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also operated under identical operating conditions for comparison. Depending on the micropollutant, the 
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formed following the activation of PS at the DCMD operating temperature (i.e., 40 °C) achieved 
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nitrogen (40%) from the secondary treated wastewater. This helped to reduce the fouling layer on the 
membrane-surface in the PS-assisted DCMD system. PS-addition appears to slightly increase the toxicity 
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Highlights: 
 Combined persulfate (PS)-membrane distillation improves micropollutant (MP) removal 
 MP properties governed their degradation by PS from secondary treated wastewater 
 MP degradation by PS led to their consistent removal by membrane 
 Effluent organic matter degradation by PS helped mitigate membrane fouling 
 Final treated water was non-toxic as confirmed by bioluminescence toxicity assay 
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Abstract:  
In this study, long-term performance of a persulfate (PS)-assisted direct contact membrane distillation 

(DCMD) process was examined for the treatment of secondary treated effluent spiked with a mixture 

of micropollutants including three pesticides and nine pharmaceuticals. A stand-alone DCMD 

(‘control’) was also operated under identical operating conditions for comparison. Depending on the 

micropollutant, the stand-alone DCMD achieved 86 to >99% removal. In comparison, removal by the 

PS-assisted DCMD was >99% for all investigated micropollutants. This was attributed to the fact that 

sulfate radicals (SO4
– •) formed following the activation of PS at the DCMD operating temperature (i.e., 

40 ºC) achieved micropollutant-specific degradation, which reduced the accumulation of 

micropollutants in the feed. Chemical structures of the micropollutants governed their degradation by 

PS. Effective degradation (>90%) was achieved for micropollutants that contain strong electron-

donating functional groups (EDGs) in their molecules (e.g., amitriptyline and trimethoprim). 

Micropollutants containing both strong electron-withdrawing functional groups (EWGs) and EDGs in 

their molecules were moderately degraded (60-80%). In addition to the micropollutants, activated PS 

significantly degraded total organic carbon (70%) and total nitrogen (40%) from the secondary treated 

wastewater. This helped to reduce the fouling layer on the membrane-surface in the PS-assisted DCMD 

system. PS-addition appears to slightly increase the toxicity of wastewater, but with effective retention 

of PS and degradation products, DCMD permeate (i.e., treated effluent) was not toxic. This is the first 

study demonstrating the performance of the persulfate oxidation process in a continuous-flow 

membrane system for micropollutant removal and membrane fouling control. 

Keywords: heat-activated persulfate; mass transfer coefficient, membrane distillation; membrane 

fouling; micropollutants; sulphate radicals, toxicity analysis  
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1. Introduction 
Micropollutants such as pharmaceuticals and pesticides are organic contaminants that are ubiquitous in 

wastewater at trace concentrations, i.e., from nanogram to up to a few micrograms per litre [1, 2]. 

Current biological wastewater treatment processes such as the conventional activated sludge process 

and membrane bioreactors (MBR) are effective only for a few specific groups of micropollutants [3], 

particularly hydrophobic and/or readily degradable micropollutants, i.e., those containing electron-

donating functional groups (EDGs). On the other hand, micropollutants that are either structurally 

complex or contain an electron-withdrawing functional group (EWG) in their molecule are resistant to 

biodegradation. Among different classes of micropollutants, pharmaceuticals (e.g., carbamazepine and 

diclofenac) and pesticides (e.g., atrazine and linuron) that generally contain strong EWGs in their 

molecules are poorly degraded by activated sludge, consequently resulting in their occurrence in 

secondary treated effluent [4-6]. This raises significant concern due to their potential harmful impact 

on aquatic organisms and even humans in the case of prolonged ingestion. Therefore, an effective 

tertiary treatment process is required for removal of micropollutants such as pharmaceuticals and 

pesticides, to produce product water suitable for safe disposal and reuse. 

Recently membrane distillation (MD) has gained significant attention as an effective separation process 

[7, 8]. MD is a thermally driven membrane separation process; however, it requires a lower operating 

temperature than conventional distillation processes such as fractional distillation. During the MD 

process, water in vapour form moves via diffusion through a microporous hydrophobic membrane from 

a higher temperature feed solution to a lower temperature permeate solution. This occurs due to the 

vapour pressure gradient developed by the temperature difference between the sides of the membrane 

[9, 10]. Since the water moves across the membrane in vapour form, MD can theoretically provide 

complete removal of non-volatile pollutants [7, 11, 12]. Furthermore, the compatibility of the MD 

process with low-grade waste heat and solar thermal energy [9] makes its application attractive in 

various fields, including water desalination and wastewater treatment. 

The MD process has been predominantly assessed for the desalination of sea and brackish water, 

particularly for hyper-saline feed, because, being a thermally driven process, water flux in MD is 

negligibly affected by the feed osmotic pressure as compared to the pressure-driven membrane 

desalination processes (e.g., RO and NF) [8, 13, 14]. Despite the potential to date, the performance of 

MD for the removal of micropollutants has been assessed only in a few short-term batch studies. For 

instance, Wijekoon et al. [7] investigated the removal of micropollutants including pesticides and  

pharmaceuticals by MD operated in batch mode for 24h. They observed micropollutant removal to be 

governed by their volatility and hydrophobicity. In another short-term study by Han et al. [15], MD 

achieved 90-95% removal of a nonsteroidal anti-inflammatory drug ibuprofen from synthetic 

wastewaters mimicking surface water or reverse-osmosis concentrate. Although these studies provide 

useful insights, it is important to note that a continuous-flow operation is required to analyse and 
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understand process stability. To date, only a handful of studies have assessed micropollutant removal 

in continuous-flow mode [8, 16]. The authors reported 70 to 99% removal of the investigated 

micropollutants depending on their physicochemical properties. Two particular aspects highlighted in 

these studies were: (a) membrane fouling, significantly reducing permeate flux; and (b) additional 

requirement of treatment and disposal of membrane-concentrate rich in micropollutants as well as other 

organic and inorganic impurities. 

