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Abstract: A novel experimental method was developed through a ball-on-disk tribometer to study the 

friction and wear behaviour of a chrome steel at temperatures of 25, 200 and 500 ℃. Water-based 

nanolubricants containing different concentrations of nano-TiO2 from 0.4 to 8.0 wt% were used to 

investigate their effects on friction-reduction and anti-wear mechanisms, in comparison to the benchmarks 

under dry and water conditions. The results show that the water-based nanolubricants can significantly 

reduce coefficient of friction (COF) and improve wear resistance of the chrome steel at both ambient and 

elevated temperatures. In particular, the use of nanolubricant containing an optimal concentration (4.0 wt%) 

of nano-TiO2 leads to the lowest COF and the smallest ball wear among all the lubrication conditions. The 

friction-reduction and anti-wear mechanisms are ascribed to the rolling & polishing effects, semisolid film 

and solid layer contributed by the nano-TiO2 at temperatures of 25, 200 and 500 ℃, respectively.  
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1. Introduction  

Energy saving and environmental protection are being subjected to considerable concern in modern times 

[1]. Recently, great efforts have been made to minimise energy loss and environmental pollution in 

engineering applications [2-5]. Lubrication technology is one of the most useful approaches to solve these 

issues as the primary causes of energy loss in engineering fields are friction and wear [6]. It is well-

documented that the conventional lubricating system including base oils such as mineral oil [7], synthetic 

oil [8] and biological oil [9], oil-in-water emulsions [10, 11] and other oil-based lubricants [12-14] can 

decrease friction and wear to a certain extent. The application and discharge of oil, however, inevitably 

trigger environmental issues due to its nonbiodegradable nature and inherent toxicity [7]. In this regard, 

developing environment-friendly water-based lubricants with excellent tribological performance is 

increasingly important and urgently needed. Considering the insufficient film thickness of water due to its 

low viscosity and chemical reaction with metals [3], many researchers have focused on using nanomaterials 

as nanoadditives dispersed in water in order to enhance the lubricating property of water. These 

nanoadditives include metals [15, 16], metallic oxides [17-25], non-metallic oxides [26, 27], metal 

sulphides [28-30], composites [31, 32], fullerene [33, 34]  and other carbon materials [35-43]. For examples, 

Zhang et al. [16] prepared water-based nanolubricant by adding surface-capped nano-Cu into distilled water 

for four-ball test. They found that the nano-Cu with an average diameter of 2 nm could be uniformly 

dispersed in distilled water without apparent agglomeration. The improved tribological properties of 

distilled water were ascribed to the formation of boundary lubrication film produced by tribo-chemical 

reaction between the nano-Cu and sliding steels. Radice and Mischler [17] prepared water-based 

nanolubricants by adding 10 vol% nano-Al2O3 into deionised water with an acetate buffer solution. The 

reciprocating wear testing results showed that the lubricant containing nano-Al2O3 decreased COF by 40-

50%, compared to that without nanoparticles (NPs) due to a third body formed by NPs trapped within the 

contact area. Bao et al. [27] added surface modified nano-SiO2 into water to prepare well-dispersed water-

based lubricants. The tribological properties evaluated by four-ball and pin-on-disk tests demonstrated that 

the lubricant containing 0.3 wt% nano-SiO2 caused the best load-carrying and anti-wear performance due 

to the miniature ball bearing effect and the self-repairing ability of SiO2 NPs between the friction pairs. 

Meng et al. [30] prepared water-dispersible MoS2 NPs, and investigated tribological behaviour of the 

synthetic nano-MoS2 dispersed in distilled water using a four-ball tester. The results indicated that nano-

MoS2 can effectively improve the friction-reduction, anti-wear and load-carrying abilities of distilled water, 

showing a promising potential as a nanoadditive in water-based lubricant. Zhang et al. [31] synthesised 

Cu/SiO2 nanocomposite by use of a sol-gel method, and studied its tribological properties when added into 

distilled water via a four-ball tester. The results showed that the water-based lubricant containing nano-



Cu/SiO2 was able to significantly reduce the friction and wear of steel friction pairs, compared to distilled 

water. This was ascribed to the formation of a protective film composed of Cu and SiO2. Liang et al. [38] 

prepared aqueous graphene solution with the assistance of a non-ionic surfactant i.e. Triton X-100. The 

results obtained from ball-on-disk tribological tests showed that a small amount addition of graphene 

enabled a substantial reduction of COF by 81.3% and also the wear volume by two orders of magnitude in 

comparison with deionised water. In particular, research efforts have been directed towards using TiO2 NPs 

as additives that can be dispersed uniformly in water, showing promising and inspiring lubrication 

performance [18, 23-25].  

