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ABSTRACT  16 

Amyotrophic lateral sclerosis (ALS) is a heterogeneous motor neuron disease with familial forms linked to 17 
numerous mutations in a range of genes. The resulting variant proteins, including SOD1, TDP-43, and FUS, 18 
disturb protein homeostasis in a variety of ways and lead to the formation of intracellular inclusion bodies that 19 
are characteristic of different neuropathological subtypes of the disease. These inclusions are made up of 20 
scores of proteins that do not appear at first to share obvious characteristics other than coaggregation. Recent 21 
evidence, however, suggests that these aggregating proteins can be characterized as being supersaturated in 22 
spinal motor neurons, as they exhibit cellular concentrations exceeding their solubilities. Here, we show that 23 
the average supersaturation of the entire spinal motor neuron proteome is greater than that of the ALS-resistant 24 
oculomotor neurons, suggesting that the vulnerability of spinal motor neurons is linked to the overall 25 
metastability of their proteome against aggregation. Consistently, ALS expression data suggest that affected 26 
neurons respond to pathology by transcriptional downregulation of supersaturated proteins, including 27 
specifically ion channels. These results identify a mechanism by which protein homeostasis imbalance leads 28 
to inclusion body formation in ALS, and to a disruption of other processes dependent on proteins that are 29 
supersaturated, thereby resulting in the dysfunctional excitability alterations observed in vivo. 30 
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 37 

38 

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder in which the selective loss 39 

of upper and lower motor neurons in the motor cortex and spinal cord leads to impairment of muscle control, 40 

paralysis and eventually death. Protein aggregation and inclusion formation is associated with all forms of 41 

ALS, suggesting that protein misfolding is a common feature of the various forms of ALS (1-3). In this respect, 42 

ALS is similar to other neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s 43 

diseases (4-6), which are also characterised by the formation of aberrant protein deposits.  44 

While ~90-95% of ALS cases are sporadic (sALS) and of unclear cause, the remainder of cases are inherited 45 

(familial ALS, or fALS) and can be linked to specific genetic mutations. Mutations in one or more of at least 46 

a dozen genes give rise to fALS, with most resulting in the aggregation of TDP-43, while in forms where 47 

TDP-43 pathology is absent FUS or SOD1 aggregates are present. In the context of ALS, the protein aggregate 48 

load correlates with areas of neuronal loss in the spinal cord (2, 7-10), and with cell death in culture (11), 49 

consistent with the idea that protein aggregates are intimately linked with motor neuron cell death. Recent 50 

work also suggests that disease progression may be a result of a prion-like propagation of protein misfolding 51 

and aggregation throughout the nervous system (12-14). While the precise reason for inclusion formation to 52 

be associated with most ALS cases is unclear, it is apparent that protein homeostasis is perturbed (15).  53 

Protein aggregates consisting of a wide range of proteins are increasingly recognized as being common to a 54 

range of neurodegenerative diseases, an observation attributable to the fact that even in their native states 55 

many proteins can be unstable towards aggregation (5, 16-18). To understand why some proteins aggregate in 56 
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disease states whereas others remain soluble, we recently observed that many proteins in the proteome exceed 57 

their solubilities at the level at which they are expressed (19), that is, they are supersaturated (20, 21). In the 58 

specific context of ALS, we found that the combination of a spinal motor neuron expression profile and a high 59 

supersaturation score can explain many key features of the disease-specific protein inclusion fingerprint (19). 60 

In addition, we recently showed that the mutant SOD1 induced alterations in ubiquitin homeostasis were partly 61 

explained by an increase in ubiquitylation of supersaturated proteins (22). Previous work has found that across 62 

neurodegenerative disorders more generally, including Alzheimer’s and Parkinson’s diseases, proteins in 63 

major disease-associated pathways, as well as those that coaggregate within inclusion bodies, tend to be 64 

supersaturated (21). It has also been recently shown, in the case of Alzheimer’s disease, that the characteristic 65 

progression of pathology across brain tissues is recapitulated by a protein expression signature in healthy 66 

brains of aggregation-prone proteins (23), which is also responsible for the selective vulnerability of specific 67 

neuron types (24). Collectively these data are consistent with the notion that protein homeostasis breakdown 68 

and inability of the cell to deal with supersaturated proteins is associated with neurological disorders (5, 20, 69 

