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ABSTRACT  

Lithium-ion (Li+) batteries suffer from problems caused by the chemical instability of 

their organic electrolyte. Solid-state electrolytes that exhibit high ionic conductivities and 

stable to lithium metal are potential replacements for flammable organic electrolytes. 

Garnet-type Li7La3Zr2O12 is a promising solid-state electrolyte for next-generation solid-

state Li batteries. In this study, we prepared mono-, dual-, and ternary-doped lithium (Li) 

garnets by doping tantalum (Ta), tantalum–barium (Ta-Ba), and tantalum–barium–

gallium (Ta-Ba-Ga) ions, along with undoped-Li7La3Zr2O12 (LLZO) cubic garnet 

electrolyte, using a conventional solid-state reaction method. The effect of multi-ion 

doping on the Li+ dynamics in the garnet-type LLZO was studied by combining analyses 

of joint Rietveld refinement against X-ray diffraction and high-resolution neutron powder 

diffraction with the results of Raman spectroscopy, scanning electron microscopy, 

energy-dispersive X-ray spectroscopy, and multinuclear magic angle spinning nuclear 

magnetic resonance. Our results revealed that Li+ occupancy in the tetrahedrally 

coordinated site (24d) increased with increased multi-ion doping in LLZO, whereas Li+ 

occupancy in the octahedrally coordinated site (96h) remained constant. Among the 

investigated compounds, the ternary-doped garnet structure 

Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12 (LGLBZTO) exhibited the highest total ionic 

conductivity of 0.72 and 1.24 mS cm−1 at room temperature and 60 °C, respectively. 

Overall, our findings revealed that the dense microstructure and increased Li+ occupancy 

in the tetrahedral-24dLi1 site played a key role in achieving the maximum room-

temperature Li-ion conductivity in ternary-doped LGLBZTO garnet, and that the 
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prepared ternary-doped LGLBZTO was a potential solid electrolyte for Li-ion batteries 

without polymer adhesion. 
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Introduction 

Inorganic solid-state electrolytes (SEs) for all-solid-state Li-ion batteries (ASSLIB) are 

promising replacements for the flammable, toxic, flowing, and volatile organic liquid-

based electrolytes due to their great safety, high performance, and reliability.1, 2 

Moreover, SEs are sufficiently stable in contact with Li metal, which can address the 

well-known problems in conventional batteries, such as explosion hazards by an internal 

short circuit (dendrites) and thermal runway.3, 4 However, the challenge is in the design of 

appropriate solid electrolyte with high ionic conductivity (> 10−4 S cm−1), negligible 

electronic conductivity, and good electrochemical stability.5-8 The garnet-like material of 

the stoichiometry Li7La3Zr2O12 (LLZO) was first discovered as a fast Li+ conductor by 

Murugan et al. in 2007.9 The LLZO SE material has been a research hotspot due to its 

relatively high Li-ion conductivity (2 × 10−4 S cm−1) at room temperature, wide 

electrochemical window (> 5 V vs. Li+/Li), and good compatibility with Li anodes.10, 11 

However, LLZO is crystallized in two polymorphs: a thermodynamically stable 

tetragonal polymorph with ordered Li+ distribution (space group: 𝐼𝐼41/𝑎𝑎𝑎𝑎𝑎𝑎, No. 142)12 

and a high-temperature stable cubic polymorph with highly disordered Li+ distribution 

(space group: 𝐼𝐼𝐼𝐼3�𝑑𝑑, No. 230).12, 13 The Li+ ions in the cubic phase partially occupied the 

tetrahedral-24dLi1 and distorted octahedral-96hLi2 sites, whereas the Li+ ions in the 

tetragonal polymorph fully occupied three crystallographic sites: tetrahedral-8a (Li1), 

distorted octahedral-16f (Li2), and 32g (Li3).12, 13 As a result of the disordered Li+ 

distribution and partial occupation in cubic phase, the Li-ion conductivity of the cubic 

phase is about two orders of magnitude higher than that of the tetragonal counterpart at 

room temperature.14, 15 Hence, many studies focused on the optimization of the garnet 
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cubic phase by promoting Li+ disorder framework and on the improvement of the Li-ion 

conductivity (ranging from ~10−4 S cm−1 to 10−3 S cm−1) at room temperature.6 Geiger et 

al. noticed the highly conductive cubic polymorph along with the tetragonal polymorph 

when LLZO was synthesized in an Al-containing crucible; An LLZO sintered in a Pt-

crucible yielded a solely tetragonal phase.16 They argued that the unintentional doping of 

Al from the crucible into the LLZO framework at the Li site during the high-temperature 

sintering stabilized the cubic polymorph. Many studies investigated the role of Al in 

achieving a fast-ionic cubic conductor by intentionally adding Al into the LLZO garnet 

during the synthesis.14, 17-19 However, the preferential site (tetrahedral-24dLi1 or 

octahedral-96hLi2 sites) for Al ions remains unclear. The formation of highly conducting 

cubic polymorph from alumina crucible often requires high sintering temperatures 

(>1200 °C) and long sintering time, which may cause substantial Li loss from the 

sample.20, 21 A trivalent doping cation (Ga3+), as a substitute for Li+, was found to 

stabilize the similar cubic phase and improve the Li-ion conductivities compared with 

Al3+.22, 23 Moreover, Ga doping can stabilize the cubic phase at a low synthesis 

temperature of about 1000 °C (sintering temperature is about 1100 °C).24 

Recent studies demonstrated that doping of supervalent-cation (Ta5+, Nb5+, Sb5+, and 

Bi5+ at the Zr4+ site) into the garnet-type LLZO remarkably improved the Li-ion 

conductivities at room temperature.25-29 The doping alters the structure by creating Li+ 

vacancies for charge neutrality and by increasing the disorderliness in the framework, 

thereby promoting the stabilization of the highly conductive cubic phase. In contrast, 

partial substitution of low-valent alkaline earth metal cations (Ca2+, Sr2+, and Ba2+) at the 

La3+ site in the LLZO garnet framework has a substantial effect on the Li-ion 
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conductivities.30, 31 Divalent doping at the La site increases the Li+ concentration in the 

framework, which leads to improved Li-ion conductivities. Additionally, replacement of 

La3+ by large size dopant ions expands the lattice, enlarging the bottleneck size for Li+ 

migration, thereby increasing the Li-ion conductivities.32 In strategic doping in the LLZO 

garnet, each doping ion has an important role in modifying the garnet framework. Thus, 

choosing the doping ion can effectively enhance the Li-ion conductivity in LLZO. 

