scavenging of smaller or newly

formed particles onto pre-existing particles [Hamed et al., 2011] and therefore inter-

fering with the particle growth. Given the small differences in RH observed between

Class I and Class II days this does not appear to be a driving factor.
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Fig. 4.12: Time series of relative humidity, temperature, wind speed and global
irradiance on the Class I event days (Jan 22nd, Feb 6th, Feb 7th and Feb 8th, 2013)
and the Class II event (Feb 9th, 2013). Ten-minute averaged data were used in
these plots except for global irradiation which was averaged hourly. Measurements
from 7:00 to 15:00 AEST were plotted.

Trace gases: Comparison between O3, CO and NOx on Class I event days

and the Class II event day was also examined (Fig. 4.13). Once again, surface O3

was used as an indicator of photochemical activity and CO, while and NOx were

combustion markers. The O3 concentration pattern on these days (Class I and Class

II) were very similar to the inference drawn from Section 4.3.3 that photochemical

activity occurred during the campaign including on the Class II event day. As

mentioned previously in Section 4.3.3, from around 8:30 to 10:30, CO and NOx

observations on Class I event days were split into two categories. The CO and NOx

observation on the Class II event day showed a similar pattern of CO and NOx

concentration on the 22nd January and 8th February 2013 (Fig. 4.13). The increase

in the mole fractions of combustion markers (CO and NOx) before the Class I and

Class II event (Fig. 4. 13 (a-b)) indicates that traffic emissions could have initiated

the particle formation and growth.
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Fig. 4.13: Time series of CO, NOx and O3 on the four Class I event days (Jan
22nd, Feb 6th, Feb 7th and Feb 8th, 2013) and the Class II event (Feb 9th, 2013).
10-minute averaged data were used in these plots. Only measurements from 7:00
to 15:00 AEST were plotted.

Results obtained from the comparisons on the available meteorological variables

and trace gases between the Class I event days and the Class II event above indicated

that the 9th February, 2013 had all necessary conditions for a Class I new particle

formation event. However, none of the available information clearly explains the

contrasting observation. High relative humidity and its influence on particulate

growth could influence the particle population, though the observed difference is

small. There results indicate that meteorological parameters do not separate the

Class 1 and Class II event days.

Case 2: Hot Day versus Class I Event Days and the Class II Event Day

The 18th of January 2013 was selected as a “Hot day” in this work because the mon-

itoring site experienced very high temperatures and a strong northwesterly wind,

which was rare in this campaign (Fig. 4.14). Winds from northwest sector can

carry biogenic emissions released from the vegetation on the Illawarra escarpment

as mentioned previously. These biogenic emissions have been observed to promote

particle formation [Dall
′
Osto et al., 2018]. Unfortunately, measurements were only

obtained until 10:40 on this day because of the high temperatures. The air condi-

tioning could not maintain a safe room temperature and all instruments were shut

down to avoid damage. Observations on this hot day were examined and compared

with the observations on the Class I event days and the Class II event day (Fig.

4.14).
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Fig. 4.14: Time series of meteorological variables (temperature, relative hu-
midity, wind speed, wind direction and global irradiance) and trace gases (CO,
NOx and O3) on the Class I event days (Jan 22nd, Feb 6th, Feb 7th and Feb 8th,
2013), Class II event day (Feb 9th, 2013) and hot day (Jan 18th, 2013). 10-minute
averaged data were used in these plots except for global irradiation which was
averaged hourly. Measurements from 4:00 to 10:40 AEST were plotted.

The meteorological measurements and trace gases on the hot day (18th January

2013), the Class I event days and the Class II event day (9th of February 2013) are

shown in (Fig. 4.14). Temperature ranged from 22 ◦C to 40 ◦C with an average

of 28 ◦C. Relative humidity was on average of 64%. Wind speed ranged from 1 m

s−1 to 10 m s−1 with an average of 4 m s−1. By definition, the temperatures on the

hot day were higher than those observed on the Class I event days and the Class II

event day. For wind speed, there was no obvious pattern observed from 4:00 to 8:00,

however there was a steady increase observed after 8:00 with a recorded maximum

of 10 m s−1 around 10:00. On this hot day, global irradiance steadily increased from
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around 5:00 and reached a maximum value of 972 W m−2 around 10:40.

Morning peaks (around 5:00 to 6:00) were observed in the concentration of CO

and NOx on the 18th of January, as observed on Class I event days and the Class

II event day (Fig. 4.14). This observation is presumably attributed to morning

traffic (Chapter 3). Oxidation products such as O3 revealed a steady increase in

concentrations from 6:00 for this hot day, with the highest recorded concentration

in the campaign observed on the hot day (Fig. 4.14). This indicates that there was

greater photochemical activity producing oxidation products and potentially also

particulate matter on the 18th of January 2013.

A comparison between smaller particle concentration (PNC14nm−30nm, as pre-

viously defined) and larger particle concentration (PNC30nm−150nm, as previously

defined) on the hot day, the Class I event days and the Class II event day is shown

in Fig. 4.15 (a-b). Observations on the hot day show that around 4:00 to 5:30, there

was a lower number concentration of PNC14nm−30nm compared to PNC30nm−150nm.

There was an increase in the ratio of CN3 / PNC14nm−600nm at 5:00 on 18th January,

2013, which indicated the presence of a larger proportion of small particles (> 3

nm) in the particle population (Fig. 4.15 (c)). At around 6:00 the small particles

(> 3 nm) decreased in concentration and larger particles (CN14nm−660nm) increased

in concentration which can be observed in the contour plot (Fig. 4.15(d)). Interest-

ingly, after 8:00, there was another increase in the ratio of CN3 / PNC14nm−660nm and

also the geometric mean diameter (black line) demonstrated a steady increase in the

contour plot (Fig. 4.15 (d)). However, the number of particles steadily decreased,

which indicated a dilution process, possibly due to a higher boundary layer (larger

vertical mixing) and also an increase in wind speed. Wind direction observations on

this hot day between 5:00 and 8:00 were from north and east direction (Fig. 4.14).

Meanwhile, after 8:00, there was a significant increase in wind speed (Fig. 4.15) and

wind direction was from northwest sector (Fig. 4.14). There was no observation

of clear particle formation and growth processes on this hot day due to the limited

measurement time. However, it is highly probable that a particle formation and

growth event on 18th January, 2013 could have been observed if the instruments had

been able to continue measurements, triggered by the biogenic emissions.
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Fig. 4.15: From top panel: Time series of (a) PNC14nm−30nm and (b)
PNC30nm−150nm on the Class I event days (Jan 22nd, Feb 6th, Feb 7th and
Feb 8th, 2013), the Class II event (Feb 9th, 2013) and the hot day (Jan 18th,
2013). (c) Time series of the total particle number between 14 nm and 660 nm
(PNC14nm−660nm) and the ratio of total particle concentrations with diameters
larger than 3 nm (CN3) (CN3 / PNC14nm−660nm) on 18th January 2013. The
black rectangular box represents the relevant study time of particle populations
on Jan 18th, 2013. (d) Contour plots of particle number size distribution on
Jan 18th, 2013. GMD is geometric mean diameter. 10-min averaged data were
used for (a, b and d). Five-min averaged data were used in (c). Measurements
from 4:00 to 10:40 AEST were used to plot for (a and b) while (c and d) used
measurements from 0:00 to 10:40 AEST.
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Case 3: Burst of Small Particles Size (nucleation mode) Without Particle

Growth Events

A study in a sub-tropical urban environment in Brisbane, Australia by Cheung et al.

[2011] identified an event of this type by observation of the particle populations and

the geometric median diameter (noting that this is distinct from geometric mean

diameter (GMD) defined earlier) of the particles during the event period. Cheung

et al. [2011] studied particles ranging from 4 nm to 110 nm where Nucleation and

Aitken modes were set as < 30 nm and 30 nm - 110 nm, respectively. A nucleation

burst was observed at around 10:00. Particles size in the Nucleation mode increased

during the nucleation burst, however, particle size in the Aitken mode did not show

any significant variation. Cheung et al. [2011] suggests that the possible sources

that contribute to the nucleation burst were the emissions of SO2 and VOCs from

industrial sources and aircraft emissions from the Brisbane Airport. The nucleation

burst could be also due to local emissions. Such bursts of small particles represent

the initial phase of a particle growth event, but the suppression of the particle growth

processes was not explained.

The incidence of such particle burst events at MUMBA was therefore investi-

gated. During the aerosol phase of MUMBA campaign, an event of burst of small

particles size (nucleation mode) without particle growth events was identified when

the ratio between particle number ranging from 3 nm to 14 nm (PNC3nm−14nm)

and particle number ranging from 14 nm to 100 nm (PNC14nm−100nm) (Eq. 4.2) was

greater or equal to the threshold value. The threshold value used here is 1.0 which is

the median value of the PNC3nm−14nm / PNC14nm−100nm ratio for the entire dataset.