21, 23, 24). 70 

Recently, it has been proposed that the downregulation of supersaturated proteins in Alzheimer’s disease may 71 

limit their aggregation in response to compromised protein homeostasis (25). In the present study, we 72 

examined experimental information acquired from expression analysis of vulnerable motor neurons in healthy 73 

and diseased tissue (26-28). We aimed specifically to determine the relationship between protein 74 

supersaturation, cell-specific vulnerability and the transcriptional changes that occur during ALS. We found 75 

distinct differences in supersaturation between resistant oculomotor neurons and vulnerable spinal motor 76 

neurons. Moreover, genes downregulated in ALS generally correspond to metastable proteins at risk of 77 

aggregation, as they are supersaturated, while those that are upregulated correspond to proteins that are within 78 

their solubility limits. In the long term, however, while the downregulation of supersaturated proteins may 79 

represent a mechanism to limit aggregation, the chronic decrease of vital proteins such as ion channels may 80 

in turn lead to neuronal dysfunction and ultimately death.   81 

Methods  82 

Identification of co-aggregating proteins. Co-aggregating proteins in ALS were identified as in (19). 83 

Proteins were only included if published data clearly showed co-localisation in human post-mortem tissue. 84 

Identification of axonal channels and transporters. Previous work using proteomics identified axonal 85 

proteins from rat neuronal primary cultures (29). A list of all axonal channels, pumps and transporters was 86 

generated from that of all identified axonal proteins.      87 

Calculation of Zyggregator scores. Zyggregator scores were calculated as described in (21). 88 
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Calculation of supersaturation scores. Motor neuron specific supersaturation scores were calculated for 89 

unfolded states from transcriptomic data (denoted σu) as described in (19) using (28) (GSE20589) based on 90 

the original method outlined in (21). For the calculation of spinal motor neuron and comparable oculomotor 91 

neuron specific supersaturation scores, microarray mRNA expression levels were obtained from (26) 92 

(GSE40438). Up and downregulated genes were previously identified in microdissected anterior horn spinal 93 

cord material (27) and supersaturation scores were generated for the corresponding proteins from healthy 94 

motor neurons (GSE20589) as above.  To eliminate the dominance of a small number of proteins on the overall 95 

supersaturation score we compared median scores in our analysis rather than mean scores. To compare median 96 

values between two independent groups we used the Mann Whitney U test. 97 

Calculation of fold changes. Fold changes were calculated as described in (21) as the linear difference 98 

between the logarithmic medians of two sets. The linear fold difference 𝑑𝑑 between the medians of the 99 

supersaturation scores of the control set 𝐶𝐶 and experiment set 𝐸𝐸 being tested was defined as:  100 

𝑑𝑑 = 10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸)−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) (𝑆𝑆1) 101 

 102 

Results  103 

Vulnerable spinal motor neurons have a metastable proteome 104 

We have shown previously that ALS inclusions are formed by proteins that tend to be supersaturated under 105 

physiological conditions (19). These particular proteins were found to be distinguished from the proteins that 106 

form the functional network of normal interaction partners of the ALS-associated proteins SOD1, TDP-43 and 107 

FUS by their supersaturation levels when calculated using expression values in motor neurons, but not when 108 

averaged over several tissues.  109 

Here we investigated whether the supersaturation levels of proteins observed to form aggregates in ALS (ALS 110 

aggregators) could explain why spinal motor neurons are lost while oculomotor neurons are spared in the 111 

disease. To perform this analysis, we calculated the supersaturation scores using mRNA expression levels 112 

from non-diseased microdissected motor neurons and oculomotor neurons (GSE40438). We found that the 113 

supersaturation scores of the list of all known proteins (co-aggregators; Supplementary Table 1) associated 114 

with ALS inclusions (19), while greater in spinal (n = 64) compared to oculomotor neurons (n = 64), are not 115 

significantly different (σu, p=0.57; Figure 1A).  116 

Shifting attention from the aggregating proteins to their protein homeostasis regulation we next asked if, rather 117 

