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Abstract
Metal selenides have attracted increased attentionas promising electrode materials for electrochemical energy
storageand conversion systems including metal-ion batteries and watersplitting. However, their practical
application is greatly hindered bycollapse of the microstructure, thus leading to performance fading.Tuning
the structure at nanoscale of these materials is an effectivestrategy to address the issue. Herein, we craft
MoSe2withhierarchical hollow structures via a facile bubble-assistedsolvothermal method. The temperature-
related variations of thehollow interiors are studied, which can be presented as solid, yolk−shell, and hollow
spheres, respectively. Under the simultaneousaction of the distinctive hollow structures and
interconnectionsamong the nanosheets, more intimate contacts between MoSe2and electrolyte can be
achieved, thereby leading to superior electrochemical properties. Consequently, the
MoSe2hollownanospheres prepared under optimum conditions exhibit optimal electrochemical activities,
which hold an initial specificcapacity of 1287 mA h g−1and maintain great capacity even after 100 cycles as
anode for Li-ion battery. Moreover, the Tafelslope of 58.9 mV dec−1for hydrogen evolution reaction is also
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ABSTRACT 

Metal selenides have attracted increased attention as promising electrode materials for electrochemical energy 

storage and conversion systems including metal-ion batteries and water splitting. However, their practical 

application is greatly hindered by collapse of the microstructure and thus leading to performance fading. Tuning the 

structure at nanoscale of these materials is an effective strategy to address the issue. Herein, we craft MoSe2 with 

hierarchical hollow structures via a facile bubble-assisted solvothermal method. The temperature-related variations 

of the hollow interiors are studied, which can be presented as solid, yolk-shell and hollow spheres, respectively. 

Under the simultaneous action of the distinctive hollow structures and interconnections among the nanosheets, 

more intimate contacts between MoSe2 and electrolyte can be achieved, whereby leading to superior 

electrochemical properties. Consequently, the MoSe2 hollow nanospheres prepared under optimum conditions 

exhibit the optimal electrochemical activities, which hold an initial specific capacity of 1287 mA h g−1 and maintain 

great capacity even after 100 cycles as anode for Li-ion battery. Moreover, the Tafel slope of 59 mV dec−1 for 

hydrogen evolution reaction is also attained.  

 

KEYWORDS: MoSe2, hollow structures, ultrathin nanosheets, LIBs, HER 

 



1. INTRODUCTION 

Triggered by the infinite consumption of fossil fuels, the increasingly serious environmental issues and energy 

crisis have stimulated the urgent demand of sustainable energy tactics, in which developing clean energy vectors 

and high-performance energy storage medium are the foremost topics.1, 2 Lithium-ion batteries attracted great 

attention for the high energy ratio, long service life and high rated voltage in renewable energy storage system. 

Meanwhile, electrocatalytic water splitting to hydrogen is also considered as one of the most effective way to 

generate the clean H2 energy.3, 4 Efforts have been dedicated to search for the candidate materials used in both 

energy production and storage. Benefit from the abundant reserves on earth, transition metal dichalcogenides 

(TMDs) MX2 (M=Mo, W; X=S, Se, Te) could be considered as promising candidates, in which MoSe2 has been 

widely studied among researchers for its excellent chemical properties.5-8 The graphite-like Se-Mo-Se sandwich 

layered structure in MoSe2 is sustained by weak Van der Waals force, and the sufficient spacing with an interlayer 

distance of 0.65 nm enables more efficient Li+ insertion and extraction, which could be potentially used as LIBs 

anodes.9, 10 Considering the low theoretical capacity of graphite anode material (372 mA h g−1), the high theoretical 

capacity of MoSe2 (422 mA h g−1) is also a considerable advantage when used as anode materials.11 Furthermore, 

both calculative and experimental results proved that all the molybdenum and selenium edge sites are active for 

hydrogen evolution reaction (HER), which makes MoSe2 a promising electrocatalyst for HER.12 Nevertheless, the 

practical application of MoSe2 is still largely restricted by intrinsic limitations, such as pronounced volume 

variation for LIBs and insufficient electrochemical active sites for the HER, respectively.13, 14 