Unlike pressure-driven membrane separation processes such as ultrafiltration and nanofiltration, 

strategies for the mitigation of MD membrane fouling during treatment of secondary treated effluent 

have not been studied to date. To control fouling of pressure-driven membranes, augmentation of 

different physicochemical processes such as activated carbon adsorption [17], coagulation [18] and 

advanced oxidation processes [19, 20] have been assessed. While these physicochemical processes can 

help reduce membrane fouling by removing the residual organic matter from secondary treated effluent 

[21, 22], the suitability of these techniques is case-specific. For example, coagulation may not 

effectively remove hydrophilic and low molecular weight organic matter that could cause membrane 

fouling via pore blockage mechanism [22, 23]. Adsorption can remove low molecular weight organic 

matters more effectively [17, 21, 24]; however, some studies report an adverse impact of activated 

carbon dosing to membrane reactors. For instance, Shao et al. [25] investigated a combined powdered 

activated carbon (PAC) – ultrafiltration process for membrane fouling mitigation during the treatment 

of surface water. They observed that the interaction of PAC with humic substances led to the formation 

of a combined fouling layer on the surface of the ultrafiltration membrane, which caused rapid 

membrane fouling [25]. Notably, both coagulation and adsorption remove organic matters by 

transferring them from water to a solid phase. Therefore, disposal of the large quantities of toxic sludge 

or solid waste produced is a serious concern. 

Among the advanced oxidation processes, ozonation has been mostly investigated for pressure-driven 

membrane fouling control [26, 27]. Ozonation can also degrade micropollutants commonly detected in 

secondary treated effluent [1, 28]. However, ozone residuals may interact with membrane material, and 

can reduce the  membrane lifetime [29]. Activated persulfate (PS) is an emerging advanced oxidation 

process that can degrade both natural organic matter and recalcitrant micropollutants including 

pharmaceuticals and pesticides [30, 31]. Therefore, it is reasonable to envisage that activated PS can 

simultaneously degrade micropollutants and organic foulants during MD operation. However, this has 

not been verified yet. 

PS is stable at room temperature, but can be activated by various agents such as transition metals (e.g., 

iron), heat, and ultraviolet (UV) light to form one or more sulphate radicals (SO4
– •), which are highly 

reactive [30]. PS activation by heat and UV light produce two SO4
– • radicals (Equation 1), while only 

one SO4
– • radical is generated following activation by transition metals such as Fe2+ (Equation 2). This 
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indicates that activation by heat or UV light may provide more efficient treatment compared to 

activation by a transition metal [30, 32].  

𝑆𝑆2𝑂𝑂8 2− + ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 →  2 𝑆𝑆𝑂𝑂4 2−.   
 

Eq. (1) 

𝑆𝑆2𝑂𝑂8 2− +  𝐹𝐹𝐹𝐹+2 →  𝐹𝐹𝐹𝐹+3 +  𝑆𝑆𝑂𝑂4 2−. 
 

Eq. (2) 

PS activated by UV light was reported to control fouling during the treatment of surface water by an 

ultrafiltration membrane [21]. In another study by Chen et al. [33], fouling of an ultrafiltration 

membrane caused by humic substances and sodium alginate was significantly reduced by 

peroxymonosulfate activated by Fe2+. In addition, the combined peroxymonosulfate (50 µM) – Fe2+ (50 

µM) process achieved above 99% degradation of atrazine, outperforming atrazine removal by 

coagulation [33]. Heat activated PS has been also reported to achieve 40-100% removal of a few 

investigated micropollutants such as atrazine, aniline, monochlorobenzene and 2,4-dichlorophenol [30]. 

Since the temperature of the feed solution is usually kept at 40-45oC during the treatment of secondary 

treated effluent by MD [7, 16], an additional PS activator will not be required for generation of sulphate 

radicals. This makes PS a suitable candidate to be integrated with MD. A thorough literature survey 

suggests that an integrated PS-assisted MD process has not been investigated for micropollutant 

removal and membrane fouling control. To-date, research related to persulfate oxidation process has 

mainly focused on PS activation and the identification of radicals. In terms of micropollutant removal, 

most PS studies assessed degradation of single micropollutants at concentrations significantly higher 

than that environmentally relevant [34, 35]. Since wastewater contains a wide range of micropollutants 

at trace concentration, it seems more suitable to assess PS performance for the degradation of 

micropollutant mixtures at environmentally relevant concentrations.    

This study was conducted with an aim to assess the performance and stability of a PS-assisted MD 

process for the treatment of secondary treated effluent (i.e., MBR permeate). The fate of nine 

pharmaceuticals and personal care products (PPCPs) and three pesticides during the PS-assisted MD 

was investigated and compared to a ‘control’ MD process (without PS). Basic water quality parameters 

such as total organic carbon (TOC) and total nitrogen (TN) as well as membrane water productivity was 

thoroughly evaluated to determine the fouling behaviour. At the end of operation with and without PS 

dosing, MD membranes were characterized by scanning electron microscopy (SEM) - energy dispersion 

spectrometry (EDS) to gain an in-depth understanding of the fouling control achieved by PS. 

2. Material and methods 

2.1. Chemicals  
Potassium persulfate (PS) was purchased from Sigma-Aldrich (Australia). The stock solution (100 mM) 

of PS was prepared in ultrapure Milli-Q water and stored at 4ºC before use. HPLC grade acetonitrile, 

methanol, dichloromethane and formic acid were used for quantification of micropollutants as 
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explained in Section 2.4.2. As noted in Section 2.3.2, analytical grade glucose, peptone, urea, 

monopotassium phosphate, magnesium sulphate, ferrous sulphate, and sodium acetate were used to 

make the synthetic wastewater for MBR. The permeate of the MBR was used as feed for the MD system. 

The feed to the MD system was dosed with 12 micropollutants including three pesticides and nine 

PPCPs (Table 1). These were selected based on their widespread occurrence in municipal wastewater 

and their reported ineffective removal by biological wastewater treatment plants including MBRs [1, 

4]. These chemicals were also purchased from Sigma-Aldrich (Australia). A combined stock solution 

of micropollutants was prepared in pure methanol and stored at −18ºC in dark. Relevant 

physicochemical properties of the selected micropollutants are presented in Table 1, while their 

chemical structures are given in Supplementary Data Table S1. 
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Table 1. Physicochemical properties of micropollutants selected for this study 

Type Name Molecular weight a 
(g/mol) 

log D @ 
pH=7 a pKa a pKH @ pH=7 b Charge at 

pH=7 
Pharmaceuticals 
and personal care 
products (PPCPs) 

Acetaminophen 152 0.46 0.52 8.3 
Negative 

 
Bezafibrate 362 -0.93 3.29 - 
Diclofenac 296 1.77 4.18 11.51 
Sulfamethoxazole 253 -0.96 5.18 11.81 
Amitriptyline 277 2.28 9.18 8.18 

Neutral 
Carbamazepine 236 1.89 13.94 9.09 
Primidone 218 0.83 12.26 13.93 
Triclosan 290 5.28 7.8 6.18 
Trimethoprim 290 0.27 7.04 13.62 