than focusing on a small subset, analysis of the entire transcriptome would distinguish vulnerable from 118 

resistant neurons. Consistent with the fact that motor neurons are selectively vulnerable in ALS, we found that 119 

the supersaturation scores of non-diseased spinal motor neurons (n = 16,571) are significantly elevated relative 120 

to those of oculomotor neurons  (σu: oculomotor neuron proteome on average 0.85-fold relative to spinal motor 121 
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neurons, p<0.0001, n = 16,571, U = 1.29x108; Figure 1B, Supplementary Table 2). This difference is 122 

statistically significant and its relatively small value is consistent with its possible role as a subtle but persistent 123 

driving force behind the slow progression of the disease. To discover which pathways were most vulnerable 124 

in spinal motor neurons we first identified the most supersaturated proteins (top 2%, Supplementary Table 3) 125 

and then ranked these in terms of supersaturation differences (σu spinal motor neuron – σu oculomotor neuron). 126 

This procedure provided a list of 95 most supersaturated proteins in spinal motor neurons relative to 127 

oculomotor neurons. Next, a gene ontology analysis indicated that these proteins are enriched in processes 128 

such as endoplasmic reticulum (ER) co-translation, mRNA metabolism, viral metabolism and cytosolic 129 

translation (Supplementary Table 4).   130 

 

Figure 1. Vulnerable motor neurons have a supersaturated proteome. (A) The median supersaturation 
scores calculated for unfolded (σu) states of proteins are shown for the combined set of co-aggregators 
associated inclusions, calculated from spinal (light) and oculomotor neurons (dark). (B) Supersaturation 
scores when unfolded states of proteins were calculated using the entire set of mRNA expression levels 
derived from non-diseased oculomotor (dark) and spinal motor neurons (light) (GSE40438). Fold Δ refers 
to the change in supersaturation score from spinal motor neurons. Boxplots extend from the lower to the 
upper quartiles, with the internal lines referring to the median values. Proteins identified in the literature as 
co-localised to all ALS inclusions are from (19). Statistical significance was assessed by the one-sided 
Wilcoxon/Mann-Whitney U test (****p < 0.0001). 
 

 131 

Genes transcriptionally downregulated in ALS encode metastable proteins  132 

Previous work showed that  many transcriptional changes identified in aging and in Alzheimer’s disease are 133 

associated with protein aggregation (25), consistent with the idea that the protein homeostasis system responds 134 

to maintain metastable proteins in solution by reducing their concentration. To test whether ALS co-135 

aggregators are associated with downregulated genes we compared the expression levels of the genes altered 136 

in the proteome in ALS (583/25,272 transcripts; Supplementary Table 5) to those encoding co-aggregators. 137 

We found that downregulated genes were over-represented among co-aggregators (Figure 2A; 7/64). In 138 

contrast, only a small number of genes whose proteins are found in inclusions were found to be upregulated 139 

in ALS (Figure 2A; 1/64 compared to 561/25,272 in the whole transcriptome, Supplementary Table 6). 140 
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We reasoned that proteins at risk of aggregation in motor neurons might be downregulated during the proteome 141 

stress induced by ALS pathology. To test this hypothesis, we calculated the metastability to aggregation of 142 

proteins, either down or upregulated in ALS, in terms of their supersaturation scores (σu; calculated using non-143 

diseased mRNA levels), which represent their risk of aggregation at the concentrations at which they are 144 

normally expressed (21). We found proteins corresponding to genes downregulated in ALS (n = 553) to be 145 

1.7-fold (P <0.0001, U = 3.25x106) more supersaturated than those for the proteome as a whole (n = 17,835) 146 

(Figure 2B). In contrast, we found proteins encoded by genes upregulated in ALS (n = 528) to be less 147 

supersaturated than those downregulated (0.6-fold compared to downregulated genes, P < 0.0001, U = 148 

8.4x104) and to the proteome as a whole (0.9-fold, P = 0.0033, U = 4.38x106) (Figure 2B). 149 

 

Figure 2. In ALS, the metastability of proteins to aggregation is correlated with the downregulation 
of the corresponding genes. (A) Proportion of genes transcriptionally down or upregulated in ALS in the 
whole proteome (Prot) or for the co-aggregators (Agg). (B) Metastability levels, assessed by supersaturation 
scores, for proteins associated with differentially expressed genes in the whole proteome (white), 
downregulated in ALS (red), and upregulated in ALS (green). Median fold difference in supersaturation 
from the proteome is indicated by Fold Δ. ****P ≤ 0.0001, one-sided Wilcoxon/Mann–Whitney U test. 

