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Predicting neural recording performance of implantable electrodes

Abstract

Recordings of neural activity can be used to aid communication, control prosthetic devices or
alleviatedisease symptoms. Chronic recordings require a high signal-to-noise ratio that is stable for years.
Currentcortical devices generally fail within months to years after implantation. Development of novel
devices toincrease lifetime requires valid testing protocols and a knowledge of the critical parameters
controllingelectrophysiological performance. Here we present electrochemical and electrophysiological
protocolsfor assessing implantable electrodes. Biological noise from neural recording has significant
impact on signal-to-noise ratio. A recently developed surgical approach was utilised to reduce biological
noise. This allowed correlation of electrochemical and electrophysiological behaviour. The impedance
versus frequency of modified electrodes was non-linear. It was found that impedance at low frequencies
was astronger predictor of electrophysiological performance than the typically reported impedance at 1
kHz.Low frequency impedance is a function of electrode area, and a strong correlation of electrode area
with electrophysiological response was also seen. Use of these standardised testing protocols will allow
future devices to be compared before transfer to preclinical and clinical trials.
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Abstract

Recordings of neural activity can be used to aid communication, control prosthetic devices or alleviate
disease symptoms. Chronic recordings require a high signal-to-noise ratio that is stable for years.
Current cortical devices generally fail within months to years after implantation. Development of novel
devices to increase lifetime requires valid testing protocols and a knowledge of the critical parameters
controlling electrophysiological performance. Here we present electrochemical and
electrophysiological protocols for assessing implantable electrodes. Biological noise from neural
recording has significant impact on signal-to-noise ratio. A recently developed surgical approach was
utilised to reduce biological noise. This allowed correlation of electrochemical and electrophysiological
behaviour. The impedance versus frequency of modified electrodes was non-linear. It was found that
impedance at low frequencies was a stronger predictor of electrophysiological performance than the
typically reported impedance at 1 kHz. Low frequency impedance is a function of electrode area, and
a strong correlation of electrode area with electrophysiological response was also seen. Use of these
standardised testing protocols will allow future devices to be compared before transfer to preclinical

and clinical trials.

Introduction

Neurons are excitable cells, able to generate and detect electrical current. When a neuron fires an action
potential, ion channels in the cell membrane open. Movement of ions across the membrane change the
local potential according to the Goldman equation (1). The resting potential across a neuronal
membrane is approximately -70 mV, and during an action potential it can rise to over 100 mV. This
change in potential can be measured via patch clamping, where an electrolyte filled glass pipette is
placed on or inserted into the cell and a reference-ground electrode is placed in solution outside the cell,

forming an electrical circuit (2). While patch clamping allows highly sensitive measurements from a



single cell, in vivo recordings must be made within a complex neural structure composed of multiple
cell types. The large size and fragile nature of the glass pipettes limits their utility in chronic in vivo
studies.  Furthermore, piercing the cell membrane leads to cell death, so chronic in vivo
electrophysiological recordings are obtained external to the cell wall.

The Michigan and Utah style microelectrode arrays (MEAs) are microfabricated silicon structures with
metal electrodes (3) (4). Over 1000 individually addressable electrodes have been incorporated into 3
dimensional MEAs (5). MEAs allow parallel recordings and redundancy to ensure target neurons are
in close proximity to an electrode. The designs minimise the electrode impedance and interelectrode
coupling to limit background noise (6). Implanted electrodes can be used to detect neural activity
associated with epileptic seizures and improve management procedures like triggering electrical
stimulation to cease the seizure (7). Neural recordings from the motor cortex can also be used to enable

communication or control prosthetic devices for people suffering from motor neurone disease or trauma

(8).