Pesticide 
Atrazine 216 2.64 2.27 7.28 Negative Linuron 249 3.12 12.13 8.71 
Pentachlorophenol 266 2.85 4.68 7.59 Neutral 

a molecular weight, log D (water partition coefficient) and pka
 (acid dissociation coefficient) were obtained from the 

SciFinder Scholar database 
b pKH = - log10 H, where H is Henry’s law constant and defined as vapour pressure×molecular weight/water solubility.  
“−”: not available 

 

2.2. Experimental setup 
A laboratory-scale direct contact membrane distillation (DCMD) system was used for the treatment of 

secondary treated effluent (Figure 1), due to the ease of operation as compared to other MD 

configurations, e.g., air gap MD [9]. The DCMD setup consisted of a 3 L glass reactor (hereafter 

referred to as MD feed tank), a membrane module, a glass distillate tank (5 L) and two circulation gear 

pumps (Micropump Inc., Vancouver, WA, USA). Operated via a water level controller, a peristaltic 

pump (Cole-Parmer, Vernon Hills, IL, USA) supplied secondary treated water from a storage tank to 

the MD feed tank. The temperature of the MD feed tank, which was covered, was maintained at 40 ± 

1.5ºC by using a heating immersion circulator (Julabo, Seelbach, Germany), while a chiller (Thermo 

Scientific, Waltham, MA, USA) was used to keep the temperature of the distillate tank at 20 ± 0.5ºC.  

 

Figure 1. Schematic representation of the laboratory-scale DCMD setup used in this study 

The MD membrane module was made of acrylic plastic. It was comprised of two identical cells, each 

engraved with flow channels 145 mm long, 95 mm wide and 3 mm deep as described previously [36]. 
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A hydrophobic polytetrafluoroethylene (PTFE) membrane with a thickness, nominal pore size, and 

porosity of 60 μm, 0.2 μm, and 80%, respectively, was purchased from Ningbo Porous Membrane 

Technology (Ningbo, China). The media from the MD feed tank and the distillate tank were passed 

through the opposite membrane cells at a recirculation flowrate of 1 L/min (corresponding to a cross 

flow velocity of 9 cm/s) using two rotameters. The partial vapour pressure gradient developed due to 

difference in temperature allows water to move across the membrane as vapour, consequently 

increasing the volume of water in distillate tank. This tank was placed on a precision balance (Mettler-

Toledo, Kings Park, NSW, Australia). Change in the weight of distillate water was recorded in a 

computer via BalanceLink software (Mettler Toledo) to determine the MD water flux. 

2.3. Experimental protocol  

2.3.1. DCMD process characterization  

The DCMD process was characterised by calculating the mass transfer coefficient (Km) using a 

procedure previously described by Duong et al. [10]. Briefly, the DCMD system was operated in batch 

mode at different feed temperatures (i.e., 40, 45 and 50 ºC) for 1 h with ultrapure Milli Q water. 

Distillate temperature was kept constant at 20 ºC, and recirculation flow rate of both feed and distillate 

was maintained at 1 L/min. The permeate flux was recorded every 5 min for 1 h. 

Permeate flux of DCMD can be theoretically calculated using Equation 3 as given below: 

𝐽𝐽 =  𝐾𝐾𝑚𝑚  × (𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −  𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 
 

Eq. (3) 

where J is the permeate flux (L/m2 h) of DCMD, Km is the mass transfer coefficient (L/m2 h Pa), Pfeed is 

the vapor pressure of water in MD feed, and Pdistillate is the vapor pressure of water in MD distillate. Pfeed 

and Pdistillate can be determined by using Equation 4 [37]: 

𝑃𝑃 =  𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  ×  𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  ×  𝑃𝑃𝑜𝑜 
 

Eq. (4) 

where xwater and αwater are the molar fraction and activity of water, respectively, and Po is the vapor 

pressure of water in MD feed and distillate. Since DCMD was characterised with ultrapure Milli-Q 

water, value of both xwater and αwater is equal to 1. Vapor pressure of water in MD feed and distillate can 

be calculated by using Antoine’s Equation [10, 37] as given below: 

𝑃𝑃𝑜𝑜 =  exp (23.1964−  
3816.44
𝑇𝑇 − 46.13

) 
 

Eq. (5) 

where T is the absolute temperature of the feed or distillate streams.  

2.3.2. Treatment of secondary effluent by DCMD  

Secondary treated effluent from a lab-scale MBR was collected for further treatment by DCMD. The 

MBR was operated for around one year while it was continuously fed with synthetic wastewater 
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containing 400 mg/L glucose, 100 mg/L peptone, 35 mg/L urea, 17.5 mg/L monopotassium phosphate, 

17.5 mg/L magnesium sulphate, 10 mg/L ferrous sulphate, and 225 mg/L sodium acetate. The 

wastewater had a chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN) and 

PO4
3--P concentrations of 650, 175, 25, and 15 mg/L, respectively. The hydraulic retention time (HRT) 

and solids retention time of the MBR was 12 h and 10 d, respectively. Characteristics of the secondary 

effluent (i.e., MBR permeate) to be treated by DCMD are given in Table 2. 

Table 2. Characteristics of secondary treated effluent i.e., DCMD feed (n = 10).  

Parameter Unit Value (minimum – maximum) 
pH - 6.84 – 7.2 
Conductivity  µS/cm 185 – 210 
Total organic carbon (TOC) mg/L 5.9 – 11 
Total nitrogen (TN) mg/L 4.33 – 8.9 
NH4

+-N mg/L 1.9 – 2.9 
PO4

3--P mg/L 4.4 – 7.1 
 

Prior to the commencement of this study, the MBR-treated effluent was spiked with the selected 

pharmaceuticals and pesticides at 5 µg/L each. PS was directly added to the feed media at a 

concentration of 1 mM after every 2×HRT. Concentration of PS was selected based on its performance 

in preliminary batch experiments at different PS concentrations, i.e., 0–2 mM (Supplementary data 

Table S2), as well as a comprehensive literature survey [30, 38]. Temperature of MD feed tank and 

distillate tank was maintained at 40 ± 1.5ºC and 20 ± 0.5ºC, respectively. A DCMD system operated 

without PS dosing served as the ‘control’. The spiked secondary treated wastewater was treated by 

DCMD with and without PS dosing in continuous-flow mode for a period of 10 d (i.e., 13×HRT).  

