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Relationship between long-chain omega-3 polyunsaturated fatty acid
intake and ankle brachial index, pulse wave velocity and resting heart rate
in a sample of overweight adults: A secondary analysis of baseline data in
the HealthTrack study

Abstract
Aim: The present study aimed to explore the association between dietary long-chain omega-3
polyunsaturated fatty acid (LCn3PUFA) intake and cardiovascular risk indicators (ankle brachial index,
resting heart rate and brachial-ankle pulse wave velocity) in a clinical sample of overweight and obese
participants volunteering for a weight loss trial.

Methods: This was a secondary analysis of baseline data from the HealthTrack study (n = 351). LCn3PUFA
intake was calculated via a diet history and the association with ankle brachial index, resting heart rate and
brachio-ankle pulse wave velocity was explored using linear regression after controlling for covariates.

Results: LCn3PUFA intake was inversely associated with ankle brachial index (R2change = 0.021, F change
(1, 339) = 8.864, P < 0.05) and resting heart rate (R2change = 0.014, F change (1, 342) = 5.337, P < 0.05) but
not with brachio-ankle pulse wave velocity (R2change = 0.001, F change (1, 339) = 0.725, P > 0.05).

Conclusions: In this clinical sample of overweight adults, LCn3PUFA consumption was significantly
associated with a lower resting heart rate, adding to the current evidence on the potential benefits of
LCn3PUFA consumption. It also supports the value of targeting a diet rich in this nutrient when planning
future dietetic approaches. Relationships with ankle brachial index and pulse wave velocity require further
investigation. Future research should assess the effect of changes in dietary LCn3PUFA intake on novel
cardiovascular risk indicators.
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The relationship between long chain omega-3 Polyunsaturated fatty acid intake and ankle 1 

brachial index, pulse wave velocity, and resting heart rate in a sample of overweight adults: a 2 

secondary analysis of baseline data in the HealthTrack study. 3 

 4 
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Abstract 6 

Aim: This study aimed to explore the association between dietary long chain omega-3 7 

polyunsaturated fatty acid  intake and cardiovascular risk indicators (ankle brachial index, resting 8 

heart rate and brachial-ankle pulse wave velocity) in a clinical sample of overweight and obese 9 

participants volunteering for a weight loss trial.  10 

Methods: This was a secondary analysis of baseline data from the HealthTrack study (n=351). 11 

Long chain omega-3 polyunsaturated fatty acid intake was calculated via a diet history and the 12 

association with ankle brachial index, resting heart rate, and brachio-ankle pulse wave velocity was 13 

explored using linear regression after controlling for covariates.  14 

Results: Long chain omega-3 polyunsaturated fatty acid intake was inversely associated with ankle 15 

brachial index (R square change=0.021, F change (1, 339)=8.864, p<0.05) and resting  heart rate (R 16 

square change=0.014, F change (1, 342)=5.337, p<0.05)  but not with brachio-ankle pulse wave 17 

velocity (R square change=0.001, F change (1, 339)=0.725, p>0.05).  18 

Conclusion: In this clinical sample of overweight adults, long chain omega-3 polyunsaturated fatty 19 

acid consumption was significantly associated with a lower resting heart rate, adding to the current 20 

evidence on the potential benefits of long chain omega-3 polyunsaturated fatty acid consumption. It 21 

also supports the value of targeting a diet rich in this nutrient when planning future dietetic 22 

approaches. Relationships with ankle brachial index and pulse wave velocity require further 23 

investigation. Future research should assess the effect of changes in dietary long chain omega-3 24 

polyunsaturated fatty acid intake on novel cardiovascular risk indicators.  25 
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Introduction  33 