Insertion of an electrode array into the brain is highly invasive, inducing neural death and micro-
haemorrhages. After implantation, neural rearrangement and a foreign body response can occur, where
the electrode array is typically surrounded by a glial cell sheath (9). As a result, recorded activity varies
day-to-day and an initial high amplitude neural recording can degrade over time (10). Different
strategies have been used to reduce the foreign body response. The electrode arrays are typically
tethered to the skull, however movement due to body motion, respiration and blood circulation can
induce further microtraumas (11). Untethered electrode arrays have shown reduced foreign body
response (12). The rigid silicon arrays have a Young’s modulus in the 200 GPa range, significantly
higher than neural tissue of ~1 kPa (13). Use of flexible polymer substrates, such as polyimide, and
soft coatings like hydrogels allow the electrode array to move and conform to the brain structure.
However these materials are still harder than neural tissue, and insertion of these flexible materials
without deformation is difficult. To aid insertion, a rigid shuttle or dissolvable carrier can be attached
to the flexible array, although the larger probe size with the shuttle can increase surgical trauma. Drug
elution from the probe can be used to improve device performance, with anti-inflammatories such as
dexamethasone reducing inflammation associated with surgical trauma and nerve growth factors

inducing neural growth towards the electrode (14).

Even with a device that shows minimal foreign body response, there is still a need to increase the signal-
to-noise ratio of neural recordings. Clinical implants use platinum electrodes, as they are corrosion
resistant and non-cytotoxic. Modification of the electrode surface has been used as a method for
controlling neural growth and reducing the electrode impedance. Electrode modifications include
nanostructuring the platinum (15), deposition of doped conducting polymers (16) and use of other

conducting materials such as iridium oxide (17) or graphene (18).



With an increasing number of electrode materials and designs being proposed, valid in vitro and in vivo
testing protocols must be used to compare device performance before they are used in expensive
preclinical and clinical trials (19) (20). In addition, a greater theoretical understanding of charge transfer
across the electrode-tissue interface is required. Electrochemical impedance spectroscopy (EIS) is
typically measured to assess an electrodes thermal noise and signal-to-noise ratio. EIS applies an AC
voltage waveform at different applied frequencies to an electrode, measuring the current. A small
voltage amplitude is used to ensure a near linear response between voltage and current. It is generally
assumed that an action potential has a characteristic frequency of 1 kHz, and so the EIS should be
measured at this frequency. However an action potential contains information from 0 Hz to over 3 kHz
(21), there is no characteristic frequency. More importantly, the measurement performance of the
electrode depends on the electrode-solution interfacial impedance and not the Fourier spectrum of the
action potential. This interfacial impedance is often a non-linear function with applied frequency, and
so assessment of electrode function at 1 kHz may not be optimal for predicting electrophysiological
performance. This article compares the electrochemical and electrophysiological response of bare
metal and doped conducting polymer modified electrodes to determine the key electrode properties that
control neural recording sensitivity. A recently developed acute surgical protocol is utilised to reduce
biological noise for device comparison (22) (23). Strong correlations of electrophysiological response
with impedance at 12 Hz and electrode area indicate in vitro testing protocols should include impedance

at low frequencies instead of the more common 1 kHz measurement.

Methods

Materials and Electrode Coating

3,4-ethylenedioxythiophene (EDOT), poly(styrenesulfonate) (PSS, MW = 70,000), sodium
dodecylbenzenesulfonate (NaDBSA), sodium para-toluene sulfonate (NagpTs),
hexaammineruthenium(l11) chloride (Ru(NHs)s Cls) (Sigma-Aldrich) and 99.0 % di-sodium phosphate
(Fluka) were used as received. Polymer coatings were deposited on 4 shank, 32 electrode (8 electrodes
per shank), 413 xm? nominal geometric area platinum electrodes with 200 xm pitch (Neuronexus
Technologies — A4x8-5mm-200-200-413). Conducting polymer coatings with different dopants were
electrochemically deposited onto individual microelectrodes via a potentiostat (CH660D, CH
Instruments) from mixed solutions containing 10 mM EDOT and 0.1 M NaopTs or 2 mg mL* NaDBSA
or PSS in deionised water. Potentiostatic growth was performed in a three-electrode configuration using
one microelectrode as the working electrode, Ag/AgCI (3 M NaCl) as reference electrode and Pt mesh
as counter electrode. Solutions were degassed for 30 minutes with nitrogen before depositing the
electrode coatings. All polymers were deposited at 1 V vs Ag/AgCl. PEDOT-PSS and PEDOT-DBSA
were deposited for 4 different times (15, 30, 45 or 60 s), PEDOT-pTs was deposited for 45s as
recommended in our previous article (22). 1 probe was coated with PEDOT-PSS and 1 with PEDOT-



DBSA, 4 electrode sites coated at each deposition time in a staggered array as previously described

(22), leaving 12 uncoated platinum electrodes and 4 PEDOT-pTs coated electrodes as controls.