Recently, simultaneous multi-doping strategy on LLZO resulted in enhanced ionic 

conductivity (ranging from ~10−4 cm−1 to 10−3 S cm−1) at room temperature.33 However, 

further endeavors are still needed to investigate the site preference and role of each 

dopant ion with respect to the Li+ dynamics in doped LLZO systems. We aim to identify 

the preferred site of the dopant ion, preferred Li occupancy in the 24dLi1/96hLi2 sites, and 

the role of the dopant in the Li-ion conduction by using neutron diffraction techniques.  

Therefore, in this paper, we used the multi-doping strategy for tuning the 

conductivity of LLZO by substituting aliovalent ions (e.g., partial substitution of Li+ by 

Ga3+, La3+ by Ba2+, and Zr4+ by Ta5+) on LLZO. The effects of the doping ion on the Li+ 

mobility and Li-ion conductivity were investigated via joint Rietveld refinement against X-

ray diffraction (XRD) and high-resolution neutron powder diffraction (NPD) analysis that 

conclusively gives information on Li occupancy. Such a joint analysis, together with the 

results of Raman and solid-state nuclear magnetic resonance (NMR) spectroscopies, 

scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). 

The simultaneous multi-doping approach has the potential to improve the Li-ion 

conductivity in LLZO. The prepared garnet-type electrolyte was successfully tested in 

ASSLIBs with LFP as the cathode. 
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Experimental section 

Solid electrolyte synthesis 

Preparation of multi-doped Solid Electrolytes. A series of unsubstituted 

Li7La3Zr2O12 (undoped LLZO), mono-substituted Li6.75La3Zr1.75Ta0.25O12 (mono-doped 

LLZTO), dual-substituted Li6.8La2.95Ba0.05Zr1.75Ta0.25O12 (dual-doped LLBZTO), and 

ternary-substituted Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12 (ternary-doped LGLBZTO) 

samples were synthesized through a solid-state reaction. LiOH (98%, Alfa Aesar; 

preheated at 200 °C for 6 h), La2O3 (99.9%, Sigma–Aldrich; preheated at 900 °C for 12 

h), ZrO2 (99.7%, Alfa Aesar), Al2O3 (1 wt% LLZO, 99.95%, Sigma–Aldrich), Ga2O3 

(99.0%, Sigma–Aldrich), BaCO3 (99.0%, Sigma–Aldrich), and Ta2O5 (99.0%, Sigma–

Aldrich) were used as reagents. The raw materials were weighed based on stoichiometric 

quantities with an excess of 10 wt% LiOH to compensate for the possible loss of Li+-

vapored components during sintering. The reagents were carefully mixed with isopropyl 

alcohol and ball milled for 12 h in a Teflon jar by using zirconia balls at 300 rpm for 

homogenization. The homogeneous slurry was transferred to an alumina crucible and 

dried at 80 °C overnight to evaporate the solvent. The well-mixed dried powder was 

ground and then cold pressed into pellets by using a uniaxial press. The resulting pellets 

were placed in an alumina crucible and heated at 900 °C for 12 h followed by ball milling 

for another 12 h to obtain the cubic phase. The cubic powders were pelletized by both 

uniaxially cold pressing at 1734 MPa and hot-pressing at 1000 °C and 40 MPa. The 

calcined cubic phase powder was ground by agate mortar and then uniaxially pressed into 

pellets with a diameter of 12 mm and thickness of 2 mm at 1734 MPa. The pellets were 

covered with a thick layer of the same composition of powder to prevent Li evaporation 
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and avoid Al3+ diffusion from crucibles followed by multistep sintering to acquire a dense 

and pure cubic phase. This multistep sintering process involved heating up to 900 °C at 

5 °C/min and holding for 4 h and then further heating to 1130 °C at 5 °C/min and holding 

for 18 h before cooling to room temperature. All thermal processes were performed under 

atmospheric conditions by using Al2O3 crucibles. After the final thermal treatment, the 

pellets were stored in an argon-filled glovebox to prevent the possible contamination by 

carbon dioxide and moisture, which can affect the electrochemical properties. A 30 mm 

diameter, 3 mm thick doped, hot-pressed LLZO pellets were prepared by loading cubic 

powders into a graphite die with the support of carbon paper around the die wall, which 

were hot-pressed at 900 °C for 30 min and at 1000 °C for 1 h under 40 MPa pressure by 

flowing argon atmosphere. Hot-pressed samples were subjected to lower temperature 

than uniaxially cold-pressed sintered samples. The cooled pellets from the hot-press were 

again heated at 1000 °C for 4 h in atmospheric air to remove the residual graphite. After 

heating, the pellet was freed from residual graphite and appeared in bright white color. 

The pellet was cut into 10 mm diameter and 1 mm-thick disk by using a diamond saw in 

mineral oil. For the electrochemical measurements, the pellets were polished on both 

sides to a mirror-polished surface by using 600-, 1200-, and 2000-grit SiC sandpaper.  

Density and Structure Characterization  

The ceramic density values were obtained through the Archimedes method with water for 

measurement. The ceramic densities of the pellets were estimated based on a theoretical 

density of 5.107 g cm−3.  The phase purity of the doped LLZO powder sintered at 900 °C 

and the multi-sintered pellets at different temperatures was determined using X-ray 

powder diffraction (XRD) through a Bruker D2 Phaser with CuKα radiation (λ  = 
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1.5405 Å). All diffraction patterns were recorded in the range of 10° < 2 θ < 80° with a 

step size of 0.015°. The applied voltage and current were at 30 kV and 30 mA, 

respectively. The Synchrotron X-ray powder diffraction (SXRD) patterns recorded from 

the 01C2 beamline with 25 keV X-rays at the National Synchrotron Radiation Research 

Center in Taiwan. An X-ray with a wavelength of 0.774916 (1) Å was used, and the data 

were recorded between 5°< 2θ < 45°. Neutron powder diffraction (NPD) data were 

obtained using the beamline ECHIDNA at the Australian Nuclear Science and 

Technology Organization. The neutron beam wavelength was determined to be 

1.62362(4) Å using the La11B6 NIST standard reference material (SRM660b). GSAS 

software was employed to analyze the NPD data. The Al occupancy at the tetrahedral-

