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Abstract 

In the present work we have revisited the application of quantitative ultrasound imaging (QUI) 

to cellular hydrogels, by using the reference phantom method (RPM) in combination with a 

local attenuation compensation algorithm. The investigated biological samples consisted of 

cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to 

calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which 

was then used to generate parametric images of local cell density. The image resolution used 

for QUI and its impact on the relative IBC error was also investigated. Another important 

contribution of our work was the monitoring of PC12 cell proliferation. The cell number 

estimates obtained via the calibrated IBC compared well with data obtained using a 

conventional quantitative method, the MTS assay. Evaluation of spectral changes as a function 

of culture time also provided additional information on the cell cluster size, which was found 

to be in close agreement with that observed by microscopy. Last but not least, we also applied 

QUI on a 3D printed cellular construct in order to illustrate its capabilities for the evaluation 

of bioprinted structures.  

Keywords: Quantitative ultrasound imaging, biomaterial characterization, cellular hydrogels, 

bio-printing.  
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Statement of significance  

While there is intensive research in the areas of polymer science, biology, and 3D bio-

printing, there exists a gap in available characterisation tools for the non-destructive 

inspection of biological constructs in the three-dimensional domain, on the macroscopic 

scale, and with fast data acquisition times. Quantitative ultrasound imaging is a suitable 

characterization technique for providing essential information on the development of tissue 

engineered constructs. These results provide a detailed and comprehensive guide on the 

capabilities and limitations of the technique.  

Graphical abstract 

 

1. Introduction 
 

Bio-printing and its application to tissue engineering is a fast growing field, as it allows 

researchers to recreate in vitro 3D biological constructs that mimic those from natural origin,[1] 

with the prospect of being implantable into living beings.  As such, there is intense research in 

areas such as cartilage regeneration,[2] wound healing,[3] neural tissue models,[4] [5] and 

tissue vascularization[6] among others. In order to recreate 3D biological constructs, cells are 

encapsulated into printed or cast hydrogels, and matured over time until the construct possess 

the desired properties. A common challenge across the related areas, is the need to monitor the 

spatiotemporal evolution of 3D cellular constructs over time with a non-destructive and non-

invasive approach. Relevant biological characterization features of the construct are for 

example, the monitoring of cell migration, changes in cell cluster size, cell proliferation, and/or 
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differentiation. Biological constructs require sterile conditions during their culture and 

evaluation, and ideally, should be measured in situ without sample conditioning. Therefore, a 

characterisation tool which allows rapid monitoring of the biological construct is needed, either 

for quality control purposes or for the evaluation of diverse exogenous inputs for enhancing 

some biological factors. These may include monitoring of cell stimulation, effects of growth 

factors or drug screening.  

Biological characterization can be in the form of nominal values, or as 2D or 3D parametric 

images. Techniques with imaging capabilities have an additional level of information, as they 

allow the spatial visualization of biological properties within the construct. In terms of  imaging 

, a range of non-invasive techniques are available.[7] [8] [9] Comparison of the imaging 

capabilities of diverse non-invasive techniques can be found elsewhere. [7] [10] Based on its 

non-destructive character, optical microscopy, including all its variants such as confocal 

microscopy, are considered the gold standard for the assessment of biological constructs.[10] 

Optical characterisation offers the possibility of qualitative and quantitative analysis of cells 

within constructs, though it becomes challenging at high cell densities or in highly scattering 

samples. The use of optical clearing protocols has improved the scattering limitations.[11] 

Other drawbacks are the limited depth of view (below 1 mm) [10] and the use of fluorescent 

markers which may be detrimental or destructive to living cells. Spectroscopic methods offer 

an alternative to optical characterization, with the advantage that they are non-destructive and 

label-free.  Fourier transform infrared spectroscopy and imaging are widely used for cartilage 

evaluation, via the quantification of collagen, water and proteoglycans.[12] [13] [14] Raman 

spectroscopy allows a much more detailed spectral analysis without the interference of water. 

Raman spectroscopy has been used successfully for probing cell differentiation in several 

biological systems.[15] [16] In a recent study, the Raman technique was proven to reveal 3D 

images of individual cells within hydrogels at high resolution, with the possibility to isolate 

different intracellular structures as a function of their composition.[17] Other non-invasive 

imaging techniques are MRI and µ-CT, however they require the use of markers to enhance 

image contrast and discriminate investigated tissue from the background.[7] Based on their 

resolution, confocal microscopy, and more recently, Raman are therefore some of the most 

widely used characterization techniques to follow single cell behaviour and differentiation. The 

downside to the high resolution is the image acquisition time, as it becomes impractical when 

evaluating 3D constructs in the millimetre range. Hence, it would be ideal to not only monitor 
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specific regions of the construct over time, but also in the macroscopic scale, on combination 

with a relatively narrow spatial resolution.  

A viable characterisation technique for proving small spatiotemporal changes in 3D constructs 

can be found with ultrasound. A number of excellent reviews summarise most of the work 

carried out with ultrasound in the area of tissue engineering and related fields, with examples 

of applications in in vitro and in vivo studies.[7] [18] [19] [20] [21] One of the advantages of 

ultrasound is the possibility to extract quantitative information from the time and frequency 

domains of the measured radiofrequency (RF) signals, in a label-free and non-destructive 

approach. Analysis of the ultrasound radiofrequency (RF) signals in the time domain, such as 

the hydrogel thickness and speed of sound, are important as they are related to the mechanical 

properties of the construct.[22] [23] [24] Photoacoustic imaging (PAI) is a variation of 

ultrasound, that is under rapid development in biomedical applications.[25] [26] PAI is based 

on the ultrasonic detection of acoustic waves induced by the absorption of pulsed or modulated 

laser radiation (e.g. near infrared). While it is a measurement of high specificity, it requires the 

interrogated tissue to have a different absorption coefficient to the surrounding tissue or 

hydrogel matrix. This requires the presence of endogenous markers such as melanin or 

haemoglobin, or the use of exogenous markers such as nanoparticles or dyes.[27] [28] [29] The 

benefit of PAI over optical imaging is that it overcomes the optical diffraction limit in terms of 

imaging depth, where the image resolution and penetration depth are given by the ultrasound 

transducer’s properties.[30] Other advanced techniques, such as ultrasound elastography, 

involves the use of a specific sequence of ultrasound pulses allowing the spatial mapping of 

the mechanical properties within a construct.[31, 32] [33] 

In combination with conventional greyscale imaging, spectral analysis of high-frequency (>20 

MHz) ultrasound has been useful to detect a wide range of key parameters relevant to biological 

properties. This approach is termed as quantitative ultrasound or quantitative ultrasound 

imaging (QUI) when generating parametric images in 2D or 3D. QUI differentiates from 

conventional ultrasound imaging since the processed RF signals are power and attenuation 

compensated, and are system and user independent. QUI is less specific than PAI, but considers 

the scattering property of the construct as a whole. The use of quantitative procedures allows 

the sensing of sub-resolution scatters such as cells. Changes in the extracellular matrix 

composition due to tissue maturation are also possible to detect. For instance, single point 

attenuation measurements have been used for monitoring cartilage development.[34] 

Backscattered sound (power and attenuation compensated) has been proven to be linearly 
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dependent on the cell density of cell-laden hydrogels. [35] [36] Mid-band-fit and spectral slope, 

which are other parameters to interpret backscattered spectra, have been used to detect changes 

due to cell death.[37] [38] Monitoring of calcium deposition by ultrasound, as an indirect 

approach to detect osteoblast differentiation in hydrogels, has also been demonstrated. [39] [40] 

The use of theoretical models to relate the spectral shape to the scatter morphology and 

concentration is another broad field of research.[41] [42] [43] For instance, spectral modelling 

has been used for single cells,[44] diagnosis of tumour cells, [45] [46] human thyroids, [47] 

and for the diagnosis of red blood cells, in terms of coagulation.[48] [49] One of the drawbacks 

in QUI, and perhaps the limiting factor for its application in tissue engineering, is the trade-off 

between image resolution and bias error on the derived ultrasound estimates. The latter 

originates from the spectral analysis, as it is done by the averaging of RF signals over specific 

volumetric dimensions within the sample, or in terms of pixel dimensions when referring to 

single scanning planes.  

