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1 Introduction

Cloud computing provides on-demand computing resources over the internet

on a pay-for-use basis. One of the most attractive benefits is for the resource-

constrained users to outsource their data to the cloud server [Chen et al. 2015a,

Chen et al. 2016, Li et al. 2019, Xue et al. 2019, Yu et al. 2017]. In this way, the

users can enjoy the unlimited resources while reducing the maintenance cost

locally. However, outsourcing data to the remote server brings some security

challenges [Chen et al. 2014, Chen et al. 2015b], because the cloud server is cu-

rious about the users’ data and tries to mining useful information. As a result,

protecting the security of users’ sensitive data is a critical demand in the out-

sourcing service. Using traditional encryption technique to encrypt data before

outsourcing can protect the data security. However, it brings difficulties to per-

form some meaningful operations on the encrypted data, especially to search for

some content interested [Yu et al. 2018A].

Fortunately, searchable encryption (SE) was proposed to protect the security

of data while preserving the search ability over the encrypted data. Specifical-

ly, in SE scheme, the data owner first generates a search index and encrypts

the documents, and then outsources them to the cloud server. Later, if the

data owner wants to search some documents which contain a particular key-

word, a search token is generated and submitted to the cloud server. Using

the search token, the cloud server performs a search over the search index

and finally returns the corresponding documents. For single keyword search,

the search token is only for a single keyword such that all the final searched

documents include the single queried keyword [Curtmola et al. 2006, Song 2000,

Stefanov et al. 2014, Wang et al. 2015, Wang et al. 2017]. To rich the query ex-

pression, conjunctive searchable encryption was proposed [Ballard et al. 2005,

Cash et al. 2013, Zuo et al. 2016], in which the final matched documents contain

all the queried keywords. However, all these works focus on single-writer/single-

reader searchable encryption (SSSE). That is, the data owner outsources the

search index and documents, later it only allows the data owner itself to perfor-

m a search.

To extend SSSE to support data sharing, recently single-writer/multi-reader

searchable encryption (SMSE) [Sun et al. 2016] was proposed. For SMSE, an

authorized user is allowed to submit a legal search token and retrieve the cor-

responding documents. However, the challenge is how to allocate different per-

missions to the different authorized users. The permission contains two aspects,

the search permission and the decryption permission. For the search permis-

sion, the data owner predefines a keyword set for each user, and an authorized

user can generate a legal search token for the keywords in the predefines key-

word set. For the decryption permission, an authorized user just can decrypt

the search results which are delegated to him/her. This goal can be achieved by
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encrypting the document identifiers based on attribute-based encryption (ABE)

[Bethencourt et al. 2007]. However, it suffers from unnecessary communication

overhead. The reason is that the server cannot determine whether the user can

decrypt a particular ciphertext. Thus all the search results have to be returned to

the user, including the ones which cannot be decrypted. This problem is severe

when there are a large number of matched search results, but only a fraction

can be decrypted. Besides, before performing decryption, the user has to test

whether his/her attributes meet the decryption requirement of each ciphertext.

As a result, it also brings the unnecessary computation overhead.

A trivial way to solve this problem is to send the user’s attributes to the

server. Then the server uses the attributes to match with the access policy and

determine whether the user can decrypt the ciphertext. However, the attributes

always contain the user’s personal sensitive information, which should be pro-

tected well. Besides, the traditional ABE technique also leaks the access policy to

the server. For the sake of protecting the access policy, anonymous ABE was pro-

posed [Nishide et al. 2008]. However, it is very inefficient to perform decryption

for the user. Recently, Zhang et al. [Zhang et al. 2017] proposed a match-then-

decrypt technique to improve the decryption efficiency. The idea is for the user

to perform match operation first to test whether s/he can decrypt the cipher-

text. If yes, the user performs decryption. It indeed reduces a significant amount

of computationally intensive operations, such as pairings. However, the match

operation is performed on the user side. That means all the matched ciphertext

still have to be transformed to the user including the ones which cannot be de-

crypted. Besides, the match operation also needs to consume the energy of the

user’s device. As far as the authors’ knowledge, how to simultaneously reduce the

unnecessary communication and decryption overhead in SMSE without leaking

the access policy and user’s attributes remains unsolved.

1.1 Our Contribution

In this paper, we proposed a new SMSE scheme, in which the server has an

ability to test whether a ciphertext can be decrypted by the user. Thus the

server just needs to transmit the ones which can be decrypted by the user. In

this way, both the transmission and decryption cost are saved. Specifically, our

contributions are two folds:

• We first proposed a server-side match technique for anonymous ABE. We

design a particular component of ciphertext to test whether the access policy

in it matches with the user’s attributes. This match operation neither leaks

the access policy in the ciphertext nor the user’s attributes. Moreover, the

decryption on the user side is very efficient. It just needs a constant number

of pairing, which does not increase with the number of user’s attributes.
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• We then proposed a new SMSE scheme based on the server-side match tech-

nique. To achieve fine-grained access control, the document identifiers are

encrypted with the proposed anonymous ABE. On receiving the search to-

ken, the server first finds out all the search results. Instead of immediately

returning all of them to the user, the server uses the match technique to

test whether they can be decrypted by the user. Finally, the server just re-

turns the ones which can be decrypted by the user. In this way, both the

communication and decryption overhead are dramatically reduced.

This is an extension of the conference version [Wang et al. 2017]. The main

differences between this two versions are as follows: First, we add the related

work in section 1.2, give the system model and design goals in section 3. Second,

to make the scheme clearer, a high description of our proposed SMSE scheme

is given in section 4.1. Third, we give more detailed proofs for the two lemmas

in section 5.1. Finally, we provide thorough experimental results to evaluate the

performance of our proposed scheme and compare it with the related work.