24d site was fixed at 0.06, which is close to the theoretical value derived from 1 wt.% 

addition of Al2O3.20 The morphologies and microstructures of the doped LLZO pellets 

were analyzed by field-emission scanning electron microscopy (FE-SEM) system by 

operating JEOL JSM-7610F at 15 kV. The samples were platinum-sputtered to eliminate 

any charge effect. The elemental composition and the presence of all common elements 

were obtained using energy dispersive X-ray spectroscopy (EDS). The mirror-polished 

pellets were gently broken into small pieces in an argon-filled glovebox and quickly 

moved for the analysis to minimize air exposure. To obtain a more detailed structural 

information around Li and Ga environments, 7Li and 71Ga MAS NMR data were 

collected, respectively, at room temperature by using a Bruker Avance III spectrometer 

equipped with a 3.2 mm MAS probe head. The frequencies used for the 7Li and 71Ga 

nuclei were at 155.5 and 121.951 MHz, respectively, by applying an external magnetic 

field of 14.1 T. The spinning speed of the samples was 12 kHz, and spectra were recorded 
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after a single pulse irradiation (2−6 μs). The chemical shifts of 7Li and 71Ga were 

calibrated with 1 M LiCl and Ga(NO3)3, respectively. The spinning rate, position, line 

width, and intensity of components were automatically determined.  

Conductivity Measurements 

The AC impedance of the SEs was determined using a Solartron SI1260 impedance/gain-

phase analyzer in the frequency range of 10 MHz to 0.1 Hz, with a signal amplitude of 

0.1 V. All the doped LLZO pellets used in the electrochemical measurements have a 

thickness of 1.0−2.0 mm unless otherwise specified. The mirror-polished pellets were 

sputtered with Au as the blocking electrode on both sides and placed into a Swagelok cell 

in Au|LLZO|Au configuration for electrochemical studies. The assembled cell was then 

connected with electrical wires to the impedance spectrometer. To measure the 

conductivity versus temperature, the AC impedance of the cells was measured from 20–

120 °C. The cell was equilibrated for 1 h at each measurement. The impedance data were 

analyzed using Z Plot and Z View software packages. All impedance data were fitted 

with an equivalent circuit of the R(R//CPE)(R//CPE) model.  

Fabrication of All-Solid-State Li-Ion Batteries 

A cathode slurry was prepared by mixing LiFePO4, polyvinylidene fluoride (PVDF), KS6 

carbon black, and bis-trifluoromethane sulfonamide (LiTFSI) as a lithium salt in the 

weight ratio of 10:2:1:7 by using an appropriate amount of NMP.34 Notably, the mixture 

of Li salt (LiTFSI) and the binder (PVDF) can form a polymer electrolyte.35 The slurry 

was homogenously ground using a mortar and pestle for 30 min. The well-mixed slurry 

was spread equally on one side of a SE pellet followed by vacuum drying at 120 °C for 
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12 h. On the other side of the SE pellet was the pressed Li foil (thickness of around 20 

μm) as a negative electrode. The active material loading of the cathode was 2–3 mg cm−2.  

Electrochemical Measurements  

For the electrochemical studies, the SE pellet with Li foil was sealed in a Swagelok cell 

in an argon glovebox. The cell was tested at room temperature between 2.7 and 3.8 V by 

using a potentiostat/galvanostat (Arbin BT2000) under open-air condition. 

 

Results and discussion 

The synthesized LLZO powders calcined at 900 °C for 12 h, uniaxially pressed pellets 

sintered at 1130 °C for 18 h, and hot-pressed pellets at 1100 °C for 1 h were analyzed via 

X-ray diffraction (XRD) using CuKa radiation in the range of 10° < 2θ < 80° with a step 

size of 0.015°. Fig. 1 shows the room temperature XRD data for the Li7La3Zr2O12 

(undoped LLZO), Li6.75La3Zr1.75Ta0.25O12 (mono-doped LLZTO), 

Li6.8La2.95Ba0.05Zr1.75Ta0.25O12 (dual-doped LLBZTO), and 

Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12 (ternary-doped LGLBZTO) powders after 

calcination at 900 °C for 12 h. XRD analysis revealed that all the diffraction peaks of the 

undoped LLZO and multi-doped LLZOs powders were well indexed with the standard 

compound (garnet-type with cubic structure Li5La3Nb2O12 (PDF45-0109)), indicating that 

the garnet framework can accommodate aliovalent ions of different sizes in the multi-

doped LLZO structure without modifying the symmetry.16, 36 By contrast, additional 

weak diffraction peaks corresponding to a minor impurity phase (LiAlO2, PDF73-1338) 

were observed only for the undoped LLZO sample, which may be due to the addition of 

Al during the synthesis. However, no other peaks were observed for the mono-doped 
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LLZTO, dual-doped LLBZTO, and ternary-doped LGLBZTO samples. Doping of 

supervalent Ta5+ and Ga3+ and low-valent Ba2+ at the Zr4+, Li+, and La3+ sites, 

respectively, into the garnet structure led to disordered structure, either by creating or 

filling Li+ vacancies to form pure cubic phase without any tetragonal or other detectable 

impurities. In the close inspection of XRD, the peaks between 25°–32° shifted with 

multi-ion doping (Fig. 1b). For the mono-doped LLZTO, the diffraction peaks slightly 

shifted toward higher angles, suggesting a decrease in both the Li+ concentration and 

lattice constants with increased Ta5+ doping at the Zr4+ site. Compared with undoped 

LLZO, the diffraction peaks for dual-doped LLBZTO and ternary-doped LGLBZTO 

shifted toward lower angles, which indicated increased lattice parameters. In general, the 

intensity of the diffraction peaks reduces significantly with the increase in dopant 

concentration, indicating a loss of crystallinity due to lattice distortion. Multi-doping of 

larger size dopant ions into the garnet framework expands the lattice size and induces a 

strain into the system. As can be seen from the XRD patterns of multi-doped LLZOs (Fig. 

1), the diffraction peaks get broadened with doping, suggesting a significant lattice-defect 

formation by multi-ion doping. The lattice parameters were evaluated using both XRD 

and NPD Rietveld refined analysis (vide infra). The diffraction peaks widened with 

increased multi-ion doping in LLZO. The Rietveld refinements of the XRD patterns of 

the analyzed samples are shown in Fig. S1–S4.† The XRD refined crystallographic 

parameters are summarized in Table S1†. During structure Rietveld refinement, zero shift 

error, background parameters, absorption correction parameters, occupation parameters, 

histogram scale factors, pseudo-Voigt coefficient, and lattice constants were refined 

followed by the atomic displacement parameters. Then, isotropic thermal parameters 
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were freely refined. Refinement results revealed that all the garnet samples were indexed 

in a highly conductive cubic phase with the space group of 𝐼𝐼𝐼𝐼3�𝑑𝑑 and the lattice constants 

agreed well with literature.9 The structure of a cubic LLZO unit cell with connectivity 

pattern of tetrahedral-24dLi1 and octahedral-96hLi2 sites projected on 2D is shown in 

Fig. 1c. The garnet-type cubic LLZO structure is composed of edge-sharing dodecahedral 

La(1)O8 and La(2)O8 units (green, 24c site) occupied by La3+ at the central site and 

octahedral ZrO6 units (orange, 16a site) occupied by Zr4+ at the central site. Li+ ions are 

occupied in two crystallographic sites: tetrahedral-24dLi1 sites represented by yellow 

spheres and distorted octahedral-96hLi2 sites represented by green spheres. 

