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Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene
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By using the Kubo formula, the optical conductivity of strained black phosphorene was studied. The anisotropic
band dispersion gives rise to an orientation dependent optical conductivity. The energy gap can be tuned by the
uniaxial and biaxial strains which can be observed from the interband optical conductivity polarized along
the armchair (x) direction. The preferential conducting direction is along the x direction. The dependence of the
intraband optical conductivity along the zigzag (y) direction on the Fermi energy and strain exhibits increasing or
decreasing monotonously. However, along the x direction this dependence is complicated which originates from
the carriers’ inverse-direction movements obtained by two types of the nearest phosphorus atom interactions. The
modification of the biaxial strain on the energy structure and optical-absorption property is more effective. The
imaginary part of the total optical conductivity (Imσ ) can be negative around the threshold of the interband optical
transition by modifying the chemical potential. Away from this frequency region, Imσ exhibits positive value. It
can be used in the application of the surface plasmon propagations in multilayer dielectric structures.

DOI: 10.1103/PhysRevB.97.245408

I. INTRODUCTION

The research on graphene has spurred diverse efforts to
investigate other two-dimensional (2D) materials, such as
black phosphorene (BP) [1,2] and other more than 600 stable
exfoliated 2D materials [3] because of their rich optical, electri-
cal, and mechanical physics and potential applications [4,5].
BP is a 2D direct-gap semiconductor with a honeycomblike
structure. It is similar to graphene, but is nonplanar. The
carrier’s band structure can be obtained by the tight-binding
approach [6,7]. In contrast to graphene, the tight binding for
BP involves two important parameters, describing the in-plane
and out-of-plane nearest-neighbor hoppings, and the second
parameter is shown to be largely responsible for the band-gap
opening. BP possesses a finite band gap with a predicted band
gap of 2 eV [8] which varies with the layer number (layer
thickness) [7–9], stacking order [10], the external strain engi-
neering [9,11–13], doping [14,15], and superlattice potential
[16]. With the increase of the layer number of BP, the band
gap decreases [7–9]. Mechanics strain is an effective means to
tune the energy band gap. In the presence of strain, the change
of the bond length between the nearest- and the next-nearest
atoms leads to the modulation of the hopping energy. The
hopping energy is dependent on the strain components for
different strain directions. Within the tight-binding model, the
dependence of the energy band gap on the strain for single
layer BP has been obtained [9]. The analytical band gap
variation induced by a general strain has been derived and
the maximum (or minimum) strain effect on the band gap
can be achieved [12]. Based on the density function theory
calculations, the BP shows good stability under tensile strains,

*Corresponding author: czhang@uow.edu.au

while it shows instability under compression strains [13].
Considering potassium doping on the surface of BP, it was
found that the band gap was closed completely and the material
was tuned from a semiconductor to a band-inverted semimetal.
At a critical doping, an emergence of 2D massless Dirac cones
has been observed with linear and quadratic energy dispersions
along the armchair and zigzag directions, respectively [14,15].
In the presence of the 1D superlattice potential the energy
band gap around the Dirac cone has been reduced [16]. These
diverse approaches being used to tune the energy gap and
energy dispersion provide a high feasibility in the applications
of photonic and optoelectronic devices that can operate at
different frequencies in BP.

