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muricata and its microbiome

Abstract
The potential impacts of mining activities on tropical coastal ecosystems are poorly understood. In particular,
limited information is available on the effects of metals on scleractinian corals which are foundation species
that form vital structural habitats supporting other biota. This study investigated the effects of dissolved nickel
and copper on the coral Acropora muricata and its associated microbiota. Corals collected from the Great
Barrier Reef were exposed to dissolved nickel (45, 90, 470, 900 and 9050 μg Ni/L)or copper (4, 11, 32 and 65
μg Cu/L)in flow through chambers at the National Sea Simulator, Townsville, Qld, Australia. After a 96-h
exposure DNA metabarcoding (16S rDNA and 18S rDNA)was undertaken on all samples to detect changes
in the structure of the coral microbiome. The controls remained healthy throughout the study period. After 36
h, bleaching was only observed in corals exposed to 32 and 65 μg Cu/L and very high nickel concentrations
(9050 μg Ni/L). At 96 h, significant discolouration of corals was only observed in 470 and 900 μg Ni/L
treatments, the highest concentrations tested. While high concentrations of nickel caused bleaching, no
changes in the composition of their microbiome communities were observed. In contrast, exposure to copper
not only resulted in bleaching, but altered the composition of both the eukaryote and bacterial communities
of the coral's microbiomes. Our findings showed that these effects were only evident at relatively high
concentrations of nickel and copper, reflecting concentrations observed only in extremely polluted
environments. Elevated metal concentrations have the capacity to alter the microbiomes which are inherently
linked to coral health.
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Abstract 

The potential impacts of mining activities on tropical coastal ecosystems are poorly 

understood. In particular, limited information is available on the effects of metals on 

scleractinian corals which are foundation species that form vital structural habitats 

supporting other biota. This study investigated the effects of dissolved nickel and copper on 

the coral Acropora muricata and its associated microbiota.  Corals collected from the Great 

Barrier Reef were exposed to dissolved nickel (45, 90, 470, 900 and 9050 µg Ni/L) or copper 

(4, 11, 32 and 65 µg Cu/L) in flow through chambers at the National Sea Simulator, 

Townsville, Qld, Australia. After a 96-h exposure DNA metabarcoding (16S rDNA and 18S 

rDNA) was undertaken on all samples to detect changes in the structure of the coral 

microbiome. The controls remained healthy throughout the study period. After 36 h, 

bleaching was only observed in corals exposed to 32 and 65 µg Cu/L and very high nickel 

concentrations (9050 µg Ni/L). At 96 h, significant discolouration of corals was only observed 

in 470 and 900 µg Ni/L treatments, the highest concentrations tested. While high 

concentrations of nickel caused bleaching, no changes in the composition of their 

microbiome communities were observed. In contrast, exposure to copper not only resulted 

in bleaching, but altered the composition of both the eukaryote and bacterial communities 

of the coral’s microbiomes. Our findings showed that these effects were only evident at 

relatively high concentrations of nickel and copper, reflecting concentrations observed only 

in extremely polluted environments. Elevated metal concentrations have the capacity to 

alter the microbiomes which are inherently linked to coral health. 

Capsule: Bleaching and changes in the coral microbiome community structure were only 

observed in corals exposed to high concentrations of dissolved nickel and copper. 

Keywords:  Coral microbiome, 16S rDNA, 18S rDNA , Tropical ecotoxicology, DNA 

metabarcoding, Metals 

Highlights 

• There is an increase in mining activities in tropical regions 

• Corals may be exposed to metal contaminants 

• There is limited data for the effects of metals on adult corals and their microbiome 

• We exposed the coral Acropora muricata to Cu and Ni separately 
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• High concentrations of Cu and Ni caused bleaching and changes in the microbiome 

community of A. muricata 
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1. Introduction 

Mining and production of metals has recently intensified in the Asia-Pacific region (USGS, 2016). 

However, there has been limited research on the potential impacts of these activities in the 

tropical coastal marine environment, hindering the establishment of ecologically-relevant risk 

assessment tools, e.g. water quality guideline values. Temperate marine water guideline values 

for copper and nickel have been developed in various jurisdictions e.g. 1.3 µg Cu/L and 7 µg Ni/L, 

respectively (ANZECC/ARMCANZ, 2000). Such guideline values are yet to be developed for 

tropical environments due to a paucity of relevant data for endemic species (Gissi et al., 2016). 

Corals are foundational species in tropical marine systems, thus understanding the impacts of 

metal contaminants on corals is pivotal for developing ecologically relevant risk assessment and 

management strategies for mining operations in tropical marine environments.  

Coral reefs are increasingly exposed to a variety of anthropogenic stressors. While the effects of 

climate change (e.g. increase in temperature and decrease in pH) and agricultural run-off (i.e. 

increasing loadings of pesticides and nutrients) are well documented (Bessell-Browne et al., 

2017; Biscere et al., 2015; Flores et al., 2012; Negri et al., 2011; Nystrom et al., 2001), in some 

environments, metals may also be contributing to the decline in the health of coral ecosystems 

(Mitchelmore et al., 2007). Exposure to elevated metals has been shown to elicit a range of 

ecotoxicological effects on corals across all life stages: including coral fertilisation (e.g. Reichelt-

Brushett and Harrison, 2005);  larvae survival and motility (Reichelt-Brushett and Harrison, 

2004); settlement and metamorphosis of larvae (Negri and Heyward, 2001; Reichelt-Brushett 

and Harrison, 2000); and bleaching (expulsion of Symbiodinium) and photosynthetic efficiency in 

adult corals (Jones, 1997). Copper is generally more toxic than nickel to all coral life stages; 

however, there are far fewer studies which have investigated nickel toxicity to corals. Copper 

inhibits coral fertilisation, larval metamorphosis and survival between 15 – 150 µg Cu/L, as cited 

in Gissi et al., (2017). Survival of adult corals has been shown to be reduced by 50% at 250 µg 

Cu/L (Hedouin et al., 2016). Nickel has been found to inhibit fertilisation success but only at very 

high concentrations,>1000 µg Ni/L (Gissi et al., 2017; Reichelt-Brushett and Hudspith, 2016; 

Reichelt-Brushett and Harrison, 2005) and to inhibit larval survival and settlement at 9000 µg 

Ni/L (Goh, 1991). To date, there are few reports on the toxicity of nickel to adult corals (Biscéré 

et al., 2017).  
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The coral microbiome consists of bacteria, dinoflagellate algae of the genus Symbiodinium, 

viruses, fungi and archaea (Peixoto et al., 2017). The microbiome plays a fundamental role in the 

development, health and defence of the coral host (Hernandez-Agreda et al., 2017). Microbial 

communities contribute to carbon and sulfur cycling, phosphorous fixation, metal homeostasis, 

organic remediation, production of antibiotics and secondary metabolism (reviewed by 

McDevitt-Irwin et al., 2017). To gain a better understanding of the effects of contaminant 

exposure on the host, it is pivotal that corals and their microbiota are examined collectively as 

‘holobionts’ (McDevitt-Irwin et al., 2017). Studies on the impacts of climate change drivers have 

found that environmental stressors can alter the microbiome community structure, potentially 

reducing the health and survival of corals (Grottoli et al., 2018; Thurber et al., 2009a; Webster et 

al., 2016).  A number of field studies have shown that the coral microbiome is also susceptible to 

anthropogenic impacts from sedimentation, sewage and municipal waste water discharge and 

changes in salinity (Paulino et al., 2016; Rothig et al., 2016; Zhang et al., 2015; Ziegler et al., 

2016).  

To our knowledge, there have been no studies which have investigated the effects of individual 

metals on the entire coral holobiont (coral animal host, bacteria and algal endosymbionts). 

Bielmyer et al. (2010) showed that the response of staghorn corals and their algal 

endosymbionts to copper varied. In the coral Acropora cervicornis, copper had accumulated in 

the associated Symbiodinium and photosynthesis was also affected. Photosynthesis was also 

adversely affected in Symbiodinium of Pocillopora damicornis, although copper accumulation 

was not detected in either animal or algal tissue (Bielmyer et al., 2010). One study has shown 

that in the microbiome of tropical marine sponges the bacterial diversity was reduced by 64% 

following 48-h exposure to 223 µg Cu/L (Webster et al., 2001). Microbes are key in the 

functioning and stability of coral reefs, and respond rapidly to environmental change, including 

declining water quality. Therefore microbes could potentially be used as early warning indicators 

for environmental stress and coral reef health, rather than traditional monitoring methods based 

on visual signs of health deterioration (e.g. bleaching) (Glasl et al., 2017). However, there are still 

significant knowledge gaps concerning the roles of the microbiome and cnidarian host during 

stress, particularly when exposed to metals.  

