University of Wollongong Research Online

Faculty of Science, Medicine and Health - Papers: Part B

Faculty of Science, Medicine and Health

2019

Relationship between long-chain omega-3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study

Anjana Senevirathne University of Wollongong, asns124@uowmail.edu.au

Elizabeth Neale University of Wollongong, elizan@uow.edu.au

Gregory E. Peoples *University of Wollongong*, peoples@uow.edu.au

Linda C. Tapsell University of Wollongong, ltapsell@uow.edu.au

Publication Details

Senevirathne, A., Neale, E., Peoples, G. & Tapsell, L. (2019). Relationship between long-chain omega-3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study. Nutrition and Dietetics, 76 (1), 95-103.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Relationship between long-chain omega-3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study

Abstract

Aim: The present study aimed to explore the association between dietary long-chain omega-3 polyunsaturated fatty acid (LCn3PUFA) intake and cardiovascular risk indicators (ankle brachial index, resting heart rate and brachial-ankle pulse wave velocity) in a clinical sample of overweight and obese participants volunteering for a weight loss trial.

Methods: This was a secondary analysis of baseline data from the HealthTrack study (n = 351). LCn3PUFA intake was calculated via a diet history and the association with ankle brachial index, resting heart rate and brachio-ankle pulse wave velocity was explored using linear regression after controlling for covariates.

Results: LCn3PUFA intake was inversely associated with ankle brachial index (R^2 change = 0.021, F change (1, 339) = 8.864, P < 0.05) and resting heart rate (R^2 change = 0.014, F change (1, 342) = 5.337, P < 0.05) but not with brachio-ankle pulse wave velocity (R^2 change = 0.001, F change (1, 339) = 0.725, P > 0.05).

Conclusions: In this clinical sample of overweight adults, LCn3PUFA consumption was significantly associated with a lower resting heart rate, adding to the current evidence on the potential benefits of LCn3PUFA consumption. It also supports the value of targeting a diet rich in this nutrient when planning future dietetic approaches. Relationships with ankle brachial index and pulse wave velocity require further investigation. Future research should assess the effect of changes in dietary LCn3PUFA intake on novel cardiovascular risk indicators.

Publication Details

Senevirathne, A., Neale, E., Peoples, G. & Tapsell, L. (2019). Relationship between long-chain omega-3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study. Nutrition and Dietetics, 76 (1), 95-103.

The relationship between long chain omega-3 Polyunsaturated fatty acid intake and ankle
 brachial index, pulse wave velocity, and resting heart rate in a sample of overweight adults: a
 secondary analysis of baseline data in the HealthTrack study.

4

5 Senevirathne, A., Neale, E., Peoples, G., Tapsell, L.

6 Abstract

7 Aim: This study aimed to explore the association between dietary long chain omega-3

8 polyunsaturated fatty acid intake and cardiovascular risk indicators (ankle brachial index, resting

9 heart rate and brachial-ankle pulse wave velocity) in a clinical sample of overweight and obese

10 participants volunteering for a weight loss trial.

11 Methods: This was a secondary analysis of baseline data from the HealthTrack study (n=351).

12 Long chain omega-3 polyunsaturated fatty acid intake was calculated via a diet history and the

13 association with ankle brachial index, resting heart rate, and brachio-ankle pulse wave velocity was

14 explored using linear regression after controlling for covariates.

15 **Results:** Long chain omega-3 polyunsaturated fatty acid intake was inversely associated with ankle

16 brachial index (R square change=0.021, F change (1, 339)=8.864, p<0.05) and resting heart rate (R

square change=0.014, F change (1, 342)=5.337, p<0.05) but not with brachio-ankle pulse wave

18 velocity (R square change=0.001, F change (1, 339)=0.725, p>0.05).

Conclusion: In this clinical sample of overweight adults, long chain omega-3 polyunsaturated fatty
acid consumption was significantly associated with a lower resting heart rate, adding to the current

evidence on the potential benefits of long chain omega-3 polyunsaturated fatty acid consumption. It

also supports the value of targeting a diet rich in this nutrient when planning future dietetic

23 approaches. Relationships with ankle brachial index and pulse wave velocity require further

24 investigation. Future research should assess the effect of changes in dietary long chain omega-3

25 polyunsaturated fatty acid intake on novel cardiovascular risk indicators.

26 Keywords:

- 27 Ankle-brachial index
- 28 Cardiovascular risk factors
- 29 Diet history
- 30 LCn3PUFA
- 31 Pulse wave velocity
- 32 Resting heart rate
- 33 Introduction

Cardiovascular disease (CVD) is considered to be a global health concern, responsible for 17.7 34 million deaths, which represented 31% of global deaths in 2015.¹ Exploring novel, non-invasive 35 physiological risk factors for CVD provides insight into disease risk and progression and can be 36 used to explore the effect of lifestyle modifications on CVD risk. Heart rate (HR), arterial stiffness, 37 and peripheral arterial disease (PAD) are now considered to be independently associated with high 38 risk of CVD.²⁻¹⁴ Epidemiological studies have reported strong, independent, graded correlations 39 between elevated resting HR and CVD.^{13, 17} Lower resting HR is associated with a lower CVD risk 40 compared to increased HR.^{11, 18} In comparison, arterial stiffness is defined as a reduction of the 41 distending ability of arteries due to pathological changes in the vessel wall. The "gold standard" 42 measurement of arterial stiffness is pulse wave velocity (PWV).¹⁹ Increased stiffness or elevated 43 PWV promotes endothelial damage and increases back-pressure to the left ventricle of the heart, 44 causing left ventricular hypertrophy and coronary ischemia, ultimately resulting in CVD.¹⁹²¹ 45 Improving arterial stiffness (i.e. reducing PWV) aids CVD prevention and treatment in clinical 46 practice.^{22, 23} Peripheral arterial disease (PAD) is the blockage or narrowing of medium to small 47 arteries supplying limbs, mainly the lower extremities, and is primarily diagnosed by ankle brachial 48 index (ABI) in clinical practice. The main cause of PAD is atherosclerosis.²⁴⁻²⁷ Coexisting severe 49 50 coronary atherosclerosis and similar lesions can be found elsewhere in the arterial system in patients with PAD or low ABI.^{2, 3, 5, 28, 29} Investigation of modifiable factors which can impact these risk 51 factors is required. 52