Twelve days of burst of small particles event were identified over the 22 sampling

days (Fig. 4.16 and Fig. 4.17).

Particle formation without particle growth event =
PNC3nm−14nm

PNC14nm−100nm

≥ 1.0 (4.2)
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Fig. 4.16: Time series of the PNC3nm−14nm / PNC14nm−100nm ratio during
the aerosol measurements. There are gaps in the plots due to the missing data of
CN3nm. The red dashed line is the threshold value of 1.0. The “black star” symbol
represents the particle formation without particle growth event days. Ten-minute
averaged data were used.
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Fig. 4.17: Continued from Fig. 4.16. Time series of the PNC3nm−14nm /
PNC14nm−100nm ratio during the aerosol measurements. There are gaps in the
plots due to the missing data of CN3nm. The red dashed line is the threshold
value of 1.0. The “black star” symbol represents the particle formation without
particle growth event days. Ten-minute averaged data were used.

The 24th January, 2013 was selected to illustrate this event. As shown in Fig.

4.18 (a), a particle burst was observed at around 10:00 where the ratio values were

above the threshold value. The mole fractions of combustion markers (CO and NOx)

and O3 (marker for secondary pollutants formed through photochemical reactions)

(Fig. 4. 18 (b)) were similar to that observed during the Class I event days (Fig.

4.10). The 24th January, 2013 also experienced similar meteorological conditions

(temperature, wind speed, relative humidity) except for wind direction (Fig. 4.18

(c)). In spite of these similarities, the smaller particles (PNC3nm−14nm) did not

undergo particle growth as evidenced by Fig. 4.1. This could have been due to

unfavourable conditions including air masses approaching the site, which were from
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the open ocean (southeast sector) on this day and at this specific time.

Fig. 4.18: Time series of the (a) PNC3nm−14nm / PNC14nm−100nm ratio on the
24th January , 2013. The red dashed line represents the threshold value of 1.0.
The rectangular box represents the particle formation without particle growth
events. (b) Time series of trace gases (CO, NOx and O3) and (c) meteorological
variables (wind direction (WD), wind speed (WS), temperature (temp) and rela-
tive humidity (RH)) on the 24th January, 2013. Ten-minute averaged data were
used.

The increase in the mole fractions of combustion markers (CO and NOx) before

the burst of particle event (Fig. 4. 18(b)) indicates that local traffic emissions

could have initiated the particle burst but that these growth conditions were not

sufficient to sustain particle growth. This could be due to the chemical atmospheric
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composition or more likely that the local source does not have a scale large enough

that on-going growth can be observed, In other words, the time between release and

observation is too short for significant growth to be observed, and small changes in

meteorological conditions can change significantly change the influence of the source

at the observation site.

4.3.5 Other Possible Factors that Influence Particle Forma-

tion

(i) Biogenic sources

Isoprene is one of the VOCs that have the potential to contribute to new particle

formation and particle growth. Emission of isoprene is strongly affected by light and

temperature [Khan et al., 2018; Li et al., 2011; Sharkey et al., 1996]. As mentioned

in Section 3.4, biogenic sources of isoprene dominate in this study and will therefore

play a stronger role in the formation of secondary organic aerosol than anthropogenic

sources of isoprene. Therefore, isoprene was used as a marker of biogenic emission

in this chapter [Claeys et al., 2004]. The hot day (18th of January 2013) recorded

the highest concentration of isoprene for the entire aerosol measurements period.

Isoprene concentrations increased soon after sunrise (5:45) and reached maximum

concentration at 9:00 (Fig. 4.19 (b)). Conversely, isoprene concentrations were

low and stable on the Class I event days (Jan 22nd, Feb 6th, Feb 7th and Feb 8th,

2013) and on the Class II event (Feb 9th, 2013) (Fig. 4.19). When considering the

time period from 7:00 to 15:00 (Fig. 4.19 (a)), the concentration of isoprene was

high before the particle formation and growth event but slowly decreased during

the event, (Class I events and the event on the 9thof February, 2013 as illustrated

in Fig. 4.3 and Fig. 4.11 (d), respectively.) This is consistent with isoprene being

one of the factors that is involved in the particle formation and growth process as

indicated in Chapter 3. After 8:00 on the 18th of January, air masses were from the

northwest sector (Fig. 4.14). There is a good indication that the monitoring site

received biogenic emissions from the vegetation on the Illawarra escarpment on the

18th of January.
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Fig. 4.19: Time series of isoprene on all six studied days: (a) Class I event days
(Jan 22nd, Feb 6th, Feb 7th and Feb 8th, 2013), the Class II (Feb 9th, 2013) and
(b) hot day (Jan 18th, 2013). Ten-minute averaged data of measurements from
7:00 to 15:00 were used in Fig. (a). and from 4:00 to 10:40 were used in Fig. (b)

(ii) Sulfate (SO4
2−)

Source of SO4
2− one of which is SO2 was investigated due to the role of this gas

in H2SO4 production as a particle precursor. SO2 is emitted into the atmosphere

from anthropogenic and natural sources. SO2 is also produced through the reaction

between dimethyl sulphide (DMS) and OH [Pietikäinen et al., 2014; Seinfeld and

Pandis , 1998], which is associated with sea salt SO4
2−. Sea salt aerosols were

expected to be measured in this work due to the location of the measurement site

which was near to the open ocean. Grythe et al. [2014] reports that sea salt aerosols

are made up of around 33% sodium chloride (NaCl). In addition to NaCl, other

chemical ionic species in sea water were found in sea salt aerosols such as SO4
2−,

Ca2+ and Mg2+.

The concentration of SO4
2− in the aerosol that was attributable to sea salt

was investigated by using the method used by Millero et al. [2008] for seawater

composition. On average, the concentration of salt in seawater (salinity) is about

35 parts per thousand [NOAA, 2018]. Sulfate makes up 2.7 g of the 35.2 g salt

content in 1000 g of seawater (nearly 8% of sea salt). As the magnesium ion (Mg2+)

concentration in seawater is a conservative major element, Mg2+ can be used to

calculate SO4
2−(ss) Eq (4.3), where“ss” is sea salt sulfate. The amount of Mg2+ of
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seawater is 1.2 g/kg, as reported by Millero et al. [2008].

SO4
2−(ss) = Mg2+ × Amount of SO4

2− in g/kg of seawater

Amount of Mg2+ in g/kg of seawater

SO4
2−(ss) = Mg2+ × 2.7

1.2

(4.3)

The total of SO4
2− can be assumed dominant by three sources: anthropogenic,

sea salt and biogenic from the ocean, which is illustrated in Eq. (4.4) where, “An-

thro” is anthropogenic sulfate and “BiogenicOceanic” is sulfate from phytoplankton:

SO4
2−(total) = SO4

2−(Anthro) + SO4
2−(ss) + SO4

2−(BiogenicOceanic)

SO4
2−(Anthro) = SO4

2−(total)− SO4
2−(ss)− SO4

2−(BiogenicOcenic)

(4.4)

The BiogenicOceanic can be estimated using Eq. 4.5 by assuming a SO4
2−

contribution at a fixed ratio to methane sulfonic acid (MSA) [Ayers et al., 1998].

SO4
2−(BiogenicOceanic) = MSA× 5.1 (4.5)

The MSA concentration is derived from the oxidation of DMS emitted from

phytoplankton [Ayers et al., 1998]. The value of 5.1 ng m−3 was the average ratio of

SO4
2−(ss) to MSA for PM10 at Cape Grim in February over the past 10 years (2002

to 2012) [CSIRO , 2017]. February was selected to represent summer in Australia.

At Cape Grim during clean air conditions, the primary known source of SO4
2−(ss)

and MSA is from the oxidation of DMS [Ayers et al., 1998]. Therefore, the ratio of

MSA to SO4
2−(ss) from Cape Grim can be used to infer the amount of SO4

2−(ss)

from DMS oxidation (sulfate from phytoplankton) during the MUMBA campaign

as illustrated in Eq. 4.5. Total sulfate (SO4
2−(total)) was measured during the

campaign using a high-volume sampler (details in Paton-Walsh et al. [2017] from

Jan 22nd, 2013 to Feb 14th, 2013. On average, 70% of the total sulfate (SO4
2−

(total)) was from anthropogenic sources. A similar value was obtained on the Class

I event days.

Hourly concentrations of SO2 were measured by the Office of Environment and

Heritage (OEH) Fig. 2.1 (b)). The hourly average of SO2 concentration on the

available data was 2.4 ppb with a median value of 1.0 ppb. The maximum hourly

SO2 concentration observed was 10 ppb (0.01 ppm) which is well below the hourly
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maximum allowable concentration specified by the Australian National Environment

Protection (Ambient Air Quality) Measure (Air NEPM) of 0.20 ppm (200 ppb).

