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ON THE CAUCHY PROBLEM FOR STOCHASTIC PARABOLIC
EQUATIONS IN HÖLDER SPACES

KAI DU AND JIAKUN LIU

Abstract. In this paper, we establish a sharp C2+α-theory for stochastic partial
differential equations of parabolic type in the whole space.

AMS Subject Classification: 35R60; 60H15

1. Introduction

In this paper, we consider the Cauchy problem for second-order stochastic partial
differential equations (SPDEs) of the Itô type

(1.1) du = (aijuxixj + biuxi + cu+ f) dt+ (σikuxi + νku+ gk) dwkt ,

where {wk} are countable independent standard Wiener processes defined on a fil-
tered complete probability space (Ω,F , (Ft)t≥0,P), the coefficients, free terms and
the unknown function u are all random fields adapted to the filtration Ft that is
complete and right-continuous. Equation (1.1) has many practical applications such
as in probability, engineering, and economics, and has been studied since long ago
(see [Roz90]). A well-known example of (1.1) is the Zakai equation arising in the
nonlinear filtering problem, see [Zak69, Roz90, Par91]. Regularity theory for equa-
tion (1.1) also play a prominent role in the study of nonlinear stochastic equations,
see [Wal86, DPZ92, Kry97, Cho15] and references therein.

Denote the matrices a = (aij) and σ = (σik). The following uniform parabolic
condition is assumed throughout the paper:

(1.2) λIn + σσ∗ ≤ 2a ≤ λ−1In on Rn × [0,∞)× Ω,

where λ > 0 is a constant, σ∗ is the transposed matrix of σ, and In is the n × n
identity matrix.

A random field u satisfying (1.1) in the sense of Schwartz distributions is often
called a weak solution of (1.1), see [Roz90]. The regularity of weak solutions in
Sobolev spaces has already been investigated by many researchers. Various aspects of
L2-theory have been obtained since 1970s, see [Par75, KR77, Roz90, DPZ92] among
others. A complete Lp-theory was established by Krylov [Kry96b, Kry99] in 1990s.
By Sobolev’s embedding, one then has the regularity in some proper C2+α-spaces,
which however requires relatively high regularities of the given data. As an open
problem proposed by Krylov [Kry99], one desires a sharp C2+α-theory in the sense
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2 KAI DU AND JIAKUN LIU

that not only that for f, g belonging to a proper space X , the solution belongs to
some kind of stochastic C2+α-spaces, but also that every element of this stochastic
space can be obtained as a solution for certain f, g belonging to the same X .

The purpose of this paper is to establish such a sharp C2+α-theory for equation
(1.1). In order to state our result, we need to define the proper Hölder space X and
introduce a notion of solutions.

Definition 1. A predictable random field u is called a quasi-classical solution of
(1.1) if

(i) for each t ∈ (0,∞), u(·, t) is a twice strongly differentiable function from Rn to
Lγω := Lγ(Ω,F ; R) for some γ ≥ 2; and

(ii) for each x ∈ Rn, the process u(x, ·) is stochastically continuous and satisfies
the integral equation

u(x, T1)− u(x, T0)

=

ˆ T1

T0

[
aij(x, t)uxixj(x, t) + bi(x, t)uxi(x, t) + c(x, t)u(x, t) + f(x, t)

]
dt

+

ˆ T1

T0

[
σik(x, t)uxi(x, t) + νk(x, t)u(x, t) + gk(x, t)

]
dwkt

almost surely (a.s.) for all 0 ≤ T0 < T1 <∞.
If furthermore, u(·, t, ω) ∈ C2(Rn) for each (t, ω) ∈ (0,∞)×Ω, then u is a classical

solution of (1.1).

It is well known that Lγω = Lγ(Ω,F ; R) is a Banach space equipped with the norm
‖ξ‖Lγω := (E|ξ|γ)1/γ, where γ ≥ 2 is a constant fixed throughout the paper. Let
T > 0 and QT = Rn× (0, T ). We define the Lγω-valued Hölder spaces Cm+α

x (QT ;Lγω)

and C
m+α,α/2
x,t (QT ;Lγω) as follows, where β = (β1, . . . , βn) denotes a multi-index and

|β| = β1 + · · ·+ βn.

Definition 2. For m ∈ N := {0, 1, 2, . . . } and α ∈ (0, 1), the space Cm+α
x (QT ;Lγω)

consists of all predictable random fields u : QT × Ω → R such that u(·, t) is an
Lγω-valued strongly continuous function for each t and

(1.3) |u|L
γ
ω

m+α;QT := |u|L
γ
ω

m;QT + max
|β|=m

sup
t, x 6=y

‖Dβu(x, t)−Dβu(y, t)‖Lγω
|x− y|α

<∞,

where |u|L
γ
ω

m;QT = max|β|≤m sup(x,t)∈QT ‖D
βu(x, t)‖Lγω , and the derivatives are defined

with respect to the spatial variable in the strong sense, see [HP57].

Using the parabolic module |X|p := |x|+
√
|t| for X = (x, t) ∈ Rn×R, we define

C
m+α,α/2
x,t (QT ;Lγω) to be the set of all u ∈ Cm+α

x (QT ;Lγω) such that

(1.4) |u|L
γ
ω

(m+α,α/2);QT := |u|L
γ
ω

m;QT + max
|β|=m

sup
X 6=Y

‖Dβu(X)−Dβu(Y )‖Lγω
|X − Y |αp

<∞.

Similarly, we can define the norms (1.3) and (1.4) over a domain Q = O × I, for
any domains O ⊂ Rn and I ⊂ R. See §2.1 for more general definitions.
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We can now state our main result, while a detailed explanation of the coefficients
and free terms has to be postponed to Assumption (H) in §2.2.

Theorem 1.1. Assume that the classical Cα
x -norms of aij, bi, c, σi, σix, ν, νx are all

dominated by a constant K uniformly in (t, ω) ∈ (0, T )×Ω, and the condition (1.2)
is satisfied. If f ∈ Cα

x (QT ;Lγω), g ∈ C1+α
x (QT ;Lγω) for some γ ≥ 2, then equa-

tion (1.1) with a zero initial condition admits a unique quasi-classical solution u in

C
2+α,α/2
x,t (QT ;Lγω).

The Cauchy problem with nonzero initial value can be easily reduced to our case
by a simple transform. Such an established C2+α-theory is sharp in the sense that
as proposed by Krylov in [Kry99]. We remark that by an anisotropic Kolmogorov
continuity theorem (see [DKN07]), if γ > n/α, the above obtained quasi-classical
solution u has a C2+δ

x modification with δ < α − n/γ; and if γ > (n + 2)/α, then u

has a C
2+δ,δ/2
x,t modification with δ < α− (n+ 2)/γ.

Our result can be applied to a wide range of nonlinear filtering problems. For
example, the Zakai equation is the homogeneous case of (1.1) as the terms f and
g vanish, and is often associated with a deterministic initial value condition. As an
application of Theorem 1.1, we have a more general result that embracing the Zakai
equation.

Corollary 1.2. Under the hypotheses of Theorem 1.1, if the initial value u(·, 0) ∈
C2+α(Rn), the free terms f ∈ L∞([0,∞);Cα(Rn)) and g ∈ L∞([0,∞);C1+α(Rn))
are all nonrandom, then equation (1.1) admits a unique classical solution.

Note that in Corollary 1.2, the coefficients a, b, c, σ, ν are allowed to be random
and merely required to satisfy natural regularity assumptions. To the best of our
knowledge, this is a new result concerning the classical solution of the Zakai equation.

The solvability of SPDEs in Lγω-valued Hölder spaces was previously studied by
Rozovsky [Roz75] and Mikulevicius [Mik00]. However, they both need to assume the
leading coefficient a is deterministic and there is no derivatives of u in the stochastic
term, namely σ ≡ 0. Such a strong restriction excludes many interesting examples
and applications. Moreover, neither of them addressed the time-continuity of second-
order derivatives of u, which is now obtained in our Theorem 1.1. For more related
results under other appropriate assumptions, we refer the reader to, for example
[Kun82, Wal86, Fun91, CJ94, BMSS95] and references therein. Most recently, Hairer
[Hai14] created an abstract theory of regularity structures for SPDEs including multi-
level Schauder estimates. Our approach in this paper is totally different to that of
[Hai14].