Arising from the structural anisotropy, the most distinc-
tive characteristic of BP from the other 2D materials is its
anisotropic properties, which leads to a direction-dependent
electronic [10,15,17,18], optical [9–11,18–21], thermal
[22–24], and mechanical properties [25]. The electron/hole
effective masses along the armchair and zigzag directions at
the � point have an approximate “8” shape, which indicates the
anisotropic nature of the electronic properties because BP has a
highly anisotropic band structure around the band gap [10]. The
anisotropic electronic mobility and electrical conductance have
been investigated by first-principle simulations [17]. It is found
that the preferred conducting direction can be rotated by 90◦
with appropriate strain. The measured hall mobility for holes
and the optical conductivity are anisotropic, experimentally
[18]. BP absorbing less light energy polarized along the
armchair direction than along the zigzag direction achieves
a maximized optical conductivity in the armchair direction
[9]. The peak of the anisotropic optical-absorption spectra is
shifted towards the lower (higher) energy under compressive
(tensile) strain [11]. Using the Kubo formula within an effective
low-energy Hamiltonian, the optical conductivity tensor was
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calculated, which is shown sensitively to the thickness and
light polarization [19]. In a THz region, the optical intraband
transitions contribute to the intraband optical conductivity in
the vicinity of the � point which can be expressed by different
in-plane effective electron masses along different directions
[26–28]. In the presence of periodic stress, theoretical results
predict that the optical-absorption band edge can be modified
[20]. In the presence of two types of defects (i.e., short-
and long-range defects), the anisotropy of defect-induced
optical excitations is suppressed due to the isotropic nature
of the defects [21]. BP exhibits in-plane anisotropic thermal
conductivity with the preferential direction along the zigzag
direction [22–24] which is different from the electric preferen-
tial direction along the armchair direction. The thermal energy
transport in the supported and suspended BP sheets has been
studied and found that supported BP exhibits an anomalous
thermal anisotropy enhancement by coupling to the substrate
[22]. The strain dependence of the thermal conductivity has
also been discussed [23]. Using first-principles calculation
and the nonequilibrium Green’s-function method, Ong et al.
investigated the ballistic thermal transport and the effect of
strain on the thermal conductivity of BP [24]. They found
that the thermal conductance is anisotropic and the orientation
dependence can be tuned by the strain engineering.

In this paper, we investigate the angular dependent optical
conductivity from intraband and interband optical transitions.
Originating from the puckered lattice structure with nonplanar
armchair and planar zigzag directions, it leads to an anisotropic
optical conductivity. We shall demonstrate the anisotropic
optical-absorption properties of BP under uniaxial and biaxial
expansion or compression strains along the armchair and/or
zigzag directions. To understand the properties of the optical
conductivity, the dependence of the energy band structure on
strain will be employed to analyze and discuss.

II. THEORETICAL APPROACHES

The tight-binding Hamiltonian for single layer pristine
black phosphorene can be described as follows [21,29]:

H =
∑
ν,ν ′

tν,ν ′c†νcν ′ , (1)

where the summation runs over the lattice sites (ν,ν ′) of BP.
tν,ν ′ is the intralayer hopping energy between νth and ν ′th sites.
c†ν (cν ′) is the creation (annihilation) operator of electrons at site
ν (ν ′). A unit cell of BP contains four phosphorus atoms, two
puckered-up and two puckered-down atoms. In the momentum
representation, the 4 × 4 Hamiltonian matrix reduces to a
2 × 2 matrix if puckered-up and puckered-down atoms are
identical. The two-band Hamiltonian reads as

H2 =
(

fk gk
g∗

k fk

)
. (2)

Here, fk = 4t4 cos(kxa/2) cos(kyb/2), gk = 2t1e
−ikxa1x

cos(kyb/2) + t2e
ikxa2x + 2t3e

ikxa3x cos(kyb/2) + t5e
−ikxa5x =

|gk|eiθk . a1x = 1.417 63 Å (a2x = 0.797 32 Å) is the distance
between the intraplanar (interplanar) nearest-neighbor atoms
projected to the x direction. a3x = a1x + 2a2x, a4x =
a1x + a2x , a5x = 2a1x + a2x . a = 2(a1x + a2x) and
b = 3.27 Å are the lengths of the unit cell into the x

direction (armchair) and y direction (zigzag). From Eq. (2),
the conduction and valence energy bands can be obtained as

Ek,s = fk + s
√

gkg
∗
k. (3)

The corresponding carrier states are

ψk,s(r) = 1√
2

(
seiθk

1

)
eik·r, (4)

where s = ±1 refers to the conduction band (s = 1) and the
valence band (s = −1).