Therefore, from an air quality perspective the region does not contain significant

sources of SO2. A study by Lee et al. [2008] that focused on coastal areas found

that the SO2 concentration increases during nucleation events. The concentrations

of SO2 obtained by Lee et al. [2008] during event days (Class I and Class II) ranged

from 0.5 ppb to 8 ppb. The concentrations of SO2 during Class I and Class II event

days in this study were from 1 ppb to 7 ppb. There were a few occasions when SO2

concentrations increased during the event days (Class I) for example on the Feb 7th,

2013 at 11:00 to 13:00. There was also an increase in SO2 concentrations on the Feb

8th, 2013 at 10:00 to 12:00 (Fig. 4.20). Emission of SO2 from anthropogenic sources

(i.e. industrial sources) possibly contributed to the Class I event days. However, due

to limited data, further measurements are needed. In particular, for this purpose

measurements of SO2 with greater sensitivity are needed.

Fig. 4.20: Time series of sulfur dioxide on Class I event days (Jan 22nd, Feb 6th,
Feb 7th and Feb 8th, 2013). Hourly averaged data of measurements from 7:00 to
15:00 were used.

(iii) Photochemical Age of Air Masses

Urban atmospheres often include VOCs such as the aromatic hydrocarbons such

as benzene, toluene and xylenes that are important precursors for the formation

of secondary organic aerosol [Kalabokas et al., 2001; Molteni et al., 2018]. The

main sources of benzene, toluene and xylenes are anthropogenic, including industrial

activities and traffic emissions [Tiwari et al., 2010]. The ratio of the concentration of

the aromatic compounds can provide useful insights into the sources of the aromatics
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and the photochemical age of an air mass [Khoder , 2007; Miller et al., 2011]. The

toluene to benzene ratio (T/B) can be used as an indicator of traffic emission [Miller

et al., 2010]. T/B ratios that are greater than 4.5 indicate industrial-originated

emission sources [Tiwari et al., 2010] whereas T/B ratio values that are within

the range of 1.5 to 3.0 indicate traffic-originated emission [Barletta et al., 2005;

Khoder , 2007]. The xylenes to benzene ratio (X/B) can act as an indicator of the

photochemical age of air masses [Zhang et al., 2008]. Ratio values of X/B that are

less than 3.0 imply aged plumes [Tiwari et al., 2010].

There were four contiguous days of particle formation and growth events (from

6th to Feb 9th, 2013). Three Class I events were identified on the Feb 6th - Feb 8th,

2013, followed by a Class II event on the Feb 9th, 2013. These four days experienced

similar meteorological conditions particularly sources of air masses and global irra-

diance. Therefore, 9th Feb, 2013 was compared with the observations on the 6th,

7th and 8th Feb, 2013 in order to investigate whether the relative concentrations of

benzene, toluene and xylenes provides insight into Class I particle formation and

growth. Relevant time frames used in this comparison were from 7:00 till 15:00 to

encompass the period both before and after the growth event

Concentrations of benzene for all four days (Feb 6th, 7th, 8th and 9th) (Fig. 4.21

(a)) revealed a similar trend where there were steady increases in concentration in

the morning (9:00) and decreases at noon. The concentrations of benzene on Feb 6th

and Feb 7th were lower than those on Feb 8th and Feb 9th, especially before 10:30.

Concentrations of toluene on these four days (Fig. 4.21 (b)) were usually less than

1.0 ppb, however, there were high toluene concentrations observed between 8:00 to

8:30 on the Feb 6th. High concentrations of xylenes were observed twice on the

Feb 7th (9:30-10:00 and 12:30-14:00) and once on Feb 9th (10:30), compared to the

xylenes concentrations observed on the Feb 6th and the Feb 8th (Fig. 4.21 (c)).
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Fig. 4.21: Time series of the (a) benzene, (b) toluene and (c) xylenes con-
centrations on the four consecutive days (February 6th, 7th, 8th and 9th, 2013).
Noted that y-axis were at difference scales. Measurements from 7:00 to 15:00
were plotted. Ten-minute averaged data were used.

Time series of the ratios of the three VOCs are presented in Fig. 4.22. The

X/B ratios on Feb 6th and Feb 8th were stable and consistent throughout the day

compared to Feb 7th and Feb 9th. There was evidence of fresh plumes (X/B > 3.0)

and industrial-originated emissions before the Class I event on the Feb 6th (8:00 to

10:00). Fresh plumes (X/B > 3.0) and a mixture of industrial and traffic-originated

emissions were experienced on Feb 8th (6:00 to 8:00). During the relevant time of

Class I particle formation and growth on the 6th Feb (10:00 to 13:00) and 8th Feb

(after 8:00 to 14:00), the monitoring station experienced emissions from traffic and

aged air masses.

On the 7th Feb, the Class I particle formation and growth event was observed

from 10:00 till 14:00 (Fig. 4.3). Before the event (just after 9:00), the monitoring

site experienced a mixture of fresh plumes (X/B more than 3.0) and industrial-

originated emissions (T/B more than 5.0). At 10:00, there were high concentrations

of smaller particles observed and the Class I particle formation and growth event was
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observed (Fig. 4.3). After 10:00, there was a gradual decrease in X/B ratios (less

than 3.0), suggesting that the monitoring stations experienced aged air mass. The

Class I particle formation and growth event process was continuing. After 12:30, the

monitoring site experienced additional fresh plumes (X/B ratio reaching more than

100). The Class I particle formation and growth event process was still continuing

but stopped at around 14:00. The campaign site was still undergoing the influence

of traffic-originated emissions at this specific time.

On the 9th Feb, the unclear particle formation and growth event observed was

just after 8:00 to 12:00 (Fig. 4.11(d)). Before 8:00, the monitoring site experienced

aged air masses (X/B were less than 3.0). After 8:00, high concentrations of smaller

particles were observed (Fig. 4.11 (a and c)) and the X/B was less than 3.0 (Fig.

4.22). At the same time, the ratios of T/B were less than 5.0 which suggests that the

monitoring station experienced traffic-originated emissions and aged air masses. In

contrast to the Class I event identified on the 7th Feb, the smaller particles observed

on the 9th Feb did not show a clear growth. At around 10:30, the site experienced

fresh plumes (X/B greater than 3.0). However, there was still an unclear particle

formation and growth observed.

The photochemical age of the air mass could be one of the factors that impeded

Class I particle formation and growth on the 9th of Feb, 2013. In this study, the

monitoring site experienced an ageing air mass before the Class II particle formation

and growth event was observed. However, a different observation was on the 7th of

Feb, 2013, where, the monitoring site experienced fresh air mass before the Class I

particle formation and growth.
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Fig. 4.22: Time plots of the ratios of toluene to benzene (T/B) and xylenes
to benzene (X/B) on the four consecutive days (February 6th, 7th, 8th and 9th,
2013). The black dashed black line is toluene to benzene (T/B) ratios that are
greater than 5.0 indicate industrial-originated emission sources. The black solid
black line is xylenes to benzene (X/B) ratios less than 3.0 imply aged plumes.
Noted that y-axis were at difference scales. Ten-minute averaged data were used.
Measurements from 7:00 to 15:00 were plotted.

4.4 Summary and Conclusions

This chapter presented a detailed study on new particle formation and growth mech-

anisms in an urban-marine and forest environment during the Australia summer,

96



Chapter 4. Observation of Particle Formation Mechanisms

2013. The findings are summarized as follows:

(i) The occurrence of the Class I particle formation and growth events was 13% of

the total number of sampling days. All identified Class I events were observed

during the day with an average time duration of five hours. At least two out

of four Class I event days were classified as “weak” particle formation events;

(ii) Particles with diameter between 50 nm and 100 nm formed during Class I

event days were inefficiently activated and contributed to the concentration of

cloud condensation nuclei;

(iii) Small particles size (> 3 nm) were formed in the Class I particle formation

and growth events before being detected by SMPS instrument;

(iv) Possible factors that could influence Class I particle formation and growth

were:

(a) pollution from urban regions including Sydney

(b) photochemical reactions and traffic emissions

(c) relative humidity, photochemical age air mass (although there were in-

sufficient measurements to examine this to a high level of confidence).
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Chapter 5

Aerosol Properties by Remote

Sensing Techniques

5.1 Introduction

Measurements of aerosol optical properties, including the aerosol extinction coeffi-

cient profile and its integral form (aerosol optical depth) provide important informa-

tion about aerosol vertical distribution. The Intergovernmental Panel on Climate

Change (IPCC) has reported that vertical measurements of aerosol optical proper-

ties need to be improved in order to properly evaluate aerosol environmental and

radiative effects [Forster et al., 2007; Stocker et al., 2013].

Remote sensing is an effective tool for air pollution properties measurements

that estimates aerosol vertical distribution [Irie et al., 2011; Platt and Stutz , 2008].