1.2 Related Work

Song et al. [Song 2000] proposed the first SE scheme, in which each keyword is

encrypted based on a particular two-layer encryption structure. To perform a

search query, it needs to scan the entire ciphertext sequentially. Goh [Goh 2003]

improved the search efficiency by constructing an index for each document us-

ing Bloom Filter, which can quickly test whether an element in a set. Howev-

er, the search complexity is linear in the number of documents. Besides, the

Bloom Filter will bring false probability. The first sublinear scheme was pro-

posed by Curtmola et al. [Curtmola et al. 2006]. In their scheme, the index is

constructed based on the keyword set in the database (inverted index) oth-

er than each document. Subsequently, Kamara et al. [Kamara et al. 2012] ex-

tended Curtmola et al. scheme to support document update. Some other work-

s [Stefanov et al. 2014, Kim et al. 2017, Bost et al. 2017, Song et al. 2018] also

focus on dynamic property. However, all these works are single keyword search

scheme.

More complex conjunctive keyword search was first proposed by Golle et al.

[Golle et al. 2004]. Golle et al. gave two schemes for conjunctive keyword search.

The trapdoor size in the first scheme is linear in the number of documents, while

it is constant in the second one. However, the search index and search time are

all linear in the number of documents. Some other works [Ballard et al. 2005,

Ryu and Takagi 2007] are committed to improving the communication and s-

torage efficiency. All these conjunctive keyword search schemes need a keyword

field, which is not practical in some applications. Wang et al. [Wang et al. 2008]

gave the first keyword field free conjunctive keyword search scheme. Later, Cash
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et al. [Cash et al. 2013] proposed the first sublinear conjunctive keyword search

using inverted index, which can also be extended to Boolean query. The idea

is first to search the least frequent keyword and then match the search results

with other queried keywords. Jarecki et al. [Jarecki et al. 2013] extended this to

the SMSE setting, however, it requires an interaction between the user and the

data owner for each query. Recently, Sun et al. [Sun et al. 2016] solved the in-

teraction problem based on RSA assumption. In their scheme, the user can just

decrypt the ciphertext which is delegated to him/her, because the identifiers are

encrypted by ABE [Bethencourt et al. 2007].

ABE is a positive way to achieve fine-grained access control in data sharing

system. Key-policy ABE (KP-ABE) [Goyal et al. 2006] and ciphertext-policy

ABE (CP-ABE) [Bethencourt et al. 2007] are two kinds of ABE. They have d-

ifferent ways of encrypting a message. For KP-ABE, the ciphertext is related to

a set of attributes and a user’s private key is related to an access policy. While

in CP-ABE, the ciphertext is associated with an access policy and a user’s pri-

vate key is associated with a set of attributes. Only when the user’s attributes

are satisfied with the access policy in the ciphertext, it can be decrypted by

the user. CP-ABE is more practical in access control system because the data

owner can encrypt a message under an access policy and share the ciphertex-

t with different users. Since the first CP-ABE was proposed, plenty of works

[Chase 2007, Yu et al. 2018, Li et al. 2014, Li et al. 2018, Yu et al. 2019] have

been done to make improvement on it.

However, in these CP-ABE schemes, the access policy has to be sent along

with the ciphertext, and a user needs to combine their attributes with the access

policy to obtain the decryption key. To protect user’s attribute privacy, anony-

mous ABE schemes [Kapadia et al. 2007, Lai et al. 2011] have been proposed.

Although the attribute privacy is protected in these anonymous ABE schemes,

they also suffer from a severe drawback of decryption efficiency. Zhang et al.

[Zhang et al. 2017] proposed a match-then-decrypt anonymous ABE which im-

proves the decryption efficiency. In this scheme, instead of directly decrypting a

ciphertext, a match phase is performed on the user side to test whether the user

can decrypt it.

1.3 Organization

The rest of this paper is organized as follows. Some necessary preliminaries are

given in Section 2. The system architecture of our scheme is in Section 3. The

proposed server-side match technique and the new SMSE scheme are described

detailedly in Section 4. Next, we analyze the security of our scheme and compare

it with the existing scheme in Section 5. Finally, the conclusions will be made in

Section 6.
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2 Preliminaries

2.1 Bilinear Pairings

Suppose G and GT are two cyclic multiplicative groups with prime order p. Let

g be a generator of G. A bilinear pairing is a mapping e : G×G→ GT with the

following properties:

1. Bilinear: e(ga1 , g
b
2) = e(g1, g2)

ab for all g1, g2 ∈ G and a, b ∈ Zp.

2. Non-degenerate: e(g, g) 6= 1.

3. Computable: It is efficient to compute e(g1, g2) for all g1, g2 ∈ G.

2.2 Intractable Assumption

In this section, we first define some intractable assumptions in the cyclic multi-

plicative group G and then we define the strong RSA assumption.

Definition 1. The Decisional Diffie-Hellman (DDH) assumption holds in G if

for any probabilistic polynomial-time (PPT) algorithmA there exists a negligible

function negl(·) such that

|Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]| = negl(n),

where g is randomly selected from G, a, b, c are randomly selected from Zp and

n is the security parameter.

Definition 2. The Decisional Bilinear Diffie-Hellman (DBDH) assumption hold-

s in G if for any PPT algorithm A there exists a negligible function negl(·) such

that

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[A(g, ga, gb, gc, gz) = 1]| = negl(n),

where g is randomly selected from G, a, b, c, z are randomly selected from Zp

and n is the security parameter.