The solvability in Theorem 1.1 can be derived by the standard method of continuity
(see §2.2), once we have the following Schauder estimate.

Theorem 1.3. Under the hypotheses of Theorem 1.1, letting u be a quasi-classical
solution of (1.1) and u(·, 0) = 0, there is a positive constant C depending only on
n, λ, γ, α and K such that

(1.5) |u|L
γ
ω

(2+α,α/2);QT ≤ CeCT (|f |L
γ
ω

α;QT + |g|L
γ
ω

1+α;QT ).
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In non-stochastic cases, the Schauder estimate is one of the most important es-
timates for elliptic and parabolic equations, which was traditionally built upon the
potential theory, and then was obtained via different approaches by, for instance,
Campanato [Cam64], Trudinger [Tru86], Schlag [Sch96], Simon [Sim97], and others.
Also, perturbation arguments were used by Safonov [Saf84], Caffarelli [Caf89], and
Wang [Wan06], which can be applied to fully nonlinear equations. However, each
individual method of the above has some essential defect when applied to the SPDEs,
partially because of the adaptedness issues, and also the absent of a proper maximum
principle for the SPDEs. 1

In our proof of Theorem 1.3, we adopt the perturbation scheme from Wang’s work
[Wan06], while instead of using the maximum principle, we establish certain integral-
type estimates as inspired by the work of Trudinger [Tru86]. See also [DL16], where
many of our results were first announced.

The paper is organised as follows. In Section 2, we introduce some notation and
extend Definition 2 to general cases in §2.1, which will be used in subsequent sections.
In §2.2, by assuming having Theorem 1.3, we prove Theorem 1.1 via the method of
continuity. In Sections 3 and 4, we consider a model equation

(1.6) du = (aijuxixj + f) dt+ (σikuxi + gk) dwkt ,

where the random coefficients a and σ are independent of x. We first prove some
auxiliary estimates in §3, and then establish the interior Hölder estimate in §4, which
is the crucial ingredient of obtaining the Schauder estimate (1.5). In Section 5, we
prove Theorem 1.3 by establishing the global Schauder estimate for the Cauchy prob-
lem of (1.1). Some properties and approximation of Lγω-valued continuous functions
are proved in Appendix.

2. Preliminaries

2.1. Notation. For a function u of x = (x1, . . . , xn) ∈ Rn, we denote

ui = Diu = uxi , uij = Diju = uxixj , Du = ux = (u1, . . . , un).

Hereafter, β = (β1, . . . , βn) with βi ∈ N = {0, 1, 2, . . . } is a multi-index; we denote

Dβ = Dβ1 · · ·Dβn , |β| = β1 + · · ·+ βn.

For m ∈ N we denote Dmu the set of all m-order derivatives of u. These Dmu(x)
for each x are regarded as elements of a Euclidean space of proper dimension.

Let O be a domain in Rn, I ⊂ R be an interval, and Q := O × I. Let E be a
Banach space. For a function h : O → E, we define

[h]E0;O = |h|E0;O := sup
x∈O
‖h(x)‖E; and

[h]Eα;O := sup
x,y∈O, x6=y

‖h(x)− h(y)‖E
|x− y|α

for α ∈ (0, 1).

1Two different types of maximum principle for SPDEs were obtained in [DMS05] and [Kry07],
respectively, but neither is suitable for our circumstance.
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Then for m ∈ N and α ∈ (0, 1), denote

|h|Em;O := max
|β|≤m

|Dβh|E0;O,

|h|Em+α;O :=|h|Em;O + max
|β|=m

[Dβh]Eα;O.

Here and below, all the derivatives of an E-valued function are defined with respect
to the spatial variable in the strong sense, see [HP57].

For a function u : Q = O × I → E, we define
[u]Eα;Q := supt∈I [u(·, t)]Eα;O,
|u|Em+α;Q := supt∈I |u(·, t)|Em+α;O.

Letting |X|p = |(x, t)|p = |x|+
√
|t| be the parabolic modulus of X = (x, t) ∈ Rn×R,

we further define

[u]E(m+α,α/2);Q := max
|β|=m

sup
X,Y ∈Q, X 6=Y

‖Dβ
xu(X)−Dβ

xu(Y )‖E
|X − Y |αp

,

|u|E(m+α,α/2);Q := |u|Em;Q + [u]E(m+α,α/2);Q.

In the following context, the space E is either a Euclidean space or Lγω, where
γ ∈ [2,∞) is a fixed constant. We omit the superscript when E is a Euclidean space.
In the case of E = Lγω, we introduce some new notation:

[] · []... := | · |L
γ
ω

... , [[ · ]]... := [ · ]L
γ
ω

... .

For instance, []u[]m+α;Q = |u|L
γ
ω

m+α;Q, and [[u]](α,α/2);Q = [u]L
γ
ω

(α,α/2);Q.

Using the above notation, the spaces Cm+α
x (Q;Lγω) and C

m+α,α/2
x,t (Q;Lγω) defined

in Definition 2 are the sets of all predictable random fields u : Q×Ω→ R such that
[]u[]m+α;Q and []u[](m+α,α/2);Q are finite, respectively.

2.2. The solvability. Let L and Λk be differential operators

L = aijDij + biDi + c, and Λk = σikDi + νk.

The Cauchy problem under consideration can be written as

(2.1)
du = (Lu+ f) dt+ (Λku+ gk) dwkt in Q := Rn × [0,∞),

u(·, 0) = 0 in Rn.

Throughout the paper, we assume that

(H) For all i, j = 1, . . . , n, the random fields aij, bi, c and f are real-valued, and
σi, ν and g are `2-valued; all of them are predictable. aij and σi satisfy the stochastic
parabolic condition (1.2). For some α ∈ (0, 1) there exists a constant K such that
max{|aij|α;Q, |bi|α;Q, |c|α;Q, |σi|1+α;Q, |ν|1+α;Q} ≤ K for all ω ∈ Ω.

Recall that QT = Rn×(0, T ), and T > 0. Using the notation in §2.1, the Schauder
estimate in Theorem 1.3 can be written as: There is a positive constant C depending
only on n, λ, γ, α and K, such that

(2.2) []u[](2+α,α/2);QT ≤ CeCT ([]f []α;QT + []g[]1+α;QT )
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for any T > 0, where u is a quasi-classical solution of the Cauchy problem (2.1).

Proof of Theorem 1.1. With the above a priori estimates in hand, we can obtain the
solvability of the Cauchy problem (2.1) by the method of continuity. Consider

(2.3) du = (Lsu+ f) dt+ (Λksu+ gk) dwkt , u(·, 0) = 0,

where s ∈ [0, 1] and

Ls := sL+ (1− s)∆, Λks := sΛk.

Evidently, the solutions of (2.3) satisfy the a priori estimate (2.2) with the constant
C independent of s. In view of [GT01, Theorem 5.2], it suffices to show the solvability
of the stochastic heat equation (the case s = 0):

(2.4) du = (∆u+ f) dt+ gk dwkt , u(·, 0) = 0.

Set f ε = ϕε ∗ f and gε = ϕε ∗ g, where ϕε(x) = εnϕ(x/ε) and ϕ is a nonnegative
and symmetric mollifier defined on Rn (see Appendix). Then (from Lemma A.6 in
Appendix) we have that f ε ∈ Cα

x (Q;Lγω) and gε ∈ C1+α
x (Q;Lγω) satisfying

(2.5) []f ε − f []α/2;QT + []gε − g[]1+α/2;QT → 0, as ε→ 0.