The previous studies regarding tribological properties of water-based nanolubricants, however, were mainly 

conducted at the ambient temperature. The evaluation of tribological properties using water-based 

nanolubricants at elevated temperatures has rarely been performed or reported until now. In our previous 

studies [23, 24], the lubrication mechanisms of water-based nanolubricant containing TiO2 NPs were 

systematically investigated via ball-on-disk tests at ambient temperature by varying surface conditions 

(surface roughness and oxidation) of applied disk and concentrations of nano-TiO2 dispersed in water. The 

objective of this study is to reveal the effects of temperature and nano-TiO2 concentration on friction and 

wear behaviour of a chrome steel (roll material) with water-based nanolubricant, using an innovative ball-

on-disk configuration. This study will provide a reliable and effective way to evaluate the roll service life 

in hot steel rolling when using water-based nanolubricant. 

2. Experimental details 

2.1 Materials 

An E52100 chrome steel ball and a mild steel (MS) disk were used as the friction pair in a ball-on-disk 

tribometer, in which the ball represented the roll material while the disk represented the strip steel. The 

chemical compositions of the two materials are listed in Table 1. All the balls being used had a diameter of 

9.5 mm and a surface roughness of 0.02 µm in Ra. The disks were machined to a dimension of Ø40 mm × 

8 mm with a surface roughness of 0.11 µm in Ra. The hardnesses of the ball and disk materials are 

approximately 780 and 90 HV, respectively. Surface morphologies and 3D profiles of the friction pair are 

shown in Fig. 1. It can be seen that the ball surface is quite smooth, while the disk has significant scratches 

on its surface. This rough surface was designed to differentiate the relevantly smooth one based on the 

previous study [24]. 

Table 1 Chemical compositions of the ball and disk materials (wt%). 

Materials C Si Mn Cr Cu Mo Nb+V+Ti P+S 

Ball-E52100 1.0 0.25 0.35 1.5 0.30 0.10 - ≤0.03 

Disk-MS 0.05 0.02 0.25 0.01 - - <0.01 ≤0.03 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Surface morphologies and 3D profiles of (a, b) Cr steel ball, and (c, d) mild steel disk. 

The water-based nanolubricants being used in the test consist of TiO2 NPs, polyethyleneimine (PEI), 

glycerol and balanced water. The nano-TiO2 is P25, a mixture of 75% of anatase and 25% of rutile with 

around 20 nm in diameter. It is worth noticing that the reason of choosing P25 as the nanoadditive in water 

is due to its much lower cost than those of pure anatase and rutile. 

The synthesis procedure of nanolubricants can be found elsewhere, showing excellent dispersibility and 

stability [4, 24]. The chemical compositions of the nanolubricants being used in this study are shown in 

Table 2. For comparison, testing conditions without lubrication (i.e. dry condition) and with pure water 

lubrication were also used.  
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Table 2 Chemical compositions of employed lubricants. 

Lubrication type Description 

1 Dry 

2 Water 

3 0.4 wt% TiO2+0.004 wt% PEI + 10.0 vol% glycerol + balance water 

4 1.0 wt% TiO2+0.01 wt% PEI + 10.0 vol% glycerol + balance water 

5 2.0 wt% TiO2+0.02 wt% PEI + 10.0 vol% glycerol + balance water 

6 4.0 wt% TiO2+0.04 wt% PEI + 10.0 vol% glycerol + balance water 

7 8.0 wt% TiO2+0.08 wt% PEI + 10.0 vol% glycerol + balance water 

2.2 Tribological tests 

An Rtec MFT-5000 Muti-functional Tribometer was used to measure the coefficients of friction (COF) 

under the ball-on-disk testing protocols. The configuration of this tribometer for the tests at ambient 

temperature was the same to that reported in our previous study [23], in which the disk surface was covered 

by a layer of lubricant with a fixed volume of 2 ml prior to each tribological test under liquid lubrication. 