The goal of this study was to further develop the application of QUI to cell-laden hydrogels, 

with focus on the spectral cell resolution, and the validation of ultrasound in comparison to a 

common biochemical assay for cell density estimation. With the aim to use QUI to monitor 

spatiotemporal changes in small 3D constructs, we exploited the capability of QUI in 

conjunction with precision stage controllers to follow specific cross-sectional imaging planes 

of the construct over time. In addition to cell density estimates, we also monitored the evolution 

of cell growth in terms of spectral changes in relation to scatter size. Finally, we also applied 

our QUI procedure to bio-printed scaffolds as an illustration of the capabilities of ultrasound 

for characterisation in the field of bio-printing. As biological samples, we have investigated 

cell-laden type I collagen hydrogels with PC12 neural cells, in the concentration range from 

0.5-8.0x106 cells/ml. In addition, gelatin methacryloyl hydrogel in combination with human 

dermal fibroblast were used for creating a 3D bioprinted construct. The choice of collagen was 

due to its ease of preparation and consistent hydrogel properties, while PC12 cells were used 

as a model system due to their ease of harvest, rapid proliferation, and clustering behaviour 

during growth.  
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2. Materials and methods 

2.1 Cell-laden hydrogel preparation 

 

PC12 cells were kindly supplied by Professor Mark Wilson at the University of Wollongong 

and were originally sourced from the ATCC (USA). For the preparation of PC12 cell-laden 

hydrogels of specific cell densities, 0.5-8.0x106 cells/ml, cells were first manually counted 

using a haemocytometer to yield a stock solution. Known numbers of PC12 cells where then 

distributed into centrifuge vials, centrifuged and the resulting cell pellet was resuspended in 

the collagen precursor solution. The hydrogel precursor solution was made from rat tail 

collagen type I (Invitrogen) at a concentration of 2 mg/ml in DMEM and neutralised with 0.1 

N NaOH. The precursor solution was kept on ice to avoid crosslinking. Once PC12 cells were 

finely suspended in the hydrogel precursor (e.g. without visible aggregates), 110 µl aliquots 

for each cell density were distributed into moulds. The moulds consisted of a 2 mm thick acrylic 

plate with 3 wells of 8 mm diameter, attached to the bottom of 6-well culture plate.  The culture 

plates were transferred immediately to an incubator at 37°C for 1 hour to allow crosslinking to 

take place. Crosslinked hydrogels were then gently flooded with cell proliferation media (GM, 

DMEM containing 10% horse serum and 5% foetal bovine serum and penicillin/streptomycin) 

and brought to room temperature before ultrasound measurements were taken. An example of 

the cross-linked cell-laden collagen samples prepared for this work can be seen in Fig. 1d.  

2.2 Bioprinted hydrogel preparation  

 

Gelatin methacryloyl (GelMA) at a concentration of 15% w/v was dissolved in the complete 

cell culture medium for Human dermal fibroblast (HDF) cells. HDF cells, obtained from Cell 

Applications, Inc. (USA), were cultured as previously reported.[50] Prior to cell printing, LAP 

photoinitiator was added to the ink with a final concentration of 0.06% (w/w), and HDFs were 

added with a final cell density of 1.0×106 cells/ml. Cell printing was conducted using a 

pneumatic extrusion-based 3D printer (3D Bioplotter, EnvisionTEC). A 3D cuboid model was 

designed through SolidWorksTM (Waltham), and exported as an STL file and sliced into layers 

at the Bioplotter RP® software. The 3D HDFs-containing constructs were fabricated layer by 

layer in a dimension of 10mm ×10mm×2mm (W·L·H) with 0°/90° crosshatch pattern. A set of 

printing parameters were employed, including ink cartridge temperature (18°C), platform 

temperature (13°C), plotting speed (10.0 mm/s), pneumatic pressure (3.6 bar), disposable 

needle tip (200 µm), and strand spacing (1.0 mm). After printing, the 3D printed structures 
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were chemically crosslinked using a UV light of 400 nm wavelength (13.2 mW/cm2 for 60 

seconds). The resulting bio-printed construct can be seen on Fig. 1c.  

A portion of the HDF-GelMA formulation used for bioprinting was used to prepare a cast 

hydrogel, serving as the reference phantom for the bioprinted sample. The same crosslinking 

conditions were used as for the bioprinted sample. In order to hold the hydrogel on the surface, 

while allowing in it swell freely, the hydrogel was crosslinked around a small hook attached to 

the sample holder surface.  

2.3 MTS assay for cell density estimation  

 

The overall metabolic activity of encapsulated cells in both cell density calibration and cell 

proliferation assays was estimated using the CellTiter 96® AQueous One Solution proliferation 

assay (MTS, Promega Corporation). This colorimetric method utilises conversion of the 

tetrazolium compound MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) by metabolically active cells into a coloured formazan product. 

The product is soluble in culture media and therefore diffuses out of scaffolds and can be 

quantified by measuring absorbance of the culture media at 490 nm. This is directly 

proportional to the number of metabolically active cells. Control culture media and hydrogels 

without cells were used to correct for background absorbance. Acellular and cell-laden 

hydrogel samples were transferred from the moulds into 48 well plates, with 200 l of GM per 

hydrogel. 60 µl of MTS substrate solution was added per well and incubated for 2 hours at 

37°C in a humidified cell culture incubator. After mixing, 100 µl aliquots were transferred to 

96 well plates for reading of absorbance at 490 nm using an Omega FluoStar plate reader. As 

control MTS measurements, the absorbance readings from equivalent media that had been 

incubated with acellular hydrogels (in triplicate) was subtracted from the measured absorbance 

values to yield the net MTS absorbance.  

2.4 Ultrasound setup  

 

The ultrasound setup consisted of a custom-built system made of modular components, similar 

to that previously reported.[23] The setup was installed inside a biological safety cabinet with 

the exception of the oscilloscope, as shown in Fig. 1a.  The ultrasonic probe (Fig. 1b) consisted 

of a 50 MHz single-element focused ultrasound transducer (PT-50-15-6; Toray Engineering). 

The focal point was calculated to be 36 and 127 µm in the axial and lateral dimensions, 
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respectively. Calculations were based on the measured pulse length, acoustic wavelength and 

focus geometry (Table S1, Fig. S3a), and using previously reported equations (Eq. S22 – 

S25).[51] The measured depth of view was 2.1 mm (Fig. S3c), corresponding to the focal zone 

within the -6 dB amplitude interval. The frequency response investigated corresponds to the     

-6 dB amplitude interval of the transducer, ranging from 14.3 – 47.8 MHz, measured at the 

focal point on a flat reflector (Fig. S3b). Further transducer specifications are listed in Table 

S1. To avoid cross contamination, the transducer was equipped with a protective sleeve shown 

in Fig. 1a. The protective sleeve consisted of a plastic shaft with plastic wrap enclosing the 

lower end. The sleeve was filled with distilled water to provide an acoustic path between the 

transducer and the cell media, and was sterilized with 70 % ethanol prior to use. Controlled 

and precise movement of the transducer was achieved using a 3-axis precision stage positioner, 

configured for 10 μm resolution (LSM050A; Zaber). The stage positioner was controlled by 

custom-made software (The Qt company, C++) with feedback on the absolute coordinates. The 

sample holder consisted of a 3-point leveling table, ensuring an orthogonal transducer to 

sample arrangement. The leveling table also featured a fitted frame to the culture well plates in 

order to implement an imaging coordinate system. Due to the dimensions of the transducer and 

sleeve, 6-well culture plates were used in this work. Because of the stage positioner range (50 

mm) and exposure of biological samples to non-physiological conditions, only one sample, in 

triplicate, was set up per culture plate. The samples were kept at room temperature for 1 hour, 

including the cooling down period. Ultrasound radiofrequency signals (RF) were generated 

and collected by a pulse receiver (5073PR; Olympus). The pulse-receiver settings for pulse 

repetition frequency, energy and damping were set in all cases to 1 kHz, 2 µJ and 50 Ω, 

respectively. The gain was set to +15 dB for power measurements, and +35 dB for imaging.   

A high resolution 12-bit oscilloscope (HDO4032; LeCroy) was used to digitize and store the 

data, at a sampling frequency of 2.5 GS/s. The digitized RF signal is the result of 160 averaged 

scans. Signal processing was done separately using custom-made MATLAB scripts 

(Mathworks). 
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Fig. 1. a) Photograph of the setup used in this work. On display is the focused transducer fitted 

with a protective sleeve, a 3-axis positioning system, a 3-point levelling table, and the 

ultrasound pulse/receiver control unit. The oscilloscope was placed outside of the biological 

safety cabinet. b) Photograph of the transducer’s active element. c) A photograph of the 

prepared printed hydrogel measured in this work. The scale bar corresponds to 250 µm. d) Top 

view photograph of a 6-well culture plate illustrating the cell-laden hydrogels measured in this 

work. The hydrogels were immobilised at the bottom of the well, with an acrylic frame to 

define the sample diameter. The scale bar corresponds to 8 mm.  