Moreover, f ε(x, t, ω) and gε(x, t, ω) are smooth in x for any (t, ω), and f ε, gε ∈
Cm(QT ;Lγω) for all m ∈ N, so by Fubini’s theorem,

E
ˆ
QT

(1 + |x|2)−p(|Dmf ε(x, t)|γ + |Dmgε(x, t)|γ) dxdt

≤
ˆ
QT

(1 + |x|2)−p
(
E|Dmf ε(x, t)|γ + E|Dmgε(x, t)|γ

)
dxdt

≤ C(n, p)T ([]f ε[]γm;QT + []gε[]γm;QT ) <∞ ∀m ∈ N

with 2p > n. Therefore, it follows from Krylov–Rozovsky [KR82, Theorem 2.2] that
(2.4) with free terms f ε and gε admits a unique weak solution uε satisfying

E sup
t∈[0,T ]

ˆ
Rn

(1 + |x|2)−p|Dmuε(x, t)|γ dx <∞ ∀m ∈ N,

and by Sobolev’s embedding, uε is smooth in x, and E|Dmuε(x, t)|γ < ∞ for each
(x, t) ∈ QT and m ∈ N (see Lemma A.1 in Appendix). From estimate (2.2) (with
α/2 instead of α) and keeping (2.5) in mind, we have

[]uε − uε′ []2;QT ≤ C([]f ε − f ε′ []α/2;QT + []gε − gε′ []1+α/2;QT )→ 0

as ε, ε′ → 0. Hence, uε converges to a function u ∈ C2,0
x,t (QT ;Lγω) that appar-

ently solves (2.4). The regularity and the uniqueness follow directly from the es-
timate (2.2). �
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3. Auxiliary estimates for the model equation

Given countable independent Wiener processes (still denoted as {wk}) starting at
time t = −1, and predictable processes aij = {aij(t) : t ≥ −1} and σik = {σik(t) :
t ≥ −1} satisfying the stochastic parabolic condition (1.2), we consider the model
equation

(3.1) du(x, t) = [aij(t)uij(x, t) + f(x, t)] dt+ [σik(t)ui(x, t) + gk(x, t)] dwkt

with (x, t) ∈ Rn × [−1,∞).
We first prove some auxiliary estimates for the model equation in this section, and

then proceed to the interior Hölder estimate in the next section.
Let O ⊂ Rn, and Hm(O) = Wm,2(O) be the usual Sobolev spaces. Let I ⊂ R

and Q = O × I. Define

LpωL
q
tH

m
x (Q) := Lp(Ω;Lq(I;Hm(O))), for p, q ∈ [1,∞].

For r > 0, we denote

(3.2) Br(x) = {y ∈ Rn : |y − x| < r}, Qr(x, t) = Br(x)× (t− r2, t],

and simply write Br = Br(0), Qr = Qr(0, 0).

Proposition 3.1. Let m be a positive integer, r ∈ (0, 1] and θ ∈ (0, 1). Let u ∈
LpωL

2
tH

m+1
x (Qr) solve (3.1) in Qr with f ∈ LpωL2

tH
m−1
x (Qr) and g ∈ LpωL2

tH
m
x (Qr).

Then there exists a constant C depending only on n, p, λ,m and θ such that

‖Dmu‖LpωL∞t L2
x(Qθr)

+ ‖Dmux‖LpωL2
tL

2
x(Qθr)

≤ Cr−m−1‖u‖LpωL2
tL

2
x(Qr)

+C
m−1∑
k=0

r−m+k+1‖Dkf‖LpωL2
tL

2
x(Qr)

+ C
m∑
k=0

r−m+k‖Dkg‖LpωL2
tL

2
x(Qr)

.

Consequently, for 2(m− |β|) > n,

r
n
2
−m+|β|‖ supQθr |D

βu|‖Lpω ≤ Cr−m−1‖u‖LpωL2
tL

2
x(Qr)

+C
m−1∑
k=0

r−m+k+1‖Dkf‖LpωL2
tL

2
x(Qr)

+ C

m∑
k=0

r−m+k‖Dkg‖LpωL2
tL

2
x(Qr)

,

where the constant C further depends on |β|.

In order to establish the above local estimates, we first show the following mixed-
norm estimates for the model equation (3.1).

Lemma 3.2. Let QT = Rn × [0, T ], p ≥ 2 and m ∈ N. Suppose f ∈ LpωL
2
tH

m−1
x

and g ∈ LpωL
2
tH

m
x . Then equation (3.1) with condition u(x, 0) = 0 for all x ∈ Rn

admits a unique weak solution u ∈ LpωL
∞
t H

m
x (QT ) ∩ LpωL2

tH
m+1
x (QT ), and for any

multi-index β such that |β| ≤ m,

(3.3) ‖Dβu‖LpωL∞t L2
x

+ ‖Dβux‖LpωL2
tL

2
x
≤ C(‖Dβf‖LpωL2

tH
−1
x

+ ‖Dβg‖LpωL2
tL

2
x
).

where C = C(n, p, T, λ).
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Proof. The special case of p = 2 follows from the L2-theory of SPDEs, for instance,
see [Roz90, Theorem 4.1.2]. We prove the general cases of p ≥ 2 by induction of m.
Thus it suffices to show the estimate (3.3) for m = 0, namely

(3.4) ‖u‖LpωL∞t L2
x

+ ‖u‖LpωL2
tH

1
x
≤ C(‖f‖LpωL2

tH
−1
x

+ ‖g‖LpωL2
tL

2
x
).

Take a stopping time τ : Ω→ [0, T ] such that

(3.5) E
[(

sup
t∈[0,τ ]

ˆ
Rn

|u(x, t)|2 dx+

ˆ τ

0

ˆ
Rn

|ux(x, t)|2 dxdt

)p
2
]
<∞.

By the Itô formula (cf. [Roz90, Theorem 4.2.2]) and integration by parts,

‖u(t)‖2L2
x

=

ˆ t

0

ˆ
Rn

[
−2aijuiuj + ‖σiui + g‖2`2

]
dxds

+ 2

ˆ t

0

〈u(t), f(t)〉 dt+ 2

ˆ t

0

ˆ
Rn

ugk dxdwks ,

where 〈·, ·〉 denotes the duality product between and H1
x and H−1x . By the parabolic

condition (1.2) and using Young’s inequality, we have

sup
t∈[0,τ ]

‖u(t)‖2L2
x

+

ˆ τ

0

‖u(t)‖2H1
x

dt

≤ C

ˆ τ

0

[
‖f(t)‖2

H−1
x

+ ‖g(t)‖2L2
x

]
dt+ C

∣∣∣∣∣ sup
t∈[0,τ ]

ˆ t

0

ˆ
Rn

ugk dxdwks

∣∣∣∣∣ .
Then computing E[ · ]p/2 on both sides gives us that

E
[(

sup
t∈[0,τ ]

‖u(t)‖2L2
x

+

ˆ τ

0

‖u(t)‖2H1
x

dt

)p
2
]

(3.6)

≤ C
(
‖f‖p

LpωL
2
tH
−1
x (QT )

+ ‖g‖p
LpωL

2
tL

2
x(QT )

)
+ CE

[
sup
t∈[0,τ ]

∣∣∣∣ˆ t

0

ˆ
Rn

ugk dxdwks

∣∣∣∣
p
2
]
,

where C = C(λ, T ). By the Burkholder–Davis–Gundy inequality (see [RY99]), the
last term is dominated by

CE
[(ˆ τ

0

∞∑
k=1

∣∣∣∣ˆ
Rn

ugk dx

∣∣∣∣2dt) p
4
]

≤ CE
[(

sup
t∈[0,τ ]

ˆ
Rn

|u(x, t)|2 dx

) p
4
(ˆ τ

0

ˆ
Rn

‖g(x, t)‖2`2 dxdt

) p
4
]

(3.7)

≤ εE sup
t∈[0,τ ]

‖u(t)‖pL2
x

+ Cε−1‖g‖p
LpωL

2
tL

2
x(QT )

.