To solve these problems, various strategies including nano-sizing, element coating and building heterostructures 

have been employed to optimize the performance of MoSe2.15-16 In virtue of the internal void space, large specific 

surface area, curtate diffusion distance of ions and mitigatory change of the electrode volume, engineering hollow 

structures is a better means compared to the above strategies.17,18 The most common tactic to design nanoscale 



hollow sphere depends on hard or soft templates. However, difficulties are often encountered in forming solid 

shells with the ideal composition and effectively removing the templates. The gas bubble-assisted synthesis is an 

effective route to prepare hollow spheres without the issues caused by templates.19 For instance, Wang and his team 

synthesized ZnO hollow spheres with double-yolk egg structure with N2 flows.20 Li et al. also reported ZnSe 

hollow spheres by using N2 as the soft template, during which N2 bubbles were released from the reducing agent 

citric acid.17 Inspired by these previous works, it is very effective to design MoSe2 hollow spheres through a gas 

bubble-assisted approach. 

In this work, we present the controllable synthesis of MoSe2 nanospheres with different hollow interiors via a 

facile in situ gas bubble-templated method. In our work, N2H4·H2O would work as not only the reductant but also 

the source of N2 bubbles, which is a key to formation of cavity, while the reaction temperature plays the essential 

roles in the modulation of the interiors including solid, yolk-shell and hollow nanospheres. In virtue of the unique 

hollow structure and interconnections of the ultrathin nanosheets, the hierarchical MoSe2 hollow nanospheres 

prepared in this work exhibit high initial specific capacity toward LIBs, and still maintain excellent capacity after 

100 cycles. And low overpotential, excellent stability for electrochemical HER are also achieved. This work may 

offer a new way toward the optimization of selenium-based nanomaterials for energy-related electrochemical 

applications.  

2. EXPERIMENTAL SECTION 

2.1. Chemicals and Materials 

Ammonium molybdate hydrate ((NH4)6Mo7O24•4H2O), hydrazine hydrate (N2H4•H2O, 85%), selenium powder 

(Se), ethylenediamine (EDA) and ethanol were provided by Sinopharm Chemical Reagent Co, Ltd. molybdenum 

trioxide (MoO3) was purchased from Aladdin.  

2.2. Synthesis of 1D MoOx-EDA  



In a typical process, 0.8g ammonium molybdate hydrate was dispersed in 30 mL ethylenediamine in a 100 mL 

autoclave under vigorous stirring for 0.5h, and then hydrothermally treated at 180 ℃ for 8 h. After cooling down 

naturally, the precipitate was filtrated and washed with ethanol for four times. Finally, the obtained powders were 

dried and collected at 55℃ for 12 hours in a vacuum oven. The final products were denoted as MoOx-EDA. 

2.3. Synthesis of MoSe2 with Different Hollow Structures   

In a typical process, 30 mg Se powder and 30mg MoO3 powder were dispersed in 5mL of N2H4•H2O solution. 

Then, 10 mL distilled water and 15 mL ethanol were added under stirring for 10 min. Subsequently, 21.4 mg 

MoOx-EDA was added with next 20 min stirring. After that, the mixture was transferred to a 100 mL autoclave for 

solvothermal treatment at different temperatures (100 °C, 140 °C, 180 °C, 220 °C) for 6h. After cooling down, the 

precipitate was washed with ethanol for 5 times, and then dried at 60 °C. MoSe2 nanospheres prepared under 

different temperatures (100℃, 140℃, 180℃ and 220℃) were denoted as MSS for solid spheres, MYS for 

yolk-shell nanospheres, MHS-1 and MHS-2 for hollow nanospheres. 

Detailed characterizations and electrochemical measurements can be found in the Supporting Information. 