2.5 Signal processing  

 

The backscattering coefficient (BSC) was calculated following the reference phantom 

method.[52] [53] The reference phantom was measured rather than being modelled. For the 

PC12 cell-laden constructs, the reference phantom had a cell density of 4.0x106 cells/ml, 

chosen arbitrarily from one of the three replicates prepared. The reference phantom procedure 

was repeated for each of the investigated data sets.  In the case of the bioprinted hydrogel, the 

reference phantom consisted of the analogous cell-laden cast hydrogel. See Appendix 2 for all 

formulae and diagrams used for the signal processing. Briefly, the reference phantom thickness 

was calculated following our original approach (Fig. S1, Eq. S1, S2), which was then used to 

calculate the speed of sound (Eq. S3) as proposed previously.[54, 55] Attenuation 

measurements were done by the substitution method (Eq. S4). [55] [56] The resulting 

attenuated spectra was then fitted with a quadratic function within the -6 dB interval, to yield 
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the regression coefficients as a function of frequency (Eq. S5). For calculating the 

backscattering coefficient of the reference phantom (BSCR, Eq. S6), gated RF signals were 

converted to the frequency domain by the use of Hanning-gated Fourier transforms (FT).[57] 

[36, 58] All FTs were zero padded to 12502 points. The FT in amplitude shown in Fig. S3a and 

S3c has been rescaled to its actual amplitude by a factor from dividing FT length by the number 

of RF points. Two gate lengths were investigated: 0.3 and 0.6 mm, corresponding to a pulse 

length (PL) of 8 (8.26) and 16 (16.53) units, respectively. The PL is calculated by dividing the 

gate length by the transducer’s axial resolution. The gate overlap was 72.4 and 83.9 % for 16 

and 8 PL, respectively. Based on the sampling frequency of 2.5 GS/s and the speed of sound 

in water, a gate length of 0.3 and 0.6 mm correspond to a RF segment of 504 and 1008 points, 

respectively. The normalised power spectra (NPS, Eq. S7) was determined using the single 

point attenuation correction.[59] Note that the power ratio is done between the reference 

sample and the reference power spectrum corresponding to the same relative distance from the 

gate centre or reflector to the transducer. The reflection coefficient (Eq. S9) was 0.255, 

corresponding to the interface between polystyrene culture plate and water. After averaging all 

lateral RF scans, the BSCR per gate, as a function of frequency was then calculated from the 

NPS, including gate length, relative distance to transducer, and a constant related to the FT 

gating function.[36] [58] [60] Note the relative distances between gate depth, hydrogel 

thickness and water path (Fig. S2, Eq. S8). For calculation of the backscattering coefficient of 

the sample (BSCS), the local attenuation was first computed using the spectral difference 

method (Eq. S10).[52] [61] [62] The BSCS per gate, per averaged RF, as a function of 

frequency was calculated as previously described (Eq. S11).[52] [53] Note that in this case, the 

power ratio is done between the sample and the RPM for each gate depth. The BSCT is the 

averaged BSCS for all intervening axial gates and lateral pixels (Eq. S12, S13). To extract the 

integrated backscattering coefficient (IBC) per gate and per averaged RF, the BSCS spectra 

was integrated within the -6 dB interval (Eq. S14). The total IBC (IBCT) was calculated by 

averaging IBC for all RFs, and all gates (Eq. S15). See further details in Appendix 1 and 2 for 

performing the above mentioned measurements.  

 

Size modelling was performed by converting experimental BSC into form factor units (Eq. 

S17), and comparing them with the modelled form factors (FFs). The FFs were modelled using 

the Anderson model,[63] in which cells are considered as fluid spheres. Scatter size radii was 

modelled from 1 to 70 µm, in 1 µm steps. Modelling parameters related to cell properties were; 

speed of sound: 1523 m/s, density: 1.18 g/ml. Values were taken from the PC-3 epithelial cell 
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line as indicative values [64] Before size modelling, BSC spectra were filtered by excluding 

those with IBC below 0.8x10-4 sr cm-1.The search for the closest FF that best describes the BSC 

spectra was done by the minimum averaged squared difference (MASD) approach (Eq. S16-

18).[60] The goodness of fit between BSC and its FF given by MASD was then tested by 

calculating the coefficient of regression R2 (Eq. S19-21).[65] The procedure was repeated for 

each of the BSC spectra associated with each of the image pixels. Only modelled diameters 

with regression coefficients between 0.8 and 1 where chosen for consideration. Diameters 

associated to the excluded spectra were replaced by zeros. 

  

2.6 Image formation  

 

A summary of the signal processing steps and image formation are illustrated in Fig. 2. Upon 

ultrasound scanning over the cell-laden hydrogel, RF signals enclosed in the ROI were 

converted into the frequency domain by the use gated FTs. After laterally averaging a suitable 

number of FTs per gate and including corrections for power, diffraction, attenuation and 

geometrical considerations, the BSC and IBC per pixel could be determined. Parametric IBC 

images were then constructed, based on a coloured intensity index. Following image smoothing 

procedures, the final IBC image shown in Fig. 2 could be achieved. Smoothing procedures 

consisted of expanding 5 times the data array in the lateral and axial dimensions, followed by 

a moving average of 5 units in both dimensions. Due to the large variations of ultrasound 

estimates within a ROI, ultrasound images are best illustrated on a logarithmic scale. A similar 

procedure was done for generating images of local attenuation (not shown), cell density and 

scatter size. In the case of greyscale images, the envelope of the unprocessed RF signals was 

used to generate grey coloured intensity index. The greyscale images are presented without 

applying smoothing procedures.  

For imaging PC12 cell-laden construct, consecutive RF were spaced by 30 µm, corresponding 

roughly to a quarter of a beamwidth (e.g. 127 µm). A total of 100 consecutive scans were taken, 

corresponding to a distance of 2.97 mm. In the case of the bioprinted construct, RF were spaced 

by 60 µm. A total of 200 consecutive scans were taken, corresponding to 11.94 mm. The same 

spacing was used between planes. A lateral RF averaging of 2 and 1 were used for a spacing 

of 30 and 60 µm, respectively. Details for performing the reference phantom measurements are 

provided in Appendix 1.  
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An important consideration is the height and depth of the ROI within the construct. The ROI 

height should not exceed the transducer’s depth of view, corresponding to the focal zone within 

-6 dB amplitude interval. The ROI depth is centred at the depth of focus, and the ROI height is 

defined by the travel range performed on power-height measurements. Care should be taken to 

position the ROI at a certain offset from rigid surfaces, where acoustic interferences occur. 

Acoustic interferences start to decrease when the distance to reflector is greater than half of the 

depth of view (see Fig. S4). The presence of artefacts should be evaluated experimentally as it 

is an interplay of the reflector material and thickness, as well as the focal distance to the 

reflector.  

 

Fig. 2. Overview of the procedure for quantitative ultrasound imaging. For a given ultrasound 

scan over a construct with scatters (e.g. cells), a portion of the acquired radiofrequency (RF) 

signals (region 2) are split into overlapping segments (e.g. gates). Following the conversion of 

RF segments into the frequency domain, the backscattering coefficient (BSC) for each gated 

RF segment can be determined. The gate length and the number of laterally averaged RF 

segments per BSC defines the image pixel size.  The numerical integration of BSC per image 

pixel yields the integrated backscattering coefficient (IBC). Finally, a colour-coded parametric 

image can be generated from the resulting IBC values. The greyscale and IBC images in display 

correspond to a PC12 cell-laden hydrogel of 1.0x106 cells/ml. The scale bar corresponds to 500 

µm. 
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2.7 Statistical analysis  

 

Values are expressed as their means ± SD where applicable. Details on sample population are 

provided in each section. Linear regressions of IBC, comparison of attenuation measurements 

and MTS to IBC relationship were performed with OriginPro (Originlab). Linear regressions 

for the spectral difference method was done using the polyfitzero function of first order. Bi-

exponential fitting of single point attenuation measurements was done using polyfitzero 

function of second order. The latter two were implemented in the custom-made MATALAB 

scripts.   

 3. Results  

3.1 Speed of sound and attenuation measurements 
 

The consistency of the prepared collagen hydrogels was evaluated by the measured speed of 

sound method as an indirect estimate of the hydrogel mechanical properties. The first 

consideration is the reproducibility of the cell-laden hydrogels used as the reference phantom, 

which was prepared with a cell density of 4.0x106 cells/ml. Three different reference phantoms 

were prepared, each corresponding to one of the calibrations investigated. The resulting values 

are listed in Table 1, presented together with the thickness and attenuation measurements 

performed on the respective reference phantom.  In terms of the variation of the speed of sound 

across one set (e.g. set 3), the average and standard deviation for the 5 different investigated 

cell densities (n=65, 13 each) was 1485 ± 3.5 m/s. The reference phantom thickness and fitted 

attenuation were calculated over all measured locations (n=40). With regard to the attenuation 

measurements, the spectral difference method (SDM, Eq. S10) was compared with a separate 

set of single point measurements (Eq. S5, S6) in order to validate its application within the 

investigated cell densities. An example of the fitted attenuation spectra for set 3 is shown in 

Fig. S5, or in terms of attenuation, at centre frequency as a function of cell density shown in 

Fig. S6. For comparison, the attenuation determined by SDM as a function of cell density is 

shown in Fig S7. Note that the attenuation determined is expressed as a differential relative to 

the reference phantom. In order to extract a single value per sample using the SDM, following 

ultrasound imaging and signal processing, the local attenuation image was averaged laterally 

and axially to yield a final single value. In both single point and SDM measurements, the same 

non-linear variation is present and appears to be characteristic for the evaluated interval. 
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Representation of both measurements (Fig. S8) yields a linear relationship (R2 =0.967) which 

validates the use of the SDM for the determination of local attenuation. 

 

Table 1. Summary of the speed of sound, thickness and attenuation properties of the prepared 

reference phantoms, together with results from the IBC calibrations of PC12 cell-laden 

hydrogels as a function of cell density. 