Duplicate samples from MD feed tank and distillate tank were collected after every 2×HRT for 

micropollutant quantification. In addition, samples were collected on daily basis to measure TOC and 

TN removal by the control and PS-assisted DCMD. At the start of each experiment with and without 

PS dosing, 1.5 L of Milli-Q was added in the distillate tank that served as the initial distillate. Thus, 

TOC, TN and micropollutant concentrations in MD permeate were corrected for dilution by considering 

the initial working volume of the distillate tank. At the end of DCMD operation with and without PS, 

MD membranes were collected and characterized by SEM-EDS to gain an in-depth understanding of 

the fouling control achieved by PS.  

2.4. Analytical methods 

2.4.1. Analysis of basic quality parameters 

Samples from micropollutant-spiked secondary treated effluent in MD feed tank and distillate tank were 

collected on daily basis for analysis. TOC and TN concentrations were measured using a TOC/TN-VCSH 

analyser (Shimadzu, Japan). TOC and TN removal efficiency by the stand-alone and PS-assisted 
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DCMD were calculated based on the method described in Section 2.4.2. The pH and conductivity were 

measured using an Orion 4 Star Plus portable pH/conductivity meter (Thermo Scientific, Waltham, MA, 

USA) 

2.4.2. Analysis of pharmaceuticals and pesticides 

Micropollutants were analysed using a Shimadzu LC-MS system (LC-MS 2020) after solid phase 

extraction (SPE). A detailed description of this method is available elsewhere [39]. Briefly, 

micropollutants were extracted using 6 mL Oasis HLB cartridges (Waters, Milford, MA, USA). The 

HLB cartridges were first pre-conditioned with 5 mL dichloromethane and methanol solution (1:1 v/v), 

5 mL methanol and 5 mL Milli-Q water. The pH of the samples was adjusted to 2-3 using 2 M H2SO4, 

and then loaded onto the cartridges at a flow rate of 1–4 mL/min. The cartridges were dried for 30 min 

under gentle stream of nitrogen. The extracted samples were eluted using 7 mL methanol and 7 mL 

dichloromethane and were dried in a water bath at 40ºC for 3-4 h. The residues were redissolved in 400 

µL methanol for quantification by LC-MS.  

The LC-MS system was equipped with an electrospray ionization (ESI) interface, and a Phenomenex 

Kinetex C8 chromatography column (50 × 4.6 mm) was used for the separation of micropollutants. 

Milli-Q water buffered with 0.1% (v/v) formic acid, and HPLC grade acetonitrile was used as the mobile 

phase during the analysis. Mobile phase flow rate and sample injection volume were 0.5 mL/min and 

10 µL, respectively. Quantification of acetaminophen, primidone, trimethoprim, sulfamethoxazole, 

carbamazepine, bezafibrate, atrazine, linuron, and amitriptyline was performed under ESI positive 

ionization [M+H]+ mode, while ESI negative ionization [M-H]− mode was adopted for 

pentachlorophenol, diclofenac and triclosan [39]. During the analysis, detector voltage, desolvation line 

temperature and heating block temperature were kept constant at 0.9 kV, 250ºC, and 200ºC, 

respectively. The analysis was conducted in gradient elution mode as shown in Supplementary Data 

Table S3. High purity nitrogen that acted as both the nebulizing and drying gas was supplied 

continuously at a flow rate of 1.5 and 10 L/min, respectively. The calibration curves were prepared by 

analysing the known concentrations of analytes that ranged between 0.1 and 20 µg/L. The correlation 

coefficient of all the calibration curves was above 0.99. 

Removal of micropollutants by PS (R1) and DCMD (R2) was calculated by using Equation (6) and (7), 

respectively:   

𝑅𝑅1 = 100 × (1 −
𝐶𝐶𝑆𝑆𝑆𝑆
𝐶𝐶𝑓𝑓

) Eq. (6) 

𝑅𝑅2 = 100 × (1 −
𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓

) Eq. (7) 

where, Cf, Csu and Cp are the concentration (ng/L) of a specific pollutant in secondary treated effluent 

(i.e., storage tank in Figure 1), MD feed and MD permeate, respectively.  
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The mass of a micropollutant degraded by PS was calculated as follows:  

Cf × Vf  = (Csu × Vsu) + (Cp × Vp) + Mass degraded by PS  Eq. (8) 

Where, Vf, Vsu and Vp represents the volume of secondary treated effluent, MD feed and permeate, 

respectively. 

2.4.3. Membrane characterization and toxicity of MD permeate 

At the end of DCMD operation with and without PS dosing, MD membranes were collected and air-

dried in a desiccator. MD membranes were then coated with an ultra-thin gold layer with a sputter coater 

(SPI Module, West Chester, PA, USA), and were characterised with a scanning electron microscopy 

(SEM) coupled with energy dispersion spectrometry (EDS) (JCM-600, JEOL, Tokyo, Japan).  

Duplicate samples were collected from secondary treated effluent, MD feed and permeate for toxicity 

analysis at the end of each experiment. Toxicity, expressed as a relative toxicity unit (rTU, the reciprocal 

of the EC20 value), was analysed by measuring the inhibition of luminescence in the naturally 

bioluminescent bacteria, Photobacterium leiognathi, using the BLT-Screen as described elsewhere 

[40].  

2.4.4. PS concentration  

The change in PS concentration following its addition to the reaction media was monitored during the 

operation of PS-assisted DCMD by using a previously developed spectrophotometric method [41]. 

Briefly, two solutions were prepared before measuring PS concentration. Solution-1 was the PS stock 

solution (100 mM). Solution-2 was prepared by dissolving 0.2 g NaHCO3 and 4 g KI in 40 mL Milli-Q 

water, mixed well and allowed to equilibrate for 15 min. Portions of Solution-1 (i.e., 0.1, 0.2, 0.4, 2 and 

4 mL) were separately added to Solution-2 to achieve final PS concentration of 0.25, 0.5, 1, 5 and 10 

mM. The standard solutions were incubated on a rotary shaker at 80 rpm for 2 h. Absorbance of the 

standard solutions was measured at a wavelength of 352 nm in 1 cm quartz cuvettes using a UV-visible 

spectrophotometer (DR6000, Hach, Loveland, CO, USA). The coefficient of determination (R2) 

obtained by drawing the calibration curve was >0.98 (Supplementary data Figure S1). For determining 

the concentration of PS during the operation of PS-assisted DCMD, 20 mL sample collected from MD 

feed was added to 40 mL Solution-2, and the resulting solution was incubated for 2 h before measuring 

its absorbance at 352 nm using a UV-visible spectrophotometer as described above. The concentration 

of the PS was corrected by multiplying it with the dilution factor of 3.  