Raman measurements were performed on the undoped LLZO, mono-doped LLZTO, 

dual-doped LLBZTO, and ternary-doped LGLBZTO in the range of 100–1200 cm−1 at 

room temperature and results are shown in Fig. 2. In the Raman spectra, the low 

frequency region (< 300 cm−1) vibrational bands can be assigned to LiO6 octahedral unit 

(96hLi2 position); the middle-frequency region (300−550 cm−1) vibrational bending 

modes can be assigned to LiO4 tetrahedral unit (24dLi1 position), and the high-frequency 

region (> 550 cm−1) bands corresponded to the stretching mode of ZrO6 octahedral unit 

(16a position).37 The Raman spectra of the undoped and multi-doped LLZOs overlapped 

with the cubic phase of LLZO garnets reported in the literature.37-41 Tietz et al. reported 

that the band near 645 cm−1 corresponded to the stretching mode of the ZrO6 octahedral 

unit.37 Thompson et al. found an additional band near 750 cm−1 in Li6.5La3Zr1.5Ta0.5O12 

under the partial substitution of Zr4+ with Ta5+.39 They suggested that the additional band 

was attributed to the stretching mode of the TaO6 octahedral unit due to its increased 

intensity at a high Ta5+ concentration. In our investigation, for the multi-doped LLZOs, 
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the stretching mode of the Zr-O band and additional band corresponding to the Ta-O unit 

appeared at 625 and 720 cm−1, respectively. In the low region Raman spectra, the two 

narrow bands appeared below 200 cm−1 belonged to Li-O bonding peaks of cubic LLZO 

garnet. Such peaks were split in a tetragonal LLZO due to the reduction in symmetry. The 

highly intense Raman peak that corresponds to the vibration mode of CO3
2− and generally 

appears at 1090 cm−1 was not observed in the undoped and multi-doped LLZOs; such 

finding indicated that the pellets were free from Li2CO3.41  

The ceramic densities of the undoped and multi-doped LLZO hot-press pellets were 

calculated using the formula ρexp/ρtheo, where ρexp is the experimental density measured 

through the Archimedes method, and ρtheo is the theoretical density (5.107 g cm−3) of 

cubic LLZO.16 The ρexp of the doped LLZO samples was measured by using Equation 1. 

 

𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎
𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎−𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

 × 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   (1) 

 
where Wair is the weight of the doped LLZO sample in the air, Wwater is the weight of the 

doped LLZO sample in deionized water, and ρwater is the density of water. The hot-press 

pellets achieved high densities, and the density of either mono-doped LLZTO or multi-

doped LLBZTO and LGLBZTO approached the theoretical density (Table 1). The 

maximum reported density for the multi-doped LLZO pellets suggested rapid grain 

growth with multi-ion doping into the LLZO framework, which can be seen in the 

morphologies (Fig. S5†). The highly dense garnet material leads to improved ionic 

conductivities. Moreover, a microstructure with high density and without secondary 

phase is crucial in preventing the growth of Li dendrites in LIBs.42-44  
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The influence of doping multi-ions (Ga, Ba, and Ta) on the morphology of doped 

LLZO samples was examined using field emission scanning electron microscopy (FE-

SEM). Fig. S5† shows the FE-SEM images of the undoped LLZO, mono-doped LLZTO, 

dual-doped LLBZTO, and ternary-doped LGLBZTO obtained at room temperature along 

with the optical image of LGLBZTO with 0.5mm thickness. Substantial changes in the 

morphology of the microstructure were observed between the undoped LLZO and multi-

doped LLZO samples. The SEM image of the undoped LLZO revealed that the grains 

were not contacted well with each other. Furthermore, there were irregular pores among 

the grains, which is consistent with the low density of the undoped LLZO. By contrast, 

the SEM images of the mono-doped LLZTO and dual-doped LLBZTO exhibited dense 

and homogeneous morphology without any noticeable pores among the grains, which are 

reduced owing to their grain growth and mergence. A close inspection of the ternary-

doped LGLBZTO revealed that mixtures of small and large grains were present in the 

microstructure. The microstructure appeared to be highly dense and compact by filling 

the gaps between large grains with small grains. This result corroborated the high density 

of the ternary-doped LGLBZTO, which was close to the theoretical density. The 

fabrication of differently sized grains by mixing large particles with small particles 

resulted in the dense microstructure.43
 Almost no porosity was detected for the dual-

doped LLBZTO and ternary-doped LGLBZTO. Hence, multi-doped LLZOs are expected 

to exhibit high Li-ion conductivities. The letters “LGLBZTO” behind the pellet can be 

seen clearly that indicates the translucent nature of the pellet with reduced grain 

boundaries. The particle size distributions for the undoped LLZO, mono-doped LLZTO, 

dual-doped LLBZTO, and ternary-doped LGLBZTO were measured at room 
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temperature. The d(0.1), d(0.5), and d(0.9) of the undoped and multi-doped LLZOs 

particles substantiated the SEM microstructure (Table S2†).  

EDX mapping was carried out for the undoped LLZO, mono-doped LLZTO, dual-

doped LLBZTO, and ternary-doped LGLBZTO samples to detect the respective dopants 

and their composition on grains and grain boundaries (Fig. 3). EDX analysis revealed that 

the Al was exclusively found in the undoped LLZO sample at the grain boundaries. The 

localization of O, La, Zr, and dopant ions (Ta, Ba, and Ga) was uniformly distributed 

among the crystal grains. Furthermore, a predominant distribution of Ga, Ba, and Ta was 

observed mainly inside the grains in the EDX maps, which confirmed the inclusion of 

dopant ions in the garnet lattice. 