The aim of this study was to investigate how increasing concentrations of dissolved copper and 

nickel, individually, affect the condition of adult corals and their associated microbiomes. We 
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hypothesised that increasing concentrations of metals would alter the structure of the coral 

microbiome, and this could potentially reduce the adaptive ability of corals to deal with stress. 

Metal concentrations were chosen based on the few studies available in the literature. The 

concentration ranges for both copper and nickel were high, above environmentally relevant 

concentrations in order to capture the full concentration-response relationship as previous 

studies have shown that corals are often less sensitive to metals, such as nickel, compared to 

other marine invertebrates (Gissi et al., 2018). The widespread staghorn coral Acropora muricata 

was exposed separately to increasing concentrations of copper and nickel, and after 4 days the 

following endpoints were measured: bleaching (loss of Symbiodinium), accumulation and 

distribution of metals in corals and changes in the coral microbiome (using DNA metabarcoding).  

2. Methods 

2.1. General laboratory techniques and reagents 

All glassware and plastic containers used in the tests were acid-washed in 10% (v/v) nitric acid 

(Reagent grade Merck) and thoroughly rinsed with demineralised water (five rinses), followed by 

high purity water (five rinses, Milli-Q®, 18.2 MΩ/cm; Merck). Following acid-washing, treatment 

tanks, tubing and test chambers were soaked in natural seawater (filtered) for at least 24 h. 

All metal stock solutions were made volumetrically using high purity water. Copper stock 

solution of 0.1 g Cu/L was prepared using copper (II) sulfate salt (A.R. grade, AJAX Chemicals, 

Australia). Nickel stock solution of 1 g Ni/L was made using nickel (II) chloride hexahydrate salt 

(A.R. grade, Chem Supply, Australia). All stocks were acidified to 0.01% HCl (Merck, Tracepur). 

Physico-chemical parameters (pH, dissolved oxygen (DO), conductivity and salinity) were 

measured in the treatment tanks and one randomly selected replicate chamber every day during 

the exposure. Parameters were measured using a Multi probe (HQ40d Multi-Hach), calibrated 

following instructions from the manufacturer. 

2.2. Species collection and maintenance 

This toxicity study was carried out at the National Sea Simulator (SeaSim), Australian Institute of 

Marine Science (AIMS), Townsville, Australia. The scleractinian branching coral, A. muricata, was 

collected by SeaSim on the 7 June 2016 from Trunk Reef (18° 18.173'S, 146° 52.153'E), at 3 – 5 m 

depth, Great Barrier Reef, Queensland, Australia (GBRMPA Permit number G12/35236.1). One 
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colony of A. muricata was separated into 5-8 cm fragments on board the boat and mounted onto 

aragonite plugs, using super glue (XTRA Loctite super glue, Loctite Australia Pty Ltd).  Coral 

fragments were maintained in 60-L aquaria with flowing seawater (5 L/min) from the collection 

point until returned to the SeaSim aquaria on the following day. Once in the SeaSim, coral 

fragments were maintained in natural filtered (0.04 µm) seawater, with day:night cycles, set to 

mimic conditions on the reef (2 h ramp up, 8 h at 100 – 150 µmol m-2 s-1, 2 h ramp down). Corals 

were fed a combination of newly hatched Artemia nauplii and microalgae (mixture of T.Isochrysis 

lutea, Pavlova lutheri, Dunaliella sp, Nannochloropsis oceania, Chaetoceros muelleri, and 

Chaetoceros calciltrans at 5 x 106 cells/mL). 

2.3. Toxicity testing with adult corals 

Toxicity tests commenced on the 15 July 2016, approximately 5 weeks after acclimation to 

aquaria conditions. There is no established protocol for acclimating adult corals prior to testing 

in aquaria conditions; however, the health of the corals was noted by observing the colour of the 

fragments and the presence of skeletal growth around the base of the fragments on the 

aragonite plugs.  

Treatment solutions were made in 80-L acrylic tanks by diluting metal stock solutions in natural 

filtered (0.04 µm) seawater. Filtered seawater is stored in a covered dam before delivery to 

experimental systems. On day 0, 40 L of each treatment solution was prepared. To top up the 

tanks on subsequent days (days 1-3), 20 L of each treatment solution was made and added to 

the respective tanks. Treatment solutions were fed to test chambers via linear low-density 

polyethylene (LLDPE) tubing, using peristaltic pumps (Masterflex® L/S Digital Std drive. Extech 

Equipment Pty Ltd, VIC, AUS). Custom test chambers were 2.5 L, with clear acrylic lids (to allow 

for light penetration) and an acrylic container. Treatment solutions were delivered into the top 

of each chamber, with submersible magnetic stirrers to provide water movement (Figure 1). Test 

chambers were housed in a single water bath to allow for accurate temperature control. The 

total volume of treatment solution in each chamber was 2 L and the flow rate for each chamber 

was 2.8 mL/minute which resulted in an 80-90% water exchange, twice every 24 h. Coral 

fragments on aragonite plugs were inserted into the mounting plates in each chamber (Figure 1). 

There were four replicate chambers per treatment, with three fragments in each chamber. Full 

details on the toxicity test parameters are provided in Table 1.  
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Table 1. Toxicity test conditions and parameters for 96-h exposure with Acropora muricata  

Test conditions/parameters 

Temperature (ᵒC) 27 ± 0.5 

Salinity (psu) 35 ± 1 

DO (%) >80 

pH 8.1 ± 0.2 

Nickel treatments (µg/L) 50, 100, 500, 1000, 10000 
Copper treatments (µg/L) 5, 20, 50, 100 
Light parameters Low light 6:30 (dawn) 

Full light 8:00 (100-150 µmol/m2/s). Irradiance was similar to 
the expected mean photosynthetically active radiation at the 
collection site. 
Low light 16:00 (dusk) 
Lights off 18:00 

Test type Flow through: 2.8 mL/day/chamber, 80-90% of water exchanged 
2 x per day in each chamber. 

Test chamber 2.5 L acrylic container and lid, water circulation within chamber 
maintained with magnetic stirrer bar controlled by water 
pressure (Figure 1). 

Test volume 2 L 
Test duration 96 h 

Control/diluent water 0.04 µm natural filtered seawater 
Life stage of test organism Adult, 5-8 cm fragments 
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Figure 1. Design of the coral test Chamber. Note only three coral fragments were placed in each 

chamber, in this study. 

 

At 36 h, severe bleaching was observed in the following treatments: 20, 50 and 100 µg Cu/L and 

10 000 µg Ni/L (nominal values). To ensure these treatments could still be sampled for tissues, 

these fragments were sampled and processed (described below) at 36 h.  On day 4, remaining 

fragments were removed from chambers, rinsed in seawater (note: fragments collected at 36 h 

were not rinsed in seawater due to severe tissue degradation), and photographed for 

assessment of bleaching. The coral watch health chart was used to assess the degree of 

bleaching in coral fragments following exposure (Coral Watch, 2014). The exposure duration of 

96 h was chosen to allow for comparison with other marine invertebrate studies investigating 

the toxicity of metals and because this duration is standard in acute toxicity testing protocols 

(e.g. OECD, ASTM).  Three fragments from each chamber were processed for the following 

measurements:  

Fragment 1: Quantification of metals in coral tissues. The fragment was rinsed in clean seawater, 

placed in clean/new ziplock bag and air blasted to remove tissues which were transferred into a 

5-mL polypropylene vial and acidified to 2% HNO3 (Tracepur). 
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Fragment 2: Spatial distribution of metals in coral fragments. The fragment was rinsed in clean 

seawater put in a clean/new zip lock bag, made air tight and stored in a freezer (-20ᵒC).  

Fragment 3: Changes in coral microbiome community structure – DNA metabarcoding. The 

fragment was rinsed in seawater, placed in clean/new ziplock bag and air blasted to remove 

tissues. The tissue slurry was pipetted (using sterile pipettes) into 2 mL cryo vials and flash frozen 

in liquid nitrogen and stored at -80°C until DNA extraction.  

2.4. Quantification of metals in coral tissues 

Nickel and copper-exposed coral and Symbiodinium tissue (combined) samples were transferred 

to pre-weighed, acid washed, 50-mL digest tubes. Samples were oven dried at 60°C for 24 h and 

weighed to determine dry mass (0.08 ± 0.03 g) of sample to be digested. Dried tissues were 

combined with 5 mL of concentrated HNO3 (Merck, Tracepur) and left with loosened lids in a 

fume hood overnight. Tubes were then heated (hot block, Digi Prep MS, SCP Science) to 60°C for 

2 h (with a 30 min ramp up to the max temperature). Digested samples were allowed to cool in a 

fume hood, and diluted to a final concentration of 6.6% HNO3 with high purity water. Samples 

were analysed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES, section 

2.6). Samples included tissues, three laboratory blanks (from the time of sampling the corals), 

three digestion blanks, and three certified reference material (National Institute of Standards 

and Technology (NIST), Standard Reference Material, SRM 2976) matching the weight range (dry 

weight, 0.08 ± 0.03 g) of the coral samples.  