In this way, the initial conditions of the tribological tests can be well controlled. In contrast, the 

configuration was restructured with an innovative model to continuously supply the droplets of lubricants 

during sliding process, as shown in Fig. 2. It can be seen that the lubricants were contained in an infusion 

bag, and flowed along a plastic pipe that was connected to a copper pipe, and then dropped consecutively 

onto a rotating pre-heated disk. The copper pipe was bound with a ball holder to resist a high temperature 

close to the hot disk. The temperature of the disk can be well controlled by the induction heater ahead of 

each tribological test, and the flowing rate of the lubricants can be adjusted by a flow regulator equipped.  

 

 

 

 

 

 

 

Fig. 2 Schematic of the ball-on-disk tribometer used for tribological tests at elevated temperatures. 



The tribological testing conditions at ambient and elevated temperatures are shown in Table 3. A constant 

load of 50 N was applied to press the Cr steel ball against the rotating MS disk for a period of 5 minutes. 

The reason of choosing a relatively short sliding time was to decrease the stacking of nanolubricants caused 

by continuous droplets, which might impede movement of the ball. The linear speed and the radius of the 

wear track were 50 mm/s and 14 mm, respectively. It should be noted that a relatively low sliding speed of 

50 mm/s was adopted for the minimisation of hydrodynamic effect. During testing, the time histories of 

COF were recorded. When a test was completed, both the ball and the disk were disassembled from the 

tribometer and then cleaned ultrasonically in an ethanol bath for 5 minutes to remove any loose debris and 

surplus lubricants. For each condition, the same test was repeated for three times. 

Table 3 Tribological testing conditions at ambient and elevated temperatures. 

Normal load/N Speed/mm·s-1 Time/min Temperature/℃ Radius of wear track/mm 

50 50 5 25, 200 and 500 14 

2.3 Characterisation techniques 

Wear scars of the balls produced after tribological tests were observed under a KEYENCE VK-X100K 3D 

Laser Scanning Microscope. Surface morphologies and 3D profiles of the worn zones were examined. Wear 

tracks of the disks were further examined using a JEOL model JSM-7001F Scanning Electron Microscope 

(SEM) equipped with an Energy Dispersive Spectrometer (EDS). 

3. Results 

3.1 Ball-on-disk tests at ambient temperature 

Fig. 3 shows the COF curves and values measured at ambient temperature under different lubrication 

conditions. Fig. 3(a) shows that the COF curve caused by dry condition presents large fluctuation in the 

running-in period, and gradually drops to a stable level for the rest of the sliding. When using water 

lubrication, the COF is reduced to a lower and more stable level after a minor fluctuation in the first 10 

seconds. The use of water-based nanolubricants further decreases the COF to a much lower level, even 

though there is also a slight fluctuation in the first 15 seconds. The COF values obtained at the stable stage 

of sliding are averaged from the three-time repeated tests, as shown in Fig. 3(b). It is found that the averaged 

COF value is significantly reduced from the dry and pure water lubrication of around 0.45 when the 

nanolubricants are applied. The increase of nano-TiO2 concentration in water only slightly reduces the COF 

with the lowest value of 0.273 achieved when 4.0 wt% TiO2 is used. A further increase of nano-TiO2 

concentration to 8.0 wt%, however, results in a slightly higher COF value. Therefore, a concentration of 



4.0 wt% appears to be the optimal one in the water-based nanolubricants, which enables the reduction of 

COF by around 40% from that under the dry condition. 
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Fig. 3 (a) COF curves as functions of sliding time, and (b) averaged COF values at the stable sliding stage 

for all the testing conditions at ambient temperature. 

Fig. 4 shows the surface morphologies of the worn balls obtained at ambient temperature under different 

lubrication conditions. It is observed from Fig. 4(a) and (b) that both dry condition and pure water produce 

relatively large wear scars with significant scratches, in comparison to those generated by nanolubricants. 