 Speed of sound 

RPM (m/s) 

Thickness 

RPM (mm) 

Fitted attenuation (RPM) IBC calibration 

C1 (10-2) C2 (10-2) R2 Slope (10-4) R2 

Set 1 1472.6 ± 1.9 2.12 ± 3.4x10-3 3.18 0.27 0.997 1.699 ± 0.058 0.995 

Set 2 1490.5 ± 2.5 2.35 ± 0.10 2.06 0.24 0.995 1.421 ± 0.029 0.998 

Set 3 1484.7 ± 2.2 2.23 ± 1.6x10-3 4.40 0.25 0.996 1.091 ± 0.021 0.998 

 

3.2 Ultrasound calibration of cell-laden hydrogels 
 

The relationship between backscattered ultrasound and PC12 cell density was examined in 

detail by performing 3 independent calibration sets. For each calibration, 5 different cell-laden 

hydrogels were prepared in two-fold cell density increase from 0.5-8.0 x106 cells/ml. For each 

investigated cell density, 3 replicate samples were analysed, with 100 measurements on each. 

An example of greyscale imaging of the investigated constructs is shown in Fig. 3a, together 

with optical images of the same construct in Fig. 3b.  

An example of BSC spectra measured on set 3 is shown in Fig. 4a, corresponding to the 

averaged BSCT (Eq. S12) for each cell density replica (n=100). The BSCT spectrum for an 

acellular collagen hydrogel is included as a dashed line. For ultrasound calibration purposes, a 

gate length of 16 PL and lateral averaging of 100 independent scans were used. Ultrasound 

calibration can also be expressed in terms of IBC as a function of cell density, as shown in Fig. 

4b for the three independent calibrations investigated. Linear regression in the form of y=ax 

between IBC and cell density (106 cells/ml) yielded the fitting slope, which can be used for the 

estimation of cell density from IBC measurements. The resulting fitting slopes are listed in 

Table 1. The final IBC to PC12 cell density relationship was (1.404 ± 0.031) x10-4 sr cm-1, 

expressed as the averaged slope and standard deviation. The IBCT of acellular collagen 

hydrogels was 1.04x10-5 sr cm-1 and was not considered for IBCT calibration as a function of 
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cell density. The IBC fitted slope was unaffected when including acellular hydrogels. The IBCT 

due to acoustic interferences was 8.69x10-6 sr cm-1, measured in water with the same settings 

and ROI location as with the hydrogels. 

 

 

Fig 3. Top row, Representative ultrasound greyscale images of the PC12 cell-laden hydrogels 

used for IBC calibration. The scale bar corresponds to 500 µm. Bottom row, representative 

optical microscopy images of the same samples. Scale bar corresponds to 100 µm. In both set 

of images, cell density increases from left to right, from 0.5-8.0x106 cells/ml. 
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Fig. 4. a) Representative BSC spectra within the -6dB frequency interval measured on the 

investigated cell-laden PC12 collagen type I hydrogels, expressed as the averaged BSCT 

(n=100) per investigated sample replica at each cell density. From bottom (black) to top (red), 

increasing concentration of PC12 cells from 0.5-8.0x106 cells/ml. BSCT spectrum for acellular 

collagen hydrogel shown in dashed line. b) Averaged IBCT (n=300) as a function of cell 

density, for each calibration set. Error bars indicating the SD for each cell density.  



16 
 

3.3 Effect of pixel size on the accuracy of IBC estimates   
 

Before the application of IBC slopes for estimation of the local cell density, a careful analysis 

of IBC as a function of pixel size was required. To carry out the study, the same data subset or 

region of interest (ROI) was processed by varying the pulse length (e.g. gate length) and the 

number of beamwidths (e.g. number of averaged lateral scans). In order to match the height of 

the ROI for both pulse lengths, the number of gates for the 16 PL case was reduced to 8 and 32 

for the 8 PL case. The latter yields a nearly identical ROI height and both centred on the same 

depth: 0.88 mm and 0.9 mm for 16 and 8 PL, respectively. The equivalent image representation 

of altering the pixel size is shown in Fig. S9, where it can be seen that the one processed at 8 

PL and 0.5 BW has the best resolution and optimum fidelity to the unprocessed raw image. No 

further improvement was achieved when using smaller pixel dimensions. Comparison of BSCT 

spectra processed with 25 BW but with different gate length is shown in Fig. 5a, where data 

processed at 8 PL appears to be smoothed with respect to the 16 PL BSC spectrum. The same 

procedure was repeated for each of the investigated cell densities. Following integration of 

BSC to all data, the resulting 3D plot can be seen in Fig. 5b. The relative IBC error is expressed 

as the relative variation with respect to the largest pixel size, which is 16 PL and 25 

beamwidths. To highlight, is the low relative error variation without exceeding 10% when 

using a pixel size of and 8 PL and 0.5 BW.  In terms of IBC error as a function of cell density, 

the data indicates a greater biased error for cell densities above 1.0x106 cells/ml. 
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Fig. 5. a) Averaged BSCT spectra corresponding to a cell-laden hydrogel of 1.0x106 cells/ml, 

processed with a pulse length (PL) of 8 (red) and 16 (black), with the same lateral averaging 

of 25 beamwidths (BW).  b) 3D plot of biased errors on IBCT as a function of the cell density 

and pixel size, expressed as the relative IBCT error with respect to a pixel size of 25 BW and 

16 PL. 

   

3.4 Cell density estimation as a function of PC12 cell growth 
 

Once the feasibility of performing quantitative ultrasound imaging at high resolution was 

corroborated, the monitoring of PC12 growth in collagen hydrogels was performed. Prepared 

cell-laden hydrogels had an initial cell density of 1.0x106 cells/ml. IBC based images where 

transformed into local cell density images by the application of the calibrated IBC to cell 

density relationship. Fig. 6a shows an example of a time course of cell growth, cultured for a 

period of 72 hours and imaged at 24 hour intervals. The image width corresponds to a 2.97 mm 

cross-section. All colour images are represented within the same colour index interval, in the 
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logarithmic scale from -1.6 to 1.2, corresponding to a cell density interval from 0.025-15.8x106 

cells/ml. The cell density uncertainty is given by the IBC standard deviation, which scales by 

(± c x0.01), where c is the cell density in 106 cells/ml. The use of a coordinate system allowed 

the monitoring of spatiotemporal changes during cell growth over the same or closely located 

scan planes. For example, see the centre sections in Fig. 6a, from 24 to 72 hour intervals.  For 

comparison, optical microscopy images of the same samples are shown in Fig. 6c. Another 

useful ultrasound data presentation in terms of overall cell density increase is shown in Fig. 6d. 

In this case, a single value of cell density per sample was determined by sampling in non-

correlated points as in the procedure for calibration (see Appendix 1), and averaging all values 

laterally and axially. Error bars indicate the cell density variation for the three replicates of 

each sample (n=300, 100 per replicate). Starting with 4 equivalent samples, every 24 hours a 

sample was removed for evaluation with the MTS assay. In Fig. 6d can also be seen the relative 

increase with respect to the 0 hour sample, in which the overall cell growth follows, on average, 

a steady 40 % increase every 24 hours. Visualization of averaged BSCT spectra is also useful 

as a qualitative indicator of morphological cellular changes occurring over culture time. Fig 6e 

shows the progressive overall increase of BSC over time, where interesting spectral features 

can be seen. In regard to morphological changes, the emerging peak in Fig. 6e is related to the 

increase in scatter size (Fig. 6c). The change of slope for the 72 hours growth (top spectrum) 

was assigned to the onset of cell death,[37] which is supported by the observation of a 

population of cells shrinking and degradation into cellular debris, indicating apoptosis (Fig. 6c, 

72 hour sample).  
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Fig. 6. a) Ultrasound cell density images of PC12 cells in collagen hydrogels as a function of 

culture time, from top to bottom, 0, 24, 48 and 72 h. Cell density corresponds to ± (colour index 
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x0.01) x106 cells/ml. b) Ultrasound images of scatter diameter determined from (a). Scatter size 

diameters in display are filtered for fitting coefficients R2 between 0.8 and 1.  In both images 

(a and b), scale bar corresponds to 200 µm. Images are best displayed on screen. c) Microscopy 

images of the same samples as in (a and b). Scale bar corresponds to 100 µm. d) Left axis; 

averaged cell density values per triplicate at 0 h (dots), 24 h (upper triangles), 48 h (lower 

triangles), 72 h (square). Right axis; overall increase in PC12 cell density expressed as the 

relative growth with respect to 0 h sample (dashed line). e) Spectral evolution of BSCT of PC12 

laden collagen hydrogels, from 0 to 72 hours of culture period, processed with 8 PL and 0.5 

BW. Spectra displayed from bottom to top corresponding to the time interval from 0 to 72 

hours, respectively.  

3.5 Scatter size estimation as a function of PC12 cell growth  

 

Similarly as done for the relative IBC error estimation, the averaged scatter diameter (Fig. S10) 

was tested as a function of pixel size and culture time. The average diameter represented in 

Fig. S10, is the average of the individual fitted diameters for each of the image pixels, 

accounting only for non-zero values (see section 2.5). The use of large lateral averaging (e.g. 