To study the effect of doping on Li+ transportation, the ionic conductivities of the 

undoped LLZO, mono-doped LLZTO, dual-doped LLBZTO, and ternary-doped 

LGLBZTO were measured using the AC impedance technique with Au as the blocking 

electrode. A typical Nyquist impedance plot for the ternary-doped LGLBZTO 

(Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12) with Au|LGLBZTO|Au configuration was 

recorded at room temperature (Fig. 4a). The undoped LLZO, mono-doped LLZTO, dual-

doped LLBZTO, and ternary-doped LGLBZTO all showed one partially depressed 

semicircle at the high-frequency region with a low-frequency diffusion spike. This 

semicircle can be assigned as the total impedance, including the contribution from bulk 

and grain boundary impedances, and the low-frequency spike can be attributed to Li+ 

blocking at the electrode/electrolyte interface. The impedance data were fitted using an 

equivalent circuit model consisting of (Rb)(RgbCPEgb)(CPE). The right intercept of the 

semicircle on the real axis at the high-frequency region represents the bulk resistance of 
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the sample, which was denoted as Rb in the equivalent circuit. Rgb was referred as grain 

boundary resistance; CPEgb and CPE were referred as the constant phase element 

contributions attributed to the grain boundary capacitance, and the diffusion capacitance 

at the electrode/electrolyte interface, respectively. The diameter of the semicircle at the 

middle frequency corresponded to the total resistance, which is the sum of the resistance 

of the grain and grain boundary response (Rb + Rgb). The contributions of grain and grain 

boundary responses were difficult to distinguish from the impedance spectra. The total 

Li-ion conductivity of the specimen, σt (S cm−1), was achieved by the total resistance 

normalized with respect to the thickness and cross-sectional area of the specimen. The 

ionic conductivities of the undoped and multi-doped LLZO samples were calculated from 

Equation 2:  

𝜎𝜎𝑡𝑡 =  𝑑𝑑
𝐴𝐴

 1
𝑅𝑅
  (2) 

where d, A, and R denote the thickness of the electrolyte, the cross-sectional area of the 

electrode, and the ionic resistance of the specimen, respectively. The total conductivities 

of the undoped and multi-doped LLZO samples at room temperature are presented in 

Table 1. The total conductivity (σt = 2.4 × 10−4 S cm−1 at room temperature) of the 

undoped LLZO well agreed with reported values. Compared with the undoped LLZO, Li-

ion conductivity clearly increased with increased doping of aliovalent ions into LLZO. 

The increase in total conductivity with increase multi-ion doping in the garnet framework 

can be well explained by the dense microstructure, decreased 96hLi2/24dLi1 ratio, and 

reduced oxygen occupancy in the multi-doped LLZO samples (Fig. 5). In the cubic 

polymorph, the Li+ ions were partially occupied in the tetrahedral-24dLi1 and octahedral-
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96hLi2 sites, and the amount of distribution among each site greatly affected the Li-ion 

conductivity in LLZO.  

The Li-ion conductivity of the LLZO cubic garnet depends on various key factors, 

such as (i) mobile Li+ concentration, (ii) Li+ vacancy (VLi) concentration, (iii) bottleneck 

size for Li+ migration, (iv) Coulombic repulsion between Li+–Li+ pair, and (v) specimen 

microstructure.40, 45-49 It is well known that the nominal cubic garnet-type structure, 

Li7La3Zr2O12 is not stable at room temperature due the high Coulombic repulsion between 

Li+–Li+ pair.50 In the mono-doped LLZTO, the substitution of high valence of Ta5+ for 

Zr4+ led to Li+ vacancies and reduced Li+ concentration for charge compensation, which 

promoted the Li+ motion in the LLZTO framework. The substitution of Ta5+ for Zr4+ 

reduced the Coulombic repulsion between Li+–Li+ pair by creating Li+ vacancies. As a 

result, the mono-doped LLZTO showed conductivity higher than that of the undoped 

LLZO. Although VLi can promote ionic conductivity, there should be an optimal VLi. The 

excess increment of VLi may result in reduced mobile Li+ concentration in the garnet 

framework, which might reflect in low conductivities. Dual substation strategy can 

improve the Li+ dynamics in Sb-Ba co-doped LLZO.51 In the dual-doped LLBZTO, the 

substitution of Ta5+ for Zr4+ and Ba2+ for La3+ may lead to optimal Li+ concentration. 

Furthermore, the larger ionic radius r of Ba2+ than La3+ may cause lattice expansion, 

which enlarged the bottleneck size for Li+ migration and thereby resulted in a 

conductivity higher than that of the undoped LLZO and mono-doped LLZTO.  

The Li rearrangement took place between the tetrahedral-24dLi1 and octahedral-

96hLi2 sites due to the electrostatic repulsion of either Li+−Li+ pair or Li+−dopant ion pair 

in the LLZO framework.48 The strong electrostatic repulsion of Li+−dopant ion pair may 
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affect the neighboring Li+ site, which can lead to the high mobility of Li+. Therefore, the 

Coulombic interaction between Li+ and dopant cation was a determining factor for Li-ion 

conductivities. Strategic doping of ions at the Li site in the LLZO may create strong 

Coulombic repulsion between dopant ion and Li+, which can influence the mobility of 

Li+. In the ternary-doped LGLBZTO, the substitution of Ta5+ for Zr4+, Ba2+ for La3+, and 

immobile Ga3+ for Li+ created a strong Coulombic repulsion at the Li site, added to the 

enlarged bottleneck size from Ba doping. Hence, we can expect a high conductivity for 

the ternary-doped LGLBZTO, attributed to the enhanced Li+ mobility arising from the 

Coulombic repulsion between Li+ ions and dopant Ga ion. With the increased amount of 

doped ions, the total conductivity linearly increased. The optimum total ionic 

conductivity (σt) achieved for the ternary-doped LGLBZTO 

(Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12) was 0.72 and 1.24 mS cm−1 at room temperature 

and 60 °C, respectively.  