2.5. Spatial distribution of nickel in coral fragments 

To investigate the distribution of nickel in the coral fragments, selected coral samples were 

analysed using the ITRAX X-ray fluorescence, Laser Ablation inductively coupled plasma mass 

spectroscopy (LA-ICPMS) and micro Particle-Induced X-ray Emission (μ-PIXE) at ANSTO, NSW, 

Australia. To our knowledge, this is the first time these instruments have been used to measure 

nickel in whole coral samples (skeletons and tissues). For the ITRAX analysis, one control and one 

Ni-exposed fragment (500 µg Ni/L) were analysed. No significant difference between the control 

and nickel-exposed coral fragment was detected and so this method was not pursued further 

(data not shown).  
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For the LA-ICPMS technique one control coral fragment was analysed alongside one Ni-exposed 

fragment from each of the following treatments, 100, 1000 and 10 000 µg Ni/L (nominal). Prior 

to analysis, coral fragments were half embedded in a paraffin wax longitudinally and cut into 

four (11mm) sections (termed A:D) using a diamond wire (Supplementary, Figure S1). Sections B, 

C and D of the coral fragment exposed to 10 000 µg Ni/L were analysed first; subsequent 

measurements of other coral fragments were taken from section B only. Prior to analysis, 

sections were polished/sanded using a 220 grit size SiC paper, by hand, to level the surface of the 

coral and wax, and then cleaned with high purity water and air dried (at room temperature). 

Samples were analysed using a Resonetics M50 193nm Excimer laser ablation system coupled to 

a Varian-820 –ICP MS. A rectangular laser spot (20 μm * 100 μm) and a laser pulse frequency of 

10 Hz was used. Ablation paths were cleaned by laser at a rate of 150 μm/s prior to analysis at 30 

μm/s with helium and nitrogen flow rate of 600 and 5 ml/min, respectively, through the sample 

cell. Mass spectrometry was conducted with a dwell time of 20 ms. All elements were referenced 

to NIST SRM612 (trace elements in glass). NIST glass references are not certified for Mg, however 

a reference value supplied by the Iolite software (77 ppm) was used (Runnalls and Coleman, 

2003). Mass spectrometry data were processed with Iolite. It was not possible to normalise data 

using 43Ca, as is standard practice (Limbeck et al., 2015), due to the highly porous nature of the 

coral samples. Therefore, data presented for nickel exposures are semi-quantitative only.  

To support the LA-ICP-MS data, sections B and D of the coral exposed to 10 000 µg Ni/L 

(nominal) were analysed with μ-PIXE. The μ-PIXE analyses were performed on the Australian 

National Tandem Research Accelerator heavy ion microprobe (Siegele et al., 1999) using a 3-MeV 

proton beam with a spot size of approximately 5-7 μm and a beam current of 0.3 - 1.0 nA. X-ray 

fluorescence spectra were collected using a high-purity Ge detector with an active area of 100 

mm2 approximately located 33 mm from the sample. To reduce low-energy x-rays and to 

prevent scattered protons from entering the detector, a 112 μm thick Mylar foil was placed in 

front of the detector. Samples were scanned over an area of approximately 2×2 mm, which is 

the maximum scan area for 3-MeV protons achievable with the ANSTO microprobe. The μ-PIXE 

data were analysed using GeoPIXE software (Ryan, 2001; Ryan et al., 1995) and elemental maps 

were extracted from the data.  

2.6. Chemical analyses 
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All plasticware used for metal sub-sampling of test solutions and coral tissues was acid washed 

(10% v/v, Tracepur; Merck) and rinsed with high purity water in a semi-clean room. Water 

samples were taken from the filtered seawater entering the aquaria (used to make treatment 

solutions) and the treatment tanks every day during the 96-h exposure. On day 0 and day 4, sub-

samples were taken from all test chambers. All dissolved metal sub-samples were filtered 

through acid-washed syringes and 0.45 µm sterile filters (Sartorius Ministart® Syringe Filter, 

Germany), collected in acid-washed 10 mL polypropylene vials. For total metals, 10 mL was 

collected (using an acid-washed pipette tip) from tanks and chambers and dispensed into acid-

washed 10 mL polypropylene vials. All samples were acidified to 2% with Tracepur nitric acid 

(Tracepur; Merck) and stored at 4ᵒC in the dark until analysis. Samples were analysed using ICP-

AES (730ES). Quality assurance procedures included matrix-matched calibration standards, drift 

standards and seawater blanks. For tissue digests, values were reported as metal concentration 

in µg/kg of dried weight. The concentration factor was calculated by dividing tissue metal 

concentration (µg/kg) by the measured, dissolved metal concentration in the treatment 

solutions (µg/L). 

Sub-samples were taken from the seawater used to make treatment solutions and from one 

replicate chamber at test completion to measure dissolved organic carbon (DOC). Samples were 

filtered through a 0.45 µm filter and collected in a glass vial with 2 mL of concentrated H2SO4. 

Analysis of DOC was conducted by the National Measurement Institute (NMI), Sydney, Australia. 

Samples were taken on day 0 and at test completion. 

2.7. DNA extraction amplification and sequencing 

Samples were removed from the -80°C freezer, gently thawed and extracted using the QIAGEN® 

DNeasy Power Biofilm kit (QIAGEN®, Germany), according to manufacturer instructions with the 

following modifications; the Fast Prep®-24 (MT™) was used to lyse the samples for 45 seconds, 

with the speed set to 4.5; DNA was eluted in 2 x 50µL of elution buffer and allowed to rest for 1 

min before the final centrifugation step. Success of extraction and DNA yield was measured on 

the Nanodrop spectrophotometer (Thermo Fisher Scientific, USA).   

Three different sets of primers were used to target and amplify different components of the 

microbial community in the coral tissues. The eukaryotic community was determined using the 

All18SF (5’-3’: TGGTGCATGGCCGTTCTTAGT) and All18SR (5’-3’: CATCTAAGGGCATCACAGACC) 
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primers for the V7 region of the 18S rRNA gene (Hardy et al., 2010). The bacterial composition 

was determined with two different primer sets to identify the most appropriate primer set. The 

first 16S primer set was 515f (5’-3’: GTGYCAGCMGCCGCGGTAA) (Baker et al., 2003; Quince et al., 

2011), 806r (5’-3’: GGACTACNVGGGTWTCTAAT) (Apprill et al., 2015) for the V4 region of the 16S 

rRNA gene (recommended by Earth Microbiome Project, EMP). The second primer set was 784f 

(5’-3’: AGGATTAGATACCCTGGTA), 1061r (5’-3’: CRRCACGAGCTGACGAC) for the V5 and V6 region 

of the 16S rRNA gene (Andersson et al., 2008; Ziegler et al., 2016). Results showed that the 

overall analysis of the community composition using either the V4 primers or the V5-V6 primers 

were similar; and the V4 primers provided a better coverage of the bacterial community. For 

these reasons only results for the V4 primers are presented here; results for V5-V6 primers are 

provided in the supplementary information.  

The conditions for the Polymerase Chain Reaction (PCR) used to amplify with each of the primer 

sets is described in Table S1. All amplifications used the Amplitaq Gold 360 Master Mix (MM, 

Applied Biosystems) and DNA-free water (Millipore®). For 18S rDNA the total PCR reaction 

volume was 50 µL which consisted of 25 µL of MM, 1 µL of each primer (10 µM), 20 µL of water 

and 3 µL of template DNA. For the 16S rDNA, PCR reactions followed methods on the Earth 

Microbiome Project (EMP, http://www.earthmicrobiome.org/protocols-and-standards/16s/) 

website, and the total reaction volume was 25 µL, with 10 µL of MM, 0.5 µL of each primer (10 

µM), 11 µL of water and 3 µL of template DNA. In all PCR reactions, samples were amplified 

alongside positive controls (mussel or crocodile DNA for 18S rDNA; Enterobacter for the 16S 

rDNA and negative controls (DNA-free water)). Primers were barcoded for multiplexing with 

each sample given a unique barcode combination following the protocol of Chariton et al. 

(2015).   

Following amplification of either 18S rDNA or 16S rDNA, 16S and 18S rDNA samples were each 

pooled and PCR products were purified using the QIAGEN QIAquick® PCR purification kit. 