53 Dietary modifications may play a role in influencing physiological risk factors for CVD including those described above. The effect of consumption of long chain omega 3 polyunsaturated fatty acids 54 (LCn3PUFA) on CVD has been studied extensively during the last few decades. LCn3PUFAs are a 55 group of fatty acids abundant in oily fish and produced in minute amounts in the human body from 56 desaturation of alpha-linolenic acid, which is an essential fatty acid.^{30, 31} Research suggests 57 supplementation of LCn3PUFA may have CVD protective and mortality reduction effects by 58 improving endothelial function, reducing CVD risk factors such as blood pressure, heart rate, and 59 serum triglyceride levels, and reducing ventricular arrhythmias and chronic inflammation.³²⁻⁴¹ There 60 is currently a paucity of evidence on the effects of dietary modification including LCn3PUFA 61 intake on forms of CVD such as PAD. As a result, the body of evidence for the effects of 62 LCn3PUFA consumption on risk factors including ABI remains inconclusive. While previous 63 research has explored the relationship between LCn3PUFA intake and CVD risk factors, there has 64 been a paucity of research investigating this relationship in the clinical context. Exploration of the 65 relationship between consumption of LCn3PUFA and risk factors for CVD in a clinical sample 66 provides an opportunity to investigate the relevance of this relationship in clinical practice. This 67 also provides insight into potential dietetic strategies for improving CVD risk in clinical 68 populations. 69 70 This study aimed to explore the association between reported LCn3PUFA intake and cardiovascular

risk indicators (ankle brachial index, resting HR and brachial-ankle PWV) in a sample of

volunteering for a clinical trial.

73 Methods

74 The present study is a secondary analysis of baseline data on participants randomised to the

75 HealthTrack study.⁴²The HealthTrack study was a 12-month randomised controlled trial conducted

in the Illawarra region, 70km south of Sydney, Australia. Study subjects were overweight or obese

77 (body mass index (BMI) 25 to 40 kg $/m^2$) adults aged between 25 – 54 years. The HealthTrack

study exclusion criteria included being unable to communicate in English; severe medical

79	conditions which impaired the ability to participate in the study; immune deficiencies; survival from
80	illnesses predicted to be less than 1 year; reported illegal drug use; regular alcohol intake associated
81	with alcoholism (>50g/day), or having difficulties or hindrances in participating for study
82	components. From recruitment, 377 participants were randomised for baseline analysis, intervention
83	and follow-up. Randomised participants were grouped into three arms to examine the
84	interdisciplinary approach of weight reduction with usual care. The primary outcome was weight
85	and secondary outcomes included disease risk factors such as fasting blood lipids, glucose, HbA1c,
86	systolic blood pressure and behaviour (diet, activity, and psychological factors). ⁴²
87	Ethical approval was obtained from the '[removed for blind peer review]' and the study was
88	registered with the '[removed for blind peer review]'.
89	All physiological data were collected in a laboratory which was calm and quiet to minimise external
90	stimulation. Participants were not fasted prior to the collection of physiological data. Resting HR,
91	brachial-ankle PWV (baPWV) and ABI data were measured using an Omron BP-203RPEIII VP-
92	1000 device (Omron Health Care, Kyoto, Japan) and cleaned using American Heart Association
93	guidelines. ⁴¹ Measurements were taken following a 5-minute resting period in the supine position.
94	Two measurements were taken and the second was used as the actual measurement for the study.
95	Blood pressure taken at the same time as the ABI measurement was utilised for the calculation of
96	mean arterial blood pressure (MBP). The following equation was used to calculate MBP as a
97	covariate for baPWV. ^{44, 45}
98	MBP = [Systolic pressure+2 (diastolic pressure)]/3
99	PWV was cleaned according to European Society of Cardiology guidelines. ⁴⁴
100	Dietary intake data was collected using diet history interviews (DH) conducted by a team of

101 Accredited Practising Dietitians (APD), using a validated interview protocol⁴⁶, with support from

102 food models and household measures. Dietary data was entered into FoodWorks nutrient analysis

103 software (version 7.0, 2012 Xyris Software, Highgate Hill, QLD, Australia) using AUSNUT

104 2007.⁴⁷ Where a food item was not found in the AUSNUT 2007 database, an appropriate

105 substitution was made, or if possible, a new product was created using label data. Where substitutions were required, a log of substituted products was kept to improve reliability, and all 106 dietary data was checked by an independent researcher. Dietary intake of LCn3PUFA was then 107 calculated. We have previously found reported intake of LCn3PUFA collected using this method to 108 be associated with objective measures of LCn3PUFA intake.⁴⁸ LCn3PUFA intake was compared to 109 the National Health and Medical Research Council (NHMRC) Nutrient Reference Values 110 Suggested Dietary Target (SDT) (males: 610mg; females: 430mg per day.⁴⁹ Detailed data on 111 quantity and frequency of LCn3PUFA supplement consumption was not available, however during 112 the baseline assessment participants reported if they took supplements, and this data was used in the 113 current analysis. Body weight (kg) and height were measured at baseline to determine BMI. Weight 114 was measured with participants in an upright position, with no shoes and minimal clothing (Tanita 115 TBF-662, Wedderburn Pty Ltd, Ingleburn, NSW, Australia), with the height measured using a 116 117 stadiometer.

During baseline screening, participants reported whether they had previously been diagnosed by a doctor with type 2 diabetes, cardiovascular disease, or hypertension. Fasting blood samples were collected by a registered pathological service (Southern IML Pathology) at baseline. Cholesterol / HDL ratio data was utilised in the current study because this measure has the greater predictive ability of atherosclerotic vascular disease than other blood cholesterol measurements and is less modified by LCn3PUFA intake.^{50, 51}

The International Physical Activity Questionnaire (IPAQ) short form, a validated assessment tool
 for use in the Australian community, was used to assess participant's physical activity.⁵²

126 Statistical analysis was conducted using SPSS (version 22.0, IBM Corp, 2013, New York). The

127 distribution of all continuous data was explored for normality (Kolmogorov-Smirnov, Shapiro-Wilk

and graph) and log-transformed if found to be non-parametric (LCn3PUFA - FR and DH, baPWV,

ABI, resting HR, Cholesterol / HDL ratio and total energy). Data which could not be transformed

130 (age) were categorised into groups. All categorical data were arranged into binominal groups.