Three remote sensing measurements of aerosol properties were employed during the

MUMBA campaign namely (a) a sun photometer (b) a Light Detection and Ranging

(LIDAR) instrument and (c) a multi-axis differential optical absorption spectroscopy

(MAX-DOAS). These three techniques use differing viewing geometry, calibrations

and assumptions of aerosol properties.

Sunphotometer: The sun photometer instrument measures the direct beam

solar radiation and optical properties of total atmospheric column (i.e. total aerosol

extinction). The instrument was calibrated using variation of the Langley method

Langley [1880] and the measurement was made at a wavelength of 500 nm. The sun

photometer instrument was located at the University of Wollongong (Fig. 2.1(b)).

LIDAR: A LIDAR instrument uses a pulsed light source and measures the

intensity of the backscattered light as a function of time. The LIDAR instrument was

located at the main measurement site (Fig. 2.1(a)) and pointed vertically (Zenith

angle of 90◦) during MUMBA campaign. Measurements were made at 355 nm. The

measurements retrieved by LIDAR can be used to estimate aerosol extinction by
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using the formula proposed by Fernald et al. [1972] as shown in Equation 5.1, where

σ is the aerosol extinction, β is the backscatter cross section and S represents the

LIDAR ratio.

σ = Sβ (5.1)

The LIDAR ratio (S) depends on aerosol type including their particle size dis-

tribution and their chemical composition [Ackermann, 1998]. The unit used for

LIDAR ratio is the steradian (sr). The LIDAR ratio value is about 20 sr for cloud

droplets, 20-26 sr for marine aerosols, 40 sr to 60 sr for mineral dust and can be as

high as 80 sr for continental pollution [Müller et al., 2007]. The LIDAR ratio value

used in this work was 25 sr which Müller et al. [2007] reported as being appropriate

for marine particles.

MAX-DOAS: The MAX-DOAS instrument measures the spectra of scattered

sunlight. The instrument was located at the second measurements site during the

MUMBA campaign (Fig. 2.1(b)) and the MAX-DOAS system was pointed toward

the open ocean. Aerosol retrieval was made using the O4 absorption feature at 361

nm. MAX-DOAS can capture trace gases and aerosol concentrations over the lower

troposphere (< 2 km) [Hönninger et al., 2004; Irie et al., 2009; Lee et al., 2009a].

However, the sensitivity of the MAX-DOAS measurements decreases with altitude

of the atmosphere which limits the aerosol extinction retrieval from MAX-DOAS at

higher altitudes [Frieß et al., 2006].

The aims of this chapter are to describe the retrieval of aerosol properties

through MAX-DOAS instrument and to answer the question: “Does the MAX-

DOAS instrument provide insight into the aerosol environment at the MUMBA

site?” Secondly,what about the other remote sensing techniques?

5.2 Interpretation of MAX-DOAS

Light intensity and the spectra of scattered sunlight measured by MAX-DOAS were

used in the colour index (CI) and differential slant column density calculation which

are detailed in section 5.2.1 and 5.2.2.

5.2.1 Colour index

The CI retrieved from the MAX-DOAS observation has been applied in this chapter

to assess the cloud conditions. The colour index is defined as the ratio of the intensity

of two selected wavelengths. This has been used in several studies to identify cloud

effects [Gielen et al., 2014; Takashima et al., 2009; Wagner et al., 2016; Wang et al.,
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2017]. The CI values used in this study were calculated by the ratio of the intensity

at wavelength of 330 nm to the intensity at wavelength of 390 nm (Eq. 5.2) Wagner

et al. [2016]. The principal behind the use of CI observation is, during the day, the

colour of the sky changes from blue to white or grey when clouds or aerosols are

present. Clear skies therefore have a higher CI value. Broken or scattered cloud

conditions as well as a high aerosol loading conditions, have a variable CI value.

Elevation at which observations are made also affects the CI observed. A high

elevation (close to zenith) gives a high CI value, whereas a lower elevation (near to

the horizon) gives a low CI value [Gielen et al., 2014; Wagner et al., 2016].

CI =
Intensity at 330nm (λ330nm)

Intensity at 390nm (λ390nm)
(5.2)

5.2.2 Differential Slant Column Density (DSCD)

As mentioned in Chapter 2.4.1, the direct product of the DOAS method is the differ-

ential slant column density, which is the difference between the slant column density

of atmospheric trace gases and a reference measurement in a specified spectral win-

dow. Measurement at 90◦ was used as the reference angle. The cross section and

other fitting parameters are summarised in Table 5.1. The molecular absorption

cross-section files were convolved with the spectrometer
′
s spectral line shape as de-

termined using the measurement of the mercury line at 404 nm [Kraus , 2006]. The

primary target species in this study is O4. The wavelength correction was calculated

using the wavelength range from 310 nm to 400 nm with eleven sub-windows. For

the O4 retrieval, a shorter fitting interval was used (350 nm - 389 nm) in order to

minimise the O4 root mean square (RMS) value for the residual. A similar method

was applied in a study by Ryan et al. [2018].

Table 5.1: Summary of the sources of the obstruction cross-section files used in
the retrieval of O4 at the wavelength range from 350 nm to 389 nm.

O4 (298 K) Hermans et al. [1999]

NO2 (298 K) Vandaele et al. [1996]

O3 (293 K) Bogumil et al. [2003]

HCHO (297 K) Meller and Moortgat [2000]

BrO (298 K) Wilmouth et al. [1999]

Ring effect (25 K) Grainger and Ring [1962]

DOAS polynomial 5th order

Offset term 1st order
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5.3 Results and Discussion

5.3.1 Differential Slant Column Density (DSCD) and Resid-

ual Retrieval

The example of a successful DOAS retrieval for O4 DSDCs is demonstrated in Fig.

5.1. In this example, the retrieval for O4 DSDCs at elevation angle of 8◦ was 3.3

x 1043 molec2 cm−5 with a root mean square (RMS) value for the residual of 7.9

x 10−4. The residual shows some unfitted structure which can be caused by errors

in the reference spectra, the shift of an absorption feature (due to temperature

differences between the actual gas and the reference spectra), the presence of an

unidentified atmospheric component or non-linear behaviour of the instrument. A

RMS of the residual less than 10−3 has been reported as evidence of a reliable fit by

other studies, including a study in Melbourne, Australia Ryan et al. [2018], in work

in the Netherlands Pinardi et al. [2013], and in the USA Ortega et al. [2016]. The

RMS obtained in this study was 10−4, which is within the similar magnitudes.

Fig. 5.1: Example of the (a) retrieved O4 differential slant column densities
(DSCDs) and (b) residual at observation angle of 8◦ on 6th February 2013, at
1:06 UTC (+10 AEST). The O4 retrieval was conducted at the wavelength range
from 350 nm to 389 nm. The root mean square (RMS) is derived from the residual.

The characteristics of the hourly averaged root mean square of the residual at

all elevation angles: 1◦, 2◦, 4◦, 8◦, 16◦, 30◦ and 60◦ were studied and are illustrated

in the Box-and-whisker plot (Fig. 5.2). The median values of RMS between 16th

January 2013 and 10th February 2013 from 7:00 and 17:00 ranged from 0.007 to

0.0024, where the lowest viewing angle (1◦) recorded the highest median value of

root mean square. The viewing angle of 60◦ recorded the lowest median value.

However, 60◦ also experienced higher root mean squares values as presented by the

circles in Fig. 5.2. These outcomes could be due the signal-to-noise experienced at

a lower viewing angle and between 60◦ and the reference angle used in this study
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(90◦), respectively. Therefore, only five elevation angles, 2◦, 4◦, 8◦, 16◦ and 30◦ were

used in this work.

Fig. 5.2: Box-and-whisker plot of root mean square of the residual at all elevation
angles (1◦, 2◦, 4◦, 8◦, 16◦ , 30◦ and 60◦). Hourly averaged observations between
7:00 and 17:00 covering the period from 16th January 2013 to 10th February 2013
are shown. The central line of each box is the median and the edges of the box
are the lower and upper quartiles (25% and 75%). The whiskers represent the
most extreme data points which are no more than 1.5 times the length of the box
from either end of the box. The circles are those values beyond the extremes of
the whiskers. Note that the log scale used for the y-axis.
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5.3.2 Determination of Sky Conditions

Sky conditions in this work were determined from global irradiance measured using

a solar radiation sensor located at the University of Wollongong (Fig. 2.1(a)), CI

calculated from MAX-DOAS (Fig. 2.1(b)), and the backscatter signal from the

LIDAR instrument (Fig. 2.1(a)).