The Nyquist plot of a symmetric lithium cell with the configuration of 

Li|LGLBZTO|Li recorded at room temperature and 60 °C (Fig. S6†). The symmetrical 

cell showed two depressed semicircles with an inclined line. The first semicircle at high-

frequencies shows a bulk resistance (R1+R2) of ~203 Ω and ~140  Ω at room temperature 

and 60 °C, respectively, correspond to the solid electrolyte. The second depressed 

semicircle at middle frequencies attributed to the interfacial resistance (R3) of ~8551 Ω 

and ~1912  Ω at room temperature and 60 °C, respectively, between the solid electrolyte 

and Li electrode was observed. The decreased interfacial resistance at 60 °C, would be 

attributed to the formation of better contact between the solid electrolyte and Li metals. 
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The total ionic conductivity varies linearly with the inverse temperature; the 

activation energy Ea can be extracted from the Arrhenius plots using the following 

equation:  

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝜎𝜎0 𝑒𝑒
−𝐸𝐸𝑎𝑎

𝐾𝐾𝐾𝐾�  (3) 

where 𝜎𝜎0  is the pre-exponential factor, K is the Boltzmann’s constant (8.62 × 10−5 eV 

K−1), and T is the absolute temperature in Kelvin. The Arrhenius plots for the relation 

between the total ionic conductivity and the inverse temperatures were obtained in the 

temperature range of 20–90 °C. The data are shown in Fig. 4b. The Arrhenius total 

conductivities of the undoped LLZO, mono-doped LLZTO, dual-doped LLBZTO, and 

ternary-doped LGLBZTO showed linearity, which confirmed the homogeneity in the 

structure. The Ea was calculated by obtaining the slope of the fitted line. The minimum Ea 

was 0.28 eV for ternary-doped LGLBZTO. The activation energy ranged from 0.28 eV to 

0.34 eV  

Solid-state magic angle spinning NMR (MAS NMR) studies were performed to 

elucidate the differences in the local structural features of garnet LLZO. The solid-state 

7Li MAS NMR spectra of the undoped LLZO, mono-doped LLZTO, dual-doped 

LLBZTO, and ternary-doped LGLBZTO were recorded at room temperature (Fig. 6). All 

investigated garnet compounds showed a single central transition at 1.5 ppm due to the 

−1/2 ↔ 1/2 transition along with other three satellite peaks (−5/2 ↔ 5/2, −3/2 ↔ 3/2, and 

−1/2 ↔ 1/2 transitions) corresponding to the spinning sidebands. The 7Li MAS NMR 

results are consistent with the reported garnet-type compounds in literature.52, 53 The 

central transition peak of the undoped LLZO at 1.7 ppm slightly shifted to the shielded 

region in the multi-doped LLZOs with an increased amount of doped ions (Fig. 6a inset). 
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In general, the full width at half-maximum (FWHM) of the central 7Li transition was 

governed by the strength of homonuclear (7Li-7Li) dipole-dipole interactions and Li+ 

migration ability.54 Fig. 6b shows an apparent decrease in the FWHM of the 7Li MAS 

NMR spectra with multi-ion doping in the LLZO framework. The narrow line width of 

the central transition was observed for the ternary-doped LGLBZTO, indicating weak 

homonuclear (7Li-7Li) dipole-dipole interactions that may be attributed to the increased 

Li+ migration ability. However, spin-lattice relaxation times (T1) could give further 

insight into the diffusion behavior of Li in LLZO garnet. The systematic variable 

temperature NMR studies are required to understand the Li+ dynamics and their 

coordination geometry in the undoped and multi-doped LLZO samples.55  

71Ga (spin quantum number, I = 3/2) MAS NMR measurement was carried out to 

evaluate the crystallographic site and symmetry of the Ga environment in the garnet 

structure. The 71Ga MAS NMR spectrum of the ternary-doped LGLBZTO powder 

recorded at room temperature is shown in Fig. 6c. The sample showed one broad signal in 

the range of 210–255 ppm in the 71Ga MAS spectrum, indicating that the Ga ions in 

ternary-doped LGLBZTO were located in a single structural site (tetrahedral coordination 

Li24d site). Furthermore, NPD results confirmed the site occupancy for Ga (vide infra). 

The small peaks at around 170 and 300 ppm were the spinning sidebands. The signal at 

107–222 ppm corresponded to the tetrahedral environment.56, 57 In an octahedral 

environment, the Ga signal appeared in up field shift within 80 and −42 ppm.56-58  

NPD, which offers high sensitivity to light elements (e.g., Li and O) at the presence 

of heavy elements, was carried out to investigate the influence of doping aliovalent ions 

Ga3+, Ba2+, and Ta5+ at the Li+, La3+, and Zr4+ sites, respectively, on the Li+ distribution in 
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the garnet structure LLZO. Room temperature NPD data were collected for the undoped 

LLZO, mono-doped LLZTO, dual-doped LLBZTO, and ternary-doped LGLBZTO 

powders calcined at 900 °C for 12 h. Fig. 7 displays the corresponding Rietveld 

refinement plots. The refined structural parameters are summarized in Table 2. The 

Rietveld refinements were analyzed using the general structure analysis system (GSAS-

II). The La3+, Zr4+, and O2- in the garnet structure were considered to occupy the 

dodecahedral 24c, octahedral 16a, and octahedral 96h sites, respectively. The Li+ ions 

were located on two sites: tetrahedral-24dLi1 and distorted octahedral-96hLi2. Ba2+ and 

Ta5+ were partially substituted at the similar ionic radii of dodecahedral 24c (La3+) and 

octahedral 16a (Zr4+) sites, respectively, without blocking the Li+ transport path in the 

garnet framework.59 NPD measurements confirmed that Ga3+ was preferentially located 

at the tetrahedral-24dLi1 (r = 0.59 Å) site rather than the octahedral-96hLi2 (r = 0.76 Å) 

site due to the small ionic radius of Ga3+ (r = 0.47 Å in a tetrahedral coordination).22, 40, 60, 

61 The slightly large lattice parameters in the dual-doped LLBZTO and ternary-doped 

LGLBZTO can be explained by the substitution of larger doping ionic radius of Ba2+ (r = 

1.42 Å in VIII co-ordination) for the smaller La3+ (r = 1.16 Å in VIII coordination) in the 

LLZO system. The reduced lattice constant observed for the mono-doped LLZTO was 

due to the smaller doping ionic radius of Ta5+ (r = 0.64 Å in VI coordination) over Zr4+ (r 

= 0.72 Å in VI coordination).62 The refined lattice parameters, Li occupancy at the 

tetrahedral-24dLi1 and octahedral-96hLi2 sites, the ratio of octahedral-96hLi2 to tetrahedral-

24dLi1, O2- occupancy at the 96h site, and unit-cell volumes of the undoped and multi-

doped LLZOs are presented in Table 3. The supervalent cation substitution, either Ta5+ at 

the Zr4+ site or Ga3+ at the Li+ site, leads to the stabilization of high-conducting cubic 
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polymorph. In our NPD refinement, the occupancy of Li at the tetrahedral-24dLi1 site 

increased with increased number of doped ions, whereas the Li occupancy at the 

octahedral-96hLi2 remained constant. In the undoped LLZO, the lithium ions reside 

equally at octahedral-96hLi2 (0.36(5)) and tetrahedral-24dLi1 (0.35(3)) sites. Upon multi-

doping elements, increase of Li occupation at the tetrahedral-24dLi1 site was observed. 