131 Descriptive statistics of central tendency were calculated for all parameters. Results were presented with mean and standard deviation if variables were continuous and parametric, with median and 132 interquartile range (25th and 75th percentile) reported if continuous variables were nonparametric. 133 Categorical variables were presented as percentages. 134 Hierarchical linear regression was used to determine whether LCn3PUFA intake predicted the 135 variability of ABI, resting HR, and baPWV when covariates (MBP, HR, Cholesterol / HDL Ratio, 136 age, gender, BMI, whether participants reported taking fish oil supplements, total energy intake and 137 CVD related comorbidities such as heart disease, hypertension and diabetes mellitus) were 138 controlled. As the accuracy of baPWV may be reduced in the case of lower limb artery stenosis ⁵³, 139 54 , the analysis between LCn3PUFA and baPWV was repeated with participants with ABI <0.9 140 excluded. Preliminary analysis were conducted to detect violations of normality, linearity, 141 multicollinearity and homoscedasticity, with no violations of assumptions found. 142 143 To further explore the relationship between LCn3PUFA intake and HR, participants were categorised as those with a HR below 69 beats per minutes (<69bpm) and those with a HR of 69 144 beats per minutes (69bpm) or above (>=69 bpm). These cut-offs were selected based on the 145 findings of a previous meta-analysis which observed greater effects of fish oil on HR in populations 146 with a mean baseline HR of 69bpm or greater.⁵⁵ An independent sample T-test was used to compare 147 intake of LCn3PUFA (transformed) between HR groups. The two tailed p value of <0.05 was taken 148 as statistically significant for all analyses. 149

150 <u>Results</u>

Table 1 summarises characteristics of study participants at baseline. The study sample for this
analysis was n=351 participants (Figure 1). A total of 24.9% of participants reported consuming
LCn3PUFA above the SDT.

154 Covariates were entered in step 1 of the hierarchical linear regression to compare LCn3PUFA

intake and ABI, explaining 40.1% of the variability in ABI. In step 2 after entering LCn3PUFA

156 intake, 42.6% of the variance was explained (F (12, 339)=6.277, p<0.05). LCn3PUFA intake

- 157 explained an additional 3.6% of the variance in ABI, after controlling for other variables (R square
- 158 change=0.021, F change (1, 339)=8.864, p<0.05). In the final model, LCn3PUFA intake was
- statistically significant, with a low beta value (beta=-0.036, p<0.05) (Table 2).
- 160 During analysis of LCn3PUFA intake and baPWV, covariates were entered in step 1, explaining
- 161 73% of the variability in baPWV. In step 2 after entering LCn3PUFA intake, there was no change
- 162 of variance (F (12, 339)=32.190, p<0.05) after controlling for other variables (R square
- 163 change=0.001, F change (1, 339)=0.725, p>0.05). In the final model, LCn3PUFA intake was not
- statistically significant, with a low beta value (beta=-0.006, p>0.05) (Table 2). Exclusion of
- 165 participants with ABI <0.9 from this analysis did not change the relationship observed (beta=-
- 166 0.007, p>0.05).
- 167 While analysing variability of LCn3PUFA intake and HR, all covariates were entered in step 1,
- 168 explaining 35.1% of the variability in HR. After entering LCn3PUFA intake in step 2 explained
- variance was 37% (F (9, 342)=5.341, p<0.05). Adding LCn3PUFA intake explained an extra 2.1%
- variance in HR, after controlling for other variables (R square change=0.014, F change (1,
- 342)=5.337, p<0.05). LCn3PUFA intake was statistically significant, with a low beta value (beta=-
 0.021, p<0.05) (Table 2).
- 173 The independent-samples t-test indicated that participants with a HR of 69 bpm or higher had
- significantly lower intakes of LCn3PUFA than those with a HR less than 69 bpm (t [349] = -2.471,
- p=0.014, two-tailed) (Table 3). The magnitude of the differences in the means (mean difference = -
- 176 0.1, 95% CI: -0.18 to -0.02) was very small (et a squared = 0.017).
- 177 Discussion
- 178 In this secondary analysis of baseline data on overweight and obese individuals from a clinical trial,
- 179 LCn3PUFA intake was inversely associated with ABI and resting HR. This finding confirms that
- the favourable relationship between LCn3PUFA and resting HR observed in previous research $^{55, 56-}$
- 181 can also be observed in the clinical setting. The relationship between ABI and LCn3PUFA observed
- in this study should be interpreted with caution. While there is evidence suggesting that lower ABI

may indicate higher risk of cardiovascular disease ^{2, 5}, low ABI in the younger participants in this
study may not reflect lower extremity arterial disease. Furthermore, there was no association
observed in this study between reported LCn3PUFA and baPWV.

While the relationship between LCn3PUFA and ABI should be interpreted with caution, there are a 186 number of mechanisms by which LCn3PUFA consumption may be associated with reduced ABI 187 and HR. LCn3PUFA intake may influence ABI by reducing inflammatory cytokine production 188 through incorporation into the cell membrane.^{57, 58} Furthermore, LCn3PUFA derived EPA has been 189 found to improve endothelial function via nitrous oxide-dependent vascular relaxation and DHA 190 modifies lipid composition and the structure of the vessel wall by altering adhesion molecules, 191 ultimately improving endothelial and vessel compliance.⁵⁸ It is possible that LCn3PUFA 192 consumption may reduce ABI by means of inflammatory reduction and modification of endothelial 193 and vascular function. 194

Findings of animal studies have suggested LCn3PUFA consumption may alter the automaticity of 195 heart muscles cells similar to class 1 antiarrhythmic medications.⁵⁹ LCn3PUFAs can alter the 196 resting membrane potential of heart muscle cells, predominantly the SA node, by direct action on 197 the cell membrane. This effect can increase membrane threshold resulting in a delay in the next 198 autogenerated impulse, leading to a reduction of resting HR.⁵⁹ Increased consumption of 199 LCn3PUFA via fish oil was associated with a reduction of HR by 2.5 beats per minutes (bpm) in 200 individuals with a baseline HR of 69 beats per minute or higher which is associated with reduced 201 cardiac morbidity.⁵⁵ This observation may be suggestive of a cardiac protective effect of 202 LCn3PUFA consumption via reducing arrhythmogenicity and improved reserved capacity. 203 However, in this study, the magnitude of the association between LCn3PUFA intake and HR was 204 very small. The median intake, even in the group with a resting heart rate <69 beats per minute, was 205 206 still below the prefereable 250 mg per day (EPA +DHA) supported by longitudinal evidence for cardiac benefits ⁶⁰ In our study population, there were other significantly associated risk factors 207