 150 

Axonal ion channels and transporters are metastable to aggregation and transcriptionally 151 
downregulated in ALS 152 

Altered excitability has been observed in ALS patients (30, 31), and in animal and cell models (reviewed in 153 

(32)), and recent work suggests that this altered excitability is consistent with a widespread decrease in the 154 

number of Na+ and K+ ion channels (33).  Given that dysfunction occurs in a distal to proximal fashion (34), 155 

we hypothesised that axonal ion channels might be at particular risk of aggregation in ALS. Using a list of 156 

axonal ion channels and transporters (Supplementary Table 7) generated from proteomic analysis of axons 157 

from primary neuronal cultures (29), we examined their supersaturation scores generated from healthy motor 158 



7 
 

neuron expression data. We found that the supersaturation scores of the axonal ion channels and transporters 159 

(n = 68) were indeed significantly supersaturated when compared to the proteome (n = 17,835) as a whole (2-160 

fold, P < 0.0001, U = 2.6x105; Figure 3A).  161 

 
Figure 3. In ALS, the metastability to aggregation of axonal ion channels and transporters is correlated with 
their downregulation. (A) Metastability levels, assessed by supersaturation scores, for the proteome (white) 
and axonal channels and transporter proteins (blue). The median fold difference in supersaturation is 
indicated by Fold Δ. ****P ≤ 0.0001, one-sided Wilcoxon/Mann–Whitney U test.  (B) Proportion of genes 
transcriptionally down or upregulated in ALS in the whole proteome (Prot) or axonal ion channels and 
transporters  (Axon). (C) Relative levels of ATP dependent pumps, voltage gated Ca2+ channels, K+ 
channels and Na+ channels that were detected in microdissected ALS spinal tissue (19). 

 162 
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Given our observation that proteins at risk of aggregation in motor neurons are downregulated in ALS, we 163 

reasoned that axonal ion channels and transporters might be downregulated compared to the proteome as a 164 

whole. We found that transcriptionally downregulated genes were overrepresented among axonal ion channels 165 

and transporters with ~25% of this set (17/67) of proteins being significantly downregulated. In contrast, there 166 

were no genes encoding channel and transporter proteins that were transcriptionally upregulated in ALS 167 

(Figure 3B). To expand these findings further we examined the complete sets of ATP dependent Na+/K+ 168 

pumps, voltage gated Ca2+ channels, K+ channels and Na+ channels, not just those restricted to axonal proteins. 169 

These sets of transcripts were predominantly downregulated, consistent with a widespread lowering of the 170 

expression levels of channels, pumps and transporters in the ALS condition (Figure 3C, Supplementary Table 171 

8).       172 

 173 

 174 

Discussion  175 

It has been recently reported that the proteins associated with ALS inclusions tend to be metastable to 176 

aggregation because they are supersaturated, specifically in motor neurons (19). Here we have found that the 177 

supersaturation level of the entire proteome differentiates vulnerable from resistant motor neurons, and 178 

observed that a cellular response to the intrinsic metastability of the proteome is the transcriptional 179 

downregulation of supersaturated genes. In support of these conclusions, we have observed a relationship 180 

between the genes up and downregulated in ALS with their metastability, and the enrichment of 181 

downregulated genes in those proteins that co-aggregate in inclusions. Analysis of the transcriptional response 182 

to the collapse of protein homeostasis associated with ALS has allowed us to address a central question 183 

regarding the physical symptoms of ALS, specifically the way in which protein homeostasis imbalance affects 184 

the alterations in motor neuron excitability measured in patients. 185 

In our previous work two different supersaturation scores were used to evaluate the risk of proteins to 186 

aggregate from two pools - the unfolded states and the native states. The risk of aggregation is different in 187 

these two states because in the folded state the most aggregation-prone regions tend to be buried in the core 188 

of the structure, and in the unfolded state the core is exposed (35). Due to availability of datasets, here we 189 

have used only the unfolded score, which does not take into account protein levels and so may underestimate 190 

the supersaturation of proteins with long half-lives. However, while the two calculations represent different 191 

aspects of the proteome, our previous work suggests that similar trends appear regardless of the score used, 192 

consistent with the idea that proteins should be resistant to aggregation in all the states that they populate. 193 