Cardiovascular disease (CVD) is considered to be a global health concern, responsible for 17.7 34 

million deaths, which represented 31% of global deaths in 2015.
1
 Exploring novel, non-invasive 35 

physiological risk factors for CVD provides insight into disease risk and progression and can be 36 

used to explore the effect of lifestyle modifications on CVD risk.  Heart rate (HR), arterial stiffness, 37 

and peripheral arterial disease (PAD) are now considered to be independently associated with high 38 

risk of CVD.
2-14

 Epidemiological studies have reported strong, independent, graded correlations 39 

between elevated resting HR and CVD.
13, 17

 Lower resting HR is associated with a lower CVD risk 40 

compared to increased HR.
11, 18

 In comparison, arterial stiffness is defined as a reduction of the 41 

distending ability of arteries due to pathological changes in the vessel wall. The “gold standard” 42 

measurement of arterial stiffness is pulse wave velocity (PWV).
19

 Increased stiffness or elevated 43 

PWV promotes endothelial damage and increases back-pressure to the left ventricle of the heart, 44 

causing left ventricular hypertrophy and coronary ischemia, ultimately resulting in CVD.
19 21

 45 

Improving arterial stiffness (i.e. reducing PWV) aids CVD prevention and treatment in clinical 46 

practice.
22, 23

 Peripheral arterial disease (PAD) is the blockage or narrowing of medium to small 47 

arteries supplying limbs, mainly the lower extremities, and is primarily diagnosed by ankle brachial 48 

index (ABI) in clinical practice. The main cause of PAD is atherosclerosis.
24-27

 Coexisting severe 49 

coronary atherosclerosis and similar lesions can be found elsewhere in the arterial system in patients 50 

with PAD or low ABI.
2, 3, 5, 28, 29

 Investigation of modifiable factors which can impact these risk 51 

factors is required.   52 
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Dietary modifications may play a role in influencing physiological risk factors for CVD including 53 

those described above. The effect of consumption of long chain omega 3 polyunsaturated fatty acids 54 

(LCn3PUFA) on CVD has been studied extensively during the last few decades. LCn3PUFAs are a 55 

group of fatty acids abundant in oily fish and produced in minute amounts in the human body from 56 

desaturation of alpha-linolenic acid, which is an essential fatty acid.
30, 31

 Research suggests 57 

supplementation of LCn3PUFA may have CVD protective and mortality reduction effects by 58 

improving endothelial function, reducing CVD risk factors such as blood pressure, heart rate, and 59 

serum triglyceride levels, and reducing ventricular arrhythmias and chronic inflammation.
32-41

 There 60 

is currently a paucity of evidence on the effects of dietary modification including LCn3PUFA 61 

intake on forms of CVD such as PAD. As a result, the body of evidence for the effects of 62 

LCn3PUFA consumption on risk factors including ABI remains inconclusive. While previous 63 

research has explored the relationship between LCn3PUFA intake and CVD risk factors, there has 64 

been a paucity of research investigating this relationship in the clinical context. Exploration of the 65 

relationship between consumption of LCn3PUFA and risk factors for CVD in a clinical sample 66 

provides an opportunity to investigate the relevance of this relationship in clinical practice. This 67 

also provides insight into potential dietetic strategies for improving CVD risk in clinical 68 

populations.  69 

This study aimed to explore the association between reported LCn3PUFA intake and cardiovascular 70 

risk indicators (ankle brachial index, resting HR and brachial-ankle PWV) in a sample of 71 

overweight and obese adults (25-54 years) volunteering for a clinical trial. 72 

Methods 73 

The present study is a secondary analysis of baseline data on participants randomised to the 74 

HealthTrack study.
42

The HealthTrack study was a 12-month randomised controlled trial conducted 75 

in the Illawarra region, 70km south of Sydney, Australia. Study subjects were overweight or obese 76 