3. Results and discussion 

3.1. Mass transfer coefficient (Km) of DCMD 
The mass transfer coefficient (Km) of the DCMD system in the current study was determined 

experimentally using ultrapure Milli-Q water as feed following Equations 3−5. Mass transfer (denoted 

by Km value) during DCMD operation can be affected by concentration and temperature polarization. 
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Since concentration of salts in Milli-Q water is negligible, the effect of concentration polarization on 

Km could be ignored. Temperature polarization effect has been incorporated in Equations 3−5 for the 

determination of Km. The significance of temperature polarization effect can be assessed by comparing 

Km values at different feed temperatures [9, 10]. Despite the increase in permeate flux (Figure 2a), Km 

reduced with the increase of MD feed temperature from 40 to 50ºC (Figure 2). This indicates that 

temperature polarization effects become severe at high feed temperature, which is consistent with the 

available literature [10, 42, 43]. Therefore, we operated the DCMD system at a feed temperature of 

40ºC, resulting in a Km value 2.7 L/m2.h.Pa. 
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Figure 2. Permeate flux (a) and mass transfer coefficient (b) of the DCMD system determined 

experimentally with Milli-Q water as feed at a temperature of 40, 45 and 50 ºC. Temperature of the 

distillate reservoir was kept at 20 ºC, while the cross-flow velocity was maintained at 1 L/min.     

3.2. Removal of micropollutants 

3.2.1. Overall removal by MD and PS-assisted MD 

Overall removal of the selected micropollutants by both the standalone and PS-assisted DCMD are 

presented in Figure 3. In a stand-alone DCMD process, membrane retention is the only mechanism of 
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micropollutants removal. Because water moves across an MD membrane in vapour form, the extent of 

micropollutant removal by the membrane is influenced by the water partition coefficient (log D) and 

vapour pressure of the target pollutant [6]. Noting that pKH = -log10 H (where, H is the Henry’s Law 

constant and is equal to vapour pressure × MW/water solubility), in general, micropollutants with a low 

‘pKH / log D’ ratio (e.g., less than 2.5) are partially removed by the MD membrane in a stand-alone 

DCMD system [7, 44]. In the current study, the stand-alone DCMD achieved micropollutant-specific 

removal that ranged between 86 and 100%. Out of the 12 selected micropollutants, six including five 

PPCPs (carbamazepine, trimethoprim, bezafibrate, primidone and acetaminophen) and a pesticide 

(pentachlorophenol) exhibited removal greater than 98% (Figure 3). For the remaining micropollutants, 

MD achieved a removal of 86% for atrazine, 91% for triclosan, 92% for amitriptyline, 94% for 

diclofenac, 95% for sulfamethoxazole, and 96% for linuron (Figure 3). Song et al. [16] investigated the 

performance of a stand-alone DCMD system for the treatment of anaerobic-MBR permeate containing 

a mixture of micropollutants. Consistent with the results of the current study, they also reported good 

but incomplete removal (80-95%) of a few micropollutants such as atrazine, diclofenac, 

sulfamethoxazole, linuron and triclosan [16].  

It is interesting to note that, following PS dosing at a concentration of 1 mM, >99% removal efficiencies 

were observed for all 12 investigated micropollutants (Figure 3). In previous studies, beneficial effects 

of integrating an activated sludge-based or enzymatic bioreactor with DCMD have been reported [45]. 

For instance, the overall micropollutant removal was significantly improved when an enzymatic 

bioreactor was integrated with a DCMD system [36, 44]. This was attributed to the enzymatic 

biodegradation of micropollutants and their simultaneous MD retention. The current study demonstrates 

the benefit of integrating PS-assisted degradation with DCMD for the first time. Further discussion 

regarding micropollutant degradation is provided in Section 3.2.2.  



15 
 

Tr
ic

lo
sa

n

A
tra

zi
ne

Pe
nt

ac
hl

or
op

he
no

l

Li
nu

ro
n

A
m

itr
ip

ty
lin

e

A
ce

ta
m

in
op

he
n

C
ar

ba
m

az
ep

in
e

D
ic

lo
fe

na
c

Su
lfa

m
et

ho
xa

zo
le

Tr
im

et
ho

pr
im

Pr
im

id
on

e

B
ez

af
ib

ra
te

0

20

40

60

80

100
R

em
ov

al
 e

ff
ic

ie
nc

y 
(%

)

 Stand-alone MD  PS-assisted MD

0

5

10

15

20

45

50

55

60

 Absolute pKH /log D ratio (pH=7)

A
bs

ol
ut

e 
pK

H
 /l

og
 D

 ra
tio

 (p
H

=7
)

 

Figure 3. Performance of the stand-alone DCMD and PS-assisted DCMD for the overall removal of 
the selected micropollutants arranged based on pKH /log D. Membrane retention was the only 
mechanism of micropollutant removal in the stand-alone DCMD, while both degradation and 
membrane retention contributed to micropollutant removal by PS-assisted DCMD. Operating 
conditions: the initial micropollutant concentration was 5 µg/L; PS dose was 1 mM; temperature of the 
MD feed (with and without PS) and the distillate (permeate) tank was kept at 40 and 20 ºC; and cross-
flow rate was 1 L/min (corresponding to cross-flow velocity of 9 cm/s). Mean removal efficiency and 
standard deviation from five duplicate samples (n=10) are presented.  

3.2.2. Degradation of micropollutants by PS  

In a stand-alone DCMD, micropollutants accumulate within the feed following their retention by the 

MD membrane. Over time, this can affect micropollutant retention. This also requires additional 

intensive treatment of MD-concentrate that needs to be periodically purged from the system. Thus, 

intermittent PS dosing was investigated for micropollutant degradation to reduce their accumulation in 

feed during DCMD operation.  

Following the absorption of heat, breaking of the peroxide bond (O–O) that bridges the sulphur atoms 

in persulfate occurs, resulting in the formation of two SO4
– • radicals as shown in Equation 1 [30]. 

Depending on wastewater characteristics, persulfate or SO4
–• radicals may react with water and/or 

organics to form secondary radicals that can also contribute to degradation of  organic impurities [30, 

46]. SO4
–• radicals can react with water to form hydroxyl (OH–•) radicals, but the abundance of the SO4

–

• and OH–• radicals is governed by the pH of reaction media (Equation 9 and 10). Under acidic conditions 

(pH<7), SO4
–• radicals are the dominant species, while OH–• is the primary reactive species under basic 
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conditions (pH>7). At neutral pH, both SO4
–• and OH–• radicals contribute equally to pollutant 

degradation [47]. Since the pH of the secondary treated effluent in this study ranged between 6.84 and 

7.2, both SO4
–• and OH–• radicals were responsible for the degradation of micropollutants in this study. 