Definition 3. The Decision Linear (D-Linear) assumption holds in G if for any

PPT algorithm A there exists a negligible function negl(·) such that

|Pr[A(g, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4 = 1]− Pr[A(g, gz1 , gz2 , gz1z3 , gz2z4 , gz) = 1]|

= negl(n),

where g is randomly selected from G, z1, z2, z3, z4, z are randomly selected from

Zp and n is the security parameter.
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Definition 4 Strong RSA assumption. Let p′ and q′ are primes and p and

q are strong primes satisfied p = 2p′ + 1 and q = 2q′ + 1. The strong RSA

assumption holds if any PPT algorithm A there exists a negligible function

negl(·) such that

|Pr[A(n, g) = (z, e)]| = negl(·),

which satisfies ze = g mod n, where n = pq and g is a random element in Z
∗
n.

2.3 Anonymous ABE

Fine-grained access control in multi-user setting can be achieved by anonymous

ABE. For each ciphertext, there is an access policy in it. For each user, s/he is

allocated with a secret key according to her/his own attributes. If and only if the

user’s attributes satisfy the access policy, the user can decrypt the ciphertext

with her/his secret key. In our proposed anonymous ABE, the server has an

extra property that it can test whether a ciphertext can be decrypted by a user.

This test will neither leak the access policy nor a user’s attributes. The proposed

anonymous ABE has four algorithms:

• smABE.Setup(κ): This setup algorithm takes as input the security param-

eter κ and outputs the public key pk and master key mk.

• smABE.KeyGen(L, pk,mk): This key generation algorithm takes as input

the user’s attribute set L, public key pk, and master key mk. It outputs the

user’s secret key skL. The secret key includes two parts, skmat and skdec.

skmat is used for matching and skdec is used for decrypting.

• smABE.Enc(M,m,P ): This encryption algorithm takes as input a message

M , an auxiliary information m for M and access policy P . It outputs the

ciphertext e for M . In our scheme, every message M is associated with

an information m. The ciphertext e can be decrypted by the user whose

attribute set L satisfies the access policy P .

• smABE.Match(e,mt,D∆,0): This match algorithm is to test whether a

particular user can decrypt the ciphertext e. It inputs the ciphertext e,

auxiliary information mt and D∆,0 associated with user’s secret key. If the

ciphertext matches with the user’s attribute set, it outputs the ciphertext

edec for decrypting. Otherwise, it outputs “no”.

• smABE.Dec(edec, skdec): This decryption algorithm takes as input the ci-

phertext edec and user’s decryption key skdec. It outputs the corresponding

message M .
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3 System Architecture

3.1 System Model

Our SMSE scheme supporting fast decryption consists of three entities: the data

owner, the cloud server and the user. The data owner has a plaintext database

and wants to outsource it to the cloud server. The data owner first encrypts

the database and generates a search index, then outsources them to the server.

Besides, the data owner allocates different privileges for searching and decrypting

to every authorized user. When a user wants to search for some documents, she

should generate a valid search token and submit it to the server. Upon receiving

the search token, the server performs a search over the search index and finds out

the corresponding search results. After that, the server tests each search result

to determine whether the user can decrypt. Finally, the server just returns the

search results which can be decrypted. In our system, we assume the server is

“honest-but-curious”, which means the server will follow our protocol and return

the correct search results, but try to learn as much information as possible from

the protocol. Figure 1 shows the system model. Formally, our scheme consists of

five algorithms:

• SMSE.Setup(λ,DB,K,U): Takes as input the security parameter λ, the

plaintext database DB, a list of decryption key array K and universe at-

tribute set U , this setup algorithm outputs the system master key MK,

public key PK, the encrypted search index TSet and XSet. Finally the TSet

and XSet are outsourced to the server.

• SMSE.KGen(MK, L,w): Takes as input the system master key MK, user’s

attribute set L and a query keyword set w, this key generation algorithm

outputs the user’s private key sk. Finally, sk and w are together sent to the
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user. The user can just generate the search tokens for the keywords in the

set w.

• SMSE.TGen(sk,Q): Takes as input the private key sk and query Q, this

token generation algorithm outputs the search token st for the query Q.

• SMSE.Search(st,TSet,XSet): Takes as input the search token st, the search

index TSet and XSet, the server firstly searches over the index TSet and

XSet, finds out the corresponding search results R, then determines whether

the user can decrypt the results, finally returns the ones in S that the user

can decrypt.

• SMSE.Retrieve(sk,R): Takes as input the private key sk and the final

search results in S from the server, the user first decrypts the ciphertexts in

S and gets the document identifiers and document keys kid, then retrieves

the corresponding documents and decrypts them by kid.

3.2 Design Goals

This work aims to achieve multi-user searchable encryption supporting fast de-

cryption. Based on the “honest-but-curious” server model, the design goals of

our scheme are as follows:

• Data Confidentiality. It is required that an adversary cannot learn the

data owner’s original data from the outsourced data stored on the cloud

server. In addition, the adversary cannot learn the queried keywords from

the search token.

• Attribute Privacy. The cloud server can neither learn the access policy in

the ciphertext, nor the user’s attributes.

• Fast Decryption. The cloud server can test whether a user can decrypt a

particular ciphertext with the help of the search token. But this test should

only work among the search results for the search token rather than the

whole ciphertext on the cloud server. After receiving the matched searched

results, the user should decrypt them efficiently.

3.3 Security Definition

The security of our proposed scheme is defined by a leakage function L, which

is learned by an adversary during the interaction with the proposed scheme.

The security demonstrates that the proposed scheme leaks nothing rather than

the leakage function. Specifically, an adversary has an negligible probability to

distinguish whether it is in a real experimentRealΠA(λ) or in an ideal experiment
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IdealΠA,S(λ). The ideal experiment is simulated by a simulator S based on the

leakage function. We describe the two experiments as follows:

RealΠA (λ): The adversary A chooses a database DB, and then the experiment

runs the setup algorithm (PK,MK,TSet,XSet) ← SMSE.Setup(λ,DB,K,U),

and the adversary is given (PK,TSet,XSet). Later, A selects an authorized key-

word set w and gets the corresponding secret key. Next, A repeatedly and adap-

tively chooses a query Q, and the experiment runs the token generation and

search algorithms. Following, the experiment gives A the transcript (the search

token and the search results for the query) and the corresponding document

identifiers. Finally, A returns a bit as the experiment output.