Taking the positive number ε sufficiently small and combining (3.7) along with (3.6),
we thus obtain that

E
[(

sup
t∈[0,τ ]

‖u(t)‖2L2
x

+

ˆ τ

0

‖u(t)‖2H1
x

dt

)p
2
]
≤ C

(
‖f‖p

LpωL
2
tH
−1
x (QT )

+ ‖g‖p
LpωL

2
tL

2
x(QT )

)
,
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where the constant C depends only on λ and T . Then (3.4) follows by applying the
above estimate to the following sequence of stopping times

τk := inf

{
t ≥ 0 : sup

s∈[0,t]
‖u(s)‖2L2

x
+

ˆ t

0

‖u(s)‖2H1
x

ds > k

}
∧ T,

and sending k to infinity. For m ≥ 1, one can easily apply the induction argument
to conclude the lemma. �

Proof of Proposition 3.1. Now we are ready to prove the estimates in Proposition
3.1. It suffices to consider the case r = 1. For general r > 0, we can apply the
obtained estimates for r = 1 to the rescaled function

v(x, t) := u(rx, r2t), ∀ (x, t) ∈ Rn × [−1,∞)

that solves the equation

(3.8) dv(x, t) = [aij(r2t)vij(x, t) + F (x, t)] dt+ [σik(r2t)vi(x, t) +Gk(x, t)] dβkt ,

with

F (x, t) = r2f(rx, r2t), G(x, t) = rg(rx, r2t), βkt = r−1wkr2t,

and obviously, βk are mutually independent Wiener processes.
By induction, we shall only consider the case of m = 1. Let ζ ∈ C∞0 (Rn+1) be

a nonnegative function such that ζ(x, t) = 1 if |(x, t)|p ≤
√
θ, where θ ∈ (0, 1), and

ζ(x, t) = 0 if |(x, t)|p ≥ (1 +
√
θ)/2. Then v = ζu satisfies

(3.9) dv = (aijDijv + f̃) dt+ (σikDiv + g̃k) dwkt ,

where

f̃ = ζf − 2aij(ζiu)j + aijζiju+ ζtu, g̃k = ζgk − σikζiu.
Applying Lemma 3.2 to (3.9) with |β| = 0, we have

‖u‖LpωL∞t L2
x(Q

√
θ)

+ ‖Du‖LpωL2
tL

2
x(Q

√
θ)

(3.10)

≤ C
(
‖u‖LpωL2

tL
2
x(Q1) + ‖f‖LpωL2

tL
2
x(Q1) + ‖g‖LpωL2

tL
2
x(Q1)

)
.

While by choosing another cut-off function ζ such that ζ(x, t) = 1 if |(x, t)|p ≤ θ,

and ζ(x, t) = 0 if |(x, t)|p ≥
√
θ, and again applying Lemma 3.2 with |β| = 1, we

have

‖Du‖LpωL∞t L2
x(Qθ)

+ ‖D2u‖LpωL2
tL

2
x(Qθ)

(3.11)

≤ C
(
‖Du‖LpωL2

tL
2
x(Q

√
θ)

+ ‖f‖LpωL2
tL

2
x(Q1) + ‖g‖LpωL2

tH
1
x(Q1)

)
.

Combining (3.10) and (3.11), the first inequality in Proposition 3.1 is proved.
In view of Sobolev’s embedding theorem, the second inequality in Proposition

3.1 follows directly from the first one. In fact, from Sobolev’s theorem, one has
Hm
x (Qθ) ⊂ Cj

x(Qθ) if 2(m−j) > n, see [AF03, Theorem 4.12]. Hence, LpωL
∞
t H

m
x (Qθ) ⊂

LpωL
∞
t C

j
x(Qθ). More specifically, if 2(m − |β|) > n, then there is a constant C de-

pending only on n,m, |β| and θ such that

‖ supQθ |D
βu|‖Lpω ≤ C‖u‖LpωL∞t Hm

x (Qθ),
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which along with (3.10) and the first inequality in Proposition 3.1 yields the desired
estimate. The proof is complete. �

As an immediate application, we give an estimate for equation (3.1) with the
Dirichlet boundary conditions

(3.12) u(0, ·) = 0, u|∂Br = 0.

Proposition 3.3. Let f and g be in LγωL
2
tH

m
x (Br × (0, r2)) for all m ∈ N. Then

the Dirichlet problem (3.1) and (3.12) has a unique weak solution u ∈ L2
ωL

2
tH

1
x(Br×

(0, r2)), and for each t ∈ (0, r2), u(t, ·) ∈ Lγ(Ω;Cm(Bε)) for all m ≥ 0 and ε ∈ (0, r).
Moreover, there is a constant C = C(n, γ) such that

‖u‖LγωL2
tL

2
x(Br×(0,r2)) ≤ C

(
r2‖f‖LγωL2

tL
2
x(Br×(0,r2)) + r‖g‖LγωL2

tL
2
x(Br×(0,r2))

)
.(3.13)

Proof. The existence, uniqueness and smoothness of the weak solution of the Dirichlet
problem (3.1) and (3.12) follow from [Kry94, Theorem 2.1]. And the estimate (3.13)
can be derived analogously to that of (3.4) by means of Itô’s formula and rescaling.

�

4. Interior Hölder estimates for the model equation

We continue the investigation to the model equation (3.1) with (x, t) ∈ Rn ×
[−1,∞). The aim of this section is to prove the interior Hölder estimates for (3.1).
To be more general, we assume that f ∈ C0

x(Rn × [−1,∞);Lγω) and g ∈ C1
x(Rn ×

[−1,∞);Lγω), and f(x, t) and gx(x, t) are Dini continuous with respect to x uniformly
in t, namely, the modulus of continuity defined by

$(r) = sup
t≥−1, |x−y|≤r

(‖f(x, t)− f(y, t)‖Lγω + ‖gx(x, t)− gx(y, t)‖Lγω)

satisfies that ˆ 1

0

$(r)

r
dr <∞.

Recall the notation Br, Qr and Qr(x, t) defined in (3.2). The main estimate is the
following

Theorem 4.1. Let Z = (z, s) ∈ Rn × [0,∞) and u be a quasi-classical solution to
(3.1) in Q1(Z). Under the above settings, there is a positive constant C, depending
only on n, λ and γ, such that for any X, Y ∈ Q1/4(Z),

(4.1) ‖uxx(X)− uxx(Y )‖Lγω ≤ C

[
δM1 +

ˆ δ

0

$(r)

r
dr + δ

ˆ 1

δ

$(r)

r2
dr

]
,

where δ = |X − Y |p and M1 = []u[]0;Q1(Z) + []f []0;Q1(Z) + []g[]1;Q1(Z).

An immediate consequence is the following interior Hölder estimate for (3.1), where
we denote Qr,T = Br × [0, T ] for r, T > 0.
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Corollary 4.2. Let u be a quasi-classical solution of (3.1), and α ∈ (0, 1). If
u(x, 0) = 0 for all x ∈ Rn, then there is a positive constant C, depending only on
n, λ, γ and α, such that

(4.2) [[uxx]](α,α/2);Q1/4,T
≤ C

[
[]u[]0;Q1,T

+
[]f []α;Q1,T

+ []g[]1+α;Q1,T

α(1− α)

]
for any T > 0, provided the right-hand side is finite.

Proof. We define ũ(x, t), f̃(x, t) and g̃(x, t) to be zero whenever t ∈ [−1, 0), and be
equal to u(x, t), f(x, t) and g(x, t), respectively, whenever t ≥ 0. Then it is easily
verified that ũ is a quasi-classical solution (see Definition 2) of the following equation

dũ = (aijũij + f̃) dt+ (σikũi + g̃k) dwkt

in the area Rn × [−1,∞). Applying (4.1) to the above equation we have

(4.3) [[ũxx]](α,α/2);Q1/4(X) ≤ C

[
[]ũ[]0;Q1(X) +

[]f̃ []α;Q1(X) + []g̃[]1+α;Q1(X)

α(1− α)

]
for any X = (x, t) ∈ Rn × [0,∞). Then we fix x = 0 and let t run through [0, T ];

keeping in mind that ũ, f̃ and g̃ vanish when t ≤ 0, and using the localization
property of Hölder norms (see [Kry96a, Lemma 4.1.1]), we have

[[uxx]](α,α/2);Q1/4,T
= [[ũxx]](α,α/2);Q1/4,T

≤ C(n, α) sup
0≤t≤T

(
[[ũxx]](α,α/2);Q1/4(0,t) + []ũ[]0;Q1/4(0,t)

)
≤ C sup

0≤t≤T

[
[]ũ[]0;Q1(0,t) +

[]f̃ []α;Q1(0,t) + []g̃[]1+α;Q1(0,t)

α(1− α)

]

≤ C

[
[]u[]0;Q1,T

+
[]f []α;Q1,T

+ []g[]1+α;Q1,T

α(1− α)

]
.