The brown substances (arrow) on the ball surface are likely iron oxides, which should be the debris from 

the worn disk. In contrast, the wear scars are much smaller and smoother when lubricated by the water-

based nanolubricants, suggesting enhanced anti-wear ability. The boundaries of the wear scars are much 

cleaner with less adhered impurities too. 
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Fig. 4 Surface morphologies of the worn balls obtained at ambient temperature under lubrication conditions 

of (a) dry, (b) water, (c) 0.4 wt% TiO2, (d) 1.0 wt% TiO2, (e) 4.0 wt% TiO2, and (f) 8.0 wt% TiO2. 

Fig. 5 shows the 3D images and corresponding cross-sectional profiles of the ball wear areas obtained at 

ambient temperature under different lubrication conditions, whose surface morphologies can be found in 

Fig. 4. It is observed in Fig. 5(a) and (b) that dry condition brings forth a relatively deep wear scar with a 

wear area of 2128 μm2 along Z axis (depth), while pure water yields a shallower one with a smaller wear 

area of 1242 μm2. Apparently, the tests under both dry and water conditions lead to considerable ball wear. 

The use of nanolubricants results in significantly shallower wear scar with much smaller wear areas than 

those under dry and water lubrication. In particular, using the nanolubricant containing 4.0 wt% TiO2 

produces the smallest ball wear area of 372 μm2 (see Fig. 5(e)), which decreases the ball wear by 82.5% in 

comparison to the dry condition. Nevertheless, the use of a higher concentration of 8.0 wt% TiO2 appears 

to have slightly aggravated the ball wear (see Fig. 5(f)).  
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Fig. 5 3D images and corresponding cross-sectional profiles of the ball wear areas obtained at ambient 

temperature under lubrication conditions of (a) dry, (b) water, (c) 0.4 wt% TiO2, (d) 1.0 wt% TiO2, (e) 4.0 

wt% TiO2, and (f) 8.0 wt% TiO2.  
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Fig. 6 Wear areas of the balls obtained at ambient temperature under different lubrication conditions. 

3.2 Ball-on-disk tests at 200 ℃ 

Fig. 7 shows the COF curves and values measured at 200 ℃ under different lubrication conditions. It can 

be seen from Fig. 7(a) that general running-in periods last a bit longer, and overall fluctuations of COF 

curves are more significant, compared to those in Fig. 3(a). Similarly, dry condition presents the highest 

COF level, followed by that of water lubrication. The COF curve caused by the nanolubricant containing 

0.4 wt% nano-TiO2 fluctuates severely in the first 160 seconds, and then keeps stable until the end. With 

the increase of nano-TiO2 concentration in the lubricant, the period with curve fluctuation is increasingly 

shortened. In order to differentiate the levels of COF curves in Fig. 7(a), averaged COF values extracted 

from stable stages are shown in Fig. 7(b). It is found that the variation trend of COF values is similar to that 

in Fig. 3(b), showing an optimal concentration (4.0 wt%) of nano-TiO2. It is of great interest that the 

nanolubricants contribute to much lower COF values at 200 ℃ than those obtained at ambient temperature, 

when the nano-TiO2 concentration is higher than 1.0 wt%. For the same optimal nano-TiO2 concentration 

of 4.0 wt%, the COF can be reduced by 28.6% from ambient temperature to the elevated temperature of 

200 ℃. The COF entailed by dry condition at 200 ℃ is thus reduced by 58.9% to the largest extent when 

using the nanolubricant containing 4.0 wt% nano-TiO2. 
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Fig. 7 (a) COF curves as functions of sliding time, and (b) averaged COF values at the stable sliding stage 

for all the testing conditions at 200 ℃. 

Fig. 8 shows the surface morphologies of the worn balls obtained at 200 ℃ under different lubrication 

conditions. The wear scar obtained under dry condition is the biggest among all the worn balls. The wear 

scar caused by water has apparent scratches, and there are abundant black iron oxides adhered to the 

surroundings. It is acknowledged that these iron oxides are formed when the water contacts the steel surface 

at 200 ℃. The adhered iron oxides can be found around the wear scar with nanolubricant containing 0.4 

wt% TiO2, above which the worn ball surfaces become smoother and cleaner.  