208 contributing to resting HR such as age and BMI (Table 2), however, these results suggest that LCn3PUFA intake are a potential target for dietary modification within clinical practice. 209 Given the association between overweight and obesity and PWV⁶¹, it is relevant to explore dietary 210 components associated with improved PWV in this at risk population, in order to identify potential 211 dietetic strategies for reducing cardiovascular risk. In contrast to the findings for ABI and HR, we 212 did not observe an association between LCn3PUFA consumption and baPWV in this setting. This 213 finding does not align with those of previous studies using LCn3PUFA supplements with 214 therapeutic doses.^{62, 63} The disparity in findings may be explained by variations in the study 215 population, the amount of LCn3PUFA intake and dietary assessment methods used. For example, 216 age is a well known major determinant of vascular stiffness, which increases significantly after the 217 age of 55.^{64, 65} The median age in the current study group was 45 years. Our population may be too 218 young to demonstrate a significant association between vascular stiffness (baPWV) and higher 219 220 LCn3PUFA consumption. Furthermore, baPWV was used to measure vascular stiffness in the current study. However, cfPWV is the gold standard measurement of aortic stiffness and is 221 considered to be a prognostic indicator of CVD risk,^{7, 10, 66, 67} with baPWV validated as a 222 cardiovascular risk factor in Asian communities only. This may be another reason for the disparity 223 in results between studies as they used inconsistent PWV measuring methods. Whilst some research 224 suggest cfPWV and baPWV may similarly predict CVD risk,⁶⁸ baPWV results should be 225 generalised to European communities with caution. 226 227 Previous studies and reviews have demonstrated therapeutic effects on the endothelial and vascular system in different doses of LCn3PUFA supplements, between 0.45 to 3g/day.^{65, 69-72} However, the 228

cardiac effects of LCn3PUFA are evident at lower doses such as 1g/day or less.^{37, 60, 71, 73} In the

current analysis resting HR was significantly associated with LCn3PUFA at an even lower

consumption level. Importantly, this relationship was observed at intake levels associated with

moderate consumption of dietary sources of LCn3PUFA. In contrast however, in the current study,

LCn3PUFA intake may not have been sufficient to be associated with a lower baPWV. Reseach

234 findings provide insight into potential dietetic strategies for improving cardiovascular risk. These findings further appear to be reflective of the inconclusive nature of the body of evidence 235 surrounding the impact of LCn3PUFA on cardiovascular outcomes more broadly, as highlighted by 236 a recent systematic review and meta-analysis on the impact of LCn3PUFA supplements on 237 coronary heart disease.⁷⁴ Though there are beneficial cardiovascular effects obsevered in therapeutic 238 doses of LCn3PUFA, further research is needed exploring the impact of LCn3PUFA from dietary 239 sources on cardiovascular measures specifically vascular indicators such as baPWV and ABI. The 240 current study had some limitations which may have affected the results. This study was a baseline 241 secondary analysis of data from the HealthTrack study, which was not designed to assess 242 LCn3PUFA intake and cardiovascular outcomes. As such the HealthTrack study was not powered 243 to address this specific question, which may have affected our results. As this study utilised baseline 244 data, it was a cross-sectional analysis and therefore cannot draw conclusions regarding causation. 245 246 The DH used was not standardised for LCn3PUFA intake assessment and there was no objective measure of LCn3PUFA intake available such as erythrocyte LCn3PUFA levels. Estimation of 247 LCn3PUFA intake may have also been limited by the availability of food products within 248 AUSNUT 2007. Furthermore, this study was not able to quantify the LCn3PUFA supplement intake 249 by the study population, which has been suggested to play a major role in Australians achieving the 250 SDT for LCn3PUFA.⁴⁷ However, whether participants reported taking LCn3PUFA or fish oil 251 supplements was included as a covariate during the analysis to alleviate this limitation. The 252 253 HealthTrack study used AUSNUT 2007, the most recent food composition database available at the beginning of the study; however AUSNUT 2007 only reports total LCn3PUFA rather than EPA and 254 DHA separately. This may limit comparisons with LCn3PUFA studies in the literature.⁷⁵⁻⁷⁸ 255 Measurement of baPWV and ABI did not follow standard operational procedures published by the 256 American Heart Association for vascular research,⁶⁵ and the device used to measure baPWV and 257 ABI was only standardised for the Japanese population.⁶⁵ However, the HealthTrack study was 258 designed to be aligned with clinical practice, and thus may correspond with methods used in the 259