6.25 or 25 BW) followed by spectral fitting, was found to negatively affect the determination 

of scatter estimates, as spectral features cancelled each other. As a result, all spectra processed 

at wide BW yields a diameter of about 19-21 µm, despite the clear increase in scatter size at 

extended culture times (Fig. 6c). Larger diameters, but still without an accurate representation 

to the actual scatter diameter was found for 0.5 BW averaging. Small differences of scatter 

sizes were found when varying the PL from 16 to 8. Based on the latter findings, scatter size 

information is best expressed in the form of images where the local scatter variation as a 

function of time can be seen (Fig. 6b). In display is the corresponding cell cluster size given by 

the FF that best described the BSC spectral shape, applied to each of the image pixels. The 

colour index is expressed in the logarithmic scale for scatter diameters from 2 to 100 µm, 

corresponding to the blue to red interval, respectively. Note the resemblance of features 

between cell density and scatter size, and their similarity to optical images. Some examples of 

scatter size determination using FF can be found in Fig. S11, corresponding to 22, 50 and 98 

μm. Fitting examples taken from image 6b at 72 h of culture time. 
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3.6 MTS cell density calibration and cell growth monitoring 

 

Validation of the observed ultrasound results in terms of cell density estimation was performed 

using the MTS assay. Tested samples were the same cell-laden hydrogels used for calibration 

and cell growth experiments to allow for direct comparison of ultrasound and MTS estimations. 

The averaged net MTS absorbance values for each cell density for the three calibration datasets 

are shown in Fig. S12. In line with measured IBC values, the MTS follows a similar pattern in 

terms of the relative increase and differences between each dataset. It can be seen in Fig. S12 

that the overall absorbance values follow an approximately linear trend up to 4.0x106 cells/ml. 

During MTS assays, it was noted that the hydrogels retained part of the coloured product 

resulting from the conversion of substrate by metabolic cell activity. Therefore, the measured 

absorbance values are to be considered as a proportion of the total absorbance. The loss of 

linearity at high cell densities for sets 2 and 3 was attributed to the often observed lack of 

linearity of biochemical metabolic assays at high cell densities. Variations in measured 

absorbance values could also be attributed to a number of factors, such as the hydrogel 

permeability to MTS and/or the slower cell metabolic activity due to extended exposure to non-

physiological conditions during ultrasound analysis. In order to assess the relationship between 

IBC and MTS, only the linear interval from 0.5-4.0x106 cells/ml was considered. The 

relationship can be seen in Fig. S13, using the averaged values (n=3) for each measurement. 

Linear regression (Fig. S14) in the form of y=ax for the averaged MTS and IBC values for all 

datasets, yields a reasonable fitting coefficient (R2 = 0.956) with a slope of 2047.56.  The latter 

slope relates MTS to IBC conversion and is only applicable to the conditions used in this work 

due to the proportional measurement of MTS released from the hydrogels.  

Once the relationship between the MTS and ultrasound was determined using calibration 

curves of increasing cell number, a similar approach was applied to cell growth experiments. 

During MTS measurements of cell-laden hydrogels cultured over time (data not shown), it was 

noted that absorbance values were not consistent with the expected cell density from ultrasound 

measurements. Similar as with MTS calibration, the latter was attributed to the slower cell 

metabolic activity caused by keeping the cells under non-physiological conditions during 

ultrasound measurements. To overcome this issue, MTS monitoring of cell number as a 

function of culture time was done on separate samples prepared in parallel, under the same 

conditions, as those used for ultrasound measurements. The measured MTS values of this 

dataset were transformed into IBC, followed by cell density calculations using the conversion 
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slopes determined in sections 3.2 and 3.6.  The predicted ultrasound cell density estimates (Fig. 

6d), were normalized with respect to the 0 hour culture time, in order to allow comparison 

between these datasets. A comparison of cell growth between MTS and ultrasound 

measurements is illustrated in Fig. 7, with close agreement between the two.  
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Fig. 7. Comparison between MTS (squares, black) and ultrasound (circles, red) data in relation 

to the relative cell growth as a function of culture time, normalised to time zero hours for 

comparison. Error bars indicate the standard deviation for each measurement. 

3.7 Application of QUI to bioprinted constructs. 

 

Following the validation of QUI to monitor cell-laden hydrogels at high resolution, we also 

tested its application to a 3D bioprinted hydrogel. A photograph of the measured sample is 

shown in Fig. 1c. A similar signal processing procedure was applied in this case. The average 

speed of sound determined for the reference sample was 1596.8 ± 0.6 m/s (n=13). The 

measured thickness was 2.78 ± 2.56x10-3 mm (n=40). The fitted attenuation coefficients 

measured on the cast reference phantom (n=40) were, c1 = 0.032 ± 1.15x10-3 and c2 = 1.3x10-

3 ± 2.16x10-4. The averaged R2 and standard deviation of the fitted attenuation spectra was 0.99 

± 9.90x10-4. For the measurement of the backscattering coefficient of the reference sample, 

BSCR, the focus was placed 1 mm below the reference phantom surface, and the depth interval 

was extended to 1.5 mm instead of 0.9 mm. The ROI height was increased in order to enclose 

the whole bioprinted construct within the ROI. During QUI acquisition, in order to centre the 

ROI starting from the bottom of the culture plate, the focus was placed 0.7 mm inside the 
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construct instead of 1 mm as done in the reference phantom. Following signal processing and 

image formation, the resulting QUI images of the bioprinted construct can be seen in Fig. 8, 

corresponding to a section of 11.94 mm in width and 0.48 mm along the construct. Note that 

the images are expressed in an arbitrary scale of cell density relative to PC12 cells, and this 

may differ from HDF cells. From the visualization of images in Fig. 8, an overall uniform 

distribution of the colour index corresponding to 1.0x106 cells/ml can be seen, with the 

presence of scattered cell aggregates of high cell density. The cell density profile per scan plane 

as a function of plane offset can be seen in Fig. 9. The differences in cell density between scan 

planes are attributed to the number and size of the cell aggregates. Averaging of cell densities 

per scan plane was performed by manually selecting the contour of the bioprinted construct, as 

shown in Fig. S15. The averaged cell density corresponds to the average of all intensity pixels 

enclosed within the defined mask. The procedure was repeated in triplicate for each scan plane. 

 

Fig. 8. Sequence of images over a 3D printed GelMA hydrogel with HDFs cells. The images 

are displayed in an arbitrary interval of cell density, corresponding to a cross-section of 11.94 

mm in width, covering a distance of 0.48 mm along the scaffold. The scale bar corresponds to 

1 mm.  
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Fig. 9. Averaged cell density per plane, represented as a function of plane offset relative to the 

first scan plane. Error bars indicate the standard deviation from manually selecting the 

bioprinted contour by freehand selection. Data points interconnected with a line as an eye 

guide.  

4. Discussion  
 

Efforts towards functional tissue engineered constructs require new milestones in biology and 

polymer science, but also requires the implementation of new characterisation tools capable of 

assessing their development. The goal of this study was to expand on the capabilities and 

limitations of ultrasound for the interrogation of cell-laden hydrogels of reduced dimensions. 

In particular, we investigated the validation of ultrasound for cell density estimation, revisiting 

the trade-off between image resolution and accuracy, monitoring changes during cell growth, 

as well as the application of QUI to bio-printed structures.  

The use of RPM requires that the reference sample must have the same speed of sound as the 

test samples, in addition to being measured at the same temperature. To avoid fluctuations, all 

samples were measured at room temperature. The small variation in speed of sound across the 

samples used for ultrasound calibration corroborates the consistency of the prepared collagen 

hydrogels. For instance, samples prepared for set 3 had a standard deviation of only 3.5 m/s. 

Some differences in the speed of sound were found between the reference samples, and to a 

larger extent for the sample corresponding to set 1 (Table 1). The latter may be attributed to 
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small differences in the concentration of the hydrogel precursor solution and / or crosslinking 

conditions.  The use of the spectral difference method (SDM) was confirmed to be applicable 

within the cell densities investigated, after comparison with attenuation data measured by the 

substitution method. The use of a pixel based attenuation compensation approach is of 

relevance since it can generate a local attenuation map of the region of interest. This could be 

beneficial for other studies monitoring, for example, cartilage development. [24] [34] 

The ultrasound intensity, IBC, was calibrated with respect to increasing densities of PC12 cells. 

The cell density interval was chosen to be within the typical working range for cell-laden 

hydrogels. Ultrasound greyscale images and optical images (Fig. 3) corroborated, qualitatively, 

the increasing cell density of the prepared cell-laden hydrogels. The contribution of acoustic 

interferences was minimal in PC12 cell samples, since the focal point was placed 1 mm below 

the hydrogel surface, of about 2.2 mm in thickness. The size of the ROI was 0.9 mm and 0.88 

mm for data processed at 8 and 16 PL respectively. Interference echoes can be partially seen 

on the image corresponding to the lowest cell density, 0.5x106 cells/ml. The artefacts 

introduced by interference echoes were considered negligible relative to the scattering 

properties of the cells and no further considerations were made. In order to establish the 

relationship between IBC and cell density, three independent calibrations were performed (Fig. 