Amplification and purification success was interrogated on a MultiNA gel (Shimadzu, MCE-202), 

following the manufacturer’s instructions. Negative controls were checked for contamination in 

the MultiNA gel (no contamination was detected in any PCRs used for sequencing) and were not 

included in the pooled samples processed for sequencing.  

The final pooled amplicon library concentrations were measured on a Nanodrop and sent to the 

Ramaciotti Centre for Genomics (University of New South Wales, AUS) for sequencing. Amplicon 
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libraries were prepared for sequencing using TruSeq PCR-free kit. As the base pair sizes of the 

amplicons were different for 18SrDNA (180bp) and 16SrDNA (350bp), the libraries were run as 

two separate Illumina® Miseq sequencing runs, 2x 250bp for 16S and 2x 150bp for 18S. Raw 

sequences are available at https://doi.org/10.25919/5b9745a02208a. 

2.8. Bioinformatics 

Sequenced data were processed using a custom pipeline (Greenfield Hybrid Amplicon Pipeline, 

GHAP) which is based on USEARCH tools (Edgar, 2013). The pipeline is available at 

https://doi.org/10.4225/08/59f98560eba25. GHAP demultiplexes the sequence reads to 

produce a pair of files for each sample. These paired reads were merged, trimmed, de-

replicated, and clustered at 97% similarity to generate a set of representative OTU (Operational 

Taxonomic Units) sequences. USearch v10.0.240 tools (fastq_mergepairs, fastx_uniques and 

cluster_otus) (Edgar, 2013) were used for the merging, de-replicating and clustering steps. The 

16S rDNA OTU sequences were classified in two ways: first, by using the RDP Classifier (v2.12) 

(Cole et al., 2014) to determine a taxonomic classification for each sequence, down to the level 

of genus where possible; and second, by using usearch_global to match the representative 

sequence from each OTU against a 16S rRNA reference set built by merging the curated 

sequences from the RDP 16S training set (release 16) and the RefSeq 16S rRNA set (downloaded 

in July 2017). The 18S rRNA representative sequences were classified by matching them (ublast) 

against a curated set of 18S reference sequences derived from the SILVA v123 SSU reference set 

(Cole et al., 2014; Quast et al., 2012). This 18S rDNA reference set was built by taking all the 

eukaryote sequences from the SILVA v123 SSU dataset, and removing those sequences 

containing bacterial or chloroplast regions, as well as those with inconsistencies in their 

taxonomic lineages. A full description of this curation is provided in the GHAP documentation. 

The pipeline then used usearch_global to map the merged reads from each sample back onto 

the OTU sequences to obtain accurate read counts for each OTU/sample pairing. The classified 

OTUs and the counts for each sample were finally used to generate OTU tables in both text and 

BIOM (v1) file formats, complete with taxonomic classifications, species assignments and counts 

for each sample.  

2.9. Statistical analyses 

https://doi.org/10.25919/5b9745a02208a
https://doi.org/10.4225/08/59f98560eba25
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After processing through the bioinformatics pipeline and prior to statistical analysis, data was 

processed through a final filtering step. For 18S and 16S data, the highest read for the positive 

control OTU in samples was 60 and 167, respectively. These two values were used as the cut-off 

points for filtering the dataset, with 18S rDNA and 16S rDNA OTUs with maximum detection of 

60 or 167 reads deleted, respectively, thereby removing potential tag-jumped sequences and 

low quality read. OTUs which had a match percent of <80 were also removed. The positive 

controls amplified in the PCR were also used for screening of successful amplification and 

sequencing and to check for cross contamination in the 18S and 16S libraries. The positive 

controls and OTUs were removed from the dataset and this final dataset was used in the 

statistical analysis. For the 18S rDNA data all coral OTUs were also removed to focus on the 

microbiota only. Supplementary Table S3 shows the total number of reads and OTUs prior to and 

following this filtering step. 

As there was either no, or a weak correlation between number of sequence reads and organism 

abundance (18S rDNA R2 = -0.002, 16S rDNA R2 = 0.3) the data was not rarefied (Egge et al., 

2013). The 18S rDNA dataset was transformed to presence/absence prior to computation 

(Chariton et al., 2015). The 16S rDNA data were initially standardised by the total abundance and 

then square-root transformed to calculate the relative abundance of each OTU across samples. 

Multivariate analysis of the microbiome data was performed using the Primer 7+ statistical 

package (Plymouth Marine Laboratory, UK). Ordination was performed by non-metric 

multidimensional scaling (nMDS) using the Bray-Curtis similarity coefficient. Statistical 

differences between treatments were tested by permutational multivariate analysis of variance 

(PERMANOVA, P ≤ 0.05), based on 999 random permutations. Primer’s SIMPER function was 

used to identify key taxa contributing to compositional differences between treatments, using 

Bray-Curtis similarity, one-way design and the cut-off percentage set to 90. For the 18S rDNA and 

both 16S rDNA datasets, the taxonomic levels of class and family, respectively were used. Shade 

plots to indicate number of OTUs in each sample were also generated in Primer. 

The DIVERSE function in Primer was used to determine Shannon’s diversity. Differences in these 

univariate attributes across treatments were examined using a one-way ANOVA with 

Bonferroni’s (all pairs) and Tukey-Kramer tests in NCSS v7 (Utah, USA).  

3. Results 



16 
 

3.1. Quality control 

Over the 96-h exposure period physico-chemical parameters were maintained within acceptable 

limits (Table 1). Dissolved organic carbon (DOC) in the filtered aquaria seawater was 1.7 mg/L on 

day 0. In treatment chambers sacrificed at 36 h, DOC was 1.9 – 4.3 mg/L; at 96 h, DOC in 

remaining chambers 1.7 – 2.2 mg/L.  

The background concentrations of metals in the seawater used to make treatment solutions 

were generally below the limit of detection (LOD, Supplemental material Table S3). The mean of 

the measured dissolved concentrations in the chambers on day 0 and day 4 (or at 36 h for some 

treatments) was used in all following analyses (Table 2). The measured, total and dissolved 

concentration of nickel and copper in the tanks and chambers is provided in supplementary 

information (Tables S4 and S5). 

 

Table 2. Concentrations of dissolved nickel and copper, measured in the test chambers on day 0 
and day 1 or day 4. Reported values are the mean and standard deviation (SD, n=4). 

 Day 0 Day 1 or 4a  

Treatment Mean SD Mean SD Mean for day 0 and day 4 

Nominal, µg/L Measured Dissolved (<0.45 µm), µg/L 

Nickel 

Controlb 0.9 0.6 0.9 0.3 0.9 

50 43 0.6 46 0.5 45 

100 87 0.6 93 0.5 90 

500 467 7.9 477 2.5 470 

1000 873 8.0 922 3.9 900 

10000 c 8912 136 9186 38 9050 

Copper 

Control 3.2 0.5 0.8 0.2  

5 5.5 0.2 2.3 0.1 4 

20c 14 0.7 9.2 0.7 11 

50c 35 1.1 29 0.4 32 

100 c 68 2.1 61 2.2 65 
a For corals that were removed at 36 h, metals were sub-sampled and for these treatments the mean dissolved 
concentration sampled on day 1 was used. For all other treatments where the exposure ran for 96 h, the mean 
dissolved concentration sampled on day 4 was used. 
b Where concentrations were below the limit of detection (LOD), values were supplemented with half LOD 
c Corals in these treatments were sacrificed and samples taken for analysis at 36 h (not on day 4), due to bleaching. 

 
 
 

3.2. Response of coral to exposure to Ni and Cu 
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 We observed full colour, no bleaching and extended tentacles in the control (unexposed) coral 

fragments, indicating 100% healthy coral following 96-h exposure (Figure 2). The lowest tested 

copper and nickel concentrations of 4 µg Cu/L and 45 µg Ni/L did not cause coral bleaching over 

96 h and tentacles were commonly extended. After 36-h exposure, bleaching was observed in 

copper treatments of 11, 32 and 65 µg Cu/L and the highest nickel treatment of 9050 µg Ni/L. 

After 96-h exposure bleaching was observed in nickel treatments of 470 and 900 µg Ni/L. Coral 

fragments from each treatment were given scores according to the Coral Watch health chart 

(Table S6). 

 

 

 

Figure 2. Photographs of the coral fragments following exposure to copper (A) and nickel (B) for 

36-96 h. Corals exposed to 11, 32 and 65 µg Cu/L and to 9050 µg Ni/L were exposed for 36 h, all 

remaining treatment exposures ran for 96 h. Photos were taken as soon as corals were removed 

from the test chambers. Each photo is one representative replicate per treatment. Treatment 

concentrations are the measured, dissolved concentration (Table 4).  
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3.3. Metal uptake and distribution in corals 

Concentrations of nickel and copper in coral tissues increased with increasing exposure 

concentration (Figure 3 A, B). The metal tissue concentration per surface area showed a similar 

trend (Supplementary Figure S1 A, B).  