(body mass index (BMI) 25 to 40 kg /m
2
) adults aged between 25 – 54 years. The HealthTrack 77 

study exclusion criteria included being unable to communicate in English; severe medical 78 
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conditions which impaired the ability to participate in the study; immune deficiencies; survival from 79 

illnesses predicted to be less than 1 year; reported illegal drug use; regular alcohol intake associated 80 

with alcoholism (>50g/day), or having difficulties or hindrances in participating for study 81 

components. From recruitment, 377 participants were randomised for baseline analysis, intervention 82 

and follow-up. Randomised participants were grouped into three arms to examine the 83 

interdisciplinary approach of weight reduction with usual care. The primary outcome was weight 84 

and secondary outcomes included disease risk factors such as fasting blood lipids, glucose, HbA1c, 85 

systolic blood pressure and behaviour (diet, activity, and psychological factors).
42

 86 

Ethical approval was obtained from the '[removed for blind peer review]' and the study was 87 

registered with the '[removed for blind peer review]'.  88 

All physiological data were collected in a laboratory which was calm and quiet to minimise external 89 

stimulation. Participants were not fasted prior to the collection of physiological data. Resting HR, 90 

brachial-ankle PWV (baPWV) and ABI data were measured using an Omron BP-203RPEIII VP-91 

1000 device (Omron Health Care, Kyoto, Japan) and cleaned using American Heart Association 92 

guidelines.
41

 Measurements were taken following a 5-minute resting period in the supine position. 93 

Two measurements were taken and the second was used as the actual measurement for the study. 94 

Blood pressure taken at the same time as the ABI measurement was utilised for the calculation of 95 

mean arterial blood pressure (MBP). The following equation was used to calculate MBP as a 96 

covariate for baPWV.
44, 45

 97 

MBP = [Systolic pressure+2 (diastolic pressure)]/3 98 

PWV was cleaned according to European Society of Cardiology guidelines.
44

 99 

Dietary intake data was collected using diet history interviews (DH) conducted by a team of 100 

Accredited Practising Dietitians (APD), using a validated interview protocol
46

, with support from 101 

food models and household measures. Dietary data was entered into FoodWorks nutrient analysis 102 

software (version 7.0, 2012 Xyris Software, Highgate Hill, QLD, Australia) using AUSNUT 103 

2007.
47

 Where a food item was not found in the AUSNUT 2007 database, an appropriate 104 
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substitution was made, or if possible, a new product was created using label data. Where 105 

substitutions were required, a log of substituted products was kept to improve reliability, and all 106 

dietary data was checked by an independent researcher. Dietary intake of LCn3PUFA was then 107 

calculated. We have previously found reported intake of LCn3PUFA collected using this method to 108 

be associated with objective measures of LCn3PUFA intake.
48

 LCn3PUFA intake was compared to 109 

the National Health and Medical Research Council (NHMRC) Nutrient Reference Values 110 

Suggested Dietary Target (SDT) (males: 610mg; females: 430mg per day.
49

 Detailed data on 111 

quantity and frequency of LCn3PUFA supplement consumption was not available, however during 112 

the baseline assessment participants reported if they took supplements, and this data was used in the 113 

current analysis. Body weight (kg) and height were measured at baseline to determine BMI. Weight 114 

was measured with participants in an upright position, with no shoes and minimal clothing (Tanita 115 

TBF-662, Wedderburn Pty Ltd, Ingleburn, NSW, Australia), with the height measured using a 116 

stadiometer.  117 

During baseline screening, participants reported whether they had previously been diagnosed by a 118 

doctor with type 2 diabetes, cardiovascular disease, or hypertension. Fasting blood samples were 119 

collected by a registered pathological service (Southern IML Pathology) at baseline. Cholesterol / 120 

HDL ratio data was utilised in the current study because this measure has the greater predictive 121 

ability of atherosclerotic vascular disease than other blood cholesterol measurements and is less 122 

modified by LCn3PUFA intake.
50, 51

 123 

The International Physical Activity Questionnaire (IPAQ) short form, a validated assessment tool 124 

for use in the Australian community, was used to assess participant’s physical activity.
52