3. RESULTS and DISCUSSION 

3.1. Characterization of Structure and Morphology 

The morphologies and microstructures of the MoSe2 nanospheres were characterized by SEM and TEM. (Figure 

1). Specifically, solid, yolk-shell and hollow nanospheres can be readily obtained by simply varying the reaction 

temperature. As illustrated in Figure 1a and 1e, when the synthesis temperature is 100 °C, the as-synthesized 

MoSe2 are uniform solid nanospheres (MSS) with an average size of ~400 nm, which are composed of ultrafine 

interconnected nanoparticles. As the temperature increased to 140 °C, MoSe2 samples exhibited yolk–shell 

structure (MYS), and the nanospheres are evenly coated by some shallow nanosheets (Figure 1b). The TEM image 

further confirms the features of the yolk–shell structure: a distinct core and a clear gap between the core and shell, 



which could be observed clearly in Figure 1f. Interestingly, when it comes to the MoSe2 product synthesized at 

180 °C, the hollow structures and well-defined inner cavities are distinctly illustrated (MHS-1), and the surface is a 

superstructure assembled by numerous interconnected ultrathin nanosheets with thickness of about 3.5 nm, which 

could be confirmed by HRTEM. The representative HRTEM image (Figure S1) of MHS-1 illustrates the layered 

crystal lattice structure and the spacings of 0.67 nm correspond to the interlayer distance of (002) plane of the 

hexagonal MoSe2 phase. 6 When the solvothermal temperature increased to 220 °C, the hierarchical nanospheres 

still showed hollow structures, while the nanosheet subunits of these hierarchical nanospheres became larger and 

thicker (Figure 1d, 1h).  

Figure 2 depicts the XRD patterns of the as synthesized MoSe2 at different reaction temperatures. The samples 

synthesized at 100 °C and 140 °C exhibited the amorphous characteristics. As the reaction temperature increased to 

180 °C and 220 °C, two major peaks at 33.17° and 55.41° corresponding to (100) and (110) planes were observed 

clearly.21 These diffraction peaks are in good consistence with the standard pattern (JCPDS card, no. 29-0914), 

suggesting that hexagonal MoSe2 is successfully prepared in our experiment. The broad diffraction peaks indicate 

the poor crystallinity of the as-prepared MoSe2, no impurities are detected, which further confirms the high purity 

of the samples. Besides, the formation of two-dimensional hexagonal array (2H-MoSe2) can be further confirmed 

by Raman spectroscopy with the excitation laser line at 532 nm (Figure 3a). The characteristic signatures of 

Raman peaks at 166.88, 239.74, and 283.75 cm-1 are attributed to the E1g, A1g, and E2g
1 modes of 2H-MoSe2, 

respectively.22, 23  

Raman and PL spectrum were further utilized to implement the thickness variations of MoSe2 nanosheets at 

larger length scales.22, 23 Figure 3a indicates the temperature-dependent evolution of the thickness of the nanosheets. 

The most identifiable peak located at 244 cm−1 is A1g mode for bulk MoSe2 and the shift of A1g mode is mainly 

attributed to the changes in the thickness of nanosheets. 24 The peak of PL spectra shown in Figure 3b located at ~ 



755 nm corresponds to a band gap of 1.64 eV and agrees well with previous reported 1.4-1.6 eV for MoSe2 

nanosheets. 25 With the reaction temperature increases, the intensity of the peak augments, which also implies an 

increase in the thickness of the nanosheets of MoSe2 samples. 

X-ray photoelectron spectroscopy (XPS) analysis was employed to reveal the chemical compositions and 

chemical state of the element of MoSe2. The Mo 3d XPS spectrum displays two peaks at approximately 228.6 and 

231.1 eV, which are corresponding to Mo 3d3/2 and Mo 3d5/2 of Mo (IV) state in MoSe2, respectively, and they are 

similar to the positions for MoS2 and MoSe2-based systems in previous reports.26 The peaks at 232.1 and 235.7 eV 

belonged to Mo (VI) in residual MoO3.27 The Se 3d spectrum can be divided into Se 3d5/2 and Se 3d3/2 with peak 

positions at approximately 54.1 and 55.2 eV, respectively, which are assigned to the -2 oxidation state of Se in 

MoSe2. 28 

3.2. Formation Mechanism of Hollow Structures 

Based on these observations, an aggregation mechanism for the formation of hollow MoSe2 spheres is proposed. 