The proof is complete. �

Proof of Theorem 4.1. By means of translation, we may suppose Z = (0, 0) without
loss of generality.

Letting ϕ : Rn → R be a nonnegative and symmetric mollifier (see Appendix)
and ϕε(x) = εnϕ(x/ε), we define uε = ϕε ∗ u, f ε = ϕε ∗ f and gε = ϕε ∗ g. Under the
condition of Theorem 4.1, it follows from Corollary A.5 (see Appendix) that

[]f ε − f []0;Rn + []gε − g[]1;Rn → 0,

‖D2uε(X)−D2u(X)‖Lγω → 0 ∀X ∈ Rn ×R,

as ε→ 0. Evidently, f ε and Dgε are also Dini continuous and has the same modulus
of continuity $ with f and Dg. On the other hand, from Fubini’s theorem one can
check that uε satisfies the model equation (3.1) in the classical sense with free terms
f ε and gε. Therefore, it suffices to prove the theorem for the mollified functions, and
the general case is straightforward by passing the limits.
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Based on the above analysis and the property of mollified functions (see Lemmas
A.1 and A.2 and Remark A.1 in Appendix), we may assume that f and g satisfy the
following additional condition:

(A) f, g ∈ LγωL2
tH

k
x(QR) ∩ Ck

x(QR;Lγω) for all k ∈ N and R > 0.

From the definition of $, one can see that for any x, y ∈ Rn and t ∈ R,

‖f(x, t)− f(y, t)‖Lγω + ‖gx(x, t)− gx(y, t)‖Lγω ≤ $(|x− y|),
‖g(x, t)− g(y, t)− gx(x, t) · (x− y)‖Lγω ≤ |x− y|$(|x− y|).

(4.4)

With ρ = 1/2, we denote

Qκ = Qρκ = Qρκ(0, 0), κ = 0, 1, 2, · · · .
Let us introduce the following boundary problems:

duκ = [aijuκij + f(0, t)] dt+ [σikuκi + gk(0, t) + gkx(0, t) · x] dwkt in Qκ,

uκ = u on ∂pQ
κ,

where ∂pQ
κ denotes the parabolic boundary of the cylinder Qκ for κ = 0, 1, 2, . . . .

Applying Proposition 3.3 to the equation of uκ−u, we can obtain the the solvability
and interior regularity of each uκ.

Now, we claim that there is a constant C = C(n, λ, γ) such that

(4.5) []Dm(uκ − uκ+1)[]0;Qκ+2 ≤ Cρ(2−m)κ−m$(ρκ), m = 1, 2, . . . .

To see this, we apply the second estimate in Proposition 3.1 (with f and g vanishing)
to uκ − uκ+1 with |β| = m, r = ρκ+1, θ = 1/2 and p = γ to get

[]Dm(uκ − uκ+1)[]0;Qκ+2 ≤ Cρ−mκ−m
∥∥∥∥ 

Qκ+1

(uκ − uκ+1)2 dX

∥∥∥∥1/2
L
γ/2
ω

=: Iκ,m.

Here and in what follows, we denote
ffl
Q

= 1
|Q|

´
Q

with |Q| being the Lebesgue measure

of the set Q ⊂ Rn+1.
On the other hand, it follows from Proposition 3.3 that

Jκ :=

∥∥∥∥ 
Qκ

(uκ − u)2 dX

∥∥∥∥1/2
L
γ/2
ω

≤ Cρ2κ$(ρκ).

Combining the above we obtain

Iκ,m ≤ Cρ−mκ−m(Jκ + Jκ+1) ≤ Cρ(2−m)κ−m$(ρκ)

and thus the claim (4.5).

The estimate (4.5) with m = 2 gives (recalling ρ = 1/2)∑
κ≥1

[](uκ − uκ+1)xx[]0;Qκ+2 ≤ Cρ−2
∑
κ≥1

$(ρκ) ≤ 4C

ˆ 1

0

$(r)

r
dr <∞,

which implies that uκxx(0) converges in Lγω as κ → ∞, (here 0 ∈ Rn+1). We shall
prove that the limit is uxx(0). Since γ ≥ 2, it suffices to show that

(4.6) lim
κ→∞
‖uκxx(0)− uxx(0)‖L2

ω
= 0.
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Applying the second estimate in Proposition 3.1 to uκ − u with m = n + 2, |β| =
2, r = ρκ, θ = 1/2 and p = 2, we have

sup
Qκ+1

‖uκxx − uxx‖2L2
ω
≤ Cρ−4κ E

 
Qκ

|uκ − u|2 dX + C E
 
Qκ

|f(x, t)− f(0, t)|2 dX

+C E
 
Qκ

(
‖g(x, t)− g(0, t)− gx(0, t) · x‖2 + ‖gx(x, t)− gx(0, t)‖2

)
dX

+C
n+1∑
k=1

ρ2κk E
 
Qκ

(
|Dkf |2 + ‖Dk+1g‖2

)
dX.

According to the additional condition (A) on f and g, it is clear that the last three
terms on the right-hand side tend to zero as κ→∞. Moreover, from Proposition 3.3
and (4.4) we have

ρ−4κ E
 
Qκ

|uκ − u|2 dX

≤ C E
 
Qκ

(
|f(x, t)− f(0, t)|2 + ρ−2κ|g(x, t)− g(0, t)− gx(0, t) · x|2l2

)
dX

≤ C$(ρκ)2 → 0, as κ→∞.

Therefore, (4.6) is proved and uκxx(0) converges strongly to uxx(0) in Lγω. Moreover,
by means of (4.5), we have

(4.7) ‖uκxx(0)− uxx(0)‖Lγω ≤
∑
j≥κ

[](uj − uj+1)xx[]0;Qj+2 ≤ C

ˆ ρκ

0

$(r)

r
dr,

where C = C(n, λ, γ).

Next we estimate the oscillation of uκxx. Starting from κ = 0, u0xx satisfies the
following homogeneous equation:

du0xx = aijDiju
0
xx dt+ σikDiu

0
xx dwkt in Q3/4.(4.8)

Using the second estimate in Proposition 3.1 (with f and g vanishing) to u0xx, we
have

[]Dxu
0
xx[]0;Q1/4

+ []D2
xu

0
xx[]0;Q1/4

≤ C‖u0xx‖LγωL2
tL

2
x(Q1/2)

≤ C(‖u0xx − uxx‖LγωL2
tL

2
x(Q1/2)

+ ‖uxx‖LγωL2
tL

2
x(Q1/2)

).

Then we apply the first estimate in Proposition 3.1 to u to get

‖uxx‖LγωL2
tL

2
x(Q1/2)

≤ C(‖u‖LγωL2
tL

2
x(Q1) + ‖f‖LγωL2

tL
2
x(Q1) + ‖g‖LγωL2

tH
1
x(Q1)),

and to u0 − u along with Proposition 3.3,

‖u0xx − uxx‖LγωL2
tL

2
x(Q1/2)

≤ C(‖u0 − u‖LγωL2
tL

2
x(Q1) + ‖f‖LγωL2

tL
2
x(Q1) + ‖g‖LγωL2

tH
1
x(Q1))

≤ C(‖f‖LγωL2
tL

2
x(Q1) + ‖g‖LγωL2

tH
1
x(Q1)).
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Therefore,

[]Dxu
0
xx[]0;Q1/4

+ []D2
xu

0
xx[]0;Q1/4

≤ C(‖u‖LγωL2
tL

2
x(Q1) + ‖f‖LγωL2

tL
2
x(Q1) + ‖g‖LγωL2

tH
1
x(Q1)) ≤ CM1.

Hence, for −1/16 < s ≤ t ≤ 0 and x ∈ B1/4,

‖u0xx(x, t)− u0xx(x, s)‖Lγω =

∥∥∥∥ˆ t

s

aijDiju
0
xx dτ +

ˆ t

s

σikDiu
0
xx dwkτ

∥∥∥∥
Lγω

≤ C
√
t− s([]Du0xx[]0;Q1/4

+ []D2u0xx[]0;Q1/4
) ≤ C

√
t− sM1,

where C = C(n, λ, γ). Thus, we obtain

(4.9) ‖u0xx(X)− u0xx(Y )‖Lγω ≤ CM1|X − Y |p, ∀X, Y ∈ Q1/4.