 𝑆𝑆𝑂𝑂4 2−. +  𝐻𝐻2𝑂𝑂 →  𝑆𝑆𝑂𝑂4 2− + 𝑂𝑂𝑂𝑂. + 𝐻𝐻+            (𝑝𝑝𝑝𝑝 < 7)  
 

Eq. (9) 

𝑆𝑆𝑂𝑂4 2−. +  𝑂𝑂𝑂𝑂− →  𝑆𝑆𝑂𝑂4 2− + 𝑂𝑂𝑂𝑂.           (𝑝𝑝𝑝𝑝 > 7) Eq. (10) 

A mass balance (Equation 8) reveals that heat-activated PS achieved 25-100% degradation of the 

micropollutants (Figure 4). The tested micropollutants can be divided into three categories based on the 

performance of the heat-activated PS: (i) 90-100% degradation of four PPCPs, namely amitriptyline, 

trimethoprim, bezafibrate and acetaminophen; (ii) 60-90% degradation of three pesticides (atrazine, 

linuron and pentachlorophenol) and four PPCPs (carbamazepine, triclosan, sulfamethoxazole and 

primidone); and (iii) less than 25% degradation of the pharmaceutical compound diclofenac (Figure 4). 

Similar to biodegradation [5, 48-50], degradation of micropollutants by the heat-activated PS appears 

to be governed by their chemical structure (e.g., presence of EWGs and/or EDGs). For instance, 

micropollutants such as amitriptyline, trimethoprim and bezafibrate that contain amine (– NH2), alkyl 

(–R) or acyl (– COR) EDGs were readily degraded (Figure 4). This is because sulphate radicals are 

electrophilic and can achieve faster degradation of pollutants containing strong EDGs [51]. However, 

even some of the compounds with strong EWGs underwent significant degradation. Of particular 

interest was the significantly higher PS-mediated degradation of pesticides, particularly atrazine and 

linuron, compared to biodegradation by conventional activated sludge and fungal enzymes [5, 48, 49].  
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Figure 4. Degradation of the selected micropollutants during the treatment of secondary treated effluent 

by PS-assisted DCMD. Each bar is labelled based on the presence of EDGs and/or EWGs in the 

molecule of micropollutants. The results are presented as average ± standard deviation (n=10). 

Operating conditions are presented in the caption of Figure 3. 

Literature on the degradation of micropollutants by heat-activated PS is scarce, and to date has been 

generally focused on PS activation routes in the presence of a single micropollutant. For instance, Deng 

et al. [34] reported only 12% degradation of carbamazepine following 2 h treatment with heat-activated 

PS at a PS concentration and operating temperature of 1 mM and 40ºC, respectively. In a study by Ji et 

al. [35], PS (1 mM) activated by heat at 40ºC achieved 20% atrazine degradation after an incubation 

time of 120 h. Ji et al. [52] observed complete degradation of the antibiotic sulfamethoxazole within 8 

h at 50ºC. These previous experiments were done in batch mode. Instead of a single micropollutant, 

performance of heat-activated PS for the degradation of a dozen of micropollutants in their mixture was 

assessed for the first time in this study. Furthermore, this is the first set of data from a reactor operated 

in continuous-feeding mode. Although a direct comparison with previous data [34, 35] is not 

recommended due to the differences in experimental setup, higher degradation efficiencies observed in 

the current study are worth noting. 

Compared to an integrated activated sludge-DCMD system, degradation of a few micropollutants in the 

PS-assisted DCMD was more efficient. For instance, Wijekoon et al. [36] reported less than 30% 

removal for diclofenac, atrazine and carbamazepine in an activated sludge-DCMD system. Although 

diclofenac removal by both systems was comparable, PS-assisted DCMD in this study achieved 64% 

degradation of carbamazepine, and 85% degradation of atrazine (Figure 4). Future studies are 

recommended to systematically compare biodegradation vs. advanced oxidation-assisted DCMD 

process. However, that is beyond the scope of this study. 

3.2.3. Fate of micropollutants 

The overall micropollutant removal by the PS-assisted DCMD was governed by degradation and 

membrane retention. Heat-activated PS achieved over 60% degradation of all but one tested 

micropollutant (diclofenac) (Figure 4). In fact, around two-third of the compounds were degraded with 

an efficiency greater than 80% by heat-activated PS alone. Thus, degradation by PS was the main 

mechanism of removal for all micropollutants, except for diclofenac. Nevertheless, membrane retention 

also contributed significantly (3-74%) for producing a micropollutant-free (<0.1 µg/L) permeate stream 

(Figure 5). On the other hand, membrane retention was solely responsible for the removal of 

micropollutants in the stand-alone DCMD. When compared, the fate of the micropollutants in the 

investigated systems (Figure 5) shows the clear advantage of the PS-assisted DCMD for effective 

micropollutant removal and for producing a less-concentrated waste stream due to PS-assisted 

degradation. Previous studies have reported the fate of micropollutants in biodegradation-coupled 
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membrane systems [36, 44]. However, this is the first study to elucidate the fate and distribution of 

micropollutants during PS-assisted DCMD treatment. 
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Figure 5. Fate of the micropollutants in (a) PS-assisted DCMD; and (b) stand-alone DCMD operated 
separately for a period of 13×HRT. The MD feed tank was covered to avoid evaporation loss during all 
experiments. Operating conditions are presented in the caption of Figure 3.  

3.2.4. Depletion of PS during DCMD operation 

The concentration of the PS added to the DCMD reactor was monitored to determine if recurrent dosing 

of PS was required. Only a few studies have investigated the depletion of sulphate radicals during 

micropollutant oxidation [46, 53-55]. The radicals (e.g., SO4
– • and OH•) formed following PS 

activation by heat not only can react with the target pollutants but can also react with other radicals and 

non-target pollutants. The scavenging reactions (i.e., radical-radical and radical-nontarget) produce 

secondary radicals that can take part in the degradation process. However, scavenging reactions deplete 

PS by converting the SO4
– • radicals into sulphate ions [46, 51]. Depletion of PS necessitates its 

intermittent dosing to maintain the performance of the oxidation process. In this study, the concentration 

of persulfate was observed to be reduced by almost 50% over a period of 2×HRT (see Supplementary 

Data Figure S2). Thus, intermittent dosing of PS after every 2×HRT was applied to reinstate PS 

concentration to 1 mM and maintain PS-mediated degradation. Although the addition of PS would 

increase the operating cost of the treatment system, it is compensated generously by: (i) achieving 

improved micropollutant removal in DCMD; (ii) reducing the accumulation of organic impurities in the 

feed of DCMD (See section 3.3); and (iii) significantly mitigating membrane fouling (See section 3.4).  
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3.3. Removal of TOC and TN 
Overall removal of bulk organics was monitored via TOC and TN concentration in the MD feed and 

permeate (distillate). TOC and TN removal by the stand-alone and PS-assisted DCMD was consistently 

above 99% as shown in Figure 6, thus ensuring high quality treated effluent. However, effective 

retention of TOC and TN during continuous feeding also means their accumulation in MD feed tank 

(i.e, MD reactor), which may cause severe membrane fouling [16]. This aspect is more comprehensively 

discussed in Section 3.4.   