The formation mechanism of the present structures was assigned to the bubble-assisted method along with Ostwald 

ripening process, with reference to the preparation of monodispersed ZnSe or ZnO hollow microspheres.17,20 In our 

reactions, when N2H4·H2O was added to the reaction system, N2H4·H2O would work as not only the reductant to 

reduce MoO3 and Se to Mo4+ ions and Se2- ions, respectively, but also the source of N2 bubbles.20 Upon the 

MoOx-EDA precursor dissolved in the N2H4·H2O solution, Mo4+ ions are further formed and NH3 arised.29,30 When 

the reaction temperature is 100°C, the gas will not be released due to the low temperature. After Mo4+ ions and Se2- 

ions reacted to form MoSe2 small nanocrystals, these monomers would aggregate together to form 3D microspheres 

driven by the minimization of the system energy.20 Upon the reaction temperature arrived at 140°C, the increased 

temperature speeded up the reaction rate. The N2 and NH3 bubbles were gradually released, some bubbles adsorbed 

at the surface of the growing nanospheres (inner spheres), other MoSe2 nanocrystals aggregated around the bubbles 



to form the shells, thus, the yolk-shell spheres (MYS) formed. At the same time, some shallow sheets appeared at 

the surface of shell, as illustrated in Scheme 1. With the reaction temperature increasing to 180°C, the rate of 

reaction was further accelerated, lots of N2 and NH3 bubbles were released before MoSe2 nanocrystals aggregated, 

and these bubbles provided the aggregation center, small MoSe2 nanocrystals would aggregate around the 

gas-liquid interface between bubbles and H2O, leading to the formation of MoSe2 hollow spheres.17 Meanwhile, 

due to the Ostwald ripening effect, smaller-sized nanocrystals would dissolve to form larger nanosheets, plentiful 

large sized ultrathin nanosheets appeared at the surface of MoSe2 hollow spheres. Thus, the MoSe2 hollow 

nanospheres (MHS-1) formed (Scheme 1). Finally, when the sample prepared at 220 °C, the reaction rate is higher 

than that under the 180 °C condition, resulting in the thicker and larger of the crystalline nanosheets, while the 

hollow structure of MoSe2 nanospheres (MHS-2) is nearly unchanged, compared to MHS-1. 

Generally, the above phenomena proved that the reaction temperature has a significant effect on the internal 

structure of MoSe2 nanospheres. Alternatively, the increased temperature accelerated the velocity of gas release, 

aggregation process, the small crystals dissolution, and the large crystals formation. Thus, the structure of the 

internal cavity and the size of the nanosheets differ greatly with the aggrandized temperature.  

3.3. BET Analysis 

The nitrogen adsorption-desorption isotherms of MHS-1 was shown in Figure S2. As shown in Table 1, the BET 

surface areas of these samples are 2.1 m2 g−1 for MSS, 17.9 m2 g−1 for MYS, 66.5 m2 g−1 for MHS-1 and 41.9 m2 

g−1 for MHS-2, respectively. To the best of our knowledge, MoSe2 samples in our experiments have higher surface 

area than previously reported works.6, 17 It is generally acknowledged that materials with a high specific surface 

area could have more active sites and the distribution of active sites is more uniform. Taking it into consideration, 

we surmise that the hollow nanospheres with higher BET surface area could enhance the electrocatalytic activity.   