 125 

Statistical analysis was conducted using SPSS (version 22.0, IBM Corp, 2013, New York). The 126 

distribution of all continuous data was explored for normality (Kolmogorov-Smirnov, Shapiro-Wilk 127 

and graph) and log-transformed if found to be non-parametric (LCn3PUFA - FR and DH, baPWV, 128 

ABI, resting HR, Cholesterol / HDL ratio and total energy). Data which could not be transformed 129 

(age) were categorised into groups. All categorical data were arranged into binominal groups. 130 
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Descriptive statistics of central tendency were calculated for all parameters. Results were presented 131 

with mean and standard deviation if variables were continuous and parametric, with median and 132 

interquartile range (25
th

 and 75
th

 percentile) reported if continuous variables were nonparametric. 133 

Categorical variables were presented as percentages.  134 

Hierarchical linear regression was used to determine whether LCn3PUFA intake predicted the 135 

variability of ABI, resting HR, and baPWV when covariates (MBP, HR, Cholesterol / HDL Ratio, 136 

age, gender, BMI, whether participants reported taking fish oil supplements, total energy intake and 137 

CVD related comorbidities such as heart disease, hypertension and diabetes mellitus) were 138 

controlled. As the accuracy of baPWV may be reduced in the case of lower limb artery stenosis 
53, 

139 

54
, the analysis between LCn3PUFA and baPWV was repeated with participants with ABI <0.9 140 

excluded. Preliminary analysis were conducted to detect violations of normality, linearity, 141 

multicollinearity and homoscedasticity, with no violations of assumptions found. 142 

To further explore the relationship between LCn3PUFA intake and HR, participants were 143 

categorised as those with a HR below 69 beats per minutes (<69bpm) and those with a HR of 69 144 

beats per minutes (69bpm) or above (>=69 bpm). These cut-offs were selected based on the 145 

findings of a previous meta-analysis which observed greater effects of fish oil on HR in populations 146 

with a mean baseline HR of 69bpm or greater.
55

 An independent sample T-test was used to compare 147 

intake of LCn3PUFA (transformed) between HR groups. The two tailed p value of <0.05 was taken 148 

as statistically significant for all analyses. 149 

Results 150 

Table 1 summarises characteristics of study participants at baseline. The study sample for this 151 

analysis was n=351 participants (Figure 1).  A total of 24.9% of participants reported consuming 152 

LCn3PUFA above the SDT. 153 

Covariates were entered in step 1 of the hierarchical linear regression to compare LCn3PUFA 154 

intake and ABI, explaining 40.1% of the variability in ABI. In step 2 after entering LCn3PUFA 155 

intake, 42.6% of the variance was explained (F (12, 339)=6.277, p<0.05). LCn3PUFA intake 156 
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explained an additional 3.6% of the variance in ABI, after controlling for other variables (R square 157 

change=0.021, F change (1, 339)=8.864, p<0.05). In the final model, LCn3PUFA intake was 158 

statistically significant, with a low beta value (beta=-0.036, p<0.05) (Table 2). 159 

During analysis of LCn3PUFA intake and baPWV, covariates were entered in step 1, explaining 160 

73% of the variability in baPWV. In step 2 after entering LCn3PUFA intake, there was no change 161 

of variance (F (12, 339)=32.190, p<0.05) after controlling for other variables (R square 162 

change=0.001, F change (1, 339)=0.725, p>0.05). In the final model, LCn3PUFA intake was not 163 

statistically significant, with a low beta value (beta=-0.006, p>0.05) (Table 2). Exclusion of 164 

participants with ABI <0.9 from this analysis did not change the relationship observed (beta=-165 

0.007, p>0.05). 166 

While analysing variability of LCn3PUFA intake and HR, all covariates were entered in step 1, 167 

explaining 35.1% of the variability in HR. After entering LCn3PUFA intake in step 2 explained 168 

variance was 37% (F (9, 342)=5.341, p<0.05). Adding LCn3PUFA intake explained an extra 2.1% 169 

variance in HR, after controlling for other variables (R square change=0.014, F change (1, 170 