The bond lengths can be tuned by the strain engineering
which leads to the modified hopping parameters. When an
axial strain is applied, considering the relationship between
the hopping energy and the bond length, t ∝ 1

r2 , in the linear
deformation regime, the dependence of the hopping parameters
on strain is given as

tj /t0j ≈ 1 − 2(αj,xεx + αj,yεy + αj,zεz), (5)

where tj (t0j ) refers to the hopping energy in a distorted (undis-
torted) lattice. In Refs. [21] and [29], five hopping parameters
are t01 = −1.220 eV, t02 = 3.665 eV, t03 = −0.205 eV, t04 =
−0.105 eV, and t05 = −0.055 eV. εγ is the strain coefficient
along the γ = (x,y,z) direction. αj,γ = r2

0j,γ /r2
0j are the coef-

ficients relating to the structure of BP. r0j,γ = (x0j ,y0j ,z0j ).
In the presence of the optical field E(ω), the wave vector

k → k + (e/h̄)A and the Hamiltonian becomes

H2(A) =
(

fk + �fk(A) gk + �gk(A)
g∗

k + �g∗
k(A) fk + �fk(A)

)
,

where A = E/(iω) is the vector potential. Using the wave
function in the absence of the optical field to construct electron
quantum field operators in the k space, �(r) = ∑

k,s ck,sψ(r)

and �†(r) = ∑
k,s c

†
k,sψ

∗(r) where c
†
k,s and ck,s are the cre-

ation and annihilation operators for an electron at (k,s) state. In
the second quantized notation, the Hamiltonian can be written
as H = ∑

k,s Ek,sc
†
k,sck,s + J · A. The components Jμ=x,y of

the current operator J are

Jμ = − e

h̄
k,sc

†
k,sck,sα

μ

k + i
e

h̄
k,sc

†
k,sck,−sβ

μ

k , (6)

where u = x or y, αx
k = 2t4a sin(kxa/2) cos(kyb/2) + 2t1a1x

cos(kyb/2) sin(kxa1x + θk) + t2a2x sin(kxa2x − θk) + 2t3a3x

cos(kyb/2) sin(kxa3x − θk) + t5a5x sin(kxa5x + θk), βx
k = −2t1

a1x cos(kyb/2) cos(kxa1x + θk) + t2a2x cos(kxa2x − θk) + 2t3
a3x cos(kyb/2) cos(kxa3x − θk) − t5a5x cos(kxa5x + θk), α

y

k =
2t4b cos(kxa/2) sin(kyb/2) + b sin(kyb/2)[t1 cos(kxa1x + θk)
+t3 cos(kxa3x − θk)], β

y

k = b sin(kyb/2)[t1 sin(kxa1x + θk) −
t3 sin(kxa3x − θk)]. Using the Kubo formula, the optical
conductivity is given as

σμ,μ′ = gs

h̄ωS

∫ ∞

0
dteiωt 〈[jμ(t),jμ′(0)]〉, (7)

where gs = 2 is the spin degeneracy. S is the 2D planar
area. The intraband transitions (s,s) contribute to the optical
conductivity in the presence of the disorder or scattering in
the THz region which can be described as the Drude-like
conductivity,

σ intra
μ,μ = i

gsσ0

π2(h̄ω + iδ1)

∫ π/a

0

(
α

μ

k

)2

|∂Ek,+/∂ky |kF,y

dkx. (8)
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FIG. 1. The band structure of single layer BP in the absence of
strain along � − X (a), � − Y (b), � − S (c) directions. �, X, Y ,
and S are (0,0), (π/a,0), (0,π/b), and (π/a,π/b) points in a (kx,ky)
Brillouin zone. Red dashed lines represent the energy in the midpoint
between the valence band (black dotted line) and the conduction band
(blue solid line) at � point.

σ0 = e2/h̄, δ1 is the broadening width determined by scattering
or disorder in the conduction band. kF,y depends on the
integration parameter kx which satisfies E(kF,y,kx) = EF .