Electrodes were imaged using a BX61 optical microscope (Olympus) and the geometric area measured
with ImageJ (figure 1a). Electrochemical analysis was undertaken in 0.3 M phosphate buffer in
deionised water and the electroactive areas measured by addition of 5 mM Ru(NHj3)s*. Test solutions
were not degassed. A CHI660B potentiostat with CHI684 multiplexer (CH Instruments) were used to
perform cyclic voltammetry at each of the individually addressable working electrode sites. A 3
electrode configuration was used with a Ag/AgCI (3 M KCI) reference and Pt mesh counter electrode.
Charge density measurements were performed using cyclic voltammetry over a range of 0.8 to -0.8 V
vs Ag/AgCI at a scan rate of 100 mV s. Electroactive area measurements were undertaken over a
range of 0 to -0.5 V varying the scan rate from 10 mV s*to 1 V s*. EIS was performed at 0 V with a
10 mV amplitude over a frequency range of 10-100,000 Hz to compare with previous data on
conducting polymer modified neural electrodes. Equivalent circuit fitting of the EIS data was

performed with ZView.

In vivo Testing

Experimental procedures were performed in a sound attenuating Faraday cage on an anti-vibration table.
Hooded Wistar rats weighing over 200 g were anesthetised with urethane (20% v/v in distilled water,
1.3 g/kg i.p., Sigma-Aldrich). The animal was placed in a stereotaxic frame (David Kopf Instruments)
fitted with a hollow ear bar in the left ear. Animal temperature was monitored continuously via a rectal
probe and maintained at 37.5 °C using an ATC1000 DC temperature controller (World Precision
Instruments). A craniectomy was performed to access the right inferior colliculus (IC). A Ag/AgCl
wire reference electrode wrapped in saline saturated cotton wool was placed into the dorsal region of
the animals neck. The multichannel polymer electrode was then inserted at a 19° rostro-caudal angle
with reference to Lambda using stereotaxic coordinates and a rat brain atlas (24) approximately 2 mm
into the brain, towards the IC. White noise bursts were generated by a RX6 multifunction processor
and PA5 programmable attenuator (Tucker-Davis Technologies) controlled by custom software
developed in OpenEx. Sound was delivered through the left ear bar using an EC1 electrostatic speaker
driven using an ED1 electrostatic speaker driver (Tucker-Davis Technologies). Prior to use, the speaker
was calibrated by attachment of the sound generation system to one end of the ear bar with a one-eighth-
inch 4138-A-015 microphone and amplifier unit and 2829 4-Channel Microphone Power Supply (Brel
and Kjer) coupled to the other end using a 3 mm long rigid plastic tube to mimic the rat’s ear canal.
The electrode was then advanced into the IC using a motorized microdrive (Sutter Instruments), whilst
monitoring the neural response via a PZ2 high impedance amplifier and RZ2 bioamp processor (Tucker-
Davis Technologies) with band-pass filtering (300-5000 Hz), until roughly the bottom 3 electrodes on

each shank displayed acoustically driven activity.