IdealΠA,S(λ): The adversary A chooses a database DB. Then the experiment

gives the (PK,TSet,XSet) to the adversary using the simulator S, (PK,TSet,

XSet) ← S(L(DB)). Later, A repeatedly and adaptively chooses a query Q.

With the query, the experiment outputs the transcript and the corresponding

document identifiers by S(L(DB,Q), where Q represents all the previous queries

and the latest query. Finally, A returns a bit as the experiment output.

Definition 5. Our proposed scheme Π is L-semantically secure against adap-

tive attacks if for all PPT adversaries A there is a simulator S such that

|Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1]| ≤ negl(λ).

4 SMSE Scheme with Fast Decryption

4.1 High Description

In this paper, we propose a new SMSE scheme supporting Boolean queries and

fast decryption, which saves both the communication and decryption overhead.

First, we propose a server-side match technique for anonymous ABE. This tech-

nique enables the server to test whether a particular ciphertext can be decrypted

by a user. To achieve this goal, we introduce special components in the cipher-

text (C∆, Cx, Ĉ0, Ci,t,∆). Under the help of mt and D∆,0 which contain the

information of the user’s attributes, the server can determine whether the user’s

attributes meet the access policy hidden in the ciphertext. Note that this match

technique neither leaks the access policy nor the user’s attributes. Second, we

use our new anonymous ABE to encrypt the document identifiers instead of the

traditional ABE scheme. In this way, the server can use the match technique

to return the ones which can be decrypted by the user, rather than the entire

search results. As a result, both the communication and decryption overhead are

reduced.

4.2 Server-side Match Technique for Anonymous ABE

In this section, we present our server-side match technique for anonymous ABE

(smABE).
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• smABE.Setup(κ): We denote two cyclic multiplicative groups of prime

order p as G and GT , and a bilinear map e as G×G→ GT . We also assume

the system attribute set is U = {τ1, τ2, ..., τn} and each attribute has multiple

values, where τi = {νi,1, νi,2, ..., νi,ni}. The data owner randomly chooses

g1, g2
R
←− G and y

R
←− Zp, then computes Y ← e(g1, g2)

y. The system public

key is pk = 〈g1, g2, Y 〉 and the system master key is mk = 〈y〉.

• smABE.KeyGen(L, pk,mk): This algorithm generates the attribute se-

crete key skL for a certain user whose attribute set is L = {L1, L2, ..., Ln}.

H is a hash function: {0, 1}∗ → G. First, the data owner randomly chooses

r, λ, λ̂ from Zp and computes D∆,0 ← gr1, Dx ← gr2, D0 ← gλ2 , D̂0 ← gλ̂1 . As-

sume Li = νi,ki , the data owner also computes D̂∆,0 ← gy2
∏n

i=1 H(i||νi,ki)
r,

D1 ← gy1
∏n

i=1 H(0||i||νi,ki)
λ and D̂1 ← gy2

∏n
i=1 H(1||i||νi,ki)

λ̂. Then the

attribute secrete key is skL = 〈skmat, skdec〉, where skmat = 〈D∆,0, D̂∆,0,

Dx〉 and skdec = {D0, D̂0, D1, D̂1}.

• smABE.Enc(M,m,P ): The data owner encrypts a message M ∈ GT un-

der the policy of P = {P1, P2, ..., Pn}. In our scheme, every massage M

is related to an auxiliary information m ∈ Zp. The data owner first gen-

erates s, s′, s′′
R
←− Zp, and then computes C̃ ← MY s; C∆ ← Y s′ ; Ĉ0 ←

gs
′

1 ; C1 ← gs
′′

2 ; Ĉ1 ← gs−s′′

1 ; Cx ← gs
′m

2 . Then the data owner choos-

es {σi,∆, σi,0, σi,1
R
←− G|1 ≤ i ≤ n} such that

∏n
i=1 σi,∆ =

∏n
i=1 σi,0 =∏n

i=1 σi,1 = 1G and computes [Ci,t,∆, Ci,t,0, Ĉi,t,0] as follows:

1. If vi,t /∈ Pi, [Ci,t,∆, Ci,t,0, Ĉi,t,0]
R
←− G.

2. If vi,t ∈ Pi, [Ci,t,∆, Ci,t,0, Ĉi,t,0]←

[σi,∆H(i||νi,t)
s′ , σi,0H(0||i||νi,t)

s′′ , σi,1H(1||i||νi,t)
s−s′′ ].

Finally, the ciphertext of M is

e = 〈C∆, Cx, Ĉ0, C̃, C1, Ĉ1, {{Ci,t,∆, Ci,t,0, Ĉi,t,0}1≤t≤ni}1≤i≤n〉.

• smABE.Match(e,mt,D∆,0): The server performs this algorithm to test

whether a certain user can decrypt the ciphertext e. Here mt and D∆,0 are

given by the user, where mt = D̂∆,0 ·D
m
x . This algorithm outputs “yes” if

e(D∆,0, Cx

n∏

i=1

Ci,t,∆)C∆ = e(Ĉ0,mt).

According to Ci,t,∆, the server finds all the corresponding Ci,t,0 and Ĉi,t,0,

then computes C ←
∏n

i=1 Ci,t,0, Ĉ ←
∏n

i=1 Ĉi,t,0. Finally, the server sends

edec = 〈C̃, C1, Ĉ1, C, Ĉ〉 to the user.
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• smABE.Dec(edec, skdec): The user performs this algorithm to decrypt the

ciphertext and gets the M .