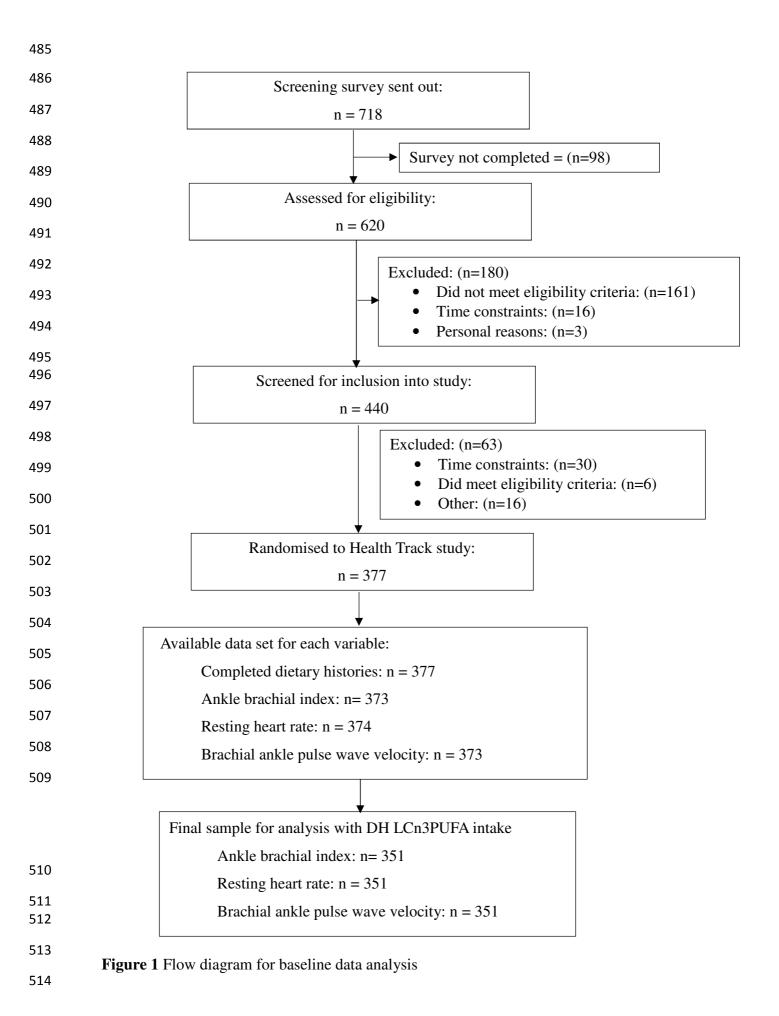
260	clinical setting. Finally, the HealthTrack study involved overweight and obese self-selected					
261	volunteers from regional New South Wales, therefore results may not be generalisable to the					
262	broader p	broader population.				
263	This seco	ndary analysis of baseline data from a weight loss trial confirms that the favourable				
264	relationsh	ip between LCn3PUFA intake and CVD risk factorHR can also be observed in the clinical				
265	setting. In	n contrast, relationships with ankle brachial index and pulse wave velocity require further				
266	investigat	tion. These results add to the current evidence surrounding the potential benefits of				
267	LCn3PU	FA consumption and highlight the importance of targeting food sources of this nutrient in				
268	clinical d	ietetic practice.				
269	Given the	e findings of this cross-sectional analysis, it will be beneficial to explore these results				
270	further in randomised controlled trials to assess the effect of changes in dietary LCn3PUFA intake					
271	on novel cardiovascular risk indicators.					
272	<u>Referenc</u>	<u>es</u>				
273	1.	World Health Organization. Cardiovascular diseases (CVDs) Geneva: Switzerland;				
274		2017. (Available from: http://www.who.int/mediacentre/factsheets/fs317/en, accessed				
275		17 th April 2018).				
276	2.	Fowkes G, Fowkes FGR, Murray GD et al. Ankle brachial index combined with				
277		Framingham risk score to predict cardiovascular events and mortality: A meta-analysis.				
278		<i>JAMA</i> . 2008; 300 : 197-208.				
279	3.	Newman AB, Shemanski L, Manolio TA et al. Ankle-arm index as a predictor of				
280		cardiovascular disease and mortality in the Cardiovascular Health Study. Arterioscler				
281		Thromb Vasc Biol. 1999; 19: 538-45.				
282	4.	Hussein AA, Uno K, Wolski K et al. Peripheral arterial disease and progression of				
283		coronary atherosclerosis. JACC. 2011; 57: 1220-25.				

284	5.	Hyun S, Forbang NI, Allison MA et al. Ankle-brachial index, toe-brachial index, and
285		cardiovascular mortality in persons with and without diabetes mellitus. J Vasc Surg.
286		2014; 60 : 390-5.
287	6.	Hendriks EJE, Westerink J, De Jong PA et al. Association of High Ankle Brachial Index
288		with Incident Cardiovascular Disease and Mortality in a High-Risk Population.
289		Arterioscler Thromb Vasc Biol. 2016; 36: 412-7.
290	7.	Hansen TW, Staessen JA, Torp-Pedersen C et al. Prognostic value of aortic pulse wave
291		velocity as index of arterial stiffness in the general population. Circulation. 2006; 113:
292		664-70.
293	8.	Mattace-Raso FUS, Van Der Cammen TJM, Hofman A et al. Arterial stiffness and risk
294		of coronary heart disease and stroke: The Rotterdam Study. Circulation. 2006; 113: 657-
295		63.
296	9.	Mitchell GF, Hwang SJ, Vasan RS et al. Arterial stiffness and cardiovascular events:
297		The framingham heart study. Circulation. 2010; 121: 505-11.
298	10.	Turin TC, Kita Y, Rumana N et al. Brachial-ankle pulse wave velocity predicts all-cause
299		mortality in the general population: Findings from the Takashima study, Japan.
300		Hypertens Res. 2010; 33 : 922-5.
301	11.	Zhang D, Shen X, Qi X. Resting heart rate and all-cause and cardiovascular mortality in
302		the general population: a meta-analysis. Can Med Assoc J. 2016; 188: E53-63.
303	12.	Perret-Guillaume C, Joly L, Benetos A. Heart rate as a risk factor for cardiovascular
304		disease. Prog Cardiovasc Dis. 2009; 52: 6-10.
305	13.	Cooney MT, Vartiainen E, Laatikainen T et al. Elevated resting heart rate is an
306		independent risk factor for cardiovascular disease in healthy men and women. Am Heart
307		J. 2010; 159 : 612-9.e3.

308	14.	Custodis F, Reil J-C, Laufs U, Böhm M. Heart rate: A global target for cardiovascular
309		disease and therapy along the cardiovascular disease continuum. J Cardiol. 2013; 62:
310		183-7.
311	15.	Aune D, Sen A, Hartaigh B, et al. Resting heart rate and the risk of cardiovascular
312		disease, total cancer, and all-cause mortality – A systematic review and dose-response
313		meta-analysis of prospective studies. Nutrition, Metabolism and Cardiovascular
314		Diseases. 2017; 27 : 504-17.,
315	16.	Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic Pulse Wave Velocity Improves
316		Cardiovascular Event Prediction. JACC. 2014; 63 :636-46.
317	17.	Sharashova E, Wilsgaard T, Mathiesen EB et al. Resting heart rate predicts incident
318		myocardial infarction, atrial fibrillation, ischaemic stroke and death in the general
319		population: the Tromsø Study. J Epidemiol Community Health doi: 10.1136/jech-2015-
320		206663.
321	18.	Menown IBA, Davies S, Gupta S, Kalra PR et al. Resting Heart Rate and Outcomes in
322		Patients with Cardiovascular Disease: Where Do We Currently Stand? Cardiovasc Ther.
323		2013; 31 : 215-23.
324	19.	Gkaliagkousi E, Douma S. The pathogenesis of arterial stiffness and its prognostic value
325		in essential hypertension and cardiovascular diseases. <i>Hippokratia</i> . 2009; 13: 70-5.
326	20.	Palombo C, Kozakova M. Arterial stiffness, atherosclerosis and cardiovascular risk:
327		Pathophysiologic mechanisms and emerging clinical indications. Vasc Pharmacol. 2016;
328		77 : 1-7.
329	21.	Shirwany NA, Zou M-h. Arterial stiffness: a brief review. Acta Pharm Sin B. 2010; 31:
330		1267-76.
331	22.	Zieman SJ, Melenovsky V, Kass DA. Mechanisms, Pathophysiology, and Therapy of
332		Arterial Stiffness. Arterioscler Thromb Vasc Biol. 2005; 25: 932-43.