An acoustic stimulation protocol of 300 repetitions of 50 ms white noise bursts (rise-fall time 10 ms,
Gaussian distributed noise, 1-44 kHz) at a 1 s repetition rate was then delivered through the speaker at
70 dB, while recording the multiunit activity at each electrode (acquired at a sampling rate of 24.4 kHz).
On completion of the acoustic stimulation protocol, the probe was advanced ~200 ¢m into the I1C so
that each electrode was in approximately the same position as the more distal electrode from the first
measurement. The acoustic stimulation was then repeated and the probe advanced in 200 x«m steps until
all of the electrodes had recorded acoustically evoked activity. The probe was then retracted in 200 um
steps using the same acoustic stimulation protocol to determine the reproducibility of the measurements
and potential damage caused from the probe insertion. After in vivo recording, the electrodes were
carefully retracted from the animal and gently rinsed with deionised water before storing. All animal
procedures were in accordance with the “Australian code for the care and use of animals for scientific
purposes” and approved by the RMIT University Animal Ethics Committee (AEC Number 1315)
published previously (23).

Data Analysis

Acoustically evoked responses were imported into Matlab for offline analysis. A Fourier transform of
the complete 300 s noise pulse train was performed. A bandpass filter of 300-5000 Hz was applied for
measuring multi-unit activity and a bandpass filter of 60-300 Hz was applied for assessing local field
potentials (LFP). For each electrode site, the average of the bandpass filtered RMS measured during
acoustic stimulation (RMSgim) for the complete 50 ms stimulation period was averaged from the 300
repetitions at one electrode depth. The average of the bandpass filtered RMS outside the acoustic
stimulation period (RMSpigd) Was only performed over the last 300 ms of the 950 ms time and averaged
from the 300 repetitions at one electrode depth, to eliminate artifacts from neuron refractory periods.
The signal to noise ratio (SNR) was calculated from (RMSsim / RMShigd) With the SNR classification
taken from (25) (where low SNR < 3.5, medium SNR 3.5-4.0 and good SNR > 4.0). A spike was
measured where the recorded potential was >4.2 x S.D. of the RMS from the previous 1 s with an
exponential weighting of signal for recency. The “during” and “outside” acoustic stimulation spike
count was then performed over the same time periods as above. The spike count difference was
calculated from (spike count during stimulation) — (spike count outside stimulation). Each electrode
site was considered “in” the IC when the spike count difference at one electrode depth was greater than
45 % of the maximum recorded spike count difference over the whole experiment. Data for each
electrode site was averaged across all electrode depths “in” the IC to reduce error due to variations in

biological noise (the number of recordable neurons in the vicinity of the electrodes).

Results



Microscopy and Electrochemistry

Microelectrodes were coated with doped conducting polymers at different deposition times (Figure 1a).
The conducting polymers grew out from the electrode surface, increasing in geometric area with
deposition time and charge passed during electrodeposition (26). The electrodeposited PEDOT-PSS
and PEDOT-DBSA displayed a nodular, rough structure while the PEDOT-pTs deposited for 45 s was
more uniform. At longer deposition times, the conducting polymer grew to the edge of the silicon
shank. This was more pronounced at the shank tips, where the shank width was smaller. With a 45 s
deposition time, PEDOT-PSS and PEDOT-DBSA were double the geometric area of PEDOT-pTs (26)
which is most likely due to polymer templating by the different dopant ions during electrodeposition
(27). The geometric area of the electrodes was assessed by visible light microscopy and seen to increase
with deposition time and deposition charge (26). Deviations from this response were seen when the

conducting polymer grew to the edge of the shank.

Cyclic voltammetry is typically used to assess an electrode’s charge injection capacity and charge
density. The safe charge injection capacity of an electrode should only include potential regions that
do not generate toxic species. Therefore the potential range was chosen to be within the water oxidation
and reduction window and carried out over a range of 0.8 to -0.8 V vs Ag/AgClI. The charge injection
capacity is usually measured from the reduction sweep of the voltammogram. However recent studies
have shown this is only valid for ideal electrodes, in practise the oxidation and reduction charge
injection capacity are not equivalent (28). Platinum electrodes display a small current due to
capacitance and some Faradaic current associated with oxygen reduction, oxide formation and removal,
and hydride adsorption and stripping (Figure 1b). PEDOT modified electrodes have a significantly
larger charge injection capacity including capacitance and Faradaic current from redox reactions of the
conducting polymer. The charge injection capacity of the modified electrodes correlated with the
deposition time and deposition charge, but deviated from this trend when the polymer contacted the
edge of the shank (26).