When the incident optical energy is large enough, the
carriers absorb this energy and transmit from the valence band
to the conduction band. The longitudinal optical conductivity
from the interband transitions (s, − s) has been obtained as

σ inter
μ,μ = iζ

∑
k

(
β

μ

k

)2
[

fk,+ − fk,−
h̄ω + �Ek + iδ2

− fk,+ − fk,−
h̄ω − �Ek + iδ2

]
.

(9)

Here, ζ = gsσ0/(h̄ωS). �Ek = (Ek,+ − Ek,−). fk,s is the
Dirac-Fermi distribution function. δ2 accounts for the finite
damping between the conduction band and the valence band.
The interband optical conductivity relates to the energy differ-
ence between two bands. In addition, the Hall optical conduc-
tivity σx,y = σy,x = 0 because of the structure symmetry. In
the following, the strain effect on the optical conductivity will
be investigated.

III. RESULTS AND DISCUSSIONS

The calculated band dispersion for single layer BP in the
absence of strain is shown in Fig. 1. The energy dispersion is
anisotropic. The energy gap is Eg = 4(t1 + t3) + 2(t2 + t5) =
1.52 eV which depends on the hopping energies t1, t2, t3, and
t5. In the presence of tensile and/or compressive strains, the
lengths r0j between the nearest-neighbor and next-nearest-
neighbor atoms become rj which leads to all these hopping
parameters being tuned. The energy gap as a function of biaxial
strain is depicted in Fig. 2. The main coupling parameters
are t1 and t2 from the nearest-neighbor atoms. Therefore,
we focus our discussion on the modifications of r1 and r2

when strain is applied in different directions. When a tensile
strain is along the x direction, according to the relationship
of rj,γ = (1 + εγ )r0j,γ both r1 and r2 become longer. Using
Eq. (5), the absolute values of the related hopping parameters

FIG. 2. The energy gap at � point under biaxial strains, with
strains applied along (x,y) (a), (x,z) (b), and (y,z) (c) directions.
The color bar represents the energy gap value. The unit is eV. The
black solid lines represent the zero energy gap.

become smaller because of the coefficient α1/2,x > 0. If the
tensile strain is along the y direction, only r1 is elongated,
while r2 = r02 remains unchanged because of α2,y = 0. If the
tensile strain is applied in the z direction, only r2 is elongated
and r1 = r01 remains unchanged because ofα1,z = 0. It is noted
that t2 is positive while other hopping parameters are negative.
Considering the relationship t/t0 = (r/r0)−2, the simulation
results for the energy gap can be concluded in Fig. 2. The band
gap of BP increases when increasing the strain along the x/y

axis. But the strain effect along the z axis on the energy gap
exhibits in an opposite way. With the same uniaxial strain value,
the effect of εz strain on the energy gap is stronger than that of εy

strain. The effect of εx strain on the energy dispersion is weaker
than that of the εy and εz strains. At a critical strain value, the
energy gap becomes zero which is represented by black solid
lines in Fig. 2. Increasing or decreasing the strain further along
different directions leads to the occurrence of the negative band
gap, shown in Fig. 2. Figure 3 illustrates the energy difference
between the conduction band and the valence band (E+ − E−)
along the (kx,ky) Brillouin plane. This energy difference is
symmetric about the kx and ky axes, but anisotropic along other
different axes which can be tuned by the applied tensile and
compressive strains. The compressive strain applied in the z

direction has an obvious influence on this energy difference.
When an optical field is present, the carriers absorb optical
energy and make a transition from the valence band to the
conduction band vertically to satisfy the energy and momentum
conservations which relate to this energy difference at the same
wave vector.