3.4. Electrochemical Performance for LIBs  



The MoSe2 nanospheres were explored as the anodes for LIBs to exhibit their preeminent application. Figure 4a 

displays the CV curves of MHS-1 electrode for the first three cycles, which ran in a voltage range of 0.01–3.0 V at 

0.1 mV s−1. The multipeak features of the CV curves demonstrates that the reaction of the MoSe2 hollow 

nanosphere is a multi-step process. In the first cycle, the discharge peaks are located at 1.62 V, 1.20 V and 0.59 V, 

while the charge peaks at 1.96 V and 2.23 V. The reductive peak at 1.62 V relates to the insertion of Li into the 

layered structure of the MoSe2 hollow nanosphere to form LixMoSe2.31 The cathodic peak at 1.20 V and 0.59 V 

indicates the reduction of LixMoSe2 to Mo and LiSe2, simultaneously, the solid electrolyte interface (SEI) film 

formed.32 In the oxidation cycle, two peaks located at 1.96 V and 2.23 V corresponding to the conversion reaction 

of Li2Se and Mo to MoSe2, respectively. In the following profiles, the anodic peak at 0.59 V disappears, and 

generally shifted to a higher voltage at 1.82 V and 1.23 V, respectively, while the oxidation peaks remained at 1.96 

V and 2.23 V. Importantly, both the reductive and oxidative peaks in the CV profiles overlap well, demonstrating 

the excellent stability and reversibility of the MHS-1 electrode. 

The galvanostatic discharge-charge curves of MoSe2 for the selected cycles (1st, 2nd, 10th, 50th and 70th) at a 

current density of 100 mA g−1 are showed in Figure 4b. A high discharge capacity of 1287 mA h g−1 is surveyed at 

the first discharge with an initial irreversible loss of about 32%. The low initial coulombic efficiency (CE) is mainly 

gave rise to the formation of the SEI film and degradation of electrolyte at the interface between the electrolyte and 

the electrode.33 

Comparative cyclic behaviors of different MoSe2 electrodes were investigated under a current density of 100 mA 

h g−1 (Figure 4c). It is obvious that MHS-1 shows the optimal cycling stability among the samples. The specific 

discharge capacity of MHS-1 gradually increased after the 2nd cycle and reached 1435 mA h g−1 after 100th cycles 

with a coulombic efficiency of ≈ 100%. In comparison, the MSS exhibits poor cycling stability with the continuous 

decreasing cyclic performance and the cyclic performances of MYS and MHS-2 are evident weaker than MHS-1.  



To further investigate the electrochemical performances of MoSe2 electrodes, the rate capabilities of both 

samples were compared. Figure 4d demonstrates the rate capability of four MoSe2 electrodes at an increasing rate 

of 100, 200, 500, 1000, 2000 and 5000 mA g−1. As can be seen clearly, the MHS-1 manifests outstanding high-rate 

performance. The specific capacities of the MHS-1 electrode are nearly 621 and 502 mA h g−1 at the current 

densities of 2000 and 5000 mA g−1, respectively, which are much higher than for the MSS, MYS, and MHS-2. The 

long-range cycling performance of the MHS-1 electrode is showed in Figure 4e. A high discharge capacity of 652 

mA h g−1 is immediately resumed after 500 cycles at 1000 mA g−1 (≈86% capacity retention), suggesting the 

eminent cycling stability.  

The lithium-ion diffusion coefficient (DLi+) can be calculated on the basis of the Randles-Sevcik Equation: ip = 

(2.69 × 105) n3/2SD1/2Cν1/2 (1). Since the prepared and tested routine of the two electrodes are the same, the 

Randles-Sevchik equation can be further simplified as: ip= Av1/2 (2), in which A is considered as the apparent Li+ 

diffusion coefficient in the cells and can be calculated by fitting the linear curves in Figure 5. Speculated from the 

results, the apparent Li+ diffusion coefficient of MHS-1 is much higher than that of MSS. 

To gain further insights into the electrochemical behaviors of the MoSe2 electrode, the EIS measurements was 

conducted. As shown in Figure S3, each sample exhibits a semicircle in the high frequency region and an oblique 

line in the low frequency region. Generally, the charge transfer resistance of the interface between the electrode and 

electrolyte could be inferred from the diameter of the semicircles. In this regard, MHS-1 possesses lower contact 

and charge transfer resistances, as the diameter of the semicircle in high frequency region for MHS-1 electrodes is 

smaller than other MoSe2 electrodes. 