The reference point of global irradiance was 400 W m−2. This is the median

value of the global irradiance measured from 16th January 2013 to 10th February 2013

covering the the time period from 7:00 to 17:00. More than half of the sampling

days exceeded this reference point at midday. Three days were chosen: 28th January

2013, 9th February 2013 and 5th February 2013 for the determination of “clear” and

“cloudy” sky. These three days were chosen because there were periods of time in

these three days that were suitable for illustrating the identification of a “clear” and

“cloudy’ sky. These three periods are used in Section 5.3.5.

28th January 2013: All three methods showed that on the 28th January 2013,

the sky was cloudy (Fig. 5.3). The global irradiance for the whole day was below

the reference value (400 W m−2) (Fig. 5.3 (a)). The colour index values were

variable (Fig. 5.3 (b)) and laser signal from LIDAR has been scattered lower down

as indicated by the intense backscatter signal close to the ground (Fig. 5.3 (c)).

9th February 2013: On the 9th February 2013, the global irradiance for the

whole day was above the reference value (400 W m−2) especially from 8:00 to 14:00

(Fig. 5.4 (a)). The LIDAR backscatter signal decreases monotonically with height

illustrating that there were clear skies on this day (Fig. 5.4 (c)). The colour index

values on this day were similar for the lower observation angles (Fig. 5.4 (b)).

Overall, these observations summarised that it was a clear day on the 9th February

2013.
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Fig. 5.3: 28th January 2013 (a) Time series of global irradiance. The dashed
line represents the median value of the global irrandance from 16th January 2013
to 10th February 2013, from 7:00 and 17:00. (b) Colour index at five observation
angles (2◦, 4◦, 8◦, 16◦ and 30◦). (c) LIDAR backscatter signal. Range-normalised
backscatter (indicated by the colour scale, red indicates higher backscatter).
Colour scale represents the range corrected backscatter at 355 nm. Corrected
backscatter refers to correction for the optical geometry. The two solid blue ver-
tical lines represents the time period of interest (7:00 and 17:00).
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Fig. 5.4: 9th February 2013 (a) Time series of global irradiance. The dashed
line represents the median value of the global irrandance from 16th January 2013
to 10th February 2013, from 7:00 and 17:00. (b) Colour index at five observation
angles (2◦, 4◦, 8◦, 16◦ and 30◦). (c) LIDAR backscatter signal. Range-normalised
backscatter (indicated by the colour scale, red indicates higher backscatter).
Colour scale represents the range corrected backscatter at 355 nm. Corrected
backscatter refers to correction for the optical geometry. The two solid blue ver-
tical lines represent the time period of interest (7:00 and 17:00).

5th February 2013: The 5th of February 2013 can be separated into two periods

which are indicated by (I)AM and (II) PM (Fig. 5.5). For the period (I)AM, prior

to 10:30, the global irradiance increased steadily and reached the median value after

8:00 (Fig. 5.5 (a)). Colour index values were inconsistent (Fig. 5.5 (b)) and LIDAR

backscatter shows the presence of broken clouds (Fig. 5.5 (c)). The colour index and

LIDAR backscatter indicates the presence of broken clouds. However, observations

from the global irradiance are consistent with clear skies in the early morning of 5th
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February 2013 (period (I) AM). After 11:00 (period (II) PM), the global irradiance

observations were above the median value. The colour index values were consistent

and LIDAR backscatter signal was strong indicating clear skies. Observation from

three instruments show that there were clear skies in this later period on this day

(period (II) PM).

Fig. 5.5: 5th February 2013 (a) Time series of global irradiance. The dashed
line represents the median value of the global irradiance from 16th January 2013
to 10th February 2013, from 7:00 and 17:00. (b) Colour index at five observation
angles (2◦, 4◦, 8◦, 16◦ and 30◦). (c) LIDAR backscatter signal. Range-normalised
backscatter (indicated by the colour scale, red indicates higher backscatter).
Colour scale represents the range corrected backscatter at 355 nm. Corrected
backscatter refers to correction for the optical geometry. The rectangular black
box in Fig. (a) and (b) highlights two periods (I) AM and (II) PM. The two solid
blue vertical lines represents the interested time period (7:00 and 17:00).
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5.3.3 Determination of Aerosol Loading

Aerosol loading at ground level during MUMBA campaign was determined using the

particle number concentration for particles ranging in size from 14 nm to 660 nm

(PNC14nm−660nm) and the fine particle mass (with an aerodynamic diameter of less

than 2.5 µm, PM2.5). Both measurement were made at the main measurements site

during the MUMBA campaign (Fig. 2.1(a)). The median value of the concentration

of PNC14nm−660nm (3500 cm−3) and PM2.5 (5 µg m−3) were used as cut-off values. A

“high” or “low” aerosol loading is when both the concentrations of PNC14nm−660nm

and PM2.5 were greater or lower than the cut-off value, respectively. Example of

days that experienced “high” aerosol loading include the 28th January 2013 and 9th

February 2013, whereas 5th February 2013 experienced “low” aerosol loading (Fig.

5. 6). These three days are used in the discussion in Section 5.3.5.

Fig. 5.6: Hourly time series of (a) PM2.5 and (b) PNC14nm−660nm during
MUMBA campaign. PM2.5 measured from 24th January 2013 to 15th Febru-
ary 2013. PNC14nm−660nm measured from 16th January 2013 to 10th February
2013. The red dashed line represents the median value of PM2.5 (5 µg m−3) and
PNC14nm−660nm (3500 cm−3).

5.3.4 Overview on Differential Slant Column Density (DSCD)

The DSCDs from MAX-DOAS followed the general rule that the lower observation

angles give a higher observation signal for trace gases in the lower troposphere [Lee
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et al., 2009b; Sinreich et al., 2013; Wang et al., 2016b]. Therefore, in this work,

observations at 2◦ and 4◦ were more sensitive to conditions in the lower layer of

the atmosphere (close to the ground surface). Meanwhile, observations at 16◦ and

30◦ were more sensitive to measurements at higher layers of the atmosphere (above

the ground surface). The characteristics of O4 DSCDs at five elevation angles were

studied and are illustrated in the Box-and-whisker plot (Fig. 5.7). Hourly averaged

O4 observations between 7:00 and 17:00 covering the period from 16th January 2013

to 10th February 2013 demonstrated higher values of O4 DSCDs at lower viewing

angles compared to the higher angles (Fig. 5.7). The O4 DSCD values measured

at 2◦ were approximately double the O4 DSCD values measured at 30◦. Similar

observations were reported in a study by Gratsea et al. [2016], which focused on

slant column measurements in the urban environment of Athens.

Fig. 5.7: Box-and-whisker plot of O4 DSCD at five observation angles of 2◦, 4◦,
8◦, 16◦ and 30◦. Hourly averaged observations between 7:00 and 17:00 covering
the period from 16th January 2013 to 10th February 2013 are shown. The central
line of each box is the median and the edges of the box are the lower and upper
quartiles (25% and 75%). The whiskers represent the most extreme data points
which are no more than 1.5 times the length of the box from either end of the
box. The circles are those values beyond the extremes of the whiskers.

5.3.5 Daily Average of O4 DSCDs

Daily averages of O4 DSCDs were plotted (Fig. 5.8) to asses how the O4 DSCDs

pattern depends on viewing conditions. O4 DSCDs at lower viewing angles (2◦ and

4◦) show an apparent separation from the O4 DSCDs observed at higher viewing

angles (16◦ and 30◦) (Fig. 5.8). However, on some days the average retrievals
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converge. This can be caused by effects of aerosol loading and cloud conditions

[Gratsea et al., 2016]. Both high aerosol loadings and clouds decrease the path

length of the scattered sunlight on average and therefore, decrease the O4 DSCDs

[Heckel et al., 2005; Sinreich et al., 2013; Wagner et al., 2004].

Fig. 5.8: Daily averages of O4 DSCDs at five observation angles (i.e. 2◦, 4◦,
8◦, 16◦ and 30◦). Daily averaged observations between 7:00 and 17:00 covering
the period from 16th January 2013 to 10th February 2013 are shown. The shaded
areas refer to cloudy days as determined by the methods discussed in Section
5.3.2.

The characteristics of daily averaged O4 DSCDs observations from MAX-DOAS

were then categorised visually into four situations in order to study the influence

of aerosol loading and clouds on the behaviour of the O4 DSCDs measurements at

different observation angles. Determination on the “cloudy” or “clear” and “high”

or “low” aerosol loading periods have been discussed in Section 5.3.2 and Section

5.3.3, respectively. The four situations were as follows:

(i) high aerosol loading and a cloudy period (28th January 2013);

(ii) high aerosol loading and a clear period (9th February 2013);

(iii) low aerosol loading and a cloudy period (5th February 2013) and

(iv) low aerosol loading and a clear period (5th February 2013).
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Fig. 5.9: Time series of O4 DSCD observations and colour Index at five obser-
vation angles (2◦, 4◦, 8◦, 16◦ and 30◦) on the 28th January, 2013, 9th February,
2013 and 5th February, 2013. The rectangular shaded areas on the 5th February,
2013 highlight two situations chosen :Fig. (e) and (f) are observations for “low
aerosol loading and cloudy day”, Fig. (g) and (h) are observations for “low aerosol
loading and clear day”. Measurement data from 7:00 to 17:00 were used in these
plots.