Uncoated metal electrodes displayed an inverse response of impedance versus frequency (Figure 1c)
and close to -90° phase angle typical of a capacitor (Figure 1d). Conducting polymer coated electrodes
had increasing impedance with decreasing frequency, but with a plateau region at intermediate
frequencies (29). The phase angle of coated electrodes was close to -90° at 100 kHz, approached 0° at
intermediate frequencies around 1 kHz and then shifted more negative at low frequencies. The
impedance of the electrodes could be fit with an equivalent circuit. The uncoated electrodes could be
fit with a simple RC circuit while the modified electrodes required more complex equivalent circuits
(29).



The effective electroactive area was assessed by addition of Ru(NHs)e** to the test solution. Reduction
of the Ru(NHj3)s®* at fast voltammetric scan rates produced peak shaped voltammograms indicative of
a linear diffusion profile of Ru(NHs)e** to the electrode surface (Figure 2a). Measurement of the peak
heights (ip) can be used to calculate a linear diffusion effective area (A) according to

i, = (2.69x10°)n¥? ADV?cu? o)

where n is the number of electrons transferred, D is the diffusion coefficient (9.0 x 10 cm? s) (30), ¢
is the concentration and vis the scan rate. At slow voltammetric scan rates, diffusion of the Ru(NH3)s*
to the microelectrode obtains a radial profile. This results in a sigmoidal shaped voltammetric response
(Figure 2b). The limiting current (iss) at a disc electrode has the form

i, =4nFDcr (2)
where F is the Faraday constant and r is the electrode radius. A steady-state current was obtained on
all uncoated, PEDOT-DBSA and PEDOT-pTs electrodes, but not on PEDOT-PSS, as the electrodes
were too large to achieve a radial diffusion profile at a voltammetric scan rate of 10 mV s. The linear
diffusion effective area was significantly larger than the geometric area due to high surface roughness
(26). However the radial diffusion effective area was smaller than the geometric area indicating the
radial diffusion profile was not uniform across the entire electrode surface (the electrode is not a perfect
flat disc geometry) (31).

Electrophysiology

The microelectrode arrays were inserted into the inferior colliculus (IC) of a rat with white noise pulses
presented to the ear. Multiunit activity was detected on each electrode in the IC, with an increase in
RMS clearly visible during acoustic stimulation (Figure 3a) The average RMS outside of the acoustic
stimulation was around 10-20 pV, depending on electrode coating (Table 1). A Fourier spectrum of
the 300 noise pulse stream showed most power around 0 Hz, decreasing in magnitude to 5 kHz; no
peaks in the Fourier spectrum were found (Figure 3b). Multiunit activity was assessed after applying a
bandpass filter of 300-5000 Hz while local field potentials were assessed with a bandpass filter of 60-
300 Hz.

When the electrodes were placed into the IC, activity was detected on the most distal electrodes;
electrodes more proximal displayed no activity. Stepping the electrode array further into the IC resulted
in more electrodes detecting activity. The spike count difference was found to be the most sensitive in
detecting activity and used to define when each electrode was in the IC. Despite stimulating the IC
with white noise, the local potential within the IC is not uniform. There was a variation in
electrophysiological response within the IC due to biological noise (variation in electrode-neuron
distance, number of neurons adjacent the electrode, local micro-haemorrhages etc.) (Figure 3c-d). The

maximum SNR for most coated electrodes was deemed good (Table 1), however the maximum SNR



for each electrode was obtained from different positions in the IC. And there is an uncertainty in
knowing if this is the absolute maximum SNR achievable with each electrode. To reduce the effect of
biological noise, the electrophysiological responses were averaged over all the positions the electrode
was deemed in the IC. While using an average electrophysiological response reduces biological noise,
it also reduces the SNR; as a result, most average SNR values fell into the low-medium range (Table
1).

Electrode impedance is normally measured to assess its thermal noise and SNR. The impedance was
plotted versus RMSpkgd, SNR and mean during stimulation spike count (Figure 4). There was a weak
positive correlation using a power curve between impedance at 1 kHz and RMSggq and a moderate to

strong negative correlation with SNR and mean during stimulation spike count.