Our analysis identified several pathways that were most supersaturated in spinal motor neurons compared to 194 

oculomotor neurons, suggesting that these pathways are particularly at risk to proteotoxic stress in motor 195 

neurons. Most significantly enriched amongst the most supersaturated were proteins associated with ER 196 
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protein synthesis, mRNA metabolism and viral gene expression. Strikingly, the pathways identified are well-197 

established features of ALS pathology, in particular ER stress and mRNA metabolism dysfunction.  Further, 198 

our data that suggests viral gene expression pathways are at risk may predict that an emerging aspect of ALS 199 

pathology, that is the activation of human endogenous retroviruses, also induces protein homeostasis 200 

imbalance.  Together, these pathways are particularly at risk in motor neurons and could be potential 201 

therapeutic targets. 202 

The findings reported previously along with those reported here suggest that the widespread transcriptional 203 

downregulation of genes encoding metastable proteins at risk of aggregation may represent a cellular strategy 204 

to combat disruptions in protein homeostasis. However, prolonged downregulation of important genes may 205 

lead to disruption of pathways at risk of aggregation, and result in a loss of certain functional processes.   206 

Of particular interest is the fact that altered axon excitability has been observed in ALS patients (30, 31), and 207 

recent data predicts that this altered excitability is associated with a decrease in both Na+ and K+ channels 208 

(33). Supporting the notion that axons are particularly vulnerable is the fact that the distance from the cell 209 

body is an important factor in this context, as dysfunction occurs in a distal to proximal fashion (34). Mounting 210 

evidence suggests that the changes that are occurring distally in the axons are amongst the earliest pre-211 

symptomatic functional and pathological changes (reviewed in (36)). In mouse models these changes precede, 212 

and can be independent of, the loss of cell bodies (reviewed in (37)). Channel alterations are also measured in 213 

motor neurons derived from human induced pluripotent stem cells (iPSCs) generated from fibroblasts obtained 214 

from ALS patients with TARDBP or C9ORF72 ALS mutations (38). A recent analysis has indicated that ALS 215 

patient iPSC-derived motor neurons possess an initial hyperexcitability, with a subsequent and progressive 216 

loss in action potential firing (38). The authors concluded that loss of ion channels may contribute to the 217 

initiation of downstream degenerative pathways that ultimately lead to motor neuron loss in ALS. What causes 218 

the apparent loss of these ion channels in the motor neurons has, however, remained to be investigated. This 219 

question is particularly relevant considering that while it is clear that electrophysiological changes are 220 

intimately linked with ALS pathology, the underlying molecular alterations that result in such physiological 221 

outcomes remains unknown. Here we have presented an analysis that shows that the proteome of spinal motor 222 

neurons are particularly at risk to protein homeostasis imbalance, and that these neurons respond to such stress 223 

by downregulating proteins at risk of aggregation. One potential consequence of this response is, however, 224 

the loss of axonal channels resulting in electrophysiological dysfunction. 225 

The present work provides support for the view that a progressive impairment of protein homeostasis is 226 

associated with the development of ALS pathology. This system-level impairment could be the result of a 227 

variety of causes, including expression of one or more aggregation-prone proteins, genetic lesions to key 228 

components of the protein homeostasis network or changes due to aging such as downregulation of protein 229 

homeostasis networks. Such dysfunction puts the solubility of the motor neuron proteome at risk and could 230 

result in widespread aggregation. Our analysis suggests that, in order to limit protein aggregation, motor 231 
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neurons respond by downregulating specific metastable proteins. This response strategy, however, is not 232 

sustainable over long periods of time, as the prolonged downregulation of supersaturated proteins may lead to 233 

cellular dysfunction, including the downregulation of ion channels and subsequent excitability changes 234 

observed in ALS patients. 235 
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