 

 

 

 

 

 

 

 

 

Fig. 8 Surface morphologies of the worn balls obtained at 200 ℃ under lubrication conditions of (a) dry, 

(b) water, (c) 0.4 wt% TiO2, (d) 1.0 wt% TiO2, (e) 4.0 wt% TiO2, and (f) 8.0 wt% TiO2.  

(a) (b) 

(a) (b) (c) 

(d) (e) (f) 



Fig. 9 shows the 3D images and corresponding cross-sectional profiles of the ball wear areas obtained at 

200 ℃ under different lubrication conditions, which refers to the surface morphologies of the worn balls 

shown in Fig. 8. It is similar to the results in Fig. 5 that the dry and water condition produce the most severe 

ball wear in terms of the wear areas along Z axis (depth) at 200 ℃, which are slightly larger than those 

obtained at ambient temperature. Another similar result is that the ball wear area continues to decrease until 

it reaches the smallest value (310 μm2) with the increase of nano-TiO2 concentration up to 4.0 wt%, 

followed by a bit larger ball wear area of 322 μm2 when using 8.0 wt% TiO2. In this case, the ball wear 

caused dry condition can be maximally reduced by 88.1%. The variation trend of ball wear areas obtained 

at 200 ℃ is shown in Fig. 10. It can be seen that the ball wear is less severe than that obtained at ambient 

temperature when the nano-TiO2 concentration is above 0.4 wt%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 3D images and corresponding cross-sectional profiles of the ball wear areas obtained at 200 ℃ under 

lubrication conditions of (a) dry, (b) water, (c) 0.4 wt% TiO2, (d) 1.0 wt% TiO2, (e) 4.0 wt% TiO2, and (f) 

8.0 wt% TiO2.  

Wear area 2597 µm2 

Wear area 522 µm2 Wear area 443 µm2 

Wear area 310 µm2 

Wear area 1110 µm2 

Wear area 322 µm2 

(a) (b) 

(c) (d) 

(e) (f) 



D
ry

W
at

er

0.
4 

w
t%

 T
iO

2

1.
0 

w
t%

 T
iO

2

2.
0 

w
t%

 T
iO

2

4.
0 

w
t%

 T
iO

2

8.
0 

w
t%

 T
iO

2
0

500

1000

1500

2000

2500

3000

 

 

W
e
a
r 

a
re

a
/

m
2

 Wear area of ball at 200 C

 

Fig. 10 Wear areas of the balls obtained at 200 ℃ under different lubrication conditions. 

3.3 Ball-on-disk tests at 500 ℃ 

Fig. 11 shows the COF curves and values measured at 500 ℃ under different lubrication conditions. As can 

be seen from Fig. 11(a) that the overall running-in periods are much longer than those at ambient 

temperature and 200 ℃ (see Figs. 3(a) and 7(a)), and the COF curves caused by 4.0 and 8.0 wt% TiO2 

appear to be more fluctuant than those caused by other lubrication conditions. The variation of averaged 

COF values obtained from the stable stages is shown in Fig. 11(b). It is similar to the trends in Figs. 3(b) 

and 7(b) that the nanolubricant containing 4.0 wt% TiO2 enables the maximal COF reduction by 39.5% 

based on that of dry condition. The difference is that the highest concentration of 8.0 wt% TiO2 increases 

the COF value to the utmost among all the nanolubricants.  
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Fig. 11 (a) COF curves as functions of sliding time, and (b) averaged COF values at the stable sliding stage 

for all the testing conditions at 500 ℃. 
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Fig. 12 shows the surface morphologies of the worn balls obtained at 500 ℃ under different lubrication 

conditions. It is observed that the wear scars produced by water and water-based nanolubricants are wider 

than that produced under dry condition. The sticking phenomenon of the ball only occurs when lubricated 

by water. The apparent scratches appear after water and 0.4 wt% TiO2 are used in the sliding process. In 

contrast, the nanolubricants containing an even higher concentration of nano-TiO2 lead to smoother wear 

scars. In particular, the wear scar caused by 4.0 wt% TiO2 is the smallest (see Fig.12 (e)), while the one 

produced by 8.0 wt% TiO2 becomes the biggest instead (see Fig.12 (f)). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Surface morphologies of the worn balls obtained at 500 ℃ under lubrication conditions of (a) dry, 

(b) water, (c) 0.4 wt% TiO2, (d) 1.0 wt% TiO2, (e) 4.0 wt% TiO2, and (f) 8.0 wt% TiO2.  