4b). In all cases, an excellent linear correlation was achieved (R2 > 0.99), although the relative 

intensity was slightly different for each calibration. The oscillations of IBCT for the same cell 

density across calibrations was attributed to small variations of the initial cell stock solutions. 

Due to the potential variations in the actual cell densities, the final IBC to PC12 cell density 

relationship is the averaged linear regression slope for the 3 independent datasets (Table 1), 

resulting in the relation of IBC = (1.404 ± 0.031) x10-4 X, where X is cell density expressed in 

106 cells/ml. Acellular hydrogels were not included in the IBC calibration. Based on the 

calibration, acellular hydrogels would return a cell density of 7.40x104 cells/ml, which is 

negligible to the contribution of cellular hydrogels. A similar IBC for acellular collagen 

hydrogels has been previously reported for a comparable collagen density and crosslinking 

temperature.[35] The scattering properties of collagen are related to the microstructure of 

collagen fibres. The application of the RPM to each of the prepared collagen batches in our 

work compensates for any difference in the collagen microstructure. Comparison of the IBC 

linear regression equation to that of a previous work[36] is reasonably similar despite being a 

different cell line and using a different signal processing approach. Backscattering intensity is 
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ultimately dependent on the acoustic impedance (density and speed of sound) mismatch 

between the sound propagating material and the scatter (e.g. cell).  

The validity of IBC for cell density estimation was tested against the commonly used MTS 

assay. While MTS and other related biochemical typically yield high linear regression 

estimates when applied to 2D samples, application of the technique to 3D cell-laden hydrogels 

can decrease the precision and accuracy of cell density estimations. For example, the measured 

net absorbance is a relative measure only, as much of the coloured product of the MTS assay 

remained trapped within the hydrogel. In contrast, ultrasound gives an IBC intensity which is 

linearly proportional to all scattering events occurring within the interrogated volume of the 

construct.  

Once the use of IBC to extract cell density estimates via calibration was corroborated, the image 

resolution as a function of pixel size was revisited. The trade-off between accuracy and image 

resolution has been widely discussed. [36],[46, 66],[67],[68] It has been established that in order 

to improve accuracy, ultrasound estimates should be extracted from a large spatial averaging 

of RF signals. For instance, the minimum recommended pixel dimensions should be 5 BW 

wide, and 10 PL long in order to have estimates below 10 % error.[66] Such pixel size 

dimensions are impractical for generating finely detailed parametric maps of small biological 

constructs. The need for large spatial averaging implies that data processed with large axial and 

lateral averaging does not necessarily have to be equal to the average of pixels processed with 

smaller dimensions. In our case, in order to assess the relative IBC increase as a function of 

pixel size, the same image section was processed by varying the lateral and axial pixel 

dimensions. The relative error increase was normalized with respect to the data processed with 

the largest possible pixel size, (16 PL and 25 BW), in line with the general consensus. The 

results shown in Fig. 5 indicate a much reduced error increase in comparison with other reports, 

around the 10 % mark when using a pixel as small as 8 PL and 0.5 BW. The latter pixel 

dimensions were chosen for processing cell density (Fig. 6a) and scatter images (Fig. 6b), 

owing to its optimum fidelity to raw images (Fig. S9).  

The scope of this work was not to question other observations on the effect of spatial averaging, 

but it is noted that the use of different signal processing procedures, and or the use of different 

assumptions to express the relative error increase can lead to different conclusions. For 

instance, in our case we have used the local attenuation compensation algorithm implemented 

on the RPM. The reference phantom was measured, instead of being modelled. The frequency 
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interval was larger and of higher frequency than the reported by Oelze,[66] and the data was 

recorded with a 12-bit resolution oscilloscope. We also opted for calculating biased errors as a 

function of IBC, and not as a function of modelled estimates. Methods using the modelling 

approach first extract the scatter diameter, which is then used to extract the theoretical scatter 

density. While the use of spectral modelling is a straight forward approach which does not 

require calibration, inaccurate determination of scatter size can lead to strong discrepancies of 

scatter density as they are related by the power of 6.[46] In another study, similar to our case 

but without using the RPM and local attenuation, cell density values were converted from the 

IBC calibration and used as the evaluation parameter. [36] The effect of pixel size was then 

compared between the estimated and the expected cell density from the prepared hydrogels.   

As shown in Fig. 4b, there can be differences in IBC values for a given cell density due to 

experimental errors in the preparation of the cell laden hydrogels. When converting IBC values 

into cell density, those differences reveal that the constructs have slightly different 

concentrations. Computation of cell density variation based on the assumption that true cell 

density is exactly as intended, can lead to different biased error profiles. Since different authors 

use different approaches and interpretations, the relative error increase should be evaluated 

with respect to the well stabilised concept of large lateral and axial averaging.   

In the case of measuring scatter diameter as a function of culture time, the effect of pixel size 

and its impact on the scatter diameter was also evaluated (Fig. S10). It was found that large 

spatial averaging was found not to accurately represent the actual scatter diameters, hence 

supporting the use of IBC calibration and scatter size modelling separately. Similarly, 

averaging of individual scatter diameters processed at 0.5 BW and either 16 PL or 8 PL was 

not found to represent actual scatter diameters, since the averaged diameter only increases by 

about 4 µm from 0 to 72 h of culture time. On the other hand, parametric scatter size maps 

follow in close relationship to the increase of cell cluster size as seen by microscopy as a 

function of culture time. Note that although microscopy and ultrasound have different image 

perspectives, they are comparable on the horizontal plane. PC12 cells have a diameter of about 

10 µm, but this particular cell line tends to form clusters of 2-3 cells at cell seeding. This is 

consistent with the colour index seen in the scatter size map at 0 h culture time, where sizes of 

15 to 25 µm are predominant. As the culture time is extended, an increase of cluster size can 

be seen by microscopy. This is consistent with scatter-size maps, with an increase in colour 

index corresponding to 39 µm and above.  
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Given the increasing momentum of bioprinted structures as more efficient 3D models for tissue 

engineering, it was of interest to test the feasibility of using QUI on a bioprinted sample. 

Although we have proven the possibility to use QUI at high resolution (e.g. 0.5 BW and 8 PL), 

it was unclear whether ultrasound could resolve the fine features present in printed hydrogels. 

As evident in the resulting images (Fig. 8), ultrasound is in fact capable of recreating with good 

fidelity the features seen on its photograph counterpart (Fig. 1c). In terms of quantitative 

information, the images in Fig. 8 were displayed using an arbitrary cell density interval since 

there was no available IBC calibration for the cell line used. Although the cell density values 

are indicative, it does show the possibility of performing a quantitative analysis, in the form of 

cell density maps, or as the averaged cell density per scan plane. This can be useful for the 

optimization of bioprinting parameters or for monitoring the spatiotemporal evolution of cells 

as a function of the construct’s properties. A point to note is the image acquisition time. The 

image cross-sections presented in Fig. 8 contains 200 scans per plane spaced by 60 µm, which 

was measured within 300 seconds. Provided that the sample is smaller than the transducer’s 

depth of view (e.g. 2.1 mm), image acquisition only depends on the lateral travel distance, and 

RF spacing. This translates into an image acquisition time of 1.5 seconds per RF including the 

movement of the stage positioner. This is in contrast to techniques based on optical focusing. 

When considering the horizontal plane, microscopy has a wider field of view compared to 

ultrasound which is limited by the transducer’s properties. The advantage of ultrasound is the 

capability to generate 2D images on the vertical plane, since it does not require z-stack 

procedures. Thus, acquisition time is greatly reduced when imaging millimetre scale constructs 

when compared to optic-based techniques, if feasible at all due to thickness limitations.  

The example presented in Fig. 8 anticipates special considerations to be made when imaging 

bioprinted constructs. Because of the presence of bodies of water within the scanned section, 

parametric estimates have to be extracted by free-hand selection over specific regions, instead 

of averaging all image pixels. Measurements of thin bioprinted constructs can also be 

problematic due to acoustic interferences (Fig. S4). In the example shown in Fig. 8, the focus 

was deliberately positioned within the interference region, with the aim of centring the ROI so 

that the whole construct thickness could be processed by QUI. Interference echoes are clearly 

seen as horizontal lines covering the whole image. Presence of echoes can interfere with the 

interpretation of quantitative images and derived estimates when measuring samples of low 

scattering properties. Insertion of high attenuation pads below the sample, or use of transducers 

with reduced depth of view can help to minimize the presence of interference echoes.  
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One last challenging situation for bioprinted constructs and cellular hydrogels in general, is 

related to the hydrogel or matrix degradation or transformation. In the cases presented in this 

work, cells do not interact with the hydrogels, hence, the hydrogel maintained their initial 

structure over time. This condition allowed the implementation of the RFM. For systems where 

cells interact with hydrogels, for instance, where cells cause contraction of hydrogels,[69] 

matrix mineralization,[39] or the change of hydrogel porosity,[70] the physical properties of 

the hydrogel can be altered over time. This can induce changes in the scattering properties and 

speed of sound of the construct, which are not compensated by the RFM. This would limit the 

use of the RPM, and the single point attenuation compensation approach should be used. The 

benefit of the RPM is that it enables a pixel passed attenuation compensation, in addition to 

simplifying QUI acquisition procedures. The use of single point attenuation measurements 

assumes that the distribution of scatters is homogeneous along the acoustic path. For 

heterogeneous samples, or patterned constructs such as bioprinted hydrogels, the acoustic 

attenuation measured through the sample is not necessarily the same along the whole acoustic 

path. This can induce biased errors when determining the BSC. Consequently, the use of single 

point attenuation measurements in heterogeneous or patterned constructs can affect the 

accuracy as well as acquisition time. The applicability of the RPM in evolving biological 

constructs in terms of the hydrogel matrix should be investigated in more detail in future 

studies.    