342)=5.337, p<0.05). LCn3PUFA intake was statistically significant, with a low beta value (beta=-171 

0.021, p<0.05) (Table 2). 172 

The independent-samples t-test indicated that participants with a HR of 69 bpm or higher had 173 

significantly lower intakes of LCn3PUFA than those with a HR less than 69 bpm (t [349] = -2.471, 174 

p=0.014, two-tailed) (Table 3). The magnitude of the differences in the means (mean difference = -175 

0.1, 95% CI: –0.18 to -0.02) was very small (eta squared = 0.017).  176 

Discussion 177 

In this secondary analysis of baseline data on overweight and obese individuals from a clinical trial,  178 

LCn3PUFA intake was inversely associated with ABI and resting HR. This finding confirms that 179 

the favourable relationship between LCn3PUFA and resting HR observed in previous research
55, 56-

 180 

can also be observed in the clinical setting. The relationship between ABI and LCn3PUFA observed 181 

in this study should be interpreted with caution. While there is evidence suggesting that lower ABI 182 
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may indicate higher risk of cardiovascular disease 
2, 5

, low ABI in the younger participants in this 183 

study may not reflect lower extremity arterial disease.   Furthermore, there was no association 184 

observed in this study between reported LCn3PUFA and baPWV. 185 

While the relationship between LCn3PUFA and ABI should be interpreted with caution, there are a 186 

number of mechanisms by which LCn3PUFA consumption may be associated with reduced ABI 187 

and HR. LCn3PUFA intake may influence ABI by reducing inflammatory cytokine production 188 

through incorporation into the cell membrane.
57, 58

 Furthermore, LCn3PUFA derived EPA has been 189 

found to improve endothelial function via nitrous oxide-dependent vascular relaxation and DHA 190 

modifies lipid composition and the structure of the vessel wall by altering adhesion molecules, 191 

ultimately improving endothelial and vessel compliance.
58

 It is possible that LCn3PUFA 192 

consumption may reduce ABI by means of inflammatory reduction and modification of endothelial 193 

and vascular function. 194 

Findings of animal studies have suggested LCn3PUFA consumption may alter the automaticity of 195 

heart muscles cells similar to class 1 antiarrhythmic medications.
59

 LCn3PUFAs can alter the 196 

resting membrane potential of heart muscle cells, predominantly the SA node, by direct action on 197 

the cell membrane. This effect can increase membrane threshold resulting in a delay in the next 198 

autogenerated impulse, leading to a reduction of resting HR.
59

 Increased consumption of 199 

LCn3PUFA via fish oil was associated with a reduction of HR by 2.5 beats per minutes (bpm) in 200 

individuals with a baseline HR of 69 beats per minute or higher which is associated with reduced 201 

cardiac morbidity.
55

 This observation may be suggestive of a cardiac protective effect of 202 

LCn3PUFA consumption via reducing arrhythmogenicity and improved reserved capacity. 203 

However, in this study, the magnitude of the association between LCn3PUFA intake and HR was 204 

very small. The median intake, even in the group with a resting heart rate <69 beats per minute, was 205 

still below the prefereable 250 mg per day (EPA +DHA) supported by longitudinal evidence for 206 

cardiac benefits 
60

 In our study population, there were other significantly associated risk factors 207 
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contributing to resting HR such as age and BMI (Table 2), however, these results suggest that 208 

LCn3PUFA intake are a potential target for dietary modification within clinical practice. 209 