Fig. 13 shows the 3D images and corresponding cross-sectional profiles of the ball wear areas obtained at 

500 ℃ under different lubrication conditions, such as dry, 0.4, 4.0 and 8.0 wt% TiO2. It can be seen that the 

balls are significantly worn out under both dry condition and 0.4 wt% TiO2 in terms of the wear areas along 

Z axis (depth) at 500 ℃, which are much larger than those obtained at ambient temperature and 200 ℃ (see 

Figs. 5 and 9). The ball wear can be greatly alleviated by using the nanolubricant containing 4.0 wt% TiO2, 

instead of being aggravated when the nano-TiO2 concentration increases to 8.0 wt%. The wear areas of the 

balls yielded at 500 ℃ under applied lubrication conditions are quantitatively shown in Fig. 14. The results 

indicate that the ball wear produced under dry condition can be minimised by 85.5% when using the 

nanolubricant containing 4.0 wt% TiO2. 
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Fig. 13 3D images and corresponding cross-sectional profiles of the ball wear areas obtained at 500 ℃ 

under lubrication conditions of (a) dry, (b) 0.4 wt% TiO2, (c) 4.0 wt% TiO2, and (d) 8.0 wt% TiO2. 
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Fig. 14 Wear areas of the balls obtained at 500 ℃ under different lubrication conditions. 
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4. Discussion 

4.1 Rolling and polishing effects 

As shown in Fig. 15(a)-(d), the SEM images of worn disk surfaces using the nanolubricants containing 0.4, 

1.0, 4.0 and 8.0 wt% TiO2, respectively. The EDS spectra acquired from Area A in Fig. 15(c) and Area B 

in Fig. 15(d) are shown in Fig. 15(e) and (f), respectively, demonstrating that TiO2 NPs are distributed in 

the wear tracks. As the TiO2 NPs have spherical shapes, they could serve as rollers between the ball and the 

disk to reduce friction, at the same time polish the surfaces [44]. This is likely why the COF and ball wear 

are significantly reduced in comparison to the respective values obtained from dry and pure water 

conditions. Also, smoother surfaces of worn balls are produced, as can be seen in Figs. 3-6. The NPs that 

effectively rub surfaces should be originated from two sources, those trapped in surface valleys and existed 

outside contact region [23]. For the nanolubricant containing the lowest nano-TiO2 concentration of 0.4 

wt%, few TiO2 NPs act inside the contact region, thus limit their contribution to the reduction of COF and 

ball wear. With progressively increasing the nano-TiO2 concentration up to 4.0 wt%, an increasing number 

of TiO2 NPs are trapped in the disk valleys due to the presence of initial scratches over the disk surface (see 

Fig. 1(c) and (d)). These trapped TiO2 NPs and supplementary ones can be furnished from the valleys and 

the outer region, respectively, onto the rubbing surfaces. This relieves NP starvation and thus improves the 

friction-reduction and anti-wear abilities, leading to a declining trend of the COF and ball wear [45-47]. 

When TiO2 NPs are excessive, such as the case of 8.0 wt%, the TiO2 NPs are sparsely populated in the wear 

track. This is because the NPs can accumulate around the contact region to form a barrier, which reduces 

the extraneous supply of NPs from the outer region [48]. Moreover, the NPs tend to agglomerate and hence 

increase their size. Both the block of NPs into the contact region and agglomerated NPs would aggravate 

the friction and wear [49], and therefore result in a higher COF and more severe ball wear, compared to 

those of 4.0 wt% TiO2. 