 

5. Conclusions 

Application of QUI towards characterization of hydrogels containing living cells has been 

demonstrated. Here we show that combining the reference phantom method together with a 

local attenuation compensation function results in low biased errors when imaging at high 

resolution. High resolution imaging allowed the monitoring of cell growth as a function of cell 

number and cluster size over time. The calculated ultrasound cell density estimates were 

validated against a traditional metabolic assay for cell number estimation. In light of the 

capabilities of ultrasound to measure thin constructs, we also explored the feasibility for its 

application to bioprinted constructs. Finally, we also discussed some of the limitations and 

possibilities of the technique to monitor the development of tissue engineered constructs. 
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Appendix 1: Details on ultrasound measurements  
 

All measurements were performed at room temperature. Three different procedures were used 

depending on the measurement purpose: reference phantom, calibration and imaging. In the 

case of the reference phantom, a series of measurements were required: power at focus, power-

height, thickness, speed of sound, attenuation and backscattered power.  

 

A1.1 Power measurements though media:  

Power at focus and power-height were measured with the transducer immersed in the culture 

media, using the bottom of the well plate as reflector and a gain of +15dB. Note that the sample 

for the reference phantom had 4 wells, 3 for the sample and one with media only. The power 

measurements not only serve for the reference power spectrum, but also as the reference time 

to compute the thickness and speed of sound. The final power spectrum and reference time 

were the average of 20 random locations spaced by 200 µm. The power-height measurements 

were achieved by moving towards, and beyond, the focal point to the reflector in 40 µm steps 

for a gate length of 16 PL, and 20 µm for gate length of 8 PL.  In practice, because of the small 
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variation of power within the ROI, the same power spectra taken for a 16 PL was used for the 

8 PL by replicating twice the power at each height. Power-height measurements were taken at 

the same location, but averaging 3 different files at each height. Note that the transducer travel 

range and the gate length determines the height of the ROI used for QUI.  

 

A1.2 Speed of sound, thickness and attenuation: 

After returning the transducer to the focal point, it was then moved laterally to the reference 

phantom. First, the attenuated ultrasound pulse through the sample was measured over 40 

points, spaced 200 µm apart, in a rectangular raster scan. The latter served for computing the 

attenuation, and the time of flight of sound through the hydrogel. Due to practical limitations, 

only the first 13 measuring points following a straight line were included in the estimation of 

the speed of sound, as the culture plate and/or levelling table had a slight deviation from the 

precision required for time of flight measurements. The latter was crucial for accurate 

determination of the reference time used for calculations (see Fig. S2, Eq. S1-3). Time 

measurements relative to hydrogel thickness were less affected by the inconsistent orthogonal 

alignment between the transducer and reflector. Next, the focal point was lifted by a similar 

length to the hydrogel thickness (e.g. 2 mm). Upon increasing the gain to +35 dB, the upper 

hydrogel edge could be detected and used as the time of flight between the transducer and the 

upper hydrogel edge.  

 

A1.3 Backscatter measurements on reference phantom: 

Finally, moving the transducer 1 mm inside the hydrogel, and gain set to +35 dB, the 

backscattered signals were recorded over the same 40 locations. Once the procedure for 

reference phantom method (RPM) was completed, relevant files were stored in the system and 

used as the internal calibration. Note that the internal calibration is only valid when measuring 

with the same settings (including depth of focus), same temperature and same hydrogel.  

 

A1.4. Backscatter measurements and imaging of the sample:  

In the case of calibration measurements, the signals were acquired over the test sample at 100 

random positions spaced by 200 µm. In the case of imaging, consecutive RF scans were 

collected, with a spacing of 30 µm. For both cases, the gain was set to +35dB and the focus 

was located at 1 mm below the hydrogel surface. Data and image processing were performed 

in all cases after processing the complementary RPM.   
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Appendix 2: Formulae and diagrams used for signal processing  

 

 

Fig. S1. Diagram illustrating the thickness and speed of sound measurements, by shifting the 

transducer height to the upper hydrogel edge. Abbreviations on the sketch correspond to: dref 

and tref are the distance and time of flight between the transducer and reflector. dup and tup are 

the distance and time of flight between the transducer and the upper hydrogel surface. th is the 

time of flight between transducer and reflector though the hydrogel. Lift corresponds to the 

shifted axial positon of the transducer respect to dref. 

 

Thickness  

𝑑𝑢𝑝 =  [
(𝑡𝑢𝑝 𝑐𝑊)

2
] − 𝐿        , 𝑐𝑊 = 1.488,3 𝑚/𝑠    (Eq. S1) 

𝑑 =  𝑑𝑟𝑒𝑓 − 𝑑𝑢𝑝         (Eq. S2) 

 

Speed of sound 

 

c =
cW

1+cW( 
th−tref 

d 
) 

      (Eq. S3) 
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Single point attenuation measurement and attenuation fitting equation  

αS(f) =  −
20

2d 
log

A𝑆(f)

ARef(f)
+  αW𝑓2   , αW = 2.17 10-3 dB cm-1 MHz-2 (Eq. S4) 

αS(f) =  c1 f +  c2f 2  (Eq. S5) 

 

 

Fig. S2. Left: diagram illustrating the geometrical distances and relative positions of the 

transducer to a gate of depth z within the hydrogel. Right: illustration of power height 

measurement to compensate for power spectra relative to each gate depth.  

 

Backscattering coefficient of the reference phantom 

  

BSCR(z, f) =
1.45 z2

AoG
 NPS(z, f)      (Eq. S6) 

 

 

 

dM = z − w +
G

2
      , w = F − a       (Eq. S8) 

 

γ =  (
ZW−ZR

ZWZR
)

2
     ,    Zi = ciρi                (Eq. S9) 

 

 

NPS (z, f) =  
1

N
∑ (

γ

2
)

2 |ARPMz|
2

(z,f)

|ARz|
2

(z,f)
e(4 dM(αs(f)−αR(f)))N

1      (Eq. S7) 
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Local attenuation compensation by spectral difference method 

 

ln 
|𝐴𝑆𝑧|

2
(z,f)

|𝐴𝑅𝑃𝑀𝑧|
2

(z,f)
= ratio(z, f) =   4dMΔα + 𝑘      , Δα = slope        (Eq. S10) 

 

 

Backscatter coefficient of sample using RPM 

 

 

BSCS(z, f) =  
1

Nav
∑  BSCR(z, f)  

|ASz|
2

(z,f)

|ARPMz|
2

(z,f)
  e−4ΔαdM

Nav
1                (Eq. S11) 

 

BSCT(f) =  
1

NF
∑

1

NG
∑  BSCS(z, f)

NG
1

NF
1         (Eq. S12).  

 

NF =  
N

Nav
                   (Eq. S13) 

 

 

Integrated backscattering coefficient (IBC) 

 

 

IBC (z) = ∫
BSCS(z,f)

Bw2 (z)−Bw1(z)

f(Bw2(z)) 

f(Bw1(z))
          (Eq. S14) 

 

IBCT =
1

NF
∑

1

NG
∑ IBC(z)

NG
1

NF
1              (Eq. S15) 

 

Size modelling 

 

MASD = min (
1

m
∑ (Xi(f) − X̅)2m

1 )   (Eq. S16) 

Xi = 10 log (
BSCS(f)

FFi(f) f4
)     (Eq. S17) 

X̅ =  
1

m
∑ Xi

m
1        (Eq. S18) 

R2 = 1 −
SSres

SStot
      (Eq. S19) 

SSres =  ∑ ‖Xi(f) − XFF(f)‖2f(Bw2)
f(Bw1)   (Eq. S20) 

SStot =  ∑ ‖Xi(f) − X̅FF‖2f(Bw2)
f(Bw1)                (Eq. S21) 
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Description of parameters and units per order of appearance.  

 

Symbol Units Description 

dup cm Distance to the hydrogel upper surface. 

tup s Time of travel from transducer to the hydrogel upper surface. 

cw m/s Speed of sound of distilled water at room temperature. 

L cm Lift of transducer in distance respect to dref. 

dref cm 
Distance to reflector at focus. The reflector is any flat surface of a material 

with known composition. 

d cm Hydrogel thickness. 

c m/s Speed of sound of the hydrogel. 

th s Time of travel from transducer to reflector through the hydrogel. 

tref s Time of travel from transducer to the reflector. 

𝛼𝑠 dB cm-1 Sound attenuation as a function of frequency. 