M ←
C̃e(C,D0)e(D̂0, Ĉ)

e(D1, C1)e(Ĉ1, D̂1)
.

4.3 Our Construction

In this section, we present our SMSE scheme with fast decryption. We denote the

whole keyword set as W =
⋃d

i=1 Widi , where Widi represents the keyword set for

document di; the data owner’s database as DB = (idi,Widi)
d
i=1; the identifiers

set containing keyword w as DB[w] = {id : w ∈Wid}; the decryption key set as

K which is used to decrypt the original documents. And we let λ be the security

parameter. The details of the proposed scheme are given as follows.

• SMSE.Setup(λ,DB,K,U): This algorithm is run by the data owner. Firstly,

it chooses two big primes p, q, and computes N = pq. It denotes two pseudo-

random functions F : {0, 1}λ×{0, 1}λ → {0, 1}λ, Fp : {0, 1}λ×{0, 1}λ → Z
∗
p

and selects random keys KI , KZ , KX for the Fp and KS for the F . Let

H: {0, 1}∗ → Zp be a hash function. The data owner randomly chooses

g
R
←− G and g̃1, g̃2, g̃3

R
←− Z

∗
N . Then it outputs the system master key MK =

〈p, q,KS ,KI ,KZ ,KX , g̃1, g̃2, g̃3〉 and system public key PK = 〈N, g〉. The

search index TSet and XSet are generated as in Algorithm 1 and finally

they are sent to the server.

• SMSE.KGen(MK, L,w): This algorithm is run by the data owner. Suppose

that an authorized user with attribute set L can search over keyword set w =

{w1, w2, ..., wn}, where the appearance frequency of the keywords satisfies

|w1| < |w2| < · · · < |wn|. The attribute private key is computed as skL =

smABE.KeyGen(L, pk,mk) = 〈skmat, skdec〉 for a user whose attribute

set is L = {L1, L2, ..., Ln}. For search keyword set w, the search private key

skw = {sk
(1)
w , sk

(2)
w , sk

(3)
w } is computed as:

ski
w
= (g̃

1/
∏n

j=1 wj

i mod N), i = {1, 2, 3}.

Finally, the user’s private key sk = {KS ,KZ ,KX , skw, skL} and w are all

sent to the user.

• SMSE.TGen(sk,Q): This algorithm is run by the authorized user. Suppose

that an authorized user wants to perform conjunctive keyword search for

w̄ = {w′
1, w

′
2, · · · , w

′
m}, where m ≤ n and w′

1 is the least frequency keyword

among the queried keywords. Then the search token st is generated as follows

and finally it is sent to the server.
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Algorithm 1 Search Index (TSet,XSet) Generated Algorithm

Input: MK, PK, DB, K

Output: TSet, XSet

1: TSet,XSet← φ

2: for w ∈W do

3: stagw ← F (KS , g̃
1/w
1 mod N); m← H(g̃

1/w
1 mod N); c← 1

4: for id ∈ DB[w] do

5: xind← Fp(KI , id); z ← Fp(KZ , g̃
1/w
2 mod N ||c); l← F (stagw, c)

6: y ← xind · z−1;

7: e← smABE.Enc((id||kid),m, P )

8: TSet[l] = (e, y)

9: xtagw ← gFp(KX ,g̃
1/w
3 mod N)·xind; XSet← XSet ∪ {xtagw}

10: c← c+ 1

11: end for

12: end for

13: return TSet, XSet

- stag ← F (KS , (sk
(1)
w )

∏
w∈w\w′

1
w

mod N) = F (KS , g̃
1/w′

1
1 mod N)

- For c = 1, 2, · · · until the server say stop

1. For i = 2, ...,m

xt[c, i]← gFp(KZ ,(sk(2)
w

)

∏

w∈w\w′
1

w
mod N ||c)·Fp(KX ,(sk(3)

w
)

∏

w∈w\w′
i
w

mod N)

= gFp(KZ ,g̃
1/w′

1
2 mod N ||c)·Fp(KX ,g̃

1/w′
i

3 mod N);

2. Set xt[c] = xt[c, 2], · · · , xt[c,m];

- mt← D̂∆,0 ·D
H(g̃

1/w′
1

1 mod N)
x ;

- set st = (mt,D∆,0, stag, xt[1], xt[2], · · · ).

• SMSE.Search(st,TSet,XSet). This algorithm is run by the server which

consists of two steps: Search Step and Match Step. The details are shown in

Algorithm 2.

- Search Step: The server first finds out all the encrypted identifiers which

are satisfied with the search token. Specifically, The server uses stag

to find out the encrypted identifiers containing w′
1, and then justifies

whether they contain the other queried keywords (w′
2, · · · , w

′
m). Finally,

this step outputs the encrypted identifiers which contain all the queried

keywords.
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- Match Step: The server then uses mt and D∆,0 to test whether the

user can decrypt the encrypted identifiers generated in the Search Step.

Finally, this Match Step outputs the ultimate encrypted identifiers which

can be decrypted by the user.

• SMSE.Retrieve(sk,R). This algorithm is run by the user. On input the

private key sk and the search result R, this algorithm outputs the identi-

fiers and the corresponding document keys. Finally the user retrieves the

documents and decrypts them.

- For each ê ∈ R, parse ê = 〈edec〉 and the user directly decrypts the

ciphertext

(id ‖ kid)← smABE.Dec(edec, skdec).

- For each id, the user sends it to the server and then gets the corre-

sponding encrypted document. Finally the encrypted document can be

decrypted by kid.