333	23.	Van Bortel LMAB, Struijker-Boudier HAJ, Safar ME. Pulse Pressure, Arterial Stiffness,
334		and Drug Treatment of Hypertension. Hypertension. 2001; 38: 914-21.
335	24.	Krishna SM, Moxon JV, Golledge J. A Review of the Pathophysiology and Potential
336		Biomarkers for Peripheral Artery Disease. Int J Mol Sci. 2015; 16: 11294-322.
337	25.	Peach G, Griffin M, Jones KG et al. Diagnosis and management of peripheral arterial
338		disease. BMJ. 2012; 345 .e5208.
339	26.	Layden J, Michaels J, Bermingham S et al. Guidelines: Diagnosis and management of
340		lower limb peripheral arterial disease: summary of NICE guidance. 2012; 345: e4947
341	27.	Au TB, Golledge J, Walker PJ et al. Peripheral arterial disease: Diagnosis and
342		management in general practice. Aust Fam Physician. 2013; 42: 397.
343	28.	Resnick HE, Lindsay RS, McDermott MM et al. Relationship of High and Low Ankle
344		Brachial Index to All-Cause and Cardiovascular Disease Mortality: The Strong Heart
345		Study. Circulation. 2004; 109: 733-9.
346	29.	Hussein AA, Uno K, Wolski K et al. Peripheral arterial disease and progression of
347		coronary atherosclerosis. J Am Coll Cardiol. 2011; 57: 1220-5.
348	30.	DeFilippis AP, Sperling LS. Understanding omega-3's. Am Heart J. 2006;151:564-70.
349	31.	Burdge GC. Metabolism of α-linolenic acid in humans. Prostaglandins Leukot Essent
350		<i>Fatty Acids</i> . 2006; 75 : 161-8.
351	32.	Calder PC. Mechanisms of action of (n-3) fatty acids. J Nutr. 2012;142:592S-9S.
352	33.	Barringer TA. Do omega-3 fatty acids have a role in prevention of cardiovascular
353		disease? Front Physiol. 2012; 3 : 395.
354	34.	Christon RA. Mechanisms of action of dietary fatty acids in regulating the activation of
355		vascular endothelial cells during atherogenesis. Nutr Rev. 2003; 61: 272-9.
356	35.	Gammelmark A, Nielsen MS, Bork CS et al. Adipose Tissue Content of Marine N-3
357		Polyunsaturated Fatty Acids Is Inversely Associated with Myocardial Infarction. J Am
358		Coll Cardiol. 2016; 67: 1008-9.

359	36.	Julián-Almárcegui C, Vandevijvere S, Gottrand F et al. Association of heart rate and
360		blood pressure among European adolescents with usual food consumption: The
361		HELENA study. Nutr Metab Cardiovasc Dis. 2016; 26: 541-8.
362	37.	McLennan PL. Cardiac physiology and clinical efficacy of dietary fish oil clarified
363		through cellular mechanisms of omega-3 polyunsaturated fatty acids. Eur J Appl
364		<i>Physiol</i> . 2014; 114 : 1333-56.
365	38.	Weber P, Raederstorff D. Triglyceride-lowering effect of omega-3 LC-polyunsaturated
366		fatty acids - A review. Nutr Metab Cardiovasc Dis. 2000; 10: 28-37.
367	39.	Miyagawa N, Miura K, Okuda N et al. Long-chain n-3 polyunsaturated fatty acids intake
368		and cardiovascular disease mortality risk in Japanese: A 24-year follow-up of NIPPON
369		DATA80. Atherosclerosis. 2014; 232: 384-9.
370	40.	Zhao LG, Sun JW, Yang Y et al. Fish consumption and all-cause mortality: A meta-
371		analysis of cohort studies. Eur J Clin Nutr. 2016; 70: 155-61.
372	41.	Lavie CJ, Milani RV, Ventura HO. Obesity and Cardiovascular Disease: Risk Factor,
373		Paradox, and Impact of Weight Loss. J Am Coll Cardiol. 2009; 53: 1925-32.
374	42.	Tapsell LC, Lonergan M, Martin A et al. Interdisciplinary lifestyle intervention for
375		weight management in a community population (HealthTrack study): Study design and
376		baseline sample characteristics. Contemp Clin Trials. 2015; 45: 394-403.
377	43.	Aboyans V, Criqui MH, Abraham P et al. Measurement and Interpretation of the Ankle-
378		Brachial Index. A Scientific Statement From the American Heart Association.
379		Circulation. 2013; 127: e264.
380	44.	Mattace-Raso F, Hofman A, Verwoert GC et al. Determinants of pulse wave velocity in
381		healthy people and in the presence of cardiovascular risk factors: 'establishing normal
382		and reference values'. Eur Heart J. 2010; 31: 2338-50.
383	45.	Cywinski J, Tardieu B, Heiss HW. Essentials in pressure monitoring blood and other
384		fluids. Clin Cardiol. 1982; 5: 446-A36.