αW 
dB cm-1 

MHz-2 
Sound attenuation in distilled water at room temperature. 

𝐴𝑠 V 
FT amplitude spectrum of the transducer pulse at the reflector through the 

sample. FT length must be the same as used in 𝐴𝑅𝑒𝑓. 

𝐴𝑅𝑒𝑓  V 
FT amplitude spectrum transducer pulse at the reflector measured at 

distance dref. 

c1 
dB cm-1 

MHz-1 First fitting coefficient of 𝛼𝑠. 

c2 
dB cm-1 

MHz-2 
Second fitting coefficient of 𝛼𝑠. 

f MHz Frequency. 

BSCR sr cm-1 

Backscattering coefficient of the reference phantom per depth, as a function 

of frequency. The number of BSCR as a function of depth corresponds to the 

number of (steps+1) done in power-height measurements. 

Ao cm Area transducer (active element). 

G cm Gate length, or length of the RF segment. 

NPS  

Normalized power spectrum per depth, as a function of frequency. NPS is 

the average of all scans performed on the reference phantom (N). 

Attenuation is nepers instead of dB units. 

N  Number of total scans (A-lines). N must be an even number. 

|ARPMz
|
2
 W  

FT power spectrum of the reference phantom corresponding to the RF 

segment at depth z. FT is zero padded to the same number of points as 

in |𝐴𝑅𝑧|2 

|ARz
|
2

 W 
FT power spectrum of the transducer response measured from a distance z 

to the reflector. FT is zero padded to the same number of points as in 𝐴𝑅𝑒𝑓. 

dM cm Distance of sound travel through the sample. 

z cm Distance from transducer to gate centre, distance to reflector. 

w cm 
Distance of sound travel through water path between transducer and 

hydrogel. 

F cm Transducer focal point distance. 

a cm Depth of focal point inside sample. 

ϒ  Reflection coefficient. 

Zw Mrayl Acoustic impedance of water. 

ZR Mrayl Acoustic impedance of reflector. 

Ci m/s Speed of sound of material i. 

ρi g ml-1
 Density of material i. 
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Δα dB cm-1 

Differential attenuation as a function of depth, for each NF. Determined 

from the slope resulting from linear fitting with intercept at zero of the 

power ratio. 

k  
Constant parameter. 

 

|ASz
|
2
 W 

Fourier transform (FT) in amplitude of the sample corresponding to the RF 

segment at depth z. FT is zero padded to the same number of points as 

in |𝐴𝑅𝑃𝑀𝑧
|
2
. 

BSCS sr cm-1 
Backscattering coefficient of the sample per Nav, per depth, as a function of 

frequency, for each NF. 

Nav  Number of averaged scans per lateral pixel. 

BSCT sr cm-1 
Averaged BSCS for all gates, and for all pixels laterally, as a function of 

frequency. 

NG  Number of gates or RF segments per scan. 

NF  Number of lateral pixels. 

IBC sr cm-1 
Integrated backscattering coefficient per depth, for each NF. A single 

numerical value of BSCS. 

Bw1 MHz 
Lower limit of -6 dB frequency interval at depth z. Extracted from power 

height measurements. 

Bw2 MHz 
Upper limit of -6 dB frequency interval at depth z. Extracted from power 

height measurements. 

IBCT sr cm-1 
Averaged IBC for all gates, and all pixels laterally. A final single numerical 

value out of N scans and G gates. 

MASD  Minimum averaged squared difference.  

m  Number of frequency points between Bw1 and Bw1. 

Xi dB 
Ratio between the measured BSC expressed as FF units, and the modelled 

FF corresponding to size i.  The ratio value at Bw1 is set to zero.  

FFi  
Each of the modelled FFs given by the theoretical model (e.g. Anderson 

model). 

X̅ dB The averaged Xi for all frequencies within Bw1 and Bw2.  

SSres dB 
Residual sum of squares for all intervening frequencies. The absolute 

squared difference of each Xi relative to XFF. 

XFF dB The ratio of measured BSC with the FF that returned the minima MASD.  

SStot dB 
Total sum of squares for all intervening frequencies. The absolute squared 

difference of each Xi relative to averaged XFF along its frequency values. 

R2  
Coefficient of determination between experimental BSC and its 

corresponding modelled scatter size.  

 

Appendix 3: Transducer characteristics 

 

λ =  
Cw(µs/mm)

fC(MHz)
  (Eq. S22) 

f # =  
fl

Ad
  (Eq. S23) 

Dlat = 1.028 λf # (Eq. S24) 

Dax =
cw τ

2
   (Eq. S25) 
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Table S1. Transducer characteristics 

Bandwidth -6 dB (MHz) 14.30 – 46.80 

Pulse length -6 dB, τ (ns) 48.80 

Acoustic wavelength, λ (µm) 48.60 

Center frequency, fc (MHz) 30.60 

Axial resolution, Dax  (µm) 36.30 

Lateral resolution, Dlat (µm) 127.00 

Depth of view (mm) 2.10 

Transducer diameter, Ad (mm)   6.00 

Focal length, fl (mm) 15.25  

F number, f# 2.54 
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Fig. S3. a) Pulse length measurement of the transducer response at the focal point, measured 

on a flat reflector. b) Corresponding FT of the transducer pulse at the focal point. c) 

Measurement of depth of view by recording the FT amplitude maxima of the transducer pulse 

as a function of distance to a reflector (polystyrene surface).  
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Appendix 4: Supporting figures 

 

 

 

Fig. S4. Sequence of greyscale images as a function of the focal distance to reflector, measured 

in water. From top to bottom, the first intense reflection corresponds to the bottom of the well 

plate. Acoustic interferences can be seen as grey horizontal lines which are artefacts along the 

acoustic path. Acoustic interferences dissipate as the focal distance to reflector is increased.   
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Fig. S5. Fitted attenuation spectra within the -6 dB frequency interval for each of the 

investigated cell densities in PC12 cell-laden hydrogels. The averaged R2 and standard 

deviation using the attenuation fitting function (Eq. S5) for each cell density (n=10) resulted 

in: 0.5: (0.999 ± 3.35x10-4), 1: (0.998 ± 3.88x10-4), 2: (0.998 ± 7.22x10-4), 4: (0.996 ± 2.35x10-

3), 8: (0.997 ± 1.67x10-3). Fitting coefficients (C1, C2): 0.5:(0.0228, 0.0028), 1:(0.0262, 

0.0028), 2:(0.0432, 0.0025),4:(0.0501, 0.0024), 8:(0.0561, 0.0024). Single point attenuation 

measurements performed on set 3, replica 3.   
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Fig. S6. Attenuation at center frequency of Fig. S4 as a function of cell density. Data points 

correspond to the fitted averaged attenuation (n=10) at each cell density, with error bars as the 

standard deviation for each individual fitting function.  
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Fig. S7. Differential attenuation relative to the reference phantom (set 3) determined by the 

spectral difference method, as a function of cell density. Error bars represent the standard 

deviation of Δα for all gates (8) after averaging 100 scans with 200 µm spacing. Data 

corresponding to set 3, replica 3.  
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Fig. S8. Comparison of the measured attenuation using single point measurements together 

with the differential attenuation determined by the spectral difference method. The standard 

deviations for each of the measurements are included as error bars. The linear regression 

coefficient between both is R2 = 0.967.  Data comparison for set 3, replica 3.  
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Fig. S9. Effect of IBC image resolution as a function of pixel size. Top center image: Raw 

greyscale image. Left and right columns: processed at pulse length (PL) of 16 and 8, 

respectively. Within each pulse length, the lateral averaging was changed from 25, 6.25 and 

0.5 BW, corresponding to 100, 25 and 2 RF lines recorded with 30 µm in spacing.  
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Fig S10. Modelled averaged scatter dimeter as a function of pixel size and culture time.  
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Fig. S11. Examples of scatter size estimation by fitting modelled FFs (red) to experimental 

BSC spectra (black) expressed as form factors (Eq. S17). Spectra set to zero at frequency Bw1. 

a) Scatter size of 22 µm. b) scatter size of 50 µm, c) scatter size of 98 µm in diameter. The 

fitting coefficient R2, between BSC and FF for each example correspond to, a = 0.967; b = 

0.941; c = 0.935.  
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Fig. S12. Calibration of MTS absorbance as a function of cell density, for each of the 3 

independent datasets. Set 1: squares (0.5-4.0x106 cells/mL), set 2: circles, set 3: triangles. MTS 

absorption expressed as the averaged values (n=3) at each cell density including the standard 

deviation across replicates.  
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Fig. S13, Comparison of averaged IBC and averaged MTS values per cell density, for each of 

the calibration sets, from 0.5-4.0x106 cells/mL. Set 1: squares, set 2: circles, set 3: triangles. 
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Fig. S14. Linear fit of the averaged IBC and MTS relationship at each cell density for the 

interval from 0.5-4.0x106 cells/ml. R2 = 0.956, slope = 2047.56. 

 

 

 

 

Fig. S15. Example for the selection of the bioprinted construct area used for extracting the 

averaged cell density per scan plane. Performed by freehand selection imfreehand (MATLAB). 
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