Stable cycling of an electrode has strict requirements in terms of structural stability at the particle level. The 

surface morphologies of electrodes were investigated at the same cycling stages via SEM. No obvious cracks can 

be observed for the MHS-1 electrode after cycling, whereas others showed microcracks over the electrode surface 



(Figure 6 a1-d1 and a2-d2), suggesting that MHS-1 electrode has the highest mechanical capability to tolerate the 

stress during charge–discharge cycling. MoSe2 electrodes before (a3-d3) and after (a4-d4) 10 cycles at the current 

density of 200 mA g-1 was examined with SEM and there is no obvious structural change after cycling. As the SEM 

micrographs in Figure 6 demonstrate, we can see a thin solid electrolyte interphase (SEI) film on the sample surface 

after 10 cycles. 

The optimal LIBs performance originates from the following factors: (1) High-density interconnected ultrathin 

MoSe2 nanosheets are conducive to accommodate Li ions with lower diffusion resistance and increase the capacity 

for Li ions. (2) Hollow nanostructure with large surface area provides sufficient area for contact between electrolyte 

and anode material and reduces the distance for ions intercalation/de-intercalation. (3) The internal void space 

makes for maintaining the stability of the electrode structures when accommodating large volume changes caused 

by electrochemical reactions. Therefore, the outstanding LIBs performance of MoSe2 hollow nanospheres is 

attributed to the high-density interconnected ultrathin nanosheets, together with large surface area and internal void 

space of the unique hollow structure. 

3.5. HER Reaction  

The HER electrocatalytic activities of the MoSe2 products are measured in a 0.5 M H2SO4 electrolyte by 

applying a standard three-electrode configuration. The polarization curves (Figure 7a) shows that MHS-1 electrode 

exhibits the onset overpotential of 150 mV (vs RHE). The onset overpotential of MSS, MYS, and MHS-2 is 200 

mV, 190 mV and 170 mV, respectively. As a comparison, pure bulk MoSe2 shows onset overpotential above 200 

mV (vs RHE). The MHS-1 electrode required a low overpotential of 242 mV at the cathodic current density of 10 

mA cm−2.  

The Tafel slope (Figure 7b) derived from the polarization curves is directly related to the rate-determining step in 

the whole HER process.36 The Tafel slopes measured from these MoSe2-based samples are in the range of 59-102 



mV dec−1 which is smaller than bulk MoSe2 (120-190 mV dec−1). Among them, the MHS-1 show the lowest Tafel 

slope of 59 mV per decade, which indicates its fastest reaction kinetics. In addition, the Tafel slope is also applied 

to distinguish the pathways in the HER process in acidic electrolyte. According to previous publications, there are 

three possible reaction steps for the HER in acidic aqueous.  

+ -

ads 2

+ -

ads 2 2

Volmer step: H + e + cat H -cat + H O                        (1)                                          

Heyrovsky step: H -cat H + e H H O                  (2)                                

→

+ → +

ads ads 2

              

Tafel step: H -cat H -cat H                                    (3)                                               + →

 

Volmer is the rate-determining step in HER reaction at a Tafel slopes of about 120 mV dec−1, and Heyrovsky or 

Tafel reaction is the rate-limiting procedure when Tafel slopes in the range of 30 mV dec−1 and 40 mV dec−1. The 

Tafel slopes measured from these MoSe2 products are in the range of 59-102 mV dec−1 which suggests that the 

rate-determining step on our MoSe2 catalysts may be the Volmer-Heyrovsky or Volmer-Tafel mechanism.36-37  

The charge transfer resistances are also essential factors for high HER electrocatalysis activity except for more 

active HER catalysis sites.37 Figure 7d displays the electrochemical impedance spectroscopy tests at an 

overpotential of 180 mV. The lower charge transfer resistance means a faster electron transfer at the interface 

between electrocatalysts and electrolytes. Among these MoSe2 samples, the MHS-1 exhibited the lowest charge 

transfer impedance which indicates faster electrode kinetics during HER reaction.  