 

 

 

 

 

  

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 SEM images of worn disk surfaces lubricated by (a) 0.4 wt% TiO2, (b) 1.0 wt% TiO2, (c) 4.0 wt% 

TiO2, and (d) 8.0 wt% TiO2, and EDS spectra of (e) 4.0 wt% TiO2 and (f) 8.0 wt% TiO2.  
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4.2 Effect of nanoparticles at elevated temperatures 

Fig. 16 shows the SEM images and EDS mappings of the worn disk surfaces using the nanolubricants 

containing 0.4, 1.0, 4.0 and 8.0 wt% TiO2 at the elevated temperature of 200 ℃. It is found from Fig. 16(a) 

that TiO2 NPs are scarcely distributed in the wear track, indicating that NPs may have played similar 

lubrication effect to that at ambient temperature. In contrast, small pieces of TiO2 films that have loose 

microstructures are found to be deposited in the wear track when the nano-TiO2 concentration increases to 

1.0 wt% (see Fig. 16(b)). Such a lubricating film is observed over the entire wear track when the nano-TiO2 

concentration increases to 4.0 wt%, as shown in Fig. 16(c). The lubricating film appears like a type of 

“semisolid film” that consists of TiO2 NPs and glycerol, since the water is expected to be fully evaporated 

at 200 ℃, while glycerol has a much higher boiling temperature of 290 ℃ [50]. As glycerol is a viscous 

liquid, this semisolid film is supposed to have similar lubrication effect to the protective film formed by the 

oil containing NPs, which greatly facilitates the decrease of COF and ball wear [51, 52]. A further increase 

of nano-TiO2 concentration to 8.0 wt% would enhance the semisolid film, i.e. the film becomes thicker and 

denser, as shown in Fig. 16(d). However, a thicker and denser film may impede the movement of the ball, 

and thus lead to a higher COF than that of 4.0 wt% TiO2. Nevertheless, the ball wear is not deteriorated 

significantly, as the semisolid film can prevent the ball from direct contact with the disk. The semisolid 

film formed at 200 ℃ is expected to improve the tribological performance, also alleviate the sticking 

phenomenon occurred on the ball surface, as shown in Fig. 8. 

It should be noted that the iron oxides are inevitably generated, especially when the water-based lubricants 

contact the hot disks at 200 ℃. The EDS mappings of the element oxygen shown in Fig. 16 are also 

indicative of iron oxides other than TiO2 NPs. It has been reported that oxidation of the steel surfaces leads 

to low friction and mild wear, irrespective of the initial lubrication condition [53, 54]. In the cases of pure 

water and water-based nanolubricants, the contribution of generated iron oxides to the friction and wear is 

deemed nearly identical, since water is the main composition in the lubricant. For water-based 

nanolubricants with high concentrations of nano-TiO2, the roles of TiO2 NPs are thus dominant. 

 

 

 

 

 

         



    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 SEM images and EDS mappings of the worn disk surfaces lubricated by (a) 0.4 wt% TiO2, (b) 1.0 

wt% TiO2, (c) 4.0 wt% TiO2, and (d) 8.0 wt% TiO2 at 200 ℃. 

Fig. 17 shows the SEM images and EDS mappings of the worn disk surfaces with the nanolubricants 

containing 0.4, 4.0 and 8.0 wt% TiO2 at 500 ℃. It is seen from Fig. 17(a) that there is a cluster of TiO2 NPs 

and iron oxides scattered in the wear track, which greatly aggravates the friction and wear, and thus 

produces apparent scratches on the ball surface (see Fig. 12(c)) with severe ball wear (see Fig. 13(b)). When 

the nano-TiO2 concentration increases to 4.0 wt%, the wear track is completely covered by a solid layer 

that is only composed of loose TiO2 NPs (see Fig. 17(b)). This is because both water and glycerol are 

vaporised at 500 ℃, the TiO2 NPs thus form the solid layer under the pressure of contact between the ball 

and disk. The loose TiO2 layer behaves like a coating layer on the rubbing surface, which prevents metal 

surfaces from direct contact, and therefore improves the lubrication performance [2, 55]. In contrast, the 

nanolubricant containing 8.0 wt% TiO2 appears to have formed a very compact solid layer under the 

elevated temperature of 500 ℃, as shown in Fig. 17(c). As the compact layer is harder than the loose one, 
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the ball lubricated by 8.0 wt% TiO2 thus suffers more severe wear than that lubricated by 4.0 wt% TiO2. 