The occupancy of lithium in the tetrahedral-24dLi1 sites increased from 0.36(5) to 0.77(5) 

with ternary element doping. Thus, the tetrahedral-24dLi1:octahedral-96hLi2 Li occupancy 

ratio increased with increased number of doped ions. It is generally believed that the 

immobile Al dopant in the garnet framework is occupied at Li sites may cause blocking 

the Li+ transport in Al-doped LLZO garnets.20 Shin et al. reported that doping of tantalum 

into the Al-doped LLZO garnet, the blocking immobile Al shifts from tetrahedral-24dLi1 

to octahedral-96hLi2 site, thereby providing more open space for Li ion transport.63 We 

believe that multi-ion doping into the garnet framework caused structural alteration and 

provides more space in tetrahedral-24dLi1 site. The lithium ion mobility at the tetrahedral-

24dLi1 sites plays an important role for the total ionic conductivity in garnet-type 

structures.64, 65 Additionally, a reduction in oxygen defects with an increased amount of 

doped ions was observed from the Rietveld analysis. The decrease in oxygen occupancy 

created a positive hole for Li+ hopping. Wu, J.-F. et al.40, 61, Rettenwander, D. et al.66 and 

Jalem, R. et al.65 reported that the electrochemical properties improved with increased Li 

occupancy at the tetrahedral-24dLi1 site, which can serve as the trigger for Li-ion mobility 

in LLZO garnet-type systems. Recently, we found that the increased Li content along 

with the reduced oxygen defects can enhance the Li-ion conductivity in Al-doped LLZO 

by locally rearranging the oxygen atoms in the anionic framework during voltammetric 
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treatment.67 The increased ionic conductivity with multi-ion doping can be ascribed to the 

partial occupancy of Li+ across the tetrahedral-24dLi1 and octahedral-96hLi2 sites, 

decreased Li occupancy ratio (96hLi2/24dLi1), and reduced oxygen defects. 

The viability of the garnet solid electrolyte for the all-solid-state battery was 

demonstrated by constructing a half-cell with Li metal, 

Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12 (ternary-doped LGLBZTO), and LiFePO4 as the 

active electrodes. To reduce the interfacial resistance between electrolyte and cathode, 

bis-trifluoromethane sulfonamide Li salt was added into the cathode material. Fig. 8 

shows the cycle performance of the half-cell with ternary-doped LGLBZTO electrolyte, 

metallic Li anode, and LiFePO4 cathode. AC impedance measurements were conducted 

for the half-cells before and after 5th lithiation/delithiation at 60 °C to evaluate the cell 

resistance evolution (Fig. S7†). In all cases, two depressed semicircles were observed at 

high and middle frequencies, followed by an inclined line at lower frequency. The 

high/middle frequency behavior was attributed to the interfacial resistances between 

electrolyte and electrodes.68 After 5th cycle, the interfacial resistances for the half cells 

with undoped LLZO and multi-doped LLZOs are mildly increased. However, the 

increment in interfacial resistance between the electrolyte and electrodes decreased 

obviously with multi-ion doping. Galvanostatic charge-discharge curves were achieved 

within the cut off voltage range of 2.7–3.8 V against Li+/Li at 0.05 C (1C = 170 mAh g−1) 

and 60 °C (Fig. 8a). The first charge and discharge capacities of 160.0 mAh g−1 and 

146.8 mAh g−1, which corresponded to approximately 94.1% and 86.4% of the theoretical 

capacity (170 mAh g−1), respectively, at 0.05 C were delivered.  

The first Coulombic efficiency was 91.8%, however the Coulombic efficiency was 



 25 

increased in the following cycles, and approximately 96.6% for the 6th cycle as can be 

seen in Fig. 8b. The gradual increase in the cell overpotential and the decrease in the 

discharge capacity were due to the rigid nature of the solid electrolyte and poor contact 

with electrodes during the cycle. Optimizing the electrolyte/electrode interfaces using 

various buffer layer coating can solve such issue.  

 

Conclusions 

In summary, an efficient multi-doping strategy approached to enhance the Li-ion 

conductivity of garnet-type solid electrolyte Li7La3Zr2O12. We synthesized the undoped 

LLZO, mono-doped LLZTO, dual-doped LLBZTO, and ternary-doped LGLBZTO using 

the solid-state method. The synthesized garnet electrolytes were characterized via XRD, 

NPD, SEM, EDS mapping, and solid-state NMR techniques. The ceramic density of the 

synthesized garnets was near the theoretical density of LLZO. NPD Rietveld analysis 

revealed an increased Li+ occupancy at the tetrahedral-24dLi1 site with increased multi-

ion doping in LLZO, whereas Li+ occupancy at the octahedral-96hLi2 site remained 

constant. The increased Li-ion conductivity with multi-ion doping can be ascribed to the 

dense microstructure, decreased 96hLi2/24dLi1 Li+ occupancy ratio, and reduced oxygen 

defects. The prepared ternary-doped LGLBZTO was tested for all solid-state Li+ cells 

with Li|LGLBZTO|LFP configuration and results showed a reasonable cyclability of over 

6 cycles.  
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Legends: 
Table 1. Density (g/cm3), ceramic density (%), total ionic conductivity, and activation 

energy of the undoped LLZO, mono-doped LLZTO, dual-doped LLBZTO, and ternary-

doped LGLBZTO. 

Table 2. Structural parameters of the undoped LLZO, mono-doped LLZTO, dual-doped 

LLBZTO, and ternary-doped LGLBZTO obtained using NPD (space group 𝐼𝐼𝐼𝐼3�𝑑𝑑). 

Table 3. Refined lattice parameters, unit-cell volumes, Li occupancy at the tetrahedral-

24dLi1 and octahedral-96hLi2 sites, the ratio of octahedral-96hLi2:tetrahedral-24dLi1, and 

O2- occupancy at the 96h site of the undoped LLZO, mono-doped LLZTO, dual-doped 

LLBZTO, and ternary-doped LGLBZTO. 

Fig. 1 (a) XRD patterns and (b) peak shift of the undoped LLZO, mono-doped LLZTO, 

dual-doped LLBZTO, and ternary-doped LGLBZTO in the range of 25°−32° (c) Crystal 

structure of cubic LLZO with connectivity pattern of tetrahedral-24dLi1 and 96hLi2 cages 

projected on two dimensions. 

Fig. 2 Raman spectra of the undoped LLZO, mono-doped LLZTO, dual-doped LLBZTO, 

and ternary-doped LGLBZTO in the range of 50−800 cm−1. 