Given the association between overweight and obesity and PWV
61

, it is relevant to explore dietary 210 

components associated with improved PWV in this at risk population, in order to identify potential 211 

dietetic strategies for reducing cardiovascular risk. In contrast to the findings for ABI and HR, we 212 

did not observe an association between LCn3PUFA consumption and baPWV in this setting. This 213 

finding does not align with those of previous studies using LCn3PUFA supplements with 214 

therapeutic doses.
62, 63

 The disparity in findings may be explained by variations in the study 215 

population, the amount of LCn3PUFA intake and dietary assessment methods used. For example, 216 

age is a well known major determinant of vascular stiffness, which increases significantly after the 217 

age of 55.
64, 65

 The median age in the current study group was 45 years. Our population may be too 218 

young to demonstrate a significant association between vascular stiffness (baPWV) and higher 219 

LCn3PUFA consumption. Furthermore, baPWV was used to measure vascular stiffness in the 220 

current study. However, cfPWV is the gold standard measurement of aortic stiffness and is 221 

considered to be a prognostic indicator of CVD risk,
7, 10, 66, 67

 with baPWV validated as a 222 

cardiovascular risk factor in Asian communities only. This may be another reason for the disparity 223 

in results between studies as they used inconsistent PWV measuring methods. Whilst some research 224 

suggest cfPWV and baPWV may similarly predict CVD risk,
68

 baPWV results should be 225 

generalised to European communities with caution.   226 

Previous studies and reviews have demonstrated therapeutic effects on the endothelial and vascular 227 

system in different doses of LCn3PUFA supplements, between 0.45 to 3g/day.
65, 69-72

 However, the 228 

cardiac effects of LCn3PUFA are evident at lower doses such as 1g/day or less.
37, 60, 71, 73

 In the 229 

current analysis resting HR was significantly associated with LCn3PUFA at an even lower 230 

consumption level. Importantly, this relationship was observed at intake levels associated with 231 

moderate consumption of dietary sources of LCn3PUFA. In contrast however,  in the current study, 232 

LCn3PUFA intake may not have been sufficient to be associated with a lower baPWV. Reseach 233 
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findings provide insight into potential dietetic strategies for improving cardiovascular risk. These 234 

findings further appear to be reflective of the inconclusive nature of the body of evidence 235 

surrounding the impact of LCn3PUFA on cardiovascular outcomes more broadly, as highlighted by 236 

a recent systematic review and meta-analysis on the impact of LCn3PUFA supplements on 237 

coronary heart disease.
74 

Though there are beneficial cardiovascular effects obsevered in therapeutic 238 

doses of LCn3PUFA, further research is needed exploring the impact of LCn3PUFA from dietary 239 

sources on cardiovascular measures specifically vascular indicators such as baPWV and ABI. The 240 

current study had some limitations which may have affected the results. This study was a baseline 241 

secondary analysis of data from the HealthTrack study, which was not designed to assess 242 

LCn3PUFA intake and cardiovascular outcomes. As such the HealthTrack study was not powered 243 

to address this specific question, which may have affected our results. As this study utilised baseline 244 

data, it was a cross-sectional analysis and therefore cannot draw conclusions regarding causation. 245 

The DH used was not standardised for LCn3PUFA intake assessment and there was no objective 246 

measure of LCn3PUFA intake available such as erythrocyte LCn3PUFA levels. Estimation of 247 

LCn3PUFA intake may have also been limited by the availability of food products within 248 

AUSNUT 2007. Furthermore, this study was not able to quantify the LCn3PUFA supplement intake 249 

by the study population, which has been suggested to play a major role in Australians achieving the 250 

SDT for LCn3PUFA.
47

 However, whether participants reported taking LCn3PUFA or fish oil 251 

supplements was included as a covariate during the analysis to alleviate this limitation. The 252 

HealthTrack study used AUSNUT 2007, the most recent food composition database available at the 253 

beginning of the study; however AUSNUT 2007 only reports total LCn3PUFA rather than EPA and 254 

DHA separately. This may limit comparisons with LCn3PUFA studies in the literature.
75-78

 255 

Measurement of baPWV and ABI did not follow standard operational procedures published by the 256 