   

Figure 3. The effect of dissolved (0.45 µm) metals in seawater on coral and Symbiodinium tissue 

concentrations for nickel (A) and copper (B). Each point represents one individual fragment from 

four replicate chambers per treatment. Note the different scales on the x-y axes. 

 

3.4. Spatial distribution of nickel in coral fragments 

Analysis by LA-ICPMS showed that nickel accumulated in a higher proportion in the proximal end 

(section B) than in the distal sections (C, D) of the coral fragment exposed to 9050 µg Ni/L 

(Supplementary Figure S3). For section B of each treatment, there was a peak in nickel detected 

around the polyps of the coral fragments. We also found that the relative proportion of nickel in 

the coral fragments increased with increasing exposure concentration (Figure S4). This is 

correlated with a decrease in calcium detection, indicative of organic tissues. The LA-ICPMS data 

was in agreement with elemental maps generated from the μ-PIXE which also detected peaks in 

nickel around the polyps, correlated with a decrease in calcium (Figures S5 and S6). The μ-PIXE 

data also showed a peak in nickel within the axial polyp (Figure S5).  
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3.5. Community structure of the coral microbiome 

All 18S data were transformed to presence/absence, therefore the analysis described below is 

referring to differences in richness of the OTUs associated with each taxonomic group. All 16S 

data were square root transformed, therefore analysis of 16S data refer to the relative 

abundances of the taxonomic groups across treatments. DNA extraction and amplification of 

coral tissues exposed to 900 and 9050 µg Ni/L were unsuccessful, possibly due to insufficient 

tissue. Consequently, statistical analyses of the DNA metabarcoding results for nickel exposure 

were restricted to the control, 45, 90 and 470 µg Ni/L treatments. 

Nickel - Eukaryotes 

Following 96-h exposure, the diversity in eukaryote (18S rDNA) taxa in the coral microbiome 

appeared to decline with increasing nickel concentration (Figure 4A); however, this was not 

statistically significant (ANOVA F = 1.06, p = 0.22). This may be due to the large variation in 

diversity observed at 90 and 470 µg Ni/L and the relatively small sample size (Figure 4A).  Figure 

4B shows a statistically significant change in the composition of the eukaryotic community 

(PERMANOVA F = 2.9, P = 0.01), with the composition of the microbiomes from the highest 

nickel treatment (470 µg Ni/L) being different from the control and the lowest nickel treatment 

(45 µg Ni/L, P < 0.05) (Figure 4B).  

The major three taxa that contributed to the differences between the control and highest nickel 

treatment were OTUs associated with Chromadorea (26% contribution), Chlorophyceae (11%) 

and Bacillariophyceae (11%) (SIMPER analysis). When comparing the lowest nickel treatment (45 

µg Ni/L) to the highest (470 µg Ni/L), the major three taxa that contributed to the differences 

were OTUs associated with Chromadorea (33%) and Phaeophyceae (10%). The shade plot in 

Figure 4C shows that as nickel exposures increased there was a decrease in the OTUs associated 

with Chromadorea and Phaeophyceae, and an increase in Chlorophyceae and Bacillariophyceae. 

Dinophyaceae OTUs, which includes Symbiodinium remained unchanged across all treatments. 
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Figure 4. The effect of nickel on the eukaryote community composition of the coral microbiome 

following 96-h exposure to concentrations of 45, 90 and 470 µg Ni/L (measured, dissolved, 0.45 

µm) A) Boxplots showing the variation in Shannon diversity (median and interquartile range of 4 

replicates) across control and nickel treatments B) Non-metric multidimensional scaling plot 

showing the relative similarity of the 18S community composition. Each point represents one 

individual replicate from each treatment. C) Shade plot demonstrating the changes in eukaryote 

taxa in response to increasing concentrations of nickel.  Taxonomic level = class, OTU = 

Operational Taxonomic Units. Metal concentrations are measured dissolved values in µg/L.  
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Nickel – Bacteria 

Similar to the eukaryotic community, there was no significant difference in Shannon diversity 

between the control and nickel treatments in the bacterial community (ANOVA F = 0.94, p = 

0.45, Figure 5A). There was no significant difference in the bacterial community composition in 

relation to nickel treatment (PERMANOVA F = 1.7, P = 0.11), however there did appear to be a 

slight separation among the treatments (Figure 5B).  

 

 

Figure 5. The effect of nickel on the bacterial community composition of the coral microbiome 

following 96-h exposure to concentrations of 45, 90 and 470 µg Ni/L (measured, dissolved, 0.45 

µm) A) Boxplots showing the variation in Shannon diversity (mean and interquartile range of 4 

replicates) across control and nickel treatments.  B) Non-metric multidimensional scaling plot 

showing the relative similarity of the 16S community composition. Each point represents one 
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individual replicate from each treatment. Metal concentrations are measured dissolved values in 

µg/L.  

 

Copper - Eukaryotes 

Following 36 – 96-h exposure to copper, there was a decrease in the eukaryote diversity of the 

coral microbiome with increasing copper concentration (Figure 6A), and the change in diversity 

across treatments was statistically significant (ANOVA F = 5.2 and p = 0.007); 65 µg Cu/L was 

significantly different to the control and 4 µg Cu/L (p<0.05).  It should be noted that corals were 

exposed to copper treatments of 11, 32 and 65 µg Cu/L for 36 h, while control and 4 µg Cu/L 

were exposed for 96 h.  

Copper exposure was shown to alter the eukaryote community structure of the microbiomes of 

A. muricata (PERMANOVA F = 3.4, P = 0.001) (Figure 6B). The control and the lowest copper 

treatment (4 µg Cu/L) had similar eukaryote communities (P > 0.05), and the two highest copper 

treatments (32-65 µg Cu/L) were significantly different to the control, 4 and 11 µg Cu/L 

treatments (P < 0.05). 

The taxa that were contributing to the differences between the control and the highest copper 

concentrations (11, 32, 65 µg/L) were OTUs associated with Chromadorea (23-29%), 

Labyrinthulomycetes (10-18%), Bacillariophyceae (10-11%) and Chlorophyceae (9-11%). As 

copper concentration increased there was a decrease in the OTUs associated with Chromadorea, 

Labyrinthulomycetes and Bacillariophyceae, with a subsequent increase in OTUs associated with 

Chlorophyceae (Figure 6C). The number of Symbiodinium OTUs, represented by Dinophyceae did 

not change across all treatments (Figure 6C). 
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Figure 6. The effect of copper on the eukaryote community composition of the coral microbiome 

following 36 – 9 6-h exposure to concentrations of 4, 11, 32 and 65 µg Cu/L (measured, 

dissolved, 0.45 µm) A) Boxplots showing the variation in Shannon diversity (mean and 

interquartile range of 4 replicates) across control and copper treatments, the asterisk indicates 

significant difference to the control. B) Non-metric multidimensional scaling plot showing the 

relative similarity of the 18S community composition. Each point represents one individual 

replicate from each treatment.  C) Shade plot demonstrating the changes in the 

presence/absence of eukaryote taxa in response to increasing concentrations of copper.  
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Taxonomic level = Class, OTU = Operational Taxonomic Units. Metal concentrations are 

measured dissolved values in µg/L.  

Copper – Bacteria 

While the data suggested that copper decreased bacterial diversity (Figure 7A), this was not 

found to be statistically significant (p>0.05). However, variation in diversity was markedly lower 

in the two highest treatments (Figure 7A).  

Similar to the 18S rDNA data, the control and the lowest copper treatment (4 µg Cu/L) had a 

similar community composition (PERMANOVA F = 5.7, P = 0.001, Figure 7B), and as copper 

concentration increased, the structure of the bacterial community changed significantly. The two 

highest copper treatments (32, 65 µg Cu/L) were significantly different to the control, 4 and 11 

µg Cu/L treatments (PERMANOVA P <0.05). 