385	46.	Martin GS, Tapsell LC, Denmeade S et al. Relative validity of a diet history interview in
386		an intervention trial manipulating dietary fat in the management of Type II diabetes
387		mellitus. Prev Med. 2003; 36: 420-8.
388	47.	Food Standards Australia New Zealand. AUSNUT 2007 - Australian Food, Supplement
389		& Nutrient Database 2007 for estimation of population nutrient intakes: Canberra; 2008.
390		(Available from: http://www.foodstandards.gov.au/science/monitoringnutrients/
391		ausnut/Pages/ausnut2007.aspx, accessed 16 th July 2016).
392	48.	Neale EP. (2012) Food or nutrients? A comparison of the effectiveness and efficacy of
393		increased fish and long chain omega-3 polyunsaturated fatty acid supplement
394		consumption in the context of metabolic health. Univercity of Wollongong,
395		Wollongong.
396	49.	National Health and Medical Research Council. Nutrient Reference Values for Australia
397		and New Zealand, Including Recommended Dietary Intakes: Canberra; 2006. (Available
398		from: https://www.nhmrc.gov.au/guidelines-publications/n35-n36-n37: accessed 14 July
399		2016).
400	50.	Millán J, Pintó X, Muñoz A et al. Lipoprotein ratios: Physiological significance and
401		clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009; 5: 757-
402		65.
403	51.	Goh YK, Jumpsen JA, Ryan EA et al. Effect of omega 3 fatty acid on plasma lipids,
404		cholesterol and lipoprotein fatty acid content in NIDDM patients. Diabetologia. 1997;
405		40 : 45-52.
406	52.	Booth ML, Ainsworth BE, Pratt M et al. International physical activity questionnaire:
407		12-country reliability and validity. Med sci sports Exerc. 2003; 195: 3508-1381.
408	53.	Motobe K, Tomiyama H, Koji Y et al. Cut-off value of the ankle-brachial pressure index
409		at which the accuracy of brachial-ankle pulse wave velocity measurement is diminished.
410		<i>Circulation journal</i> : 2005; 69 : 55-60.

411	54.	Ato D and Takami T. Brachial-Ankle Pulse Wave Velocity, Mortality, and
412		Cardiovascular Events. J Cardiovasc Disord. 2015; 2: 1009.
413	55.	Mozaffarian D, Geelen A, Brouwer IA et al. Effect of fish oil on heart rate in humans: a
414		meta-analysis of randomized controlled trials. Circulation. 2005; 112: 1945-52.
415	56.	O'Keefe JH, Abuissa H, Sastre A et al. Effects of omega-3 fatty acids on resting heart
416		rate, heart rate recovery after exercise, and heart rate variability in men with healed
417		myocardial infarctions and depressed ejection fractions. Am J Cardiol. 2006; 97: 1127-
418		30.
419	57.	Siasos G, Tousoulis D, Oikonomou E et al. Effects of Omega-3 fatty acids on
420		endothelial function, arterial wall properties, inflammatory and fibrinolytic status in
421		smokers: a cross over study. Int J Cardiol. 2013; 166: 340-6.
422	58.	Kromhout D, Yasuda S, Geleijnse JM et al. Fish oil and omega-3 fatty acids in
423		cardiovascular disease: do they really work? European Heart Journal. 2012; 33: 436-43.
424	59.	Kang JX. Reduction of heart rate by omega-3 fatty acids and the potential underlying
425		mechanisms. Front Physiol. 2012; 3: 416.
426	60.	Streppel MT, Ocke MC, Boshuizen HC et al. Long-term fish consumption and n-3 fatty
427		acid intake in relation to (sudden) coronary heart disease death: the Zutphen study. Eur
428		<i>Heart J.</i> 2008; 29 : 2024–30
429	61.	Safar ME, Czernichow S, Blacher J. Obesity, Arterial Stiffness, and Cardiovascular
430		Risk. Journal of the American Society of Nephrology. 2006; 17: S109-S11.
431	62.	Tousoulis D, Plastiras A, Siasos G et al. Omega-3 PUFAs improved endothelial function
432		and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic
433		syndrome. Atherosclerosis. 2014; 232: 10-6.
434	63.	Reinders U, Murphy RA, Song X et al. Higher Plasma Phospholipid n-3 PUFAs, but
435		Lower n-6 PUFAs, Are Associated with Lower Pulse Wave Velocity among Older
436		Adults. J Nutr. 2015; 145: 2317-24.

437	64.	Wu C-F, Liu P-Y, Wu T-J et al. Therapeutic modification of arterial stiffness: An update
438		and comprehensive review. World J Cardiol. 2015; 7: 742-53.
439	65.	Benetos A, Waeber B, Izzo J et al. Influence of age, risk factors, and cardiovascular and
440		renal disease on arterial stiffness: clinical applications. Am J Hypertens. 2002; 15: 1101-
441		8.
442	66.	Townsend RR, Wilkinson IB, Schiffrin EL et al. Recommendations for Improving and
443		Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the
444		American Heart Association. Hypertension. 2015; 66: 698-722.
445	67.	Tomiyama H, Matsumoto C, Shiina K et al. Brachial-ankle PWV: Current status and
446		future directions as a useful marker in the management of cardiovascular disease and/or
447		cardiovascular risk factors. J Atheroscler Thromb. 2016; 23: 128-46.
448	68.	Tanaka H, Munakata M, Kawano Y et al. Comparison between carotid-femoral and
449		brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens. 2009;
450		27 : 2022-7.
451	69.	Ellulu MS, Khaza'ai H, Patimah I et al. Effect of long chain omega-3 polyunsaturated
452		fatty acids on inflammation and metabolic markers in hypertensive and/or diabetic obese
453		adults: a randomized controlled trial. Food Nutr Res. 2016; 60: 29268.
454	70.	Chan DC, Pang J, Barrett PHR et al. Effect of Omega-3 Fatty Acid Supplementation on
455		Arterial Elasticity in Patients with Familial Hypercholesterolaemia on Statin Therapy.
456		Nutr Metab Cardiovasc Dis. 2016; 26: 1140-1145.
457	71.	Massaro M, Scoditti E, Carluccio MA et al. Basic mechanisms behind the effects of n-3
458		fatty acids on cardiovascular disease. Prostaglandins Leukot Essent Fatty Acids. 2008;
459		79 : 109-15.
460	72.	Wang Q, Liang X, Wang L et al. Effect of omega-3 fatty acids supplementation on
461		endothelial function: A meta-analysis of randomized controlled trials. Atherosclerosis.
462		2012; 221 : 536-43.