To deal with uκxx with κ ≥ 1, we denote

hι = uι − uι−1, for ι = 1, 2, . . . ,κ.

Then hι satisfies

dhι = aijhιij dt+ σikhιi dwkt in Qι.(4.10)

By (4.5) we have

ρ−ι[]D3hι[]0;Qι+1 + []D4hι[]0;Qι+1 ≤ Cρ−2ι$(ρι−1).

Hence, for −ρ2(κ+1) ≤ t ≤ 0 and |x| ≤ ρκ+1,

‖hιxx(x, 0)− hιxx(0, 0)‖Lγω ≤ Cρκ−ι$(ρι−1)

and

‖hιxx(x, t)− hιxx(x, 0)‖Lγω =

∥∥∥∥ˆ 0

t

aijDijh
ι
xx dτ +

ˆ 0

t

σikDih
ι
xx dwkτ

∥∥∥∥
Lγω

≤ Cρ2κ[]D4hι[]0;Qι+1 + Cρκ []D3hι[]0;Qι+1 ≤ Cρκ−ι$(ρι−1).

Let Y = (y, s) ∈ Q1/4, and κ̃ ∈ N such that

δ := |Y |p ∈ [ρκ̃+2, ρκ̃+1).

Combining the last two estimates and (4.9), we can obtain

‖uκ̃xx(Y )− uκ̃xx(0)‖Lγω ≤ ‖u
κ̃−1
xx (Y )− uκ̃−1xx (0)‖Lγω + ‖hκ̃xx(Y )− hκ̃xx(0)‖Lγω

≤ ‖u0xx(Y )− u0xx(0)‖Lγω +
κ̃∑
ι=1

‖hιxx(Y )− hιxx(0)‖Lγω

≤ CM1ρ
κ̃+1 + C

κ̃∑
ι=1

ρκ̃−ι$(ρι−1)

≤ CM1ρ
κ̃+2 + Cρκ̃+2

ˆ 1

ρκ̃

$(r)

r2
dr

≤ CδM1 + Cδ

ˆ 1

δ

$(r)

r2
dr.
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By virtue of (4.7) we have the following decomposition

‖uxx(Y )− uxx(0)‖Lγω(4.11)

≤ ‖uκ̃xx(Y )− uκ̃xx(0)‖Lγω + ‖uκ̃xx(0)− uxx(0)‖Lγω + ‖uκ̃xx(Y )− uxx(Y )‖Lγω

≤ C

[
δM1 +

ˆ 4δ

0

$(r)

r
dr + δ

ˆ 1

δ

$(r)

r2
dr

]
+ ‖uκ̃xx(Y )− uxx(Y )‖Lγω .

It remains to estimate the last term in the above inequality. To this end, we consider
the sequence of equations

duY,κ = [aijuY,κij + f(y, t)] dt+ [σikuY,κi + gk(y, t) + gkx(y, t) · x] dwkt in Qκ(Y ),

uY,κ = u on ∂pQ
κ(Y ) with κ = 0, 1, . . . , κ̃− 1, κ̃ + 2, . . . ;

the equations associated with κ̃ and κ̃+1 are replaced by the following single equation

duY,κ̃ = [aijuY,κ̃ij + f(y, t)] dt+ [σikuY,κ̃i + gk(y, t) + gkx(y, t) · x] dwkt in Qκ̃(0),

uY,κ̃ = u on ∂pQ
κ̃(0).

As |Y |p ∈ [ρκ̃+2, ρκ̃+1), it is easily seen that Qκ̃+2(Y ) ⊂ Qκ̃(0) ⊂ Qκ̃−1(Y ). So
analogously to proving (4.7) but only with minor changes, one can derive

(4.12) ‖uY,κ̃xx (Y )− uxx(Y )‖Lγω ≤ C

ˆ ρκ̃

0

$(r)

r
dr,

where C = C(n, λ, γ). On the other hand, applying Proposition 3.1 to the equation
satisfied by uY,κ̃ − uκ̃, and using (4.4), we have

‖uY,κ̃xx (Y )− uκ̃xx(Y )‖Lγω ≤ C
(
‖uY,κ̃ − uκ̃‖LγωL2

tL
2
x(Q

κ̃) +$(δ)
)
,

while by Proposition 3.3,

‖uY,κ̃ − uκ̃‖LγωL2
tL

2
x(Q1) ≤ C$(δ).

Thus

‖uκ̃xx(Y )− uxx(Y )‖Lγω ≤ C$(δ) + C

ˆ 4δ

0

$(r)

r
dr.

Substituting the above estimate into (4.11), we then complete the proof. �

Remark 4.1. Consider the model equation of divergence-form

(4.13) du = (aijuj + f i)i dt+ (σikui + gk) dwkt .

With the help of the following approximation sequence

duκ = aijuκij dt+ [σikuκi + gk(0, t)] dwkt in Qκ,

uκ = u on ∂pQ
κ,

we can similarly obtain an interesting estimate

[[u]](1+α,α/2);Q1/4
≤ C

(
[]u[]0;Q1 +

∑
i
[]f i[]α;Q1 + []g[]α;Q1

)
,

provided the right-hand side is finite. The result on the model equation (4.13) can
help us establish a C1+α estimate for more general equations, which will be discussed
in a separate work.
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5. Global Hölder estimates for general equations

This section is devoted to the proof of Theorem 1.3. First we state two technical
lemmas.

Lemma 5.1. Let ϕ be a bounded nonnegative function defined on [0, T ] satisfying

(5.1) ϕ(t) ≤ θϕ(s) +
m∑
i=1

Ai(s− t)−δi , ∀ 0 ≤ t < s ≤ T,

for some nonnegative constants θ, δi and Ai (i = 1, . . . ,m), where θ < 1. Then

ϕ(0) ≤ C

m∑
i=1

AiT
−δi ,

where C depends only on δ1, . . . , δm and θ.

Proof. We may suppose T = 1, otherwise let ϕ̃(t) = ϕ(Tt). Then (5.1) implies

ϕ(t) ≤ θϕ(s) + A(s− t)−δ, ∀ 0 ≤ t < s ≤ 1,

where δ := max1≤i≤m δi and A := A1 + · · · + Am. It suffices to consider δ > 0.
Take τ ∈ (0, 1) such that ε := θτ−δ < 1, and set t0 = 0, tj+1 = tj + (1 − τ)τ j for
j = 0, 1, . . . . Then

θjϕ(tj) ≤ θj+1ϕ(tj+1) + A(1− τ)−δ(θτ−δ)j = θj+1ϕ(tj+1) + εjA(1− τ)−δ.

By iteration, we gain

ϕ(0) ≤ θkϕ(tk) + (1 + ε+ · · ·+ εk−1)A(1− τ)−δ

≤ θkϕ(tk) + (1− ε)−1A(1− τ)−δ.

By letting k →∞, we conclude the proof. �

Lemma 5.2. Let BR = {x ∈ Rn : |x| < R} with R > 0, E be a Banach space,
p ≥ 1, and 0 ≤ s < r. There exists a positive constant C, depending only on n and
p, such that

[u]Es;BR ≤ Cεr−s[u]Er;BR + Cε−s−n/p‖u‖Lp(BR;E)(5.2)

for any u ∈ Cr(BR;E) and ε ∈ (0, R).

Proof. Let us consider R = 1 first. Following the proof of classical interpolation
inequalities for Hölder norms (see [GT01, Lemma 6.35] or [Kry96a, Theorem 3.2.1]),
one can derive

[u]Es;B1
≤ Cεr−s[u]Er;B1

+ Cε−s|u|E0;B1
.(5.3)

Consider the case of r ≤ 1 first. For arbitrary x ∈ B1, we select a ball Bε(y) = {z :
|y − z| < ε} ⊂ B1 such that x ∈ Bε(y). Then we compute

‖u(x)‖E =

 
Bε(y)

‖u(x)‖E dz ≤
 
Bε(y)

‖u(x)− u(z)‖E dz +

 
Bε(y)

‖u(z)‖E dz

≤ Cεr[u]Er;B1
+ Cε−n/p‖u‖Lp(B1;E),
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which yields (5) with s = 0 and r ≤ 1. For the case of r > 1, we have

|u|E0;B1
≤ Cε[u]E1;B1

+ Cε−n/p‖u‖Lp(B1;E)

≤ Cεεr−11 [u]Er;B1
+ Cεε−11 |u|E0;B1

+ Cε−n/p‖u‖Lp(B1;E).