The impedance of modified electrodes varies in a non-linear manner with frequency. Subsequently, an
in vitro assessment of electrode performance at 1 kHz may not be optimal. Plots of RMSgkgd, SNR and
mean during stimulation spike count versus impedance at 12 Hz displayed a larger or equivalent
correlation strength compared to impedance at 1 kHz (Figure 5). Plots of phase angle at 12 Hz versus
SNR and mean during stimulation spike count had moderate to strong linear correlations with PEDOT-
DBSA but were much weaker with PEDOT-PSS (Figure S1).

Changing the measured impedance frequency from 1 kHz to 12 Hz affected the correlation strength
with electrophysiological performance. The impedance at low frequencies is dependent on electrode
area (29). Therefore, the dependence of electrophysiological response with electrode area was assessed.
The electrode area can be measured by different methods; optical microscopy provides a geometric
area, while the effective electrochemically active area can be measured by reduction of Ru(NHs)s*" at
fast or slow voltammetric scan rates. Each method provides different information on the electrode

surface which may better predict electrophysiological performance. Correlations were made with a
: a b _ : . ,
trendline of the form Z = F+K+C . Weak negative correlations were seen with geometric area,

steady state diffusion electroactive area and linear diffusion electroactive area with RMSpga (Figures
S2-4). Moderate to strong positive correlations were seen with all PEDOT-DBSA electrode area
measures versus SNR and mean during stimulation spike count. The best predictor of
electrophysiological performance was seen with a steady state diffusion electroactive area and mean
during stimulation spike count (Figure S3c). Electroactive area measurements from PEDOT-PSS were
more variable with no steady state diffusion electroactive area obtained, and the linear diffusion
electroactive area showing no correlation with geometric area, deposition time or deposition charge
(26). This resulted in weak correlations of PEDOT-PSS linear diffusion electroactive area with

electrophysiological response, while moderate correlations could be obtained with the geometric area.



The relationship of local field potential with electrode properties is also unknown. The LFP RMSkgd
was 2-4 times larger than the multiunit activity RMSpkgq and the LFP SNR was smaller. When stepping
the electrode array through the IC, the SNR varies with position. The standard deviation in SNR from
all electrode positions in the IC is related to the amount of biological noise. The standard deviation
from multiunit activity and LFP for each deposition time of PEDOT-PSS was averaged (Table S1). The
standard deviation in LFP was smaller than multiunit activity, indicating less biological noise for the
LFP recordings. Similar to multiunit activity RMSgugd, the LFP RMSpigqe had positive correlations with
impedance at 1 kHz and 12 Hz, and negative correlations with phase angle at 12 Hz and electrode area
(Figures 6-7, S5-8). The correlations with SNR were the opposite direction to the RMSpge. In nearly

every case, the correlation strength was equivalent or higher for the LFP than the multiunit activity.

Discussion

The use of implantable electrodes to record neural activity requires a stable and high SNR. Current
clinical devices fail for a variety of reasons within a few months or years after implantation (32). While
significant effort has been spent modifying device geometries and materials to improve biocompatibility
and biostability, to date this work has not translated into new clinical applications. Typically new
materials or devices are assessed by measuring impedance at 1 kHz, an ability to support cell growth in
culture and measurement of electrophysiological activity from a microelectrode array or in vivo model.
While device size, hardness, flexibility and material properties play a role in its biocompatibility, there
is no consensus on what properties should be measured and reported. This prevents a comparison of

novel devices and rational development of new clinical implants.

An electrophysiological technique is required to assess neural recording efficacy. This method should
provide a background noise level and response to neural activity. This work measured
electrophysiological behaviour in the IC of a rat which is easily accessible surgically. Reproducible
neural activity is also easily elicited through delivery of multiple noise pulses to the ear. Spike count
gave a larger response than RMS or SNR and was a better measure of correct placement of the electrode
array in the IC. With an electrode in a fixed position, a single measure of electrophysiological response
was obtained. There is a large uncertainty in this single measurement as it provides no information on
the level of biological noise present. Electrophysiological recordings from multiple positions must be
obtained to account for biological noise. A maximum or average response may then be reported.
Control electrodes must also be included in each test, as the level of neural activity varies between

individual animals.