Persulfate and SO4
–• radicals can directly react with organic impurities (e.g., humic substances) to either 

degrade them or form organic radicals. The complex combination of SO4
–• chain propagation and 

termination reactions govern the overall degradation of organic impurities [30, 56, 57]. On the other 

hand, depending on the pH of the wastewater, persulfate can oxidize all forms of nitrogen to nitrate-

nitrogen (NO3
–-N). Accordingly, persulfate oxidation method has been reported as an effective alternate 

method for the determination of total nitrogen in a wide range of matrices including water and soil [58, 

59]. In a previous study, dissolved organic carbon removal by UV-activated PS (0.6 mM) was reported 

to be 80% after an irradiation time of 3 h [21]. Depending on the dose of PS, Deng and Ezyske [60] 

achieved chemical oxygen demand and ammonia-nitrogen removal of up to 95 and 80%, respectively, 

from landfill leachate. Consistent with previous studies, the current study shows significant TOC and 

TN removal by heat-activated PS.  

In this study, following effective retention by MD membrane, up to 40 and 70% degradation of TN and 

TOC, respectively, was achieved by the PS-assisted DCMD, which significantly reduced the 

accumulation of these impurities in the MD reactor (Figure 6). At the end of operation, TOC and TN 

concentrations in the MD reactor of the stand-alone DCMD (without PS) were 84 and 62 mg/L, 

respectively. By contrast, concentrations of TOC and TN were 22 and 33 mg/L, respectively at the 

conclusion of the experiment with the PS-assisted DCMD system (Figure 6). This is the first study 

demonstrating the advantage of combining PS oxidation with the MD process. Particularly, operating 

the DCMD system in a continuous flow (i.e., continuous feeding) mode helped demonstrate the 

effectiveness of PS in significantly reducing the accumulation of organics within the reactor.  
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Figure 6. TOC and TN removal by the PS-assisted MD and stand-alone MD systems operated 
separately for a period of 13×HRT. Operating conditions are presented in the caption of Figure 3. 
 
3.4. Permeate flux and membrane fouling characterization  
Permeate flux of both stand-alone and PS-assisted DCMD was monitored continuously throughout their 

operation in continuous-flow mode (Figure 7). Permeate flux of the stand-alone DCMD reduced 

gradually at a rate of 0.5 L/m2.h/d, dropping to 72% of the initial flux within 10 days (i.e., 13×HRT) of 

operation. Conversely, the flux of the PS-assisted DCMD reduced at a much slower rate of 0.19 

L/m2.h/d for the first four days, beyond which the flux almost stabilised for the remainder of the PS-

DCMD operation (Figure 7).  

Significant flux reduction during the stand-alone DCMD operation can be attributed to membrane 

fouling. A fouling layer formed on the membrane surface can significantly affect permeate flux by 

reducing the active area of membrane surface for effective mass transfer [16, 61]. The much slower flux 

reduction for PS-DCMD can be attributed to the degradation of TOC (approximately 70%, Figure 6) 

achieved by heat-activated PS, which reduced TOC accumulation in the feed of the PS-assisted DCMD 

system.  
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Figure 7. Variations in the permeate flux as a function of time. Operating conditions are given in the 
caption of Figure 3. 
 
To derive deeper insights into the fouling phenomenon, the fouling layer formed on the membrane 

surface was characterised by SEM-EDS. As shown in Figure 8, during the standalone DCMD operation, 

a dense fouling layer formed on the membrane that almost uniformly covered the surface. On the other 

hand, during the PS-assisted DCMD operation, the fouling layer on the membrane was distributed 

unevenly and covered a significantly smaller surface area. The EDS spectra revealed that the fouling 

layers were mainly composed of carbon, oxygen and iron. However, the comparison of EDS spectra 

suggests that the abundance of carbon and oxygen (main constituents of organic impurities) was 

significantly higher (almost double) in the fouling layer of the membrane collected from the standalone 

DCMD system. A similar composition of fouling layer was reported when standalone DCMD was 

operated for the treatment of anaerobic-MBR permeate [16]. Song et al. [16] additionally observed the 

deposition of phosphorous on the MD membrane. However, in the current study, phosphorous was not 

detected in the membrane fouling layer. This can be due to the low concentration (i.e., 4.4-7.1 mg PO4
3-

-P/L) of phosphorous in the secondary treated effluent used in the current study compared to that 

reported for anaerobically treated effluent in the study by Song et al. [16], i.e., approximately 200 mg 

PO4
3--P/L. 

MD membrane flux reduction can be also caused by accumulation of salts leading to concentration 

polarization [9]. However, in this study, at the end of the operation, the conductivity of the feed 

increased from 200 to 2050 µS/cm in case of the standalone DCMD system, which is comparable to the 

increase observed for the PS-assisted DCMD system (i.e., from 190 to 2940 µS/cm). Noting that both 

membranes were exposed to similar salt levels, but the flux decline was more severe in case of the 

standalone DCMD membrane, it is evident that under the operating conditions of this study, salt 

accumulation did not affect the permeate flux of both systems. Furthermore, membrane pore wetting 
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phenomenon did not occur for any of the membranes, which is evident from the effective conductivity 

removal (above 99%) by MD membrane in all experiments. 

It is noteworthy that the fouling layer on the membrane could potentially influence the degree of 

removal of dissolved constituents including micropollutants.For example, for nanofiltration, membrane 

fouling may cause different changes in hydrophobicity, surface charge, and effective pore size of the 

membrane, which may lead to reduced rejection depending on the membrane evaluated and the charge 

of the compound [62]. Also, in the presence of a fouling layer, polymeric forward osmosis membranes 

may swell due to elevated electroneutrality, reducing rejection of hydrophilic non-ionic micropollutants 

[63]. However, our study shows that despite significant fouling, the micropollutant removal by the MD 

membrane was fairly stable throughout the operation period (Figure 3). 