Fig. 3 SEM image and corresponding EDX maps of La, Zr, Al, Ta, Ba, and Ga for (a) 

undoped LLZO, (b) mono-doped LLZTO, (c) dual-doped LLBZTO, and (d) ternary-

doped LGLBZTO. 

Fig. 4 (a) AC impedance plot of the garnet-type ternary-doped LGLBZTO 

Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12. Inset is the equivalent circuit used to fit the curve. 

(b) Arrhenius plot of the undoped LLZO, mono-doped LLZTO, dual-doped LLBZTO, 

and ternary-doped LGLBZTO. 
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Fig. 5 Comparison plot for (a) density and total ionic conductivity at room temperature 

and Li occupancy ratio at 96hLi2/24dLi1. (b) O2− occupancy with lattice parameters of the 

undoped LLZO, mono-doped LLZTO, dual-doped LLBZTO, and ternary-doped 

LGLBZTO. The total ionic conductivity and density increases, whereas the Li occupancy 

ration at 96hLi2/24dLi1 decreases with multi-ion doping into the garnet. 

Fig. 6 (a) 7Li MAS NMR (b) FWHM of the central transition line width in the undoped 

LLZO, mono-doped LLZTO, dual-doped LLBZTO, and ternary-doped LGLBZTO. The 

inset shows the magnified scale (*spinning sidebands). (c) 71Ga NMR spectrum for the 

ternary-doped LGLBZTO showing a single broad signal at 210–255 ppm. The weak 

signals correspond to the spinning sidebands. 

Fig. 7 Rietveld refined NPD pattern for the (a) undoped LLZO, (b) mono-doped LLZTO, 

(c) dual-doped LLBZTO, and (d) ternary-doped LGLBZTO. observed (crosses), 

calculated, and difference profiles; Vertical bars correspond to the calculated Bragg 

reflections for cubic garnet. 

Fig. 8 (a) Galvanostatic charge-discharge curves of the LFP/LGLBZTO/Li structured cell 

at 0.05 C and 60 °C. (b) Capacity retention of cell LFP/LGLBZTO/Li at 0.05 C after 6 

cycles. 
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Table 1 

 

 

 

 

 

Garnet density (g/cm3) ceramic density (%) σtotal (S cm−1) Ea (eV) 

LLZO 4.939 96.7 2.4 × 10−4 0.34 

LLZTO 5.086 99.6 4.3 × 10−4 0.32 

LLBZTO 5.091 99.7 6.5 × 10−4 0.29 

LGLBZTO 5.137 99.9 7.2 × 10−4 0.28 
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Table 2 

Garnet L.P./Å GOF Rwp site occupancy x y z Uiso(Å2)  
LLZO 12.9773(2) 1.97 7.11% Li(24d) 0.32(4) 3/8 0  1/4 0.003(1) 
    Li(96h) 0.36(2) 0.690(2) 0.578(2) 0.094(2) 0.003(1) 
    Al(24d) 0.06 3/8 0  1/4 0.01 
    La(24c) 0.96(2) 1/8 0 1/4  0.054(4) 
    Zr(16a) 0.99(3) 0 0 0 0.048(4) 
    O(96h) 0.97(1) 0.099(1) 0.194(6) 0.280(5) 0.051(2) 

LLZTO 12.9629(2) 2.21 3.59% Li(24d) 0.52(4) 3/8 0  1/4 0.066(1) 
    Li(96h) 0.33(2) 0.692(2) 0.600(1) 0.098(2) 0.066(1) 
    La(24c) 0.96(9) 1/8 0 1/4  0.026(1) 
    Zr(16a) 0.86 (8) 0 0 0 0.032(2) 
    Ta(16a) 0.11(8) 0 0 0 0.032(2) 
    O(96h) 0.95(6) 0.101(2) 0.194(2) 0.280(2) 0.026(9) 

LLBZTO 13.0186(6) 2.14 2.09%  Li(24d) 0.65(8) 3/8 0  1/4 0.100(3) 
    Li(96h) 0.33(2) 0.697(3) 0.585(3) 0.131(4) 0.066(1) 
    La(24c) 0.95(6) 1/8 0 1/4  0.035(2) 
    Ba(24c) 0.07(1) 1/8 0 1/4  0.035(2) 
    Zr(16a) 0.85(1) 0 0 0 0.072(4) 
    Ta(16a) 0.15(1) 0 0 0 0.072(4) 
    O(96h) 0.84(8) 0.101(4) 0.194(4) 0.278(3) 0.027(1) 

LGLBZTO 13.03858(1) 2.16 2.61% Li(24d) 0.77(5) 3/8 0  1/4 0.040(7) 
    Li(96h) 0.33(3) 0.698(4) 0.595(3) 0.211(4) 0.040(7) 
    Ga(24d) 0.04(6) 3/8 0  1/4 0.040(7) 
    La(24c) 0.95(5) 1/8 0 1/4  0.017(1) 
    Ba(24c) 0.04(9) 1/8 0 1/4  0.017(1) 
    Zr(16a) 0.86(1) 0 0 0 0.033(1) 
    Ta(16a) 0.14(1) 0 0 0 0.033(1) 
    O(96h) 0.76(6) 0.101(4) 0.194(4) 0.278(3) 0.014(9) 
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Table 3 
 
 
 

Garnet LLZO LLZTO LLBZTO LGLBZTO 

aL.P./Å 12.9773(2) 12.9629(2) 13.0186(6) 13.03858 (1) 

bV/Å3 2178.7(1) 2178.2(8) 2207.3(3) 2216.4(3) 

24dLi1 0.36(5) 0.52(4) 0.65(8) 0.77(5) 

96hLi2 0.35(3) 0.33(2) 0.33(2) 0.33(3) 

96hLi2/24dLi1 0.97 0.63 0.51 0.43 

O2- 0.97(1) 0.95(6) 0.84(8) 0.76(6) 

aLattice parameter; bVolume 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Fig. 4b 
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Fig. 5a 

 
 

Fig. 5b 
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Fig. 6a 
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Fig. 6b 

 

Fig. 6c 
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Fig. 7a 
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Fig. 7b 
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Fig. 7c 
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Fig. 7d 
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Fig. 8a 

 

Fig. 8b 
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TOC 

A systematically multi-doping strategy approached to enhance the Li-ion conductivity of 

garnet-type solid electrolyte Li7La3Zr2O12 by doping multi-ions, Ga, Ba and Ta into the 

garnet framework.  
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