Retrievals of O4 DSCDs observed on the 28th January 2013 were similar at all

angles Fig. 5.9(a)) as was the colour index (Fig. 5.9(b)). This observation can be

caused by the high population of aerosols and the presence of clouds which increase

the scattered sunlight on average and caused the variability in the observed O4
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DSCDs at different viewing angles. O4 DSCDs observed on the 9th Feb 2013 shows

two behaviours, where O4 DSCDs at lower anglesat lower angles (2◦ and 4◦) were

close together but separated from observations at higher viewing angles (16◦ and

30◦)(Fig. 5.9(c)). This was also observed in the time series of the colour index (Fig.

5.9(d)).

The colour index values observed in the morning of the 5th February were vari-

able (Fig. 5.9(f)) with no clear pattern relating O4 DSCDs to observation angles

(Fig. 5.9(e)). This outcome is due to the presence of broken clouds which causes

inconsistency in the observed signals and therefore produces inconsistent O4 DSCDs

at different viewing angles and times. In contrast, retrievals of O4 DSCDs and

colour index values at all viewing angles were well separated in the afternoon (Fig.

5.9(g, h)). This is due to the clear sky and low aerosol population during this pe-

riod.Similar observations were obtained by Ortega et al. [2016] on the east coast of

North America (over Cape Cod, MA, U.S.) and also by Heckel et al. [2005] in the

Po-Valley in northern Italy.

5.3.6 Diurnal Variation of O4 DSCDs and Surface Aerosol

Extinction

Daily pattern of O4 DSCDs retrieval at all observation angles were compared with

the surface aerosol extinction retrieved by HEIPRO in this section in order to an-

swer the question “is it possible to use DSCD
′
s to infer aerosol properties?” Surface

aerosol extinction used here refers to the aerosol extinction at 200 m and below as

retrieved from the HEIPRO analysis. Retrieval of O4 DSCDs revealed a diurnal pat-

tern at all viewing angles, with low values in the morning that steadily increased until

mid-afternoon and then decreased (Fig. 5.10 (a) to (e)). O4 DSCD observations are

negatively correlated to aerosol population. Therefore, high O4 DSCD accompanies

a low aerosol loading. The surface aerosol extinction shows an inverse pattern (Fig.

5. 11 (b)) compared with O4 DSCD. The daily variation of total particle number

concentration (NT ) and the possible sources of aerosols such as combustion markers

CO and NOx that are shown in Chapter 3. Generally, there were low concentrations

of total particle number concentration (NT ), CO and NOx observed in the middle of

the day (Fig. 3.3 (a), and Fig. 3.7). Meanwhile, both diurnal variation pattern of

particle mass (PM2.5) measured in-situ (Fig. 5.11(a)) and surface aerosol extinction

(Fig. 5.11(b)) from 24th January to 10th February 2013 show that there were high

aerosol concentrations in the morning and low concentrations in the middle of the

day. This indicates that DSCD
′
s can be used to infer aerosol properties during the

MUMBA campaign.
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Fig. 5.10: Fig. (a) to (e) are the diurnal variations of O4 DSCD observations
at five elevation angles (2◦, 4◦, 8◦, 16◦ and 30◦). Observations from 7:00 to 17:00
were used to interpret the result. Hourly averaged data from 16th January to 10th

February 2013 are used in these plots.The shaded area is the 95 % confidence
interval.
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Fig. 5.11: Diurnal variations of (a) in-situ measurements of PM2.5 and (b) sur-
face aerosol extinction at 200 m and below retrieved from the HEIPRO analysis.
Hourly averaged data from 24th January to 10th February 2013 from 7:00 to 17:00
are used for these plots. The black horizontal dashed line is the average value of
the PM2.5 from 7:00 to 17:00 over the measurement period. The shaded area is
the 95 % confidence level.

5.3.7 Characteristics of Aerosol Extinction Coefficients

AOD information was retrieved by using the O4 DSCDs information obtained from

the QDOAS analysis into the aerosol inversion algorithm (HEIPRO) as discussed

in Chapter 2. The aerosol optical depth information retrieved by HEIPRO was

compared with measurements by the sun photometer and the LIDAR to investigate

the correlation between them.

(a) Relationship of aerosol optical depth from MAX-DOAS and the sun

photometer

The sun photometer produced an estimate of aerosol optical depth at one minute

resolutions. Cloud filter analysis was applied on the dataset using the method de-

scribed by Harrison and Michalsky [1994]. Overall, there was a poor correlation

between hourly averaged AOD from the MAX-DOAS and the sun photometer (R2=

0.03, number of points = 199) (Fig. 5.12 (a)). Observation of the available data
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from both instruments illustrated that the AOD retrieved were predominantly less

than 0.2. A study in Madrid, Spain by Wang et al. [2016b] reported a good agree-

ment between hourly retrieved AODs and MAX-DOAS and the sun photometer in

the Aerosol Robotic Network (AERONET) with R2= 0.87 (number of data points

= 618). Aerosol optical depths retrieved by Wang et al. [2016b] were predominantly

less than 0.6. Madrid is the third largest city in the European Union and experi-

ences severe levels of air pollution by nitrogen dioxide, suspended particulates and

ozone Council [2012]. In contrast to the air pollution level experienced during the

duration of study by Wang et al. [2016b], the MUMBA sampling site experienced

clean air [Paton-Walsh et al., 2017] with low daily average and always below the the

Australian National Environment Protection (Ambient Air Quality) Measure (Air

NEPM) recommended daily average value of 25 µg m−3.

Fig. 5.12: (a) Relationship between aerosol optical depth (AOD) obtained from
the MAX-DOAS and the sun photometer. The shaded area is the 95 % confidence
level. The solid horizontal and vertical lines are the median value of AOD mea-
sured by the sun photometer (0.11) and AOD measured by MAX-DOAS (0.13),
respectively. (b) The AOD obtained from MAX-DOAS and the sun photometer
in relation to “Sydney air mass” (presented as “Syd”) and particle formation and
growth events (presented as “NPF”). Hourly averaged data from 7:00 to 17:00
from 16th January to 10th February 2013 were used.
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One of the factors that can contribute to the weak correlations is the differ-

ent location and viewing geometry of the MAX-DOAS and the sun photometer

instruments. As mentioned earlier (Section 5.1), the MAX-DOAS was located at

the second monitoring site (Fig. 2.1(b)) and the sun photometer instrument was

located at the University of Wollongong (Fig. 2.1(b)). Therefore, AOD retrieved

from the MAX-DOAS can be more readily affected by the marine environments.

Another factor that can contribute to the poor correlation of AOD from the

MAX-DOAS and the sun photometer is the different wavelength used in the MAX-

DOAS and the sun photometer measurement. AOD values from the MAX-DOAS

were retrieved at 361 nm whereas sun photometer AOD measurements were made at

500 nm. Ångstrom turbidity coefficient (β) described by Iqbal [1983] and Ångström

[1929] have describes the AOD dependence on wavelength as (Eq. 5.3):

τ = βλ−α (5.3)

where τ= aerosol optical depth for wavelength, λ (in micrometers) and α=

corresponding Ångstrom exponent value. Iqbal [1983] reported the typical range

of α is from 0.5 to 2.5. By using equation 5.4, when α = 0.5, the ratio is 0.85

and for when α = 1, the ratio is 0.72. This effect could be large but not large

enough to contribute to a poor correlation of AOD from the MAX-DOAS and the

sun photometer observed in this work.

(
τ500nm
τ361nm

) = (
500nm

361nm
)−α (5.4)

Wind direction was then studied to investigate the potential for an impact of

pollution at the monitoring site, by running 24-hr backward trajectories. Here, air

masses that arrived at the monitoring site at 10:00 AEST from the north and north-

east sectors are labelled with “Syd” to represent Sydney air mass (Fig. 5.12(b)), as

air from this sector is likely to have traversed Sydney prior to reaching the monitor-

ing site. 10:00 AEST was chosen because the particle formation and growth event

days (Class I and Class II) were observed at this time. Overall, observations of the

“Sydney Air Mass” varied over a wide range.

In relation to the particle formation and growth events, all the Class I particle

formation and growth events were observed when AOD values measured from MAX-

DOAS were ≥ 0.2 (as “NPF” in Fig. 5.12(b)). MAX-DOAS also retrieved high AOD

values (AOD > 0.5) when the monitoring site experienced air masses from Sydney

(Fig. 5.8(b)). One of these AOD >0.5 observations was on the 5th February 2013 at

10:00 AEST. Interestingly, this was not apparent in the sun photometer measure-
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ments (Fig. 5.12(b)). At this time, the 24-hr backward trajectories demonstrated

that wind direction was from the southeast sector. To investigate the cause of this

observation, the cloud conditions on the 5th February 2013 was studied (Fig. 5.5).