 

Figure 8. SEM images and EDS spectra of pristine MD membrane (a) and fouled membrane collected 
at the end of experiment with the stand-alone MD (b) and PS-assisted MD (c) systems. Operating 
conditions of DCMD systems are given in the caption of Figure 3. 
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3.5. Toxicity of treated effluent  
Mechanisms of micropollutant removal by sulphate radicals include hydrogen abstraction, electron 

transfer and addition of double bond [30]. It is important to confirm that the products of PS-mediated 

transformation of micropollutants are not significantly more toxic. Since a mixture of 12 

micropollutants was selected for this study, it is not possible to link the transformation products to the 

parent compounds. Thus, instead of monitoring individual transformation products, the overall toxicity 

of the feed water and final effluent were monitored in this study. Previously, toxicity of the effluent 

following treatment with activated-PS has been assessed by monitoring the inhibition of 

bioluminescence in different bacterial species. For instance, Zhang et al. [38] assessed the toxicity of 

the reaction media following treatment of a test solution containing carbamazepine with UV-activated 

PS by measuring the bioluminescence inhibition in a freshwater bacteria, viz Vibrio qinghaiensis sp. 

They reported that the toxicity of the reaction media reduced by 35% after 60 min treatment with UV-

activated PS. In another study by Qi et al. [64], toxicity of a sulfamethoxazole solution treated by 

microwave-activated PS was measured by monitoring the bioluminescence inhibition in three bacterial 

species, namely, Vibrio fischeri, Photobacterium phosphoreum, and Vibrio qinghaiensis. They also 

reported significant reduction in toxicity (~90%) following PS treatment. Compared to the available 

studies, the current study provides new insights into treated effluent toxicity given that a secondary 

treated wastewater containing 12 micropollutants was treated by operating a PS-assisted DCMD in a 

continuous-flow mode.  

The bioluminescent bacteria Photobacterium leiognathi was used in this study to monitor effluent 

toxicity. Our analysis indicates that the reactor media toxicity for both the stand-alone and PS-assisted 

DCMD slightly increased at the end of their operation (Table 3), and that the toxicity of the PS-assisted 

DCMD reactor media (6.3-6.5 rTU, n=2) was higher than that of the stand-alone DCMD (3.4-3.9 rTU, 

n=2). This suggests that PS itself and/or the transformation products originating from PS-mediated 

degradation of the organics present in the feed (i.e., effluent organic matter and spiked micropollutants) 

was slightly more toxic than the feed. Whatever those compounds (whether PS, or intermediate 

micropollutant transformation products) were, they did not pass into the permeate, and the MD permeate 

(i.e., the final effluent) was not toxic to bacteria (below the assay limit of detection, <1 rTU) (Table 3).  

 

Table 3. Toxicity, expressed as relative toxic unit (rTU), of different samples. The limit of detection of 
the toxicity assay was 1 rTU. Number of samples, n = 2.  

Sample description Toxicity (rTU) 
MD feed (i.e., Secondary treated effluent + micropollutants) <1 – 2.4 
Reactor media of the stand-alone DCMDa 3.4 – 3.9 
Reactor media of the PS-assisted DCMDa 6.3 – 6.5 
DCMD permeate  <1 

aat the end of continuous operation for a period of 13×HRT 
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4. Conclusions 
In this study, persulfate (PS) oxidation was integrated with the direct contact membrane distillation 

(DCMD) process for effective degradation of 12 recalcitrant micropollutants from secondary treated 

effluent. Depending on the molecular structure and hydrophobicity of the micropollutants, PS dosing at 

a concentration of 1 mM resulted in degradation of 25 to >99% (median = 84%) degradation. This led 

to the consistent achievement of >99% removal of all the micropollutants from the MD permeate (i.e., 

final effluent) during continuous operation, without production of toxic transformation products in the 

DCMD permeate. Evidenced by 70% TOC and 40% TN removals, activated PS degraded other organic 

impurities, along with micropollutants present in MD feed (i.e., secondary treated effluent). 

Accordingly, during continuous operation of the PS-assisted DCMD, organics accumulation in the 

reactor media was significantly reduced. This in turn helped minimize membrane fouling. 
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Table S1. Chemical formula and structures of the selected micropollutants 

Type Name Chemical Formula MW (g/mol) Chemical structure 
Pharmaceuticals 
and personal care 
products (PPCPs) Acetaminophen C8H9NO2 152 

 

Bezafibrate C19H20ClNO4 362 

 
Diclofenac 

C14H11Cl2NO2 296 

Cl

Cl

NH

COOH

 

Sulfamethoxazole C10H11N3O3S 253 
S

O

N
H

O N O

CH3

H2N  

Amitriptyline C20 H23 N 277 

 

Carbamazepine C15H12N2O 236 N

NH2

O

 

Primidone C12H14N2O2 218 
NH

H
NO

O

H3C

 

Triclosan C12H7Cl3O2 290 

Cl

Cl

O

OH

Cl  

Trimethoprim C14H18N4O3 290 
N

N

O
CH3

O CH3

O CH3

NH2

H2N

 

Pesticide Atrazine C8H14ClN5 216 
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Linuron C9H10Cl2N2O2 249 

Cl

Cl NH

O N CH3

O CH3  

Pentachlorophenol C6HCl5O 266 
Cl

Cl

OH

Cl

Cl

Cl
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Table S2: Degradation of the selected micropollutants by PS at different concentrations following an 
incubation time of 24 h. Results are presented as Average ± Standard-deviation (n=3) 

Micropollutants Degradation (%) 
 PS= 0 mM PS= 0.5 mM PS= 1 mM PS= 2 mM 
Sulfamethoxazole  0 45 ± 3 65 ± 1 70 ± 3 
Carbamazepine 0 14 ± 2 69 ± 2 77 ± 3 
Diclofenac  0 42 ± 4 69 ± 4 72 ± 4 
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Table S3: LC-MS analysis eluent gradient time program. adapted from (Xie et al., 2013) 

Time (min) Eluent B proportion (%)* 

0 10 

6 10 

8 23 

15 23 

16 45 

25 45 

26 85 

30 85 

31 10 

35 10 
* Eluent A contains 0.1% (v/v) formic acid in Milli-Q water; eluent B is acetonitrile. 
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Figure S1. Calibration curve for the determination of PS concentration 
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