Electrophysiological performance can be predicted from in vitro electrochemical methods. The thermal

th \ - .
ms ) 1S related to resistance (R)

Vi = Ak TRA 3)

where ky is Boltzmann’s constant, T is the absolute temperature and Af is the measuring bandwidth (33).

noise (V

However, this ignores the capacitance of the electrode-solution interface. In an RC circuit, the thermal

/k T
Vth — N 4
rms C ( )

More complex equivalent circuits will affect the thermal noise. A metal electrode in contact with an

noise simplifies to

electrolyte can be modelled as a simple RC circuit where the impedance versus frequency is a linear
function. Comparison of different electrodes can then be achieved at any frequency. However
modification of an electrode with novel materials removes the linear dependence of impedance versus
frequency. The choice of measurement frequency then affects any electrode comparisons.
Furthermore, when the electrode is placed into tissue, biofouling processes will alter the electrode-tissue

interface and may change the equivalent circuit.

An improved correlation of impedance on modified electrodes with electrophysiological response was
seen with low frequencies. The low frequency impedance of modified electrodes is dependent on
electrode area while the typically reported impedance at 1 kHz is of less utility. Correlation of electrode
area with electrophysiological response further confirms the greater relevance of impedance at low
frequencies. Therefore a greater theoretical basis of impedance measurements is required to predict

electrophysiological performance.

The electrode impedance is a function of the electrical double layer or Helmholtz—Chapman layer
formed at the electrode-solution interface. In a simple electrolyte, the electrode impedance behaves as
a two-layer system. One layer being the electrical double layer established at the electrode surface,
which usually has high impedance. This appears in series with the bulk electrolyte layer, which
typically has low impedance. Each layer has a relaxation time (z) which is a function of their dielectric
constant (¢) and conductivity (), z =¢/0=RC. When charge is applied across these two layers, current
will flow. However if the relaxation time of each layer is different, charge accumulation will occur.
This is called the Maxwell-Wagner effect (34). In a biological system, cell excitation leads to a change
in local ion concentration, charge accumulation at the electrode-tissue interface and subsequent current

flow.



In EIS, the electrical-double layer dominates the low frequency response, while the bulk electrolyte
dominates the high frequencies. The transition in EIS response between these layers occurs at the
Maxwell-Wagner relaxation frequency. Therefore, to measure the electrodes contribution to EIS,
frequencies below the Maxwell-Wagner relaxation frequency must be used.

For metal electrodes in simple electrolytes, the Maxwell-Wagner relaxation frequency may be above 1
kHz, and so measurements at this frequency would provide information on the electrical double layer.
For systems such as conducting polymer-electrolyte interfaces, the Maxwell-Wagner relaxation
frequency will be lower and exhibit higher dispersion; 1 kHz is not a low enough frequency. When the
electrode is placed into tissue, protein fouling will affect the electrode-solution interface. The tissue
impedance is also far more complex, with a large inhomogeneity in resistivity and permittivity due to
variations in cell type and structure and the associated variations in ionic strength and cell membrane
capacitance. This prevents measurement of the Maxwell-Wagner relaxation frequency in tissue, and
will limit the accuracy in predicting electrophysiological function from in vitro electrochemical
methods. Nevertheless, the most accurate prediction of electrode performance will be made from low
frequency impedance.

Averaging multiple electrode positions reduced biological noise, allowing strong correlations of
electrochemical and electrophysiological performance. Residual error may be due to further biological
noise caused by the finite number of electrode positions tested. LFPs detect neural activity over a larger
region, and the higher correlations seen with LFP than MUA recording implies some biological noise
is still present. Some error may also be due to the electrochemical testing (impedance and effective
electrode area), which was performed in a simple electrolyte before protein fouling occurred. A more
accurate measure of electrode performance may be obtained from an appropriate model solution (ie.

artificial cerebrospinal fluid for brain implants and artificial perilymph for cochlear implants).