Algorithm 2 SMSE.Search(st,TSet,XSet)

Input: st,TSet,XSet

Output: R

1: S, R← φ

2: Parse st = (mt,D∆,0, stag, xt[1], xt[2], · · · )

3: c = 1; l← F (stag, c)

4: while TSet[l] exist do

5: (e, y)← TSet[l]

6: if xt[c, i]y ∈ XSet for all i then

7: S ← S ∪ {e}

8: end if

9: c← c+ 1; l← F (stag, c)

10: end while

11: for e ∈ S do

12: if smABE.Match(e,mt,D∆,0) = “yes” then

13: set ê← 〈edec〉; R← R ∪ {ê}

14: end if

15: end for

16: return R
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5 Analysis of Our Proposed Scheme

5.1 Security Analysis

We first describe the security model for our smABE scheme using the following

game. A scheme is defined as IND-sCP-CPA security if no PPT adversary can

break this game with a non-negligible advantage.

Init: The adversary A submits two challenge access policies P0 and P1.
Setup: The challenger C runs the smABE.Setup algorithm and gives the public
key PK to the A.
Phase 1: A submits an attribute list L to the C. C runs smABE.KeyGen and
returns the secret key skL, if (L |= P0 ∧L |= P1) or (L 2 P0 ∧L 2 P1). A can repeat
this quary polynomial times.
Challenge: A submits two messages M0 and M1 to the C. If any attribute list
satisfies both P0 and P1, it is required that M0 = M1. C randomly chooses a bit
v ∈ 0, 1, computes ePv = smABE.Enc(Mv,m, Pv) and sends ePv to A.
Phase 2: Repeat the Phase 1. A cannot submit L which satisfies
L |= P0 ∧ L |= P1, if M0 6= M1.
Guess: A outs a guess v′ of v. The advantage of A in this game is defined as

AdvIND−sCP−ABE

smABE
= |Pr[v′ = v]− 1

2
|

Fig.1. The IND-sCP-CPA game

Theorem6. Our smABE scheme is IND-sCP-CPA secure under the DBDH

assumption and D-linear assumption. The advantage ǫCPA for a PPT adversary

to attack the IND-sCP-CPA game in the random oracle model is negligible.

Proof. A sequence of hybrid games are used to prove that A cannot win the

original game G with non-negligible probability. It is supposed that the two

challenge access policies P0 = [P0,1, P0,2, · · · , P0,n] and P1 = [P1,1, P1,2, · · · , P1,n]

are submitted at the beginning of the game. We first modify game G to game G0.

In game G0, if A obtains the secret attribute key skL when (L 2 P0∧L 2 P1), the

ciphertext component C̃ is randomly chosen in GT and the rest components are

generated as usual. If A obtains the secret attribute key skL when (L |= P0∧L |=

P1), all components for the ciphertext are generated like in game G. In this case,

G0 = G1. Then we change the components {{Ci,t,∆, Ci,t,0, Ĉi,t,0}1≤t≤ni}1≤i≤n

and define a sequence of other games as follows.

For every attribute value νi,t in the universe attribute set, if (νi,t ∈ P0,i ∧

νi,t ∈ P1,i) or (νi,t /∈ P0,i ∧ νi,t /∈ P1,i), the components {Ci,t,∆, Ci,t,0, Ĉi,t,0} in

all games are generated in normal way like in game G. If there exists a νi,t such

that (νi,t ∈ P0,i ∧ νi,t /∈ P1,i) or (νi,t /∈ P0,i ∧ νi,t ∈ P1,i), the ciphertext com-

ponents {Ci,t,∆, Ci,t,0, Ĉi,t,0} generated normally in game Gl−1 will be replaced

in game Gl by a random element in group G. We stop this replace process when

there is no such νi,t satisfies (νi,t ∈ P0,i ∧ νi,t /∈ P1,i) or (νi,t /∈ P0,i ∧ νi,t ∈ P1,i).
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In the last game, the advantage of A is zero because the distribution of the ci-

phertext components are the same no matter what the random bit ν is. The

above games are denoted as {G,G0, G1, · · · , Glmax}. Then we denote the prob-

ability for A to win the original game G as Pr[ε] and the probability to win the

game Gl is denoted as Pr[εl]. Then the advantage in game G0 can be represented

as ǫCPA, where ǫCPA = |Pr[ε]− 1
2 | = |Pr[ε]− Pr[εlmax ]|, which has the following

property.

ǫCPA ≤ |Pr[ε]− Pr[ε0] |+

lmax∑

l=1

|Pr[εl−1]− Pr[εl] |.

We can prove that ǫCPA is negligible under the assumption of DBDH and

D-linear. From the Lemma 1 and Lemma 2, the inequalities |Pr[ε] − Pr[ε0] | ≤

ǫDBDH and |Pr[εl−1] − Pr[εl] | ≤ ǫDL are hold. Here the ǫDBDH and ǫDL repre-

sent the advantage for a distinguisher to win the DBDH challenge and D-linear

challenge. Thus the inequality ǫCPA ≤ ǫDBDH + |U|ǫDL holds, where |U| repre-

sents the number of attributes in the system. Under the DBDH and D-linear

assumptions, ǫDBDH and ǫDL are negligible and thus ǫCPA is negligible. So we

conclude that our proposed scheme smABE is IND-sCP-CPA secure under the

DBDH assumption and D-linear assumption.

Lemma7. The probability difference for a PPT adversary A to win the game G

and game G0 is negligible under the DBDH assumption, that is |Pr[ε]−Pr[ε0] | ≤

ǫDBDH.

Proof. We build a distinguisher D to play the DBDH game. Given a challenge

of [g, ga, gb, gc, Z], D distinguishes whether Z is e(g, g)abc or a random element

in GT . The details are as follows:

For Init, A commites two challenge access policy P ∗
0 = [P ∗

0,1, P
∗
0,2, · · · , P

∗
0,n]

and P ∗
1 = [P ∗

1,1, P
∗
1,2, · · · , P

∗
1,n] to the D. Then D randomly selects a bit v ∈ 0, 1.