The significant differences between the copper treatments (11, 32, 65 µg/L) and the control 

were driven by Flavobacteriaceae (22-26%) Rhodobacteraceae (7-12%) Planctomycetaceae (8-

9%) and Hahellaceae (8.2-15%).  It appears that increasing copper concentration caused a 

decrease in Hahellaceae and Planctomycetaceae OTUs and a subsequent increase in OTUs 

associated with Flavobacteriaceae and Rhodobacteraceae (Figure 7C). 
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Figure 7. The effect of copper on the bacterial community composition of the coral 

microbiome following 36 to 96 -h exposure A) Boxplots showing the variation in Shannon 

diversity (mean and interquartile range of 4 replicates) across control and copper 

treatments. B) Non-metric multidimensional scaling plot showing the relative similarity of 

the 16S community composition. The (dis)similarity between control and copper treatments 

was determined by Bray-Curtis similarity. Each point represents one individual replicate 

from each treatment. C) Shade plot demonstrating the changes in taxa in response to 

increasing concentrations of nickel, note only the top 10 taxa are shown.  Taxonomic level = 

Family, OTU = Operational Taxonomic Units, ukF= unknown Family, Family level not 

identified in classification. Metal concentrations are measured dissolved values in µg/L. Data 

were transformed by square root transformation.  

 

4. Discussion 

4.1. Response of corals to nickel and copper exposure 

In this study bleaching was observed only at high nickel and copper concentrations (≥11 µg 

Cu/L and ≥ 470 µg Ni/L). These concentrations were tested to elucidate the full 

concentration response relationship, and would only be relevant for extremely polluted 

environments.  Background concentrations of metals in tropical marine waters are typically 

<1 µg/L for copper and  <5 µg/L for nickel (Apte et al., 2006), however in heavily polluted 

waters concentrations of dissolved nickel can exceed 1000 µg/L (Pyle and Couture, 2012) 

and dissolved copper can exceed 100 µg/L (Stauber et al., 2000).  A study around New 

Caledonia, an area of prominent nickel mining activity measured nickel and copper 

concentrations ranging from < 0.1 – 11 µg Ni/L and <0.1 – 1.6 µg Cu/L (Moreton et al., 

2009).  

At low concentrations metals, including copper and nickel are micronutrients, although 

there is limited evidence for nickel-deficiency or nickel-dependent biochemistry in aquatic 

biota (Blewett and Leonard, 2017; Chowdhury et al., 2008). Two studies from New 

Caledonia have demonstrated nickel and urea concentrations of <3 µg Ni/L and <6 µmol/L, 

respectively, enhance the calcification and growth of corals (Biscéré et al., 2018, 2017). In 
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combination with an additional stressor, elevated temperature (32oC), coral growth 

decreased (Biscéré et al., 2017).  

Although we observed bleaching at high metal concentrations, coral tissues and polyps 

remained intact at the lowest copper concentration (11 µg Cu/L). Complete bleaching and 

polyp retraction was observed at the highest copper concentrations (32-65 µg Cu/L) (data 

not shown). We observed effects of copper on A. muricata at a lower concentration range 

compared to previous studies. Past studies which investigated the effects of other metals 

(copper, cadmium and lead) on the scleractinian coral, Poccillopora damicornis. 

Mitchelmore et al. (2007) found that 50 µg/L of copper and cadmium (exposed individually 

for 14 days) did not cause bleaching but rather tissue sloughing in P. damicornis, where the 

entire coral tissue and Symbiodinium together separated from the skeleton eventually 

resulting in coral death (Mitchelmore et al., 2007). Hedouin et al. (2016) found that survival 

of adult P. damicornis  decreased by 50% (LC50) between 175 - 250 µg Cu/L and 477 – 742 

µg Pb/L, respectively.  

The use of a colour scale to assess bleaching is a tool commonly used in the field to assess 

coral health (Coral Watch Chart 2014). To support this assessment, measurements of 

Symbiodinium density or photosynthesis activity could also be determined, and this has 

been explored in previous studies (Berry et al., 2016; Bessell-Browne et al., 2017; Biscéré et 

al., 2017). Metal bioaccumulation in corals was only a minor component of our study but 

this warrants further investigation in future. 

4.2. Metal uptake and distribution on corals 

We found that with increasing high concentrations of nickel and copper in seawater, the 

metal concentrations in coral tissues (algal symbiont and host tissue) also increased. It is 

possible that the increased metal concentration measured in the coral tissues represents 

the loosely bound metal, or the fraction of metals adsorbed to the coral surface as opposed 

to absorbed internally, especially for those samples removed after a 36-h exposure, which 

were not rinsed with seawater.  

Past studies have demonstrated that Symbiodinium play an important role in the 

accumulation and regulation of trace metals in cnidarian hosts (Hardefeldt and Reichelt-

Brushett, 2015; Reichelt-Brushett and McOrist, 2003). Symbiodinium preferentially 
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accumulated zinc over the host, the anemone Exaiptasia pallida, after a 32-d chronic 

exposure (Hardefeldt and Reichelt-Brushett, 2015). The density of Symbiodinium plays an 

important role in controlling zinc loading in anemones (Hardefeldt and Reichelt-Brushett, 

2015). An earlier study by Reichelt-Brushett and McOrist (2003) found that in corals 

sampled from the Great Barrier Reef (QLD, Australia), most metals (including nickel and 

copper) accumulated in higher concentrations in Symbiodinium than coral tissue. The 

authors concluded that the loss of Symbiodinum (i.e. bleaching) during stress events may 

play an important role in regulating metal loads in corals (Reichelt-Brushett and McOrist, 

2003). Conversely, Mitchelmore et al. (2007) found no significant difference in the 

partitioning between the algal or animal fractions in the coral P. damicornis when exposed 

to copper or cadmium for 14 days. Hedouin et al.,  ( 2016) demonstrated, using radiotracer 

techniques, that nickel accumulated preferentially in the coral animal tissues and 

Symbiodinium, than in the skeleton of Stylophora pistillata, following a 14-d exposure. 

However, given that the overall contribution of nickel in Symbiodinium  represented <7% of 

the whole nickel accumulation in corals, it was suggested that other biological processes 

controlled by the coral host were responsible for the accumulation of nickel in coral tissues 

(Hédouin et al., 2016). These studies highlight the importance of understanding the uptake 

and distribution of metals in host tissues and endosymbionts  

4.3. Spatial distribution of nickel in coral fragments 

Past studies investigating metal accumulation in coral tissues utilised air blasting or water-

pik to remove the tissue layer from the skeleton for acid digestion and analysis (Esslemont, 

2000; Reichelt-Brushett and McOrist, 2003). Air blasting is an efficient means of tissue 

collection; however, the tissue associated with the internal section of the polyp may not be 

collected. Therefore, other techniques are required to measure metal accumulation inside 

the coral polyps. We trialled techniques including laser ablation ICP-MS (LA-ICP-MS) and µ-

PIXE to determine if nickel could be detected in the polyps of sectioned coral fragments. 

While quantitative data could not be obtained, elevated nickel concentrations were 

detected around the polyps in all coral fragments exposed to nickel. Additionally, as nickel 

exposure concentration increased, the nickel in the coral fragments also increased 

(Supplementary Figure S3). However, there is still a question around whether nickel is 

surface- adsorbed or absorbed (i.e. bioaccumulated) metal. To improve analysis of metal 
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accumulation with techniques such as LA-ICP-MS and µ-PIXE more work is required to 

investigate rinsing techniques to remove loosely bound metal (e.g. EDTA rinses) and optimal 

preservation methods (particularly to keep tissues and skeletons intact). Traditionally, these 

techniques are used to analyse hard tissues, i.e. skeletons (Runnalls and Coleman, 2003), 

and further complications arise when attempting to incorporate analysis of both the hard 

and soft tissue components (Limbeck et al., 2015). We believe both techniques show 

promise for future analysis, particularly where there is interest in understanding the metal 

accumulation and distribution in coral polyps.   

4.4. Changes in the coral microbiome 

Our findings clearly demonstrated that high concentrations of nickel and copper caused 

significant changes to eukaryote community structure of the microbiome of A. muricata. We 

observed a decline in metazoans for both nickel and copper, including Bivalvia and 

Chromadorea, as well as diatoms and brown algae including Bacillariophyaceae (for copper 

only) and Phaeophyceae. The role of microalgae, other than dinoflagellates in coral 

microbiomes have yet to be elucidated, however it is possible, that diatoms and brown 

algae could also influence host-associated microbiomes by releasing carbon-containing 

photosynthates that fuel microbial metabolism (Bourne et al., 2013). Interestingly, for both 

copper and nickel, there was an increase in green algae, chlorophyaceae. This possibly 

reflects the tolerance of chlorophyaceae species to metal exposure, which has been 

demonstrated previously (Levy et al., 2007). Additionally, chlorophytes have been shown to 

increase in tropical sediments in response to anthropogenic inputs (Graham et al., in press). 

For both nickel and copper, there was no significant change in the OTUs associated with 

Dinophyaceae which includes the algal endosymbiont, Symbiodinium. While bleaching was 

observed, indicating a loss in Symbiodinium, it was expected that this would be reflected in 

the metabarcoding data. However, the eukaryote data set was analysed based on 

presence/absence and not relative abundance. Future work should include Symbiodinium 

density counts, and Symbiodinium specific primers to investigate changes at a finer level of 

taxonomic resolution and abundance via the use of quantitative PCR.  