American Heart Association for vascular research,
65

 and the device used to measure baPWV and 257 

ABI was only standardised for the Japanese population.
65

 However, the HealthTrack study was 258 

designed to be aligned with clinical practice, and thus may correspond with methods used in the 259 
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clinical setting. Finally, the HealthTrack study involved overweight and obese self-selected 260 

volunteers from regional New South Wales, therefore results may not be generalisable to the 261 

broader population. 262 

This secondary analysis of baseline data from a weight loss trial confirms that the favourable 263 

relationship between LCn3PUFA intake and CVD risk factorHR can also be observed in the clinical 264 

setting. In contrast, relationships with ankle brachial index and pulse wave velocity require further 265 

investigation. These results add to the current evidence surrounding the potential benefits of 266 

LCn3PUFA consumption and highlight the importance of targeting food sources of this nutrient in 267 

clinical dietetic practice.   268 

Given the findings of this cross-sectional analysis, it will be beneficial to explore these results 269 

further in randomised controlled trials to assess the effect of changes in dietary LCn3PUFA intake 270 

on novel cardiovascular risk indicators.  271 
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Figure 1 Flow diagram for baseline data analysis 

Randomised to Health Track study: 

n = 377  

  Available data set for each variable: 

Completed dietary histories: n = 377 

Ankle brachial index: n= 373 

Resting heart rate: n = 374 

Brachial ankle pulse wave velocity: n = 373 

Final sample for analysis with DH LCn3PUFA intake 

Ankle brachial index: n= 351 

Resting heart rate: n = 351 

Brachial ankle pulse wave velocity: n = 351 

Excluded: (n=180) 

• Did not meet eligibility criteria: (n=161) 

• Time constraints: (n=16) 

• Personal reasons: (n=3) 

Assessed for eligibility: 

n = 620 

Screening survey sent out: 

n = 718 

Survey not completed = (n=98) 

Screened for inclusion into study: 

n = 440 

Excluded: (n=63) 

• Time constraints: (n=30) 

• Did meet eligibility criteria: (n=6) 

• Other: (n=16) 

• Personal: (n=3) 
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Table 515 

Table 1 Characteristics of the study participants at baseline 516 

Table 2 Regression analysis summary table of ABI(a), HR(a) and PWV(a) 517 

Table 3. LCn3PUFA(a) intake between HR(a) categories 518 
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Table 1 Characteristics of the study participants at baseline 519 

(a)
Abbreviations: IQR: interquartile range, BMI: Body mass index; CVD: Cardiovascular disease; MBP: Mean blood pressure; HDL: High-density lipoproteins; IPAQ: International 520 

physical activity questionnaire; LCn3PUFA: Long chain omega 3 polyunsaturated fatty acid; ABI: Ankle brachial index; baPWV: Brachial-ankle pulse wave velocity; HR: Heart 521 

rate.522 

Variables        Subsample for analysis 

 N % Median IQR 

Age, (years) 351  45 37 – 51 

Gender 

Male 

Female 

351 

92 

259 

 

26.3 

73.7 

  

BMI
(a)

, (kg/m
2
) 351  32.1 29.3 – 35.7 

 Self-reported medical history  

 of baseline survey 

     Comorbidities (CVD-related) 

     Heart disease 

     Diabetes mellitus 

     Hypertension 

 

351 

104 

4 

21 

93 

 

 

29.4 

1.1 

5.9 

26.3 

  

Fish oil supplements 

    Taking supplements 

    Not taking supplements 

351 

20 

331 

 

5.7 

94.3 

  

MBP
(a)

, (mmHg) 351  90.67 82 – 97.33 

Cholesterol / HDL
(a)

 ratio 351  3.6 3 – 4.4 

IPAQ (MET mins/week)
(a)

 351  984 466.5 - 1751 

Total energy intake, (kJ) 351  9098 7476 – 11187 

LCn3PUFA consumption, (mg) 351  287.6 159.7 – 518.4 

ABI
(a)

 351  1.06 1.01 – 1.12 

baPWV
(a)