Next, for Setup, D randomly chooses ω
R
←− Zp, sets g1 = gω, g2 = gb and

Y = e(g1, g2)
a = e(g1, g2)

y. Then the system public key is PK = 〈g, g1, g2, Y 〉

and sends PK to A. For Phase 1, A visit the hash oracle and key generation

oracle to get the secret key skL for attribute set L, where (L 2 P ∗
0 ∧L 2 P ∗

1 ). For

Challenge, A submits two challenge ciphertext M0 and M1 to D. Then D sets

C̃ = MvZ
ω, and the rest ciphertext components are generated in normal way.

For Phase 2, the distinguisher does as in Phase 1. For Guess, A output a bit

v′. If v = v′, D outputs 1, otherwise D outputs 0. In case 1, Z = e(g, g)abc and

C̃ = MvZ
ω = MvY

c. The view of A in this case is distributed exactly as A′s

view inG. We have Pr[D(g, ga, gb, gc, e(g, g)abc)] = Pr[ε]. In case 2, Z is a random

element in GT where Z = gz. The view of A in this case is distributed exactly as

A′s view in G0. We have Pr[D(g, ga, gb, gc, gz)] = Pr[ε0]. So |Pr[ε] − Pr[ε0] | =

|Pr[D(g, ga, gb, gc, e(g, g)abc)]− Pr[D(g, ga, gb, gc, gz)] | ≤ ǫDBDH .
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Lemma8. The probability difference for a PPT adversary A to win the game

Gl−1 and game Gl is negligible under the D-Linear assumption, that is |Pr[εl−1]−

Pr[εl] | ≤ ǫDL for 1 ≤ l ≤ lmax.

Proof. We build a distinguisher Dl to play the D-Linear game. Given a challenge

of [g, gz1 , gz2 , Z, gz2z4 , gz3+z4 ], Dl distinguishes whether Z is gz1z3 or a random

element in GT . From Theorem 1, the ciphertext components {Cil,tl,∆, Cil,tl,0,

Ĉil,tl,0} generated normally in Gl−1 are replaced by a random element from G

in game Gl. In general, suppose that (νil,tl /∈ P ∗
0,il
∧ νil,tl ∈ P ∗

1,il
). The details

are as follows:

For Init, A commits two challenge access policy P ∗
0 = [P ∗

0,1, P
∗
0,2, · · · , P

∗
0,n]

and P ∗
1 = [P ∗

1,1, P
∗
1,2, · · · , P

∗
1,n] to the Dl. Then Dl randomly selects a bit v ∈ 0, 1.

Next, for Setup, Dl sets g1 = gz1 , g2 = gz2 , randomly selects y
R
←− Zp and sets

Y = e(g1, g1)
y. Then the system public key is PK = 〈g, g1, g2, Y 〉 and sends

PK to A. For Phase 1, A visit the hash oracle and key generation oracle to get

the secret key skL for attribute set L. For Challenge, A submits two challenge

ciphertext M0 and M1 to D. If (L 2 P ∗
0 ∧ L 2 P ∗

1 ), C̃ is a random element in

GT . Otherwise, Dl sets C̃ = MvY
s, where s = z3 + s = z4. Then Dl randomly

selects s′
R
←− Zp and sets C∆ = Y s′ , Ĉ0 = gs

′

1 , C1 = gz2z4 = gs
′′

2 , Ĉ1 = Z =

gz1z3 = gs−s′′

1 , Cx = g
s′H(m)
2 , where s′′ = z4. Then Dl selects {σi,∆, σi,0, σi,1

R
←−

G|1 ≤ i ≤ n} such that
∏n

i=1 σi,∆ =
∏n

i=1 σi,0 =
∏n

i=1 σi,1 = 1G, and computes

the ciphertext component {{Ci,t,∆, Ci,t,0, Ĉi,t,0}1≤t≤ni}1≤i≤n in Gl is the same

as in Gl−1 exception the coponents {Cil,tl,∆, Cil,tl,0, Ĉil,tl,0}. Here Cil,tl,∆ =

σil,∆gs
′τil,tl , Cil,tl,0 = σil,0(g

z2z4)ail,tl and Ĉil,tl,0 = σil,1Z
bil,tl . If Z = gz1z3 , A

is in game Gl−1, otherwise A is in game Gl. For Phase 2, the distinguisher does

as in Phase 1. For Guess, A output a bit v′. If v = v′, Dl outputs 1, otherwise Dl

outputs 0. In case 1, when Z = gz1z3 , the view of A is distributed exactly as A′s

view inGl−1. We have Pr[D(g, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4)] = Pr[εl−1]. In case 2,

Z is a random element in GT , the view of A is distributed exactly as A′s view in

Gl. We have Pr[D(g, gz1 , gz2 , gz, gz2z4 , gz3+z4)] = Pr[εl]. So |Pr[εl−1]−Pr[εl] | =

|Pr[D(g, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4)−Pr[D(g, gz1 , gz2 , gz, gz2z4 , gz3+z4)] | ≤ ǫDL.

Theorem9. Our Multi-user searchable encryption scheme is L-semantically se-

cure against the adaptive attacks under the assumptions that DDH assumption

holds in G, F and Fp are secure PRFs and smABE is a CPA secure encryption.

Proof. This proof is similar to [Sun et al. 2016]. The main difference contains two

aspects. First, we use our smABE to encrypt the document identifiers id instead

of CP-ABE. Since the smABE is IND-sCP-CPA secure, an adversary cannot

distinguish whether a ciphertext is for the desired id or an arbitrary message.