463	73.	Billman GE, Harris WS. Effect of dietary omega-3 fatty acids on the heart rate and the
464		heart rate variability responses to myocardial ischemia or submaximal exercise. Am J
465		Physiol Heart Circ Physiol. 2011; 300: H2288-H99.
466	74.	Aung T, Halsey J, Kromhout D, et al. Associations of omega-3 fatty acid supplement
467		use with cardiovascular disease risks: Meta-analysis of 10 trials involving 77 917
468		individuals. JAMA Cardiology. 2018; 3: 225-34.
469	75.	Takaki A, Umemoto S, Ono K et al. Add-on therapy of EPA reduces oxidative stress
470		and inhibits the progression of aortic stiffness in patients with coronary artery disease
471		and statin therapy: a randomized controlled study. J Atheroscler Thromb. 2011; 18: 857-
472		66.
473	76.	Sekikawa A, Shin C, Masaki KH et al. Association of Total Marine Fatty Acids,
474		Eicosapentaenoic and Docosahexaenoic Acids, With Aortic Stiffness in Koreans,
475		Whites, and Japanese Americans. Am J Hypertens. 2013; 26: 1321-7.
476	77.	Tomiyama H, Takazawa K, Osa S et al. Do eicosapentaenoic acid supplements attenuate
477		age-related increases in arterial stiffness in patients with dyslipidemia?: A preliminary
478		study. Hypertens Res. 2005; 28: 651-5.
479	78.	Ito R, Satoh-Asahara N, Yamakage H et al. An Increase in the EPA/AA Ratio is
480		Associated with Improved Arterial Stiffness in Obese Patients with Dyslipidemia. J
481		Atheroscler Thromb. 2014; 21: 248-60.
482		
483	Figures:	

484 **Figure 1** Flow diagram for baseline data

515 <u>Table</u>

- 516 **Table 1** Characteristics of the study participants at baseline
- 517 **Table 2** Regression analysis summary table of ABI^(a), HR^(a) and PWV^(a)
- 518 **Table 3.** LCn3PUFA^(a) intake between HR^(a) categories

Variables	Sub	sample for an	nalysis	
	Ν	%	Median	IQR
Age, (years)	351		45	37 – 51
Gender	351			
Male	92	26.3		
Female	259	73.7		
BMI ^(a) , (kg/m ²)	351		32.1	29.3 - 35.7
Self-reported medical history				
of baseline survey	351			
Comorbidities (CVD-related)	104	29.4		
Heart disease	4	1.1		
Diabetes mellitus	21	5.9		
Hypertension	93	26.3		
Fish oil supplements	351			
Taking supplements	20	5.7		
Not taking supplements	331	94.3		
MBP ^(a) , (mmHg)	351		90.67	82 - 97.33
Cholesterol / HDL ^(a) ratio	351		3.6	3 - 4.4
IPAQ (MET mins/week) ^(a)	351		984	466.5 - 1751
Total energy intake, (kJ)	351		9098	7476 – 11187
LCn3PUFA consumption, (mg)	351		287.6	159.7 – 518.4
ABI ^(a)	351		1.06	1.01 – 1.12
baPWV ^(a) , (cm/s)	351		1180	1084 - 1313.5
HR ^(a) , (bpm)	351		65	59 - 72

519 **Table 1** Characteristics of the study participants at baseline

520 ^(a)Abbreviations: IQR: interquartile range, BMI: Body mass index; CVD: Cardiovascular disease; MBP: Mean blood pressure; HDL: High-density lipoproteins; IPAQ: International

521 physical activity questionnaire; LCn3PUFA: Long chain omega 3 polyunsaturated fatty acid; ABI: Ankle brachial index; baPWV: Brachial-ankle pulse wave velocity; HR: Heart

522 rate.

523	Table 2 Regression analysis summary table of ABI, HR and PWV

		ABI (n=351)			HR (n=351)			baPWV (n=351)		
		В	SE B	β	В	SE B	β	В	SE B	β
Step 1	(Constant)	1.897*	.212		1.361*	.137		1.560*	.146	
	Age 20 to 30	029*	.016	103	.029*	.012	.139	057*	.009	268
	Age 30 to 40	008	.011	039	.006	.009	.045	033*	.007	225
	Age 50 to 60	.010	.011	.056	004	.008	032	.027*	.006	.204
	Log Energy	004	.036	006	.018	.027	.036	.035	.020	.070
	Log BMI ^(a)	084	.082	055	.258*	.058	.233	050	.048	044
	Log Cholesterol/HDL ^(a) ratio	.026	.036	.040				.028	.021	.057
	Gender (Male)	.041*	.011	.213	006	.008	040	.012	.006	.080
	Comorbidities	.004	.010	.023	.027*	.007	.195	.013*	.006	.092
	Log MBP ^(a)							.549*	.053	.461
	$\text{Log HR}^{(a)}$	392*	.074	286				.221*	.042	.214
	Log IPAQ ^(a)	.004	.005	.040	006	.004	083	.003	.003	.039
	Supplements	.015	.017	.045	.007	.012	.030	.012	.009	.046
Step 2	(Constant)	1.974*	.211		1.392*	.137		1.573*	.147	
	Age 20 to 30	031*	.015	111	.026*	.012	.125	058*	.009	272
	Age 30 to 40	010	.011	052	.001	.008	.005	034*	.007	231
	Age 50 to 60	.013	.011	.069	003	.009	024	.028*	.006	.207
	Log Energy	.005	.036	.008	.022	.027	.045	.037	.020	.073
	Log BMI ^(a)	069	.081	045	.259*	.058	.234	048	.048	042
	Log Cholesterol/HDL ^(a) ratio	.011	.036	017				.026	.021	.053
	Gender (Male)	.044*	.011	.229	004	.008	031	.012	.006	.083
	Comorbidities	.002	.010	.013	.025*	.007	.184	.013*	.006	.090
	Log MBP ^(a)							.548*	.053	.461
	Log HR ^(a)	415	.073	303				.217*	.042	.211

Log IPAQ ^(a)	.003	.005	.031	005	.004	073	.003	.003	.042
Supplements	.017	.017	.051	.008	.012	.034	.012	.009	.047
Log LCn3PUFA ^(a)	036*	.012	152	021*	.009	120	006	.007	033

524 ^(a)Abbreviations: Log: logarithmic; BMI: Body mass index; MBP: Mean blood pressure; HDL: High-density lipoproteins; IPAQ: International physical activity questionnaire;

525 LCn3PUFA: Long chain omega 3 polyunsaturated fatty acid; ABI: Ankle brachial index; baPWV: Brachial-ankle pulse wave velocity; HR: Heart rate.

526 * *p*<0.05 (Significantly associated)

Table3. LCn3PUFA^(a) intake between HR^(a) categories

Pulse category	Median intake (mg/dl)	IQR ^(a) (mg/dl)
HR ^(a) less than 69bpm	228	138-455.23
HR ^(a) of 69 bpm or higher	176.90	581.59

529 ^(a)Abbreviations: LCn3PUFA: Long chain omega 3 polyunsaturated fatty acid; HR: Heart rate; IQR: Interquartile range; SD: Standard deviation