The majority of coral microbiome studies have focused on changes on the bacterial or 

prokaryote component and less so on the eukaryotes, unless studying the algal 

endosymbiont, Symbiodinium. In a study on the effects of multiple stressors (tested 
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individually), increased temperature, reduced pH, elevated nutrients and dissolved organic 

carbon (DOC), Thurber et al. (2009) assessed changes in other eukaryote groups, as well as 

Alveolata (Symbiodinium), including Fungi, Metazoans, Rhodophyta (red algae) and 

Heterokontophyta (diatoms and brown algae). All stressors caused an increase, compared 

to control conditions, in Fungi, Metazoans, Rhodophyta and Heterokontophyta. It is not 

unexpected that primary producers such as Rhodophyta and Heterokontophyta would be 

stimulated by increased nutrients and carbon source. It is possible that an increase in Fungi 

was indicative of a disease-like state in the coral microbiome (Thurber et al., 2009b).  

The relative abundance of bacteria and community composition of the coral microbiome 

were not affected by increasing nickel concentration. The overall community composition 

changed significantly with increasing copper and there was a decrease in relative abundance 

of Planctomytaceae and Hahellaceae with a subsequent increase in Flavobacteriaceae and 

Rhodobacteriaceae. The increased presence of these bacterial taxa in A. muricata 

microbiome exposed to copper could indicate that the corals were stressed, potentially 

unable to regulate their microbiome and therefore became dominated by opportunistic and 

pathogenic taxa. Research into the bacterial genus Endozoicomonas, identified in this study 

under the family Hahellaceae, showed that they play a key role in the coral microbiome and 

participate in host-associated protein and carbohydrate transport and cycling (Neave et al., 

2016). There was a significant decrease in Hahellaceae with increased copper exposure and 

this is a stress response consistently observed in other studies (McDevitt-Irwin et al., 2017). 

Studies have shown that reduced pH reduces abundance of Endozoicomonas in corals 

(Morrow et al., 2015; Webster et al., 2016). Ziegler et al. (2016) also observed a decrease in 

Endozoicomonas in coral microbiomes in response to sedimentation and sewage disposal in 

the Red Sea. The decline of Endozoicomonas in coral microbiomes in response to stress, as 

demonstrated here and in past studies, could be problematic for corals given the role this 

bacteria plays as a beneficial symbiont (McDevitt-Irwin et al., 2017; Neave et al., 2016).  

Corals exposed to stressors may have a decreased ability to regulate their microbiome and 

so allowing the increased presence of potentially pathogenic and opportunistic microbial 

taxa (McDevitt-Irwin et al., 2017). In a literature review on the response of coral-associated 

bacteria to stressors including climate change, water pollution and overfishing, McDevitt et 

al., (2017) identified several taxa associated with stressed corals. These included 



33 
 

Vibrionales, Flavobacteriales, Rhodobacteriales, Altermonodales, Rhizobiales, 

Rhodospirillales and Desulfovibrionales. Meron et al. (2011) found that reduced pH 

increased the presence of Rhodobacteriales in the coral microbiome of Acropora eurystoma. 

Gignoux-Wolfsohn and Vollmer (2015) found that corals with white-band disease (caused by 

bacterial pathogens) had a larger percentage of OTUs belonging to Flavobacteriales.  In the 

coral Pocillopora verrucosa, Flavobacteriales was an indicator taxa for corals collected 

adjacent to municipal wastewater outfall areas (Ziegler et al., 2016).  

4.5. Results in context of overall health and function of corals 

This study demonstrated that only exposures to highly elevated nickel and copper caused 

changes to the structure of the microbiome in the reef building coral A. muricata. The 

resulting imbalance in the microbiome could lead to functional changes and facilitate 

disease development or alterations in metabolism and immunity that lead to bleaching, 

necrosis and ultimately coral death (Glasl et al., 2017). While we observed structural 

changes in the coral microbiome there was a simultaneous increase in the tissue 

concentrations for both nickel and copper, and bleaching, albeit at the highest test 

concentrations. At lower concentrations, where bleaching was minimal or had not occurred, 

there were slight changes in the microbiome community structure. Increases in the number 

of treatment replicates could improve our ability to detect changes in the microbiome 

community structure, however this is a limitation of microcosm studies where large sample 

sizes are often not possible (Chariton et al., 2016; Ho et al., 2013). Another limitation to 

microcosm studies is that the experimental set up is essentially a closed system and the 

DNA of dead organisms could be attenuating our capacity to detect changes in the 

community. The use of RNA would reveal who in the community is living and functional 

(Chariton et al., 2014).  

Given that micro-organisms respond rapidly to environmental conditions, it is vital to 

understand how the microbiome of corals responds to a range of natural and anthropogenic 

stressors. However, given the high concentrations used in this study, it is recommended that 

future work target lower, environmentally relevant concentrations to determine if the 

microbiome is altered in the same way. It is possible that the microbial community of corals 

could be used as an early warning indicator to identify stressed ecosystems prior to more 
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advanced visual cues such as tissue necrosis or bleaching, which are only evident when coral 

health has already become compromised (Glasl et al., 2017).  

5. Conclusion 

Coral reefs are subjected to numerous global and local stressors. In many tropical regions 

local stressors are likely to be associated with mining activities. To mitigate this risk requires 

an understanding of the potential impacts of metals on ecosystems. We used multiple lines 

of evidence to investigate the effects of copper and nickel, separately, on the common 

branching coral Acropoa mucricata. Following 36 – 96-h exposure we only observed 

bleaching at copper concentrations ≥ 11 µg Cu/L, and nickel concentrations ≥470 µg Ni/L. 

We found that as metal concentrations in the seawater increased, there was also an 

increase in copper and nickel concentrations in the coral tissues. We also observed 

significant changes to the microbiome community structure. Very high nickel concentrations 

of 470 µg Ni/L altered the eukaryotic communities of the coral microbiome. For copper, 

significant differences in both the eukaryotic and bacterial communities were observed at ≥ 

11 µg Cu/L. Importantly, we detected a loss in Hahellaceae, a known beneficial bacteria in 

coral microbiomes, when exposed to copper. We also observed an increase in 

Flavobacteriaceae and Rhodobacteraceae two taxa which are believed to be indicative of 

stressed coral microbiomes. Collectively, our findings show that exposure to high 

concentrations of metals in polluted coastal waters , has the potential to alter the 

microbiome which is inherently linked to coral health via a range of symbiotic processes. 

Given the pivotal roles corals play in tropical ecosystems, considerably more research is 

required to determine how metals alter these coral holobionts, and to ensure that water 

quality guidelines are adequate for their protection, future studies are required to generate 

data for adult corals which can contribute to water quality guidelines development. In 

comparison to other marine invertebrates, corals are less sensitive to nickel and copper, 

however this not the case for other metals (e.g. (Summer et al., 2019). Future work should 

utilise lower test concentrations, investigate other physiological endpoints e.g. 

photosynthetic efficiency and Symbiodinium density and include field studies to investigate 

the effects of metal contaminants in the environment on corals and their microbiomes.
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Supplementary material 

Table S1. PCR conditions for amplification of DNA using various primers 

Primer set PCR conditions  

 Denature (°C, mins) Annealing (°C, secs) Extension (°C, mins) 

18S 95,  2  40 cycles:  
95, 30   
58, 30    
72, 60 

72,  7 

16S 94,  3  35 cycles:  
94,  45  
50,  60  
72,  90 

72, 10 

 

Table S2. Total number of reads and operational taxonomic units (OTUs) prior to and after filtering the data in preparation for statistical 

analysis. 

 Before filtering After filtering 

Dataset OTUs Reads OTUs Reads 

18S rDNA 681 3290956 30 2387661 

16S rDNA 2163 1859154 209 1443382 
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Table S3. Background concentrations of metals in filtered seawater used to make treatment solutions each day during the 4 day exposure. LOD 
= Limit of detection. Values in bold exceeded the LOD. 