We now discuss the intraband and interband optical conduc-
tivity and the dependence on the uniaxial and biaxial strains in
BP. In the THz frequency region, the main contributions to the
optical conductivity are from the intraband optical transitions
(q → 0) where q indicates the wave-vector change before and
after the scattering process. Figure 4 illustrates the real and
imaginary parts of the intraband optical conductivity versus
the incident optical energy at different chemical potential

245408-3
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FIG. 3. The energy difference between the conduction band (E+)
and the valence band (E−) in the absence of strain (a), under uniaxial
tensile strain εx = 25% (b), εy = 15% (c), and compressive strain
εz = −10% (d). The black dashed lines represent the maximum
continuous equal energy line in a Brillouin zone. The color bar
represents the energy difference value. The unit is eV.

μc = 0.5,1,1.5,2,2.5 eV in the absence of strain. This Drude-
like intraband optical conductivity along the armchair (x) and
zigzag (y) directions exhibits anisotropic characteristics. The
x component of the conductivity is larger than the y component
which presents the preferential conducting direction being
the armchair direction. In Ref. [26], using two anisotropic
effective masses around the � point, the Drude conductivity
was inversely proportional to these masses and the obtained
σxx is larger than σyy theoretically. Increasing the chemical
potential, the optical conductivity σ intra

yy increases while σ intra
xx

increases at first and decreases later which can be traced to the
total effect of the carriers’ motions. When the electric field is

FIG. 4. The real (a),(c) and imaginary (b),(d) parts of the in-
traband optical conductivities along the armchair σ intra

xx and zigzag
σ intra

yy directions as a function of the optical energy at different
chemical potential μc in the absence of strain. EF = Ec(�) + μc.
Conductivities are normalized with respect to σ0 = e2/h̄.

FIG. 5. The coefficients of the intraband optical conductivities
along the armchair (Coeintra

xx ) and zigzag (Coeintra
yy ) directions with

strain applied along the x (a),(b) and y (c),(d) directions at different
chemical potential μc.

applied along the armchair direction, the main interactions t1
and t2 cause carriers to move in an opposite direction which
makes the dependence of σ intra

xx on the chemical potential and
the strain complicated. The intraband optical conductivity is
determined by the Drude coefficient from the wave-vector

integration Coeintra
μμ = ∫ π/a

0
(αμ

k )2

|∂Ek,+/∂ky |kF,y

dkx in Eq. (8), and the

dependence on εx and εy has been plotted in Fig. 5. With the
increase of εx and εy , the integration coefficient of the wave
vector Coeintra

yy monotonically decreases and increases which
can be seen in Figs. 5(c) and 5(d). Along the armchair direction,
when the chemical potential is lower than about 1.0 eV, the
integration coefficient monotonically increases and decreases
with the increase of εx and εy [see Figs. 5(a) and 5(b)]. After
continuing to increase the chemical potential over a critical
value (about 1.5 eV), the dependence of Coeintra

xx on strain is
complicated.

In the interband optical transition calculation, the Fermi
energy EF is located at the midgap between the valence band
and the conduction band at the � point and the damping
term δ2 = 0.08. Figures 6 and 7 show the real and imaginary
parts of the optical conductivity σ inter

xx and σ inter
yy versus the

incident optical energy. The profiles of the interband optical
conductivity for the incident light polarized along the armchair
(σ inter

xx ) and zigzag (σ inter
yy ) directions are strongly asymmetric

which is the result of the anisotropic energy-band structure. In
the presence of uniaxial strain, the change of energy gap can be
directly observed from the shift of the Reσ inter

xx peak. However
the peak height of Reσ inter

xx under different uniaxial strain εx

remains roughly unchanged. At frequencies larger than the
absorption edge, Reσ inter

xx decreases with the increase of the
optical energy. At a certain high frequency, Reσ inter

xx decreases
drastically which corresponds to the maximum continuous
equal energy difference in the Brillouin zone in Fig. 3. When
the equal energy line in a reciprocal space is continuous, it
can provide sufficient channels for carriers in the valence band
absorbing optical energy and transmitting to the conduction