Choosing ε1 = 2Cε, we get (5) with s = 0 and r > 1. Finally, for the general case,
we derive

|u|Es;B1
≤ Cεr−s[u]Er;B1

+ Cε−s|u|E0;B1
≤ Cεr−s[u]Er;B1

+ Cε−s−n/p‖u‖Lp(B1;E).(5.4)

The case of R = 1 is proved.
Now we turn to the general R > 0. With v(x) := u(Rx) we have that [v]Er;B1

=

Rr[u]Er;BR and ‖v‖Lp(B1;E) = R−n/p‖u‖Lp(BR;E). Applying (5.4) to v we can obtain
that

[u]Es;BR ≤ C(Rε)r−s[u]Er;BR + C(Rε)−s−n/p‖u‖Lp(BR;E)

for any u ∈ Cr(BR;E) and ε ∈ (0, 1). The proof is complete. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let ρ/2 ≤ r < R ≤ ρ with ρ ∈ (0, 1/4) to be specified. Take
a nonnegative function ζ ∈ C∞0 (Rn) such that ζ(x) = 1 when |x| ≤ r; ζ(x) = 0 when
|x| > R, and for δ ≥ 0,

[ζ]δ;Rn ≤ C(R− r)−δ.
Set v = ζu, and

aij◦ (t) = aij(0, t), σik◦ (t) = σik(0, t).

Then v satisfies

(5.5) dv = (aij◦ vij + f̃) dt+ (σik◦ vi + g̃k) dwkt ,

where

f̃ = (aij − aij◦ )ζuij + (biζ − 2aijζj)ui + (cζ − aijζij − biζi)u+ ζf,

g̃k = (σik − σik◦ )ζui + (νkζ − σikζi)u+ ζgk.

For a positive number τ , we set QR,τ = BR × (0, τ) and define

M τ
x,r(u) = sup

0≤t≤τ

( 
Br(x)

E |u(t, y)|γ dy

)1/γ

, M τ
r (u) = sup

x∈Rn

M τ
x,r(u).

Then by Lemma 5.2,

[]f̃ []α;QR,τ ≤ (ε+KRα)[[u]]2+α;QR,τ + C(R− r)−2−α−n/γM τ
0,R(u)

+ [[f ]]α;QR,τ + C(R− r)−α[]f []0;QR,τ ,

[]g̃[]1+α;QR,τ ≤ (ε+KRα)[[u]]2+α;QR,τ + C(R− r)−2−α−n/γM τ
0,R(u)

+ [[g]]1+α;QR,τ + C(R− r)−1−α[]g[]0;QR,τ .
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where C = C(n,K, γ, ε, ρ). Take ρ, ε > 0 so small that ε + Kρα ≤ 1/4, then by
virtue of Corollary 4.2, we obtain that for any ρ/2 ≤ r < R ≤ ρ,

[[u]](2+α,α/2);Qr,τ ≤
1

2
[[u]]2+α;QR,τ + C(R− r)−2−α−n/γM τ

0,R(u) + [[f ]]α;QR,τ

+ [[g]]1+α;QR,τ + C(R− r)−α[]f []0;QR,τ + C(R− r)−1−α[]g[]0;QR,τ .

By Lemma 5.1, we gain

[[u]](2+α,α/2);Qρ/2,τ ≤ C
(
M τ

0,ρ(u) + []f []α;Qρ,τ + []g[]1+α;Qρ,τ

)
.(5.6)

Similarly, with Qρ/2,τ (x) := Bρ/2(x)× (0, τ) for any point x ∈ Rn, we have

sup
x∈Rn

[[u]](2+α,α/2);Qρ/2,τ (x) ≤ C
(
M τ

ρ (u) + []f []α;Qτ + []g[]1+α;Qτ

)
,

which along with the localization property of Hölder norms (cf. [Kry96a, Lemma 4.1.1])
and Lemma 5.2, we have

[[u]](2+α,α/2);Qτ ≤ C sup
x∈Rn

(
[[u]](2+α,α/2);Qρ/2,τ (x) + []u[]0;Qρ/2,τ (x)

)
(5.7)

≤ C
(

sup
x∈Rn

[[u]](2+α,α/2);Qρ/2,τ (x) +M τ
ρ/2(u)

)
≤ C

(
M τ

ρ (u) + []f []α;Qτ + []g[]1+α;Qτ

)
,

where C = C(n, λ, γ, α) is a generic constant.
To estimate M τ

ρ (u), we apply Itô’s formula to compute

d|u|γ = γ|u|γ−2u(aijuij + biui + cu+ f) dt

+
γ(γ − 1)

2
|u|γ−2|σikui + νku+ gk|2 dt+ dmt,

where mt is a martingale. Integrating in Qρ,τ×Ω, and using the Hölder and Sobolev–
Gagliargo–Nirenberg inequalities, we get

E
ˆ
Bρ

|u(x, τ)|γ dx ≤ C1E
ˆ
Qρ,τ

(
|uxx|γ + |u|γ + |f |γ + |g|γ

)
dxdt.

Thus,

M τ
0,ρ(u) ≤ C1τ([]u[]2;Qρ,τ + []f []0;Qτ + []g[]0;Qτ ),

where C1 = C1(n, λ, γ). Letting τ = (2CC1)
−1, the above inequality along with (5.7)

yields

[]u[](2+α,α/2);Qτ ≤ C0

(
[]f []α;Qτ + []g[]1+α;Qτ

)
,(5.8)

where C0 = C0(n, λ, γ, α).
Let us conclude the proof by induction. For S > 0, assume that there is a constant

CS such that

[]u[](2+α,α/2);QS ≤ CS
(
[]f []α;QS + []g[]1+α;QS

)
.(5.9)
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With uS := u(·, S), it is easily seen that v := (u− uS) satisfies

dv = [aijvij + bivi + cv + (f + aijuSij + biuSi + cuS)] dt

+ [σikvi + νkv + (gk + σikuSi + νkuS)] dwkt , on Rn × (S,∞),

v(S, x) = 0, x ∈ Rn.

Applying (5.8) to this equation and with (5.9) in mind, we have

[]u[](2+α,α/2);QS+τ ≤ []v[](2+α,α/2);QS+τ + []u[](2+α,α/2);QS

≤ C0

(
[]f []α;QS+τ + []g[]1+α;QS+τ

)
+ C0N []u[](2+α,α/2);QS

≤ C0(1 +NCS)
(
[]f []α;QS+τ + []g[]1+α;QS+τ

)
,

where N is a constant depending only on n, λ, γ and K. Hence,

CS+τ ≤ C0(1 +NCS).

As τ is fixed, by iteration we have CS ≤ CeCS, where C = C(n, λ, γ, α,K). This
concludes the proof of estimate (2.2) and thus Theorem 1.3. �

Appendix

In this section we prove some properties and approximation of Lγω-valued continu-
ous and differentiable functions. Let O be a simply connected domain in Rn. Denote
C(O;Lγω) the set of all Lγω-valued strongly continuous functions defined on O such
that supx∈O E[|u(x)|γ] <∞, and Cm(O;Lγω) the set of all C(O;Lγω) functions whose
strong derivatives up to order m all exit and belong to C(O;Lγω), where m is a non-
negative integer. In view of a known result (see [DPZ92, Proposition 3.6]), every
function in C(O;Lγω) has a modification jointly measurable with respect to x ∈ O
and ω ∈ Ω; we will always choose this modification.

In what follows, we denote Du to the strong derivatives of an Lγω-valued differen-
tiable function u, and ∂u to be the classical derivatives if exist.