Second, in our scheme, the simulator also needs to construct mt and D∆,0. It is

easy to construct D∆,0 with the information of skmat. To construct mt, we use a
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Table 1: Comparison Between Two Schemes

Schemes Sun et al.’s scheme Our Proposed Scheme
Access Policy Protection No Yes
Encryption Cost |T |+ |GT |+ (2k + 1)|G| 2|GT |+ (3η + 4)|G|
Match Cost - 2µP

Communication Cost |DB(w̄)| · [ |T |+
|GT |+ (2k + 1)|G| ] l |DB(w̄)| · [ |GT |+ 4|G| ]

Decryption Cost l |DB(w̄)| · [ (2k + 1)P + hE ] l |DB(w̄)| · 4P

random oracle to generate the auxiliary message m such that to keep consistent

with the SMSE.Setup algorithm. Therefore, our proposed SMSE scheme is also

L-semantically secure against the adaptive attacks.

5.2 Comparison

In this section, we compare the proposed scheme with Sun et al. scheme. Table

1 presents the comparison between these two schemes. We denote E as an ex-

ponentiation operation in GT , P as a computation operation of a paring, |T | as

the size of the access policy tree T , k as the number of attributes in the T , h as

the number of non-leaf node in T , |DB(w̄)| as the search results for the queried

keywords w̄, |G| as the bit-length of an element in group G, l as the ratio of the

number of search results for the queried keywords to the number of ones which

can be decrypted by the user.

5.3 Performance Evaluation

In this section, we provide the experimental evaluation of the proposed SMSE

scheme. Our experiments are implemented with the pairing-based cryptography

(PBC) library and OpenSSL open-source library on a LINUX machine with

Intel Core i5-6500 CPU processors running at 3.20 GHz and 16 G memory. We

evaluate the computation cost, storage cost and transmission cost between our

proposed scheme and Sun et al. scheme [Sun et al. 2016].

In the Setup algorithm, the main difference between our proposed scheme

with the scheme in [Sun et al. 2016] is the generation of the ciphertext e. In

our scheme, the ciphertext e is generated by the proposed smABE, while e in

[Sun et al. 2016] is generated by CP-ABE [Bethencourt et al. 2007]. It is first to

generate the system public key pk and the system master key mk, which are not

related to the system attribute set and the access policy in both schemes. The

size of pk and mk in the proposed smABE and CP-ABE is 764 Byte, 1020 Byte

respectively and the time cost is 0.95s, 1.23s respectively.

The search index TSet and XSet are generated by the data owner and sent to

the cloud. For each keyword, there are two elements in the TSet and one element
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Figure 2: Setup in SMSE.
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(b) Transmission Comparison

Figure 3: KenGen in SMSE.

in the XSet. The difference between our SMSE scheme and Sun et al. scheme is

the generation of element e. So we implement the costs of e and the results are

shown in Figure 2. Here we set the number of attribute type from 1 to 10 and

each type has two values. The access policy in both schemes is set to the same.

The number of keyword-document pair varies from one hundred thousand to 2

million. From Figure 2a, the time cost to generate e in both schemes increases

with the number of attribute type and keyword-document pair. The time cost

in our scheme is larger than that of Sun et al. scheme. From Figure 2b, the size

of e also increases with the number of attribute type and keyword-document

pair, which in our scheme is larger than that of Sun et al. scheme. However,

the generation of e is one-time cost, and it will be outsourced to the server.

Therefore, both the time cost and storage cost in our scheme are acceptable.

The comparison of generating the attribute private key skL is shown in Figure

3. The time cost for both schemes increases with the number of attribute types,

and it is slightly larger in our scheme. For the size of attribute private key, it
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is a constant number in our scheme. However, it increases with the number of

attribute types in Sun et al. scheme. In multi-user searchable encryption setting,

the attribute private key needs to be transmitted to the different users, so the

communication cost is saved in our proposed scheme.
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Figure 4: Transmission comparison.

0
20

40
60

80
100

0

5

10
0

20

40

60

80

100

 

Decryption Probability (%)Number of Attribute Types
 

T
im

e
 C

o
s
ts

 (
s
)

Our Scheme

Sun et al. Scheme

Figure 5: Efficiency comparison.

The comparison of the cost of transmitting the search results is shown in

Figure 4. Here we set the number of search results is 5 thousands. For Sun et

al. scheme, all the search results are needed to be transmitted to the user, no

matter whether they can be decrypted. Besides, the size of ciphertext increases

with the number of attribute types. For our proposed scheme, it just returns

the ciphertext which can be decrypted by the user. Furthermore, the size of

ciphertext is constant. From Figure 4, we can see the size of ciphertext in our

scheme decreases with the decryption probability decreases and not increases

with the number of attribute types. As a result, the transmission cost in our

scheme is dramatically saved.

The comparison of the cost of decrypting the search results is shown in Figure

5. For Sun et al. scheme, the user needs to decrypt all the search results. In fact,

it takes a little time to find out the ones which cannot be decrypted. However, the

decryption cost for the ones which can be decrypted increases with the number of

attribute types. However, in our scheme, the user just needs to decrypt the ones

which is returned by the server. Besides, the decryption overhead is constant.

As shown in Fig. 5, our decryption algorithm is very efficient.

6 Conclusion

In this paper, we proposed a new multi-user searchable encryption scheme that

simultaneously achieves Boolean query and fast decryption. In our construction,

a server-side match technique is proposed which can ensure the cloud server to

test whether an encrypted data match the user’s decryption ability. Furthermore,
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we construct a new SMSE scheme with fast decryption based on the above tech-

nique. That is, the server can filter the search results which cannot be decrypted

by the user. Formal security analysis and performance evaluation present that

the proposed construction can achieve the desired goals and reduce the commu-

nication and decryption cost.
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