245408-4
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FIG. 6. The real (a),(c),(e) and imaginary (b),(d),(f) parts of the
interband optical conductivities σ inter

xx vs the optical energy at different
uniaxial tensile and compressive strains, with strain applied along the
x (a),(b), y (c),(d), and z (e),(f) directions.

band. If this maximum continuous energy line is too high
which indicates the high incident optical energy, the two-band
Hamiltonian becomes inaccurate and more bands should be
included in the model. In the two-band model, the character-
istics of the interband optical conductivity polarized along the
armchair direction drastically decreasing at the high-energy
region will be glossed over. From Figs. 6(b), 6(d), and 6(f),
the value of the imaginary part of the optical conductivity
Imσ inter

xx can be negative or positive. The dip position in the
low frequency in Imσ inter

xx reflects the band gap. The interband
optical conductivity polarized along the zigzag direction σ inter

yy

increases with increasing the optical energy to the above-
mentioned critical energy difference. Another interesting phe-
nomenon is that the effect of the strain εz on the optical
conductivity is opposite to that when the strain is along the x

and y directions. In the presence of biaxial strains, the energy
spectrum can be efficiently modulated. Therefore, the optical
conductivity depends on biaxial strains which can be observed
in Fig. 8. The main features about the dependence on the optical

FIG. 7. Same as Fig. 6 except for the interband optical conduc-
tivity σ inter

yy .

FIG. 8. The real (a),(c) and imaginary (b),(d) parts of the inter-
band optical conductivities σ inter

xx (a),(b) and σ inter
yy (c),(d) as a function

of biaxial tensile and compressive strains along (y,z) directions.

frequency and strain have been retained. But compared with
the effect of uniaxial strain on σ inter, smaller biaxial strains
will achieve the same optical conductivity value. Figure 9
plots the total BP optical conductivity at different chemical
potential in the conduction band in the absence of strain. Here,
the temperature was set at 10 K. The main contributions from
intraband and interband optical transition processes locate in
the low and high incident optical energy region, respectively.
The optical energy of the peak position in Reσxx corresponds
to Eg + 2μc. When μc = 0.5 eV, the total imaginary part
of Imσxx is positive which can be applied in the transverse
magnetic (TM) surface plasmon propagation. Decreasing the
chemical potential to 0.1 eV, Imσxx exhibits negative at about
Eg + 2μc which is similar to the 2D monolayer graphene

FIG. 9. The real (a),(c) and imaginary (b),(d) parts of the total
optical conductivities along the armchair direction (x) (a),(b) and
along the zigzag direction (y) (c),(d) vs the incident optical energy.

245408-5
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material and can support the transverse electric (TE) surface
plasmon propagation [30,31].

In summary, in a 2D nonplanar BP both the energy-band
structure and the optical conductivity exhibit strong anisotropy
which can be modified by uniaxial and biaxial tensile and
compressive strains. The modulation under biaxial strain is
more effective than that under uniaxial strain. The energy
gap increases with the strain applied along the x and y

directions increasing. But the dependence of the energy gap
on the z direction strain is opposite to the other two direction
strains. In the presence of the optical field, it will make
carriers transmit among the conduction band or from the
valence band to the conduction band which contributes to
the BP’s intraband and interband optical conductivity. The
intraband optical conductivity polarized along the zigzag
direction exhibits monotonically dependence on the Fermi
energy and strain. However, along the armchair direction the
complex dependence was observed which originates from
the competitive carriers’ motions from t1 and t2 interaction.

The blueshifts and redshifts of the absorption edge in the
interband optical conductivity polarized along the armchair
direction can be observed and the energy gap can be obtained
in the presence of different strains. Above the energy gap,
increasing the incident optical energy the real part of the optical
conductivity Reσ inter

xx (Reσ inter
yy ) decreases (increases). When

the optical energy increases to a critical value, the absorption
drops abruptly. It is found that the total imaginary part of
the BP optical conductivity can be modified by the chemical
potential. This property can be used to study the dispersion and
propagation properties of TE/TM surface plasmon.
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