 
Al As  Ba Be  Cd  Co  Cr  Cu  Fe Fe  Mn Ni  Pb Se Zn  

LOD 0.52 0.76 0.05 0.003 0.56 0.24 1.1 0.31 0.60 3.9 0.21 1.8 1.9 3.0 0.12 

T=0 1.3 <0.76 0.51 <0.003 <0.56 <0.24 <1.1 1.3 3.6 <3.9 <0.21 <1.8 <1.9 <3.0 <0.12 

T=1 1.0 <0.76 0.61 <0.003 <0.56 <0.24 <1.1 <0.31 4.3 4.1 <0.21 <1.8 <1.9 <3.0 <0.12 

T=2 2.6 <0.76 0.54 <0.003 <0.56 <0.24 <1.1 2.1 <0.60 <3.9 <0.21 <1.8 <1.9 <3.0 2.0 

T=3 0.5 <0.76 0.17 <0.003 <0.56 <0.24 <1.1 <0.31 <0.60 <3.9 <0.21 <1.8 2.1 <3.0 <0.12 
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Table S4. Concentrations of dissolved and total nickel and copper, measured in the 
treatment tanks on days 0-3. Sub-samples were taken immediately after treatment 
solutions were made. NM = not measured. These treatments were sacrificed at 36 h and so 
treatment solutions were not made on days 2-3.  

Treatment 

Day 

0 1 2 3 

Dissolved (<0.45 µm), µg/L  

Control 0.0 0.0 0.8 0.3 

Ni50 47 47 45 45 

Ni100 92 92 93 93 

Ni500 493 474 467 457 

Ni1000 914 910 912 902 

Ni10000 9167 9066 NM NM 

Control 1.3 1.0 2.1 0.4 

Cu5 5.6 4.6 4.7 4.6 

Cu20 17 17 NM NM 

Cu50 46 43 NM NM 

Cu100 89 85 NM NM 

Total, µg/L  

Control 0.0 0.2 0.6 0.6 

Ni50 48 47 49 46 

Ni100 96 92 94 92 

Ni500 513 485 479 468 

Ni1000 939 924 921 914 

Ni10000 9601 9387 NM NM 

Control 1.2 0.9 1.4 0.6 

Cu5 4.6 5.8 4.7 4.8 

Cu20 19 27 NM NM 

Cu50 48 46 NM NM 

Cu100 88 89 NM NM 
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Table S5. Concentrations of total nickel and copper, measured in the test chambers on Day 
0 and day 1 or 4. 

  

Day 

0 1 or 4 

Treatment Meana SDa Meana SDa 

Total, µg/L  

Control 0.0 0.7 0.4 0.7 

Ni50 43 0.6 46 0.3 

Ni100 87 0.4 91 0.8 

Ni500 483 6.9 464 5.1 

Ni1000 894 11 912 3.3 

Ni10000 b 8955 85 9216 75 

Control 3.2 0.5 0.8 0.0 

Cu5 4.1 0.3 3.2 0.2 

Cu20 b 13 0.5 12 0.9 

Cu50 b 35 0.9 40 1.5 

Cu100 b 69 2.0 70 1.6 
a  Taken from 4 replicate chambers 

b These treatments were sacrificed and samples taken for analysis on day 1 (not on day 4), 
due to bleaching. 

 

Table S6. Coral watch health chart scores for coral fragments following exposure to nickel 

and copper for 36-96 h. (https://www.coralwatch.org/web/guest/coral-health-chart) 

Treatment Score Description 

Control D5-D6 Healthy branching coral 

4 µg Cu/L D5-D6 Healthy branching coral 

11 µg Cu/L D3 Slightly bleached 

32 µg Cu/L D1 Severely bleached 

65 µg Cu/L D2 Moderately bleached 

45 µg Ni/L D5-D6 Healthy branching coral 

90 µg Ni/L D1 Severely bleached 

470 µg Ni/L D2 Moderately bleached 

900 µg Ni/L D2 Moderately bleached 

9050 µg Ni/L D2 Moderately bleached 
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Figure S1. The concentration of nickel (A) and copper (B) per surface area of the coral 

fragment, versus measured dissolved (0.45-µm) metal concentration in the test chambers. 

Each point represents one individual fragment from four replicate chambers per treatment. 

Note the different scales on the x-y axes. 
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Figure S2. Photograph to demonstrate how the coral fragments were embedded in paraffin 
wax and cut into sections using a diamond blade cutter prior to analysis with LA-ICPMS. 
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Figure S3. Analysis of a coral fragment exposed to 9050 µg Ni/L (measured, dissolved) by laser-ablation ICP-MS. Data shows the relative 
proportion of nickel and calcium detected along the laser line, marked out in the photographs. Measurements on x-axis indicate the location of 
the laser across the coral section; measurements on the y-axis indicate the number of counts for calcium (left-hand axis) and nickel (right hand 
axis). Each point is averaged across six data points. 

 

 



50 
 

Figure S4.  Analysis of a coral fragments exposed to seawater (control), 90, 900 and 9050 µg Ni/L (measured, dissolved) by laser-ablation ICP-
MS. Only section B of each fragment was analysed. Data shows the relative proportion of nickel and calcium detected along the laser line, 
marked out in the photographs. Measurements on x-axis indicate the location of the laser across the coral section; measurements on the y-
axis indicate the number of counts for calcium (left-hand axis) and nickel (right hand axis). Each point is averaged across six data points. 
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Figure S5 Maps from µ-PIXE analysis showing the detection of calcium (A) and nickel (B)  of 
the section B (Figure S1) taken from a coral fragment exposed to 9050 µg Ni/L (measured 
dissolved).  The scale bar indicates the relative level of element detected in the sample in 
the top image. The blue rectangles in the bottom image mark the path of analysis. Figure A 
provides an example of the location and image of the external or radial polyps, the central 
or axial polyp and the porous coral skeleton. 
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Figure S6 Maps from µ-PIXE analysis showing the detection of calcium (A) and nickel (B)  of 
the section D (Figure S1) taken from a coral fragment exposed to 9050 µg Ni/L (measured 
dissolved).  The scale bar indicates the relative level of element detected in the sample in 
the top image. The blue rectangles in the bottom image mark the path of analysis. 
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DNA amplification and sequencing using 16S_V5-V6 region primers 

Primers: 784f (5’-3’: AGGATTAGATACCCTGGTA), 1061r (5’-3’: CRRCACGAGCTGACGAC) for 

the V5 and V6 region of the 16S rRNA gene (Andersson et al., 2008; Ziegler et al., 2016). 

Polymerase Chain Reaction (PCR) methods are described in the paper. All amplifications 

used the Amplitaq Gold 360 Master Mix (MM, Applied Biosystems), and DNA-free water 

(brand). For 16S_V5-6 primers the total PCR reaction volume was 50µL which consisted of 

25µL of MM, 1µL of each primer, 20µL of water and 3 µL of template DNA. 

PCR conditions: 

 PCR conditions 

 Denature Annealing Extension 

16S _V5-6 95°C 15 mins 35 cycles: 95°C 20 secs, 55°C 90 secs, 
72°C 60 secs 

72°C 7 mins 

 

Total number of reads and operational taxonomic units (OTUs) prior to and after filtering 

the data in preparation for statistical analysis. 

 Before filtering After filtering 

Dataset OTUs Reads OTUs Reads 

16S_V5-6 1606 1347465 207 1158830 

 

Sequence data was processed through the bioinformatics pipeline and filtered, as per 

methods in main paper. Statistical analysis followed methods described for 16S in main 

paper. 

Bacteria – 16S_V5-6 

The general trends observed in the 16S_V4 dataset were similar to the trends in the 

community structure amplified with the 16S_V5-6 primer set. The bacterial community 

structure in all nickel treatments were not significantly different to the control. However the 

highest and lowest nickel treatments were found to be significantly different (p<0.05, Figure 

13A). The three highest copper treatments were significantly different to the control and 

the lowest copper treatment (Figure 13B, p<0.05). 
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Figure S7. Non-metric multidimensional scaling plots for the 16S_V5-6 dataset for nickel (A) 

and copper (B). The (dis)similarity between treatments was determined by Bray-Curtis 

similarity, data were standardised and then square-root transformed. Each point represents 

one individual replicate from each treatment.  

In this dataset, the significant drivers of the differences between the lowest and highest 

nickel treatment were Rhodobacteraceae (26%) and Hahellaceae (11%). In the copper 

treatments the main taxa that were driving the differences between the high copper 

concentrations and the control and lowest copper were Flavobacteriaceae (21-26%) and 

Hahellaceae (13-20%) and Rhodobacteraceae (14-17%). Similar to the 16S_V4 dataset, the 

shade plots in Figure 14 show that there appears to be a slight decrease in the number of 

Rhodobacteraceae OTUs with increasing nickel concentration. Hahellaceae decreases with 

increasing copper concentration as Flavobacteriaceae and Rhodobacteraceae OTUs increase 

(Figure 14). While Planctomycetaceae was detected by the 16S_V5-6 primers, it was not 

indicated as a key driver of the differences between the bacterial communities in the copper 

or nickel treatments, unlike the 16S_V4 primers. 
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