Furthermore, the long-term stability is another significant parameter of the electrocatalysts.38 As exhibited in 

Figure 6c, the cathodic current density displays a negligible degradation after a period of 18000 s under the 

operation of overpotential of 230 mV, indicating the excellent durability of MHS-1 toward HER. The MHS-1 

exhibited the best HER performance than other samples due to its internal void space, large ultrathin interconnect 

nanosheets, large surface-to-volume ratio and high porosity. These results are well coincident with the 

performances of LIBs. 



4. CONCLUSIONS 

In summary, we demonstrate the approach of MoSe2 hollow nanospheres via a facile in-situ gas bubble assisted 

solvothermal route. Under the synergetic effect of the ultrathin nanosheets and the unique structural advantages of 

hollow spheres, the electrochemical performances of MoSe2 products were greatly enhanced. As a consequence, 

MoSe2 hollow nanospheres exhibited a high reversible capacity of 1435 mA g−1 even after 100 cycles as LIBs 

anode. Moreover, the onset potential and Tafel slope of MoSe2 hollow nanospheres were lowered to 150 mV and 59 

mV dec−1 and owned a long-term stability for HER. It is worth mentioning that the case of the structure tailoring 

provided possibilities to further optimize the properties of selenium-based materials with enormous potential for 

future multipurpose application. 
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Figure 1. Illustration of the morphologies for MoSe2 samples prepared at different temperatures. SEM and TEM 

images of MoSe2 samples at different temperature (a, e) MoSe2 solid nanospheres (MSS) 100 ℃, (b, f) MoSe2 

yolk-shell spheres (MYS) 140 ℃, (c, g) MoSe2 hollow nanospheres (MHS-1) 180 ℃, (d, h) (MHS-2) 220 ℃. 



 

Figure 2. XRD patterns of the as synthesized MoSe2 at different solvothermal temperature. MoSe2 solid 

nanospheres (MSS) 100 ℃, MoSe2 yolk-shell spheres (MYS) 140 ℃, MoSe2 hollow nanospheres (MHS-1) 

180 ℃, (MHS-2) 220 ℃. 

 



 

Figure 3. (a) Raman spectra, (b) PL spectra of MoSe2 samples. (c, d) XPS results of MHS-1. 



 

 

Scheme 1. Illustration of the MoSe2 Yolk-shell and Hollow Nanospheres Formation. 



Table 1: BET surface area and HER performances of MoSe2 samples. 

 

Sample SBET (m2 g-1) Tafel slope (mV/dec) Onset η/mV 

MSS 2.1 102 200 

MYS 17.9 80 170 

MHS-1 66.5 58.9 150 

MHS-2 41.9 68.5 190 

 



 

Figure 4. (a) CV curves of MHS-1 at 0.1 mV s−1, (b) GCD curves of MHS-1 for 1st, 2nd, 10th, 50th, and 70th 

cycle at 100 mA g−1, (c) rate performances of MoSe2 samples at current densities of 100, 200, 500, 1000, 2000 and 

5000 mA g−1, (d) cycling performances of MoSe2 samples at 100 mA g−1, (e) long-term cycling performances of 

MHS-1 at 1.0 A g−1. 



 

Figure 5. (a) CV scans at various sweep rates for LIB cells with (a), MHS-1, and (b), MSS electrodes, (c) the 

obtained A values with the ip= Av1/2 relationship. 



 

Figure 6. Electrode surface morphologies. Digital camera photos (a1-d1) and SEM images (a2-d2) of surface 

morphology of electrodes after 10 cycles. Typical SEM images of MoSe2 electrodes before (a3-d3) and after  

(a4-d4) 10 cycles at the current density of 200 mA g-1. 

 



 

Figure 7. (a) Polarization curves, (b) Tafel plots, (d) EIS of MoSe2 samples, (c) Cycling stability of MHS-1 at an 

overpotential of 230 mV. 
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