Lemma A.1. If u ∈ Lγ(Ω;Cm(O)), then u ∈ Cm(O;Lγω), and Dβu = ∂βu for any
multi-index β with |β| ≤ m.

Proof. It follows from the dominated convergence theorem that Lγ(Ω;C(O)) ⊂
C(O;Lγω). For u ∈ Lγ(Ω;C1(O)), we know that ∂u ∈ C(O;Lγω), and by Jensen’s
inequality and Fubini’s theorem,

E|r−1[u(x+ rei)− u(x)]− ∂iu(x)|γ = E
∣∣∣∣ˆ 1

0

[
∂iu(x+ srei)− ∂iu(x)

]
ds

∣∣∣∣γ
≤
ˆ 1

0

E
∣∣∂iu(x+ srei)− ∂iu(x)

∣∣γ ds→ 0 as r → 0.

Thus, Du = ∂u and u ∈ C1(O;Lγω). The lemma is concluded by induction. �

Let ϕ = ϕ̃/
´
Rn ϕ̃ with ϕ̃(x) := e−1/(1−|x|

2)1B1(x) for x ∈ Rn. Define ϕε =
ε−nϕ(x/ε) with ε > 0. It is easily seen that

|Dmϕε| ≤ Cε−n−m,

ˆ
Rn

|Dmϕε|γ ≤ C ε−(γ−1)n−γm
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for all m ∈ N and γ ≥ 2. Now we mollify a function u ∈ C(Rn;Lγω) using ϕε:

(A.1) uε := ϕε ∗ u =

ˆ
ϕε(· − y)u(y) dy.

It is easily seen from Fubini’s theorem that uε ∈ C(Rn;Lγω). In view of Theorem 34.B
in [Hal74], u(x, ω) is a measurable function in x for each ω, and u(·, ω) ∈ Lγloc(Rn)
for almost every ω. Thus, by the property of mollifiers, uε(·, ω) ∈ C∞(Rn) for almost
every ω.

Lemma A.2. If u ∈ C(Rn;Lγω), then uε ∈
⋂
m∈NC

m(Rn;Lγω), and it restricted on
any BR belongs to Lγ(Ω;Ck(BR)) for all k ∈ N.

Proof. By Hölder’s inequality and Fubini’s theorem we have

E|∂muε(x)|γ = E
∣∣∣∣ˆ
Bε(x)

∂mϕε(x− y)u(y) dy

∣∣∣∣γ
≤ |Bε|γ−1

ˆ
Bε

|∂mϕε(y)|γ dy
(

sup
x∈Rn

E|u(x)|γ
)
≤ Cε−p(m+1)[]u[]γ0;Rn ,

which implies that uε ∈
⋂
m∈NC

m(Rn;Lγω) and also that uε ∈ Lγ(Ω;W k,γ
loc (Rn)) for

any k ∈ N. By Sobolev’s embedding theorem, uε ∈ Lγ(Ω;Ck(BR)) for any k ∈ N
and R > 0. �

Remark A.1. If u also depends on time, say u ∈ C(Rn × R;Lγω), then the above
lemma implies that uε(·, t) ∈ Lγ(Ω;Ck(BR)) and supt∈[−R,R] E|uε|

γ
k;BR

< ∞ for all

k ∈ N and R > 0. In particular, uε ∈ LγωL2
tH

k
x(QR) ∩ Ck

x(QR;Lγω) for all k ∈ N and
R > 0.

Lemma A.3. If u ∈ C(Rn;Lγω), then

(A.2) lim
ε→0

E[|uε(x)− u(x)|γ] = 0 ∀x ∈ Rn;

if, in addition, u is uniformly strongly continuous, namely

lim
ε→0

sup
x∈Rn

max
|y|≤ε

E[|u(x+ y)− u(x)|γ] = 0,

then the convergence (A.2) is uniform with respect to x ∈ Rn.

Proof. Using the continuity of u we have

E|uε(x)− u(x)|γ = E
∣∣∣∣ˆ
Bε(x)

ϕε(x− y)[u(y)− u(x)] dy

∣∣∣∣γ
≤ |Bε|γ−1

ˆ
Bε

|ϕε(y)|γ dy
(

max
|y|≤ε

E|u(x+ y)− u(x)|γ
)

≤ C max
|y|≤ε

E|u(x+ y)− u(x)|γ → 0 as ε→ 0.

Then the lemma is easily concluded. �

Lemma A.4. If u ∈ C1(Rn;Lγω), then uε ∈ C1(Rn;Lγω) and Duε = ϕε ∗Du.
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Proof. We compute that

E
∣∣r−1[uε(x+ rei)− uε(x)]− ϕε ∗Diu(x)

∣∣γ
= E

∣∣∣∣ˆ
Bε(x)

ϕε(x− y)

(
u(y + rei)− u(y)

r
−Diu(y)

)
dy

∣∣∣∣γ
≤
ˆ
Bε(x)

ˆ 1

0

ϕε(x− y)E
∣∣Diu(y + srei)−Diu(y)

∣∣γ dsdy.

Since limr→0 E
∣∣Diu(y + srei) − Diu(y)

∣∣γ = 0 and E
∣∣Diu(y + srei) − Diu(y)

∣∣γ ≤
2γ[]u[]γ1;Rn , the lemma is concluded by the dominated convergence theorem. �

The following consequence is straightforward.

Corollary A.5. If u ∈ Cm(Rn;Lγω), then Dmuε(x) converges to Dmu(x) in Lγω for
each x ∈ Rn, as ε tends to zero; if, in addition, Dmu is uniformly strongly continuous,
then the convergence is uniform with respect to x ∈ Rn.

The final lemma concerns the convergence of Hölder norms.

Lemma A.6. If u ∈ Cα(Rn;Lγω) with α ∈ (0, 1), then uε ∈ Cα(Rn;Lγω) satisfying
[[uε]]α;Rn ≤ C(n, γ)[[u]]α;Rn and limε→0[[u

ε − u]]α/2;Rn = 0.

Proof. By Hölder’s inequality and Fubini’s theorem we have

E|[uε(x)− uε(x′)|γ = E
∣∣∣∣ˆ
Bε

ϕε(y)[u(x− y)− u(x′ − y)] dy

∣∣∣∣γ
≤ |Bε|γ−1

ˆ
Bε

|ϕε(y)|γ dy
(

sup
y∈Bε

E|u(x− y)− u(x′ − y)|γ
)
≤ C[[u]]γα;Rn|x− x′|αγ,

thus [[uε]]α;Rn ≤ C[[u]]α;Rn . Furthermore, by the definition of Hölder norms we can
easily seen that

[[uε − u]]2α/2;Rn ≤ [[uε − u]]α;Rn []uε − u[]0;Rn ≤ C[[u]]α;Rn []uε − u[]0;Rn ,

so the proof is concluded by Lemma A.3. �
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[Roz75] B. L. Rozovskĭı, Stochastic partial differential equations, Mat. Sb. (N.S.) 96(138) (1975),
314–341, 344.

[Roz90] , Stochastic evolution systems, Mathematics and its Applications (Soviet Series),
vol. 35, Kluwer Academic Publishers Group, Dordrecht, 1990.

[RY99] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Third ed.,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], vol. 293, Springer-Verlag, Berlin, 1999.



STOCHASTIC PARABOLIC EQUATIONS 23

[Saf84] M. V. Safonov, The classical solution of the elliptic Bellman equation, Dokl. Akad. Nauk
SSSR 278 (1984), no. 4, 810–813.

[Sch96] W. Schlag, Schauder and Lp estimates for parabolic systems via Campanato spaces,
Comm. Partial Differential Equations 21 (1996), no. 7-8, 1141–1175.

[Sim97] L. Simon, Schauder estimates by scaling, Calc. Var. Partial Differential Equations 5
(1997), no. 5, 391–407.

[Tru86] N. S. Trudinger, A new approach to the Schauder estimates for linear elliptic equations,
Miniconference on operator theory and partial differential equations (North Ryde, 1986),
Proc. Centre Math. Anal., vol. 14, Austral. Nat. Univ., Canberra, 1986, pp. 52–59.

[Wal86] J. B. Walsh, An introduction to stochastic partial differential equations, École d’été de
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