As discussed in section 5.3.2, the global irradiance measurements obtained from the

sun photometer indicate it was a clear period at 10:00 AEST. However, colour index

and values which were calculated from the intensity measured by MAX-DOAS in-

dicate the presence of broken clouds at 10:00 AEST and similar observation showed

by LIDAR backscatter. The higher value of AOD retrieved from MAX-DOAS com-

pared with the AOD retrieved from the sun photometer may have been caused by

cloud effects at this time of the day.

(b) Aerosol Optical Depth retrieval on a clear day

The relationship between AOD retrievals from the MAX-DOAS, the LIDAR

and the sun photometer instruments on a “clear day” (7th of February 2013) were

examined. The “clear day” was selected based on the analysis as discussed in Section

5.3.2. Hourly averaged data from 7:00 to 17:00 were chosen due to the different time

scales, location and the principles of the measurement used in the three instruments.

There was a good correlation between the AOD obtained from LIDAR (mea-

surement made at 335 nm) and the sun photometer (measurements made at 500

nm) instruments with a R2 of 0.96 (Fig. 5. 13 (a)). The slope of 1.1 in the linear

regression between the LIDAR and the sun photometer indicates that the LIDAR

ratio value (25 sr) used in this study (as mentioned in Section 5.1) worked well for

the marine environments during the MUMBA campaign. In contrast, there was poor

correlation between the AOD obtained from the MAX-DOAS retrievals at 361 nm

and the other two instruments (LIDAR and sun photometer) (Fig. 5.13(b) and (c)).

This poor correlation could be attributed to the difference in the principles of the

viewing geometry of these three instruments. Another factor that could have caused

this result is the sensitivity of MAX-DOAS measurements decrease significantly with

altitude [Frieß et al., 2006].
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Fig. 5.13: Relationship between AOD from the (a) LIDAR and sun photometer,
(b) sun photometer and MAX-DOAS and (c) LIDAR and MAX-DOAS instru-
ments on the 7th February, 2013. The 7th February, 2013 is used to present the
“clear day”. Hourly averaged data from 7:00 to 17:00 were used in these plots.

The vertical profile of aerosol extinction retrieved from MAX-DOAS and the

backscatter aerosol extinction from LIDAR were plotted in order to investigate the

reproducibility of the aerosol vertical distribution on the 7th February 2013 at around

8:00 AES when the sky was clear (Fig. 5.14 (a)). A strong correlation (R2= 0.77)

was obtained between the estimates of the vertical resolved aerosol extinction from

the MAX-DOAS and LIDAR. Both instruments recorded the strongest extinction

at approximately 300 m height (the brown line) (Fig. 5.14 (b)). However, there

was a large difference in the magnitude of the extinction. This might be caused by

the viewing angle which makes a difference in the the sampling area/environment

measured by the MAX-DOAS and LIDAR instruments as discussed in Section 5.3.7

(a). Another factor that can cause the large different in magnitude is the sensitivity

of MAX-DOAS retrieval decreasing with higher altitudes in the atmosphere. MAX-

DOAS is sensitive to trace gases and aerosol concentration over the 2-3 km of the

atmosphere. The presence of clouds at lower altitudes out the sea (< 2 km) during

the measurements can lead to an overestimation of MAX-DOAS aerosol extinction

due to a multiple scattering effect [Irie et al., 2008; Wagner et al., 2004]. The type

of a priori used in aerosol retrieval in this work can also contribute significantly to
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the results [Ryan et al., 2018; Xing et al., 2017].

Fig. 5.14: (a) Relationship between aerosol extinction (AE) from the MAX-
DOAS and the LIDAR instruments. The 1:1 line is represented by a solid black
line. The dashed black line above and below the 1:1 line are the 1:2 and 1:0.5
lines, respectively. (b) Comparison of vertical aerosol distribution profiles from
the MAX-DOAS and the LIDAR instruments. The brown line is the strongest
extinction at 300 m. Data on the 7th February 2013 at around 8:00 were used in
these plots.
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5.3.8 Relationship between MAX-DOAS Retrieval and In-

situ Measurements

(a) Surface Aerosol Extinction

In this section, the aerosol extinction retrieved by MAX-DOAS for the lowest

levels of the atmosphere (surface aerosol extinction) is compared to the particle mass

concentration (PM2.5) to investigate whether MAX-DOAS measurements reflect the

observed in-situ ground surface aerosol loading, similar to a study conducted in

Madrid, Spain ([Wang et al., 2016b]).

The particle mass concentration (PM2.5) used by Wang et al. [2016b] was ob-

tained from six in-situ air quality stations over Madrid city from 15th March, 2015

to 15th September, 2015. The surface aerosol extinction used by Wang et al. [2016b]

refers to the aerosol extinction at 100 m and below as returned from the HEIPRO

analysis. There was a good correlation (R= 0.89, number of days = 134) obtained

between daily averaged data of PM2.5 and surface aerosol extinction. The surface

aerosol extinctions in this study refers to the aerosol extinction at 200 m and below

as returned from the HEIPRO analysis. There was not a good correlation (R2=

0.12, number of days=16) obtained between daily averaged data of PM2.5 and sur-

face aerosol extinction (Fig. 5.15).

Fig. 5.15: (a) Relationship between surface aerosol extinction coefficients and
particle mass concentration (PM2.5). Daily averaged data from 24th January to
10th February 2013 were used in this plot.

Several factors can cause this poor correlation obtained during the MUMBA

campaign. The PM2.5 mass concentrations during MUMBA were low, where the
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daily average of PM2.5 mass concentration ranged from 1.0 µg m−3 to 22.1 µg m−3

with a median value of 5.0 µg m−3. In contrast, the PM2.5 mass concentrations

measured by Wang et al. [2016b] ranged from 5.0 µg m−3 to 30.0 µg m−3.

The poor correlation between surface aerosol extinction retrieved by MAX-

DOAS and in-situ PM2.5 mass concentration can also be caused by the observation

area. During the MUMBA campaign, the MAX-DOAS and the eSampler instru-

ments were not exposed to identical air masses. The MAX-DOAS instrument was

pointed over the open ocean, while the eSampler was based on direct measurements

at the ground surface. Therefore, aerosol retrievals from MAX-DOAS included in-

formation from marine sources such as sea salt aerosols. For Wang et al. [2016b], the

MAX-DOAS instrument was pointer over the city of Madrid and the in-situ PM2.5

mass concentrations were obtained from six in-situ automatic measuring stations

which were located around the urban area of Madrid. Therefore, the MAX-DOAS

and six in-situ automatic stations were exposed to similar air masses.

(b) Aerosol extinction on the Class I Particle formation growth events

The variation of aerosol extinction coefficients and particle number size distribu-

tion on the Class I particle formation and growth event days (discussed in Chapter

4) was also compared. This comparison could provide information on aerosol pop-

ulations during the events. Backscatter aerosol distribution on the 7th February,

2013 and the 8th February, 2013 obtained from LIDAR were then compared visually

with the aerosol extinction variability (Fig. 5.17 and Fig. 5.18). The events on 22nd

January, 2013 and 6th February, 2013 were not included in this comparison because

there were broken cloud conditions in the afternoon and in the morning, respec-

tively which are likely to affect both the MAX-DOAS and LIDAR measurements.

The time series of global irradiation and colour index on the 7th February, 2013 and

the 8th February, 2013 are presented in Fig. 4.7 and Fig. 5.16, respectively.

Fig. 5.16: Colour index variability at five observation angles (i.e. 2◦, 4◦, 8◦, 16◦

and 30◦) on the 7th February, 2013 and the 8th February, 2013. Measurements
from 7:00 to 17:00 were used in these plots.
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Contour plots of vertical aerosol extinction and backscatter aerosol distribution

on the 7th February, 2013 and the 8th February, 2013 are illustrated in Fig. 5.17

and Fig. 5.18, respectively. In general, both instruments show the presence of an

aerosol layer close to the ground but little other structure.

The Class I event days were observed when the monitoring station experienced

particles with diameters less than 150 nm (Chapter 4) which explains the weak-

moderate signal. Ultrafine particles (particles with diameter less than 100 nm)

scatter ultraviolet radiation weakly by remote sensing techniques[Junkermann and

Hacker , 2018]. Therefore, neither technique is very sensitive to small particles.