Besides, the TiO2 NPs agglomerated around the contact region could cause extra friction on the rubbing 

surfaces [23], leading to a higher COF and a wider wear scar of the ball, compared to those of 4.0 wt% 

TiO2. With the temperature increases from 200 to 500 ℃, therefore, the increased COF and ball wear are 

dependent on a transfer from metal-on-semisolid film contact to metal-on-solid layer contact. It is similar 

to the case happened at 200 ℃ that the TiO2 NPs dominate the contribution to improve the tribological 

properties of water-based nanolubricants. 

    

 

 

 

 

 

 

 

 

 

 

Fig. 17 SEM images and EDS mappings of the worn disk surfaces lubricated by (a) 0.4 wt% TiO2, (b) 4.0 

wt% TiO2, and (c) 8.0 wt% TiO2 at 500 ℃. 
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4.3 Friction and wear mechanisms 

Fig. 18 schematically illustrates the friction and wear mechanisms involved in the ball-on-disk tests at 

ambient and elevated temperatures using the water-based nanolubricants. When the Cr steel ball slides 

against the relatively rough mild steel disk at ambient temperature (see Fig. 18(a)), the spherical TiO2 NPs 

suspended in the lubricant play the roles of ball bearings in the contact region, so their rolling and polishing 

effects enable the reduction of COF between the rubbing surfaces, and thus decrease the ball wear. Because 

the disk surface has machined striations, TiO2 NPs can be trapped in the valleys working together with the 

NPs supplemented from the outer region. With the nano-TiO2 concentration increases from 0.4 to 4.0 wt%, 

there is an increasing number of effective TiO2 NPs behaving in the contact region, indicating progressively 

improved lubrication performance. However, a further increase of nano-TiO2 concentration up to 8.0 wt% 

may accelerate the agglomeration of TiO2 NPs. This thus promotes the formation of a barrier that blocks 

the continuous supply of TiO2 NPs from the outer region, leading to the increased COF and ball wear. The 

lubrication mechanisms at 200 ℃ are somehow different from those at the ambient temperature, which are 

associated with the formation of a semisolid film that consists of TiO2 NPs and glycerol, as shown in Fig. 

18(b). The semisolid film prevents the ball from direct contact with the disk, thereby decreasing the friction 

and ball wear. A maximal nano-TiO2 concentration of 8.0 wt%, however, results in a thickened semisolid 

film, which may impede the movement of the ball and thus increase the COF. When the disk is further 

heated up to 500 ℃, the semisolid film is transformed to a solid layer which covers the entire disk surface, 

as shown in Fig. 18(c). As the solid layer is only composed of TiO2 NPs which is harder than the semisolid 

film, this would result in higher COF values and more severe ball wear, compared to those caused by the 

semisolid film formed at 200 ℃. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Schematic illustration of friction and wear mechanisms using the water-based nanolubricants at (a) 

ambient temperature, (b) 200 ℃ and (c) 500 ℃. 

5. Conclusions  

In this study, ball-on-disk tribological tests were conducted at ambient and elevated temperatures of 200 

and 500 ℃ using the water-based nanolubricants containing different nano-TiO2 concentrations from 0.4 to 

8.0 wt%. The friction and wear behaviours of the chrome steel ball were investigated in terms of the COF 

and wear area of the ball. The conclusions are drawn as follows. 

(1) The use of water-based nanolubricants containing different nano-TiO2 concentrations greatly decreases 

the COF and ball wear at both ambient and elevated temperatures, in comparison to the benchmark 

values obtained from the dry and water conditions. The optimal concentration of 4.0 wt% TiO2 exhibits 

the best lubrication performance among all the lubrication conditions.  

(2) At ambient temperature, the COF and ball wear obtained under dry condition can be decreased by 40% 

and 82.5%, respectively, which is ascribed to the rolling and polishing effects contributed by TiO2 NPs.  

(3) At 200 ℃, the COF and ball wear obtained under dry condition are decreased by 58.9% and 88.1%, 

respectively, due to the formation of a semisolid film that consists of TiO2 NPs and glycerol. 

(4) At 500 ℃, the COF and ball wear obtained under dry condition are reduced by 39.5% and 85.5%, 

respectively. The lubrication mechanism is dependent on the formation of a solid layer that is only 

composed of TiO2 NPs.  
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