, (cm/s) 351  1180 1084 – 1313.5 

HR
(a)

, (bpm) 351  65 59 - 72 



Table 2 Regression analysis summary table of ABI, HR and PWV 523 

  ABI  

(n=351) 

 HR  

(n=351) 

 baPWV  

(n=351) 

  B SE B β  B SE B β  B SE B β 

Step 1 (Constant) 1.897* .212   1.361* .137   1.560* .146  

 Age 20 to 30 -.029* .016 -.103  .029* .012 .139  -.057* .009 -.268 

 Age 30 to 40 -.008 .011 -.039  .006 .009 .045  -.033* .007 -.225 

 Age 50 to 60  .010 .011 .056  -.004 .008 -.032  .027* .006 .204 

 Log Energy -.004 .036 -.006  .018 .027 .036  .035 .020 .070 

 Log BMI
(a)

 -.084 .082 -.055  .258* .058 .233  -.050 .048 -.044 

 Log Cholesterol/HDL
(a)

 ratio .026 .036 .040      .028 .021 .057 

 Gender (Male) .041* .011 .213  -.006 .008 -.040  .012 .006 .080 

 Comorbidities .004 .010 .023  .027* .007 .195  .013* .006 .092 

 Log MBP
(a)

         .549* .053 .461 

 Log HR
(a)

 -.392* .074 -.286      .221* .042 .214 

 Log IPAQ
(a) 

Supplements 

.004 

.015 

  

.005 

.017 

 

.040 

.045 

 

 -.006 

.007 

.004 

.012 

-.083 

.030 

 .003 

.012 

.003 

.009 

.039 

.046 

Step 2 (Constant) 1.974* .211   1.392* .137   1.573* .147  

 Age 20 to 30 -.031* .015 -.111  .026* .012 .125  -.058* .009 -.272 

 Age 30 to 40 -.010 .011 -.052  .001 .008 .005  -.034* .007 -.231 

 Age 50 to 60 .013 .011 .069  -.003 .009 -.024  .028* .006 .207 

 Log Energy .005 .036 .008  .022 .027 .045  .037 .020 .073 

 Log BMI
(a)

 -.069 .081 -.045  .259* .058 .234  -.048 .048 -.042 

 Log Cholesterol/HDL
(a)

  ratio .011 .036 -.017      .026 .021 .053 

 Gender (Male) .044* .011 .229  -.004 .008 -.031  .012 .006 .083 

 Comorbidities .002 .010 .013  .025* .007 .184  .013* .006 .090 

 Log MBP
(a)

         .548* .053 .461 

 Log HR
(a)

 -.415 .073 -.303      .217* .042 .211 
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(a)
Abbreviations: Log: logarithmic; BMI: Body mass index; MBP: Mean blood pressure; HDL: High-density lipoproteins; IPAQ: International physical activity questionnaire; 524 

LCn3PUFA: Long chain omega 3 polyunsaturated fatty acid; ABI: Ankle brachial index; baPWV: Brachial-ankle pulse wave velocity; HR: Heart rate. 525 

* p<0.05 (Significantly associated) 526 

 527 

Table3. LCn3PUFA(a) intake between HR(a) categories 528 

Pulse category Median intake (mg/dl) IQR(a) (mg/dl) 

HR(a) less than 69bpm 228 138-455.23 

HR(a) of 69 bpm or higher 176.90 581.59 

(a)
Abbreviations: LCn3PUFA: Long chain omega 3 polyunsaturated fatty acid; HR: Heart rate; IQR: Interquartile range; SD: Standard deviation 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 Log IPAQ
(a) 

Supplements 

.003 

.017 

.005 

.017 

.031 

.051 

 -.005 

.008 

.004 

.012 

-.073 

.034 

 .003 

.012 

.003 

.009 

.042 

.047 

 Log LCn3PUFA
(a)

 -.036* .012 -.152  -.021* .009 -.120  -.006 .007 -.033 
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