Fig. 5.17: Feb 7th, 2013 (a) variability of vertical aerosol extinction over time
retrieved by HEIPRO at 361 nm. (b) Range-normalised backscatter measured by
LIDAR at 355 nm. The colour scale represents the range of the signals (indicated
by colour scale, red indicates higher signal). The rectangular boxes with black
lines represent the relevant time of particle formation events.
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Fig. 5.18: Feb 8th, 2013 (a) variability of vertical aerosol extinction over time
retrieved by HEIPRO at 361 nm. (b) Range-normalised backscatter measured by
LIDAR at 355 nm. The colour scale represents the range of the signals (indicated
by colour scale, red indicates higher signal). The rectangular boxes with black
lines represent the relevant time of particle formation events.

5.4 Summary and Conclusions

This chapter presented a detailed study of the application of remote sensing tech-

niques on aerosol properties during the aerosol measurements period of the MUMBA

campaign. The following conclusions can be made:

(i) The MAX-DOAS instrument successfully retrieved aerosol properties, repre-

senting the first such retrievals by the research group and the first deployment

of this instrument;

(ii) Differential slant column density (DSCD) can be used to infer changes in

aerosol properties;
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(iii) Aerosol optical depth retrieved from the MAX-DOAS and the sun photometer

were weakly correlated. This is probably due to the difference in location and

observation conditions;

(iv) Reproducibility of the LIDAR derived aerosol vertical distribution by the

MAX-DOAS instrument was demonstrated on a clear day; and

(v) Surface aerosol extinctions (200 m height and below) retrieved from MAX-

DOAS has a poor correlation with the in-situ PM2.5 mass concentrations.

This result is due in part to the low PM2.5 concentrations observed during the

aerosol measurement period.
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Summary and Conclusion

Aerosol measurements were conducted over the period of 16th January 2013 to 15th

February 2013 in the coastal city of Wollongong, Australia during a campaign known

as the Measurements of Urban, Marine and Biogenic Air (MUMBA). During the

measurement period, the particle population as measured by number concentration

was dominated by ultrafine particles (PNC3nm−100nm) with an average and median

value of 7.0 x 103 cm−3 and 5.2 x 103 cm−3, respectively. The average value of

particle number concentration of the size of 14 nm to 660 nm (PNC14nm−660nm)

was 5.2 x 103 cm−3 with a median value of 3.1 x 103 cm−3. The daily average

mass concentration of fine particles (PM2.5) was low (6.1 µg m−3) and always below

the maximum daily average recommended by the Australian National Environment

Protection (Ambient Air Quality) Measure (Air NEPM).

The results highlight that the distinct sources of particle number identified were

traffic emissions, industrial activities and marine aerosols. Traffic emissions domi-

nated in the morning, whereas photochemical reactions, marine aerosols and local

source particles dominated in the afternoon. Emissions from industrial activities

and central business district activities dominated at night. Similar to previous stud-

ies, particles of diameter < 1 µm were influenced by vehicle emissions. Particle

number concentrations were strongly influenced by sea breezes that carry particles

from sources in and around Sydney (north easterly winds) as well as from Port

Kembla Steel Works and the urban areas (winds from the south). A weak correla-

tion between organic carbon and elemental carbon suggests that the population of

carbonaceous aerosols were influenced by multiple sources.

The evolution of particle number size distribution in the range of 14 nm to

600 nm was analysed in order to determine the occurrence frequency of particle

formation during the one month period of aerosol measurements of the MUMBA

campaign. Eight particle formation and growth events (four Class I and four Class

II) were observed in this study which is equivalent to 25% of the total observation

days. The Class I events took place in the sunny periods, starting after 8:00 and
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lasting till 14:30 with an average duration of five hours. These events were classified

as “weak” particle formation events. This observation is likely to be related to the

meteorological conditions, especially wind speed and wind direction experienced at

the monitoring site. Particles formed during the Class I events increased and/or

decreased the cloud condensation nuclei number. However, there was no clear in-

dication that particles of a diameter equal to or larger than 50 nm were activated

as cloud condensation nuclei. There were high concentrations of isoprene, CO and

NOx observed before the events. An increased of surface O3 concentrations during

the events was also observed. This suggests that the events were influenced by pho-

tochemical reactions, as well as biogenic and traffic emissions. A mix of oceanic and

anthropogenic air masses was also one of the factors that influenced these events.

Particle formation and growth events were only observed when air masses origi-

nated from the north and northeast sectors. These air masses had travelled from

the ocean and passed through populated areas including Sydney. While many fac-

tors have been looked at, there was no clear single set of factors that caused the

Class I events. Relative humidity, SO2 and the photochemical age of air masses had

potentially played a role in the particle formation and growth events although there

were insufficient measurements to determine this to a high level of confidence.

Aerosol vertical properties were studied using a remote sensing technique. The

Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument

successfully retrieved aerosol properties during the aerosol measurement phase of the

MUMBA campaign. This was the first achievement by the Centre for Atmospheric

Chemistry at the University of Wollongong on these retrievals. Differential slant

column density can be used to infer changes in aerosol properties. Aerosol optical

depth derived from the MAX-DOAS and the sun photometer were uncorrelated

(R2= 0.03). This could be due to the different location and viewing geometry of

the instruments. Aerosol optical depth retrieved by the MAX-DOAS was affected

readily by the marine environment compared to the sun photometer. Aerosol optical

depth measured by the Light Detection and Ranging (LIDAR) was successfully

compared to measurements from the MAX-DOAS on a selected “clear day” with a

strong level of agreement (R2= 0.77). Both MAX-DOAS and LIDAR instruments

demonstrated a significant scattering layer at approximately 300 m above ground

level. The MAX-DOAS retrieved surface aerosol extinction coefficient (200 m height

and below) was also compared with the in-situ measurements of fine particle mass

concentration (PM2.5). A poor correlation was obtained from this two datasets (R2=

0.12) relative to the study observed by [Wang et al., 2016b]. This observation was

probably due in part to the low PM2.5 populations experienced during the aerosol

measurement period. Both the aerosol extinction coefficient derived from MAX-

DOAS and the backscatter aerosol distribution derived from LIDAR were capable
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of capturing the presence of aerosol layer close to ground surface during the Class I

particle formation and growth event days.

The characteristics of particle populations are complex in Wollongong, due to

the background of the Illawarra area. This study shows that local and transported

sources together with meteorological conditions have a definite influence on the par-

ticle population. The area experiences mixed and complex pollution sources which

present challenges to air quality management of the sources. Nevertheless, listed be-

low are recommendations that would improve our knowledge of the characteristics

of particle populations:

1. Information on elemental concentrations is needed to understand the aerosol

sources and their formation. The elemental concentration data obtained dur-

ing the MUMBA campaign were restricted to the detection limit of the instru-

ments.

2. Previous studies have shown that the detectable size range of the newly formed

particles was from 1 nm to 10 nm. This study was limited to particle size range

from 14 nm to 660 nm. Having an instrument covering the particle number

size distribution less than 14 nm (Dp < 14 nm) would be an advantage.

3. There was limited information on the traffic data. There was no available

information on the type of vehicles at the study area. This information would

have been an advantage in explaining the sources of particle number concen-

trations.

4. Previous studies have shown the advantages of using sky cameras which sup-

port and provide more information on cloud conditions during the sampling

days. It is also worthwhile comparing the MAX-DOAS instrument used in

this study with other MAX-DOAS instruments. A longer observation period

covering different environments is needed to further test the performance of

the MAX-DOAS instrument.

Output from This Study

Work presented here contributes to a greater understanding of the characteristics

of aerosols that affect Australian air quality, particularly in Wollongong, Illawarra,

NSW. The aerosol measurements during the MUMBA campaign have already pro-

vided a better understanding on the overall characteristics of aerosol populations and

their sources at the coastal-urban environment. Work on this has been published in

the Atmospheric Environment journal:
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Dominick, D., S. R. Wilson, C. Paton-Walsh, R. Humphries, E.-A. Guérette,

M. Keywood, D. Kubistin, and B. Marwick (2018), Characteristics of airborne par-

ticle number size distributions in a coastal-urban environment, Atmos. Environ.,

186, 256265, doi:10.1016/j.atmosenv.2018.05.031.

A manuscript on the particle formation mechanisms has been submitted for

publication in Atmosphere, in the special issue “Air quality in New South Wales,

Australia”. At this stage, this manuscript is under revision. Results obtained in

this study have also contributed to the published work by Paton-Walsh et al. [2017],

Guérette et al. [2017] and Paton-Walsh et al. [2018]. A manuscript on the comparison

of MAX-DOAS retrieval from several other campaigns is also planned which include

the collaborative research of a PhD student, Robert George Ryan of the University

of Melbourne.

This thesis has presented a complex study on the characterisation of atmospheric

aerosol and has successfully provided information on the atmospheric composition

during the MUMBA campaign. This thesis also provides a useful stepping stone to-

wards our understanding of a complex mixed atmospheric environment with coastal,

biogenic and urban influences. Atmospheric processes described in this study are

likely to be replicated in many other coastal cities worldwide.
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