The neural recording presented here was from acute implantation. This prevents any possible glial cell
encapsulation and degradation of the electrode affecting the correlations of electrochemical and
electrophysiological performance.  During chronic implantation, neural rearrangement, glial
encapsulation and electrode degradation can reduce SNR. An ideal device would not suffer any
biostability or biocompatibility issues, in which case the chronic performance should approach the acute
performance. Before any new devices are assessed for chronic stability, they should be tested via the
proposed in vitro electrochemical and acute electrophysiological methods. This will reduce costs and

numbers of animals used in lengthy experiments with potentially low significance.
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Table 1. Average, standard deviation and coefficient of variation of outside stimulation RMS potential,

signal-to-noise ratio and mean during stimulation spike count.

Polymer coating

Outside stimulation
RMS potential (1V)

Signal-to-noise ratio

Mean during

stimulation spike

count

Ave SD Cv Max Ave SD Cv Ave SD Cv
15s PEDOT-PSS 10.2 0.7 0.07 6.18 3.86 0.16 0.04 20.2 1.3 0.06
30s PEDOT-PSS 115 2.2 019 6.48 3.63 0.87 0.24 20.5 19 0.09
45s PEDOT-PSS 10.5 1.7 0.16  5.57 3.62 0.60 0.16 20.3 16 0.08
60s PEDOT-PSS 12.0 2.6 022 497 3.02 0.44 0.15 18.0 24  0.13
45s PEDOT-pTs 154 6.0 039 424 2.89 0.64 0.22 19.2 3.6 019
Uncoated 17.7 9.8 055 220 1.83 0.33 0.18 9.6 40 042
15s PEDOT-DBSA  11.2 1.8 016 4.04 3.21 0.95 0.30 18.2 33 0.18
30s PEDOT-DBSA  12.1 2.5 020 4.73 3.41 0.42 0.12 20.3 28 0.14
455 PEDOT-DBSA 9.9 0.1 0.08 494 3.65 0.15 0.04 21.0 1.1 0.05
60s PEDOT-DBSA  11.6 3.1 0.27  3.90 3.18 1.00 0.32 19.1 1.6 0.08
45s PEDOT-pTs 17.6 5.3 030 3.02 242 0.95 0.39 17.8 52 0.29
Uncoated 21.0 109 052 221 1.67 0.25 0.15 7.2 27 037
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Figure 1. (a) Visible light microscopy of a PEDOT-DBSA modified probe. (b) Typical cyclic
voltammetry and (c-d) electrochemical impedance spectroscopy in 0.3 M Na;HPO4 at 100 mV s* of an
uncoated electrode; and electrodes coated at 45 s deposition of PEDOT-pTs, PEDOT-DBSA or

PEDOT-PSS.
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Figure 2. Typical cyclic voltammetry of 5 mM Ru(NH;)¢** in 0.3 M Na;HPO, on uncoated electrode;
and electrodes coated at 45 s deposition of PEDOT-pTs, PEDOT-DBSA or PEDOT-PSS. (a) At 200
mV s, all background subtracted except for PEDOT-DBSA. (b) At 10 mV s}, all background
subtracted, only the reductive scan of PEDOT-PSS is shown.
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Figure 3. (a) Typical streaming data of a 50 ms white noise pulse of a coated (yellow) and uncoated

(brown) electrode. (b) Power spectrum of 300 repetitions of white noise pulses.
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difference and (d) SNR of a PEDOT-DBSA and an uncoated electrode during insertion and withdrawal

into the IC.
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Figure 4: Impedance at 1 kHz at (a, c, ) PEDOT-PSS and (b, d, f) PEDOT-DBSA modified electrodes
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are power curves.
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Figure 7: Impedance at 12 Hz at (a, c, e) PEDOT-PSS and (b, d, f) PEDOT-DBSA modified electrodes
versus local field potential (a-b) RMSpeq and (c-d) SNR. The fitted trendlines are power curves.
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