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Abstract

Explorative visualization techniques provide a first summary of microbiome read count

datasets through dimension reduction. A plethora of dimension reduction methods exists,

but many of them focus primarily on sample ordination, failing to elucidate the role of the

bacterial species. Moreover, implicit but often unrealistic assumptions underlying these

methods fail to account for overdispersion and differences in sequencing depth, which are

two typical characteristics of sequencing data. We combine log-linear models with a dis-

persion estimation algorithm and flexible response function modelling into a framework for

unconstrained and constrained ordination. The method is able to cope with differences in

dispersion between taxa and varying sequencing depths, to yield meaningful biological

patterns. Moreover, it can correct for observed technical confounders, whereas other

methods are adversely affected by these artefacts. Unlike distance-based ordination

methods, the assumptions underlying our method are stated explicitly and can be verified

using simple diagnostics. The combination of unconstrained and constrained ordination

in the same framework is unique in the field and facilitates microbiome data exploration.

We illustrate the advantages of our method on simulated and real datasets, while pointing

out flaws in existing methods. The algorithms for fitting and plotting are available in the

R-package RCM.

Introduction

Explorative visualization is a key first step in the analysis of high-dimensional ecological data-

sets. It provides insights into the strongest patterns in the dataset, unbiased by the researcher’s

prior beliefs. It can also help to formulate new hypotheses to be tested in a subsequent study.

Nowadays, microbiological communities are characterized by sequencing either marker genes

or the entire metagenome of a sample, and attributing the sequences to their matching opera-

tional taxonomic units (OTUs), species or other phylogenetic levels. Throughout this paper,
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we will refer to the lowest level to which the reads are attributed as taxa. Sample-specific

variables, such as patient baseline characteristics or environmental conditions, can also be

recorded. Microbiome sequencing datasets typically contain information on thousands of

microbial taxa, whereas the number of samples and sample-specific variables is usually in the

order of tens to hundreds. These data are thus high-dimensional, and require a dimension

reduction before visualization. Apart from the biological variability, also the measurement

procedure including the DNA-extraction, amplification and sequencing steps, introduces

additional variability and technical artefacts, such as differences in sequencing depth [1]. At

best, data visualization methods must be insensitive to this technical noise, while accurately

capturing the biological signal. The first aim of such a dimension reduction is to optimally

represent (dis)similarities between samples in an ordination: samples that are similar in high

dimensional space should also be represented close together in a two or three dimensional

visualization. A second aim is to elucidate which taxa drive the (dis)similarities between sam-

ples by assigning taxon scores. These taxon scores indicate how strongly the different taxa dif-

fer in abundance between the samples. A final objective might be to identify which sample-

specific variables can explain the (dis)similarities in taxa composition between samples. Over

the last years, methods that attempt to visualize variability in a dataset (unconstrained ordina-

tion) and methods that explore the role of sample-specific variables in shaping the community

(constrained ordination), have evolved independently.

A popular ordination method for the microbiome is principal coordinates analysis (PCoA)

[2], also known as metric multidimensional scaling [3]. First, the data analyst chooses a partic-

ular distance measure, which is calculated for every pair of samples in the high-dimensional

space. Next, samples are represented in two dimensions such that their pairwise Euclidean dis-

tances approximate their corresponding distances in high dimensional space as closely as pos-

sible. However, no matter how well motivated the choice of distance measure for a particular

application, the contribution of the individual taxa to the separation between the samples is

lost in the distance calculation; see Fig 1A. One exception is PCoA with Euclidean distances,

which is equivalent to Principal Components Analysis and which does directly yield taxon

scores. However, most often dedicated ecological distance measures are used, such that taxon

scores have to be added to the PCoA plots as weighted sample scores [4], but these scores do

not reflect their contributions to the distance measures. Moreover, distance-based approaches

have been shown to be affected by differences in dispersion [5] and library size [6, 7] between

the samples.

Correspondence analysis (CA) [8] is a classical statistical method for the exploration of

contingency tables, which allows for quantification of taxon contributions to the sample ordi-

nation. Canonical correspondence analysis (CCA) [9] even allows restricting the sample ordi-

nation to be explained by sample-specific variables (see Fig 2A). This technique thus allows for

unconstrained (CA) and constrained (CCA) analysis in the same framework, which greatly

enhances their use for researchers. Correspondence analysis relies on residuals for capturing

the discrepancy between observed counts and the counts expected in case of identical taxa

composition in all samples (sample homogeneity). It implicitly assumes a certain mean-vari-

ance relationship for normalization of these residuals. However, a residual-based approach is

not well adapted to skewed data, and its mean-variance assumption is too rigid to account for

the overdispersion which is typically encountered in sequencing data [5]. Moreover, both CA

and CCA implicitly assume unimodal response functions, i.e. for each taxon the expected

abundance shows a bell-shaped functional relationship with a score. This score may be latent

(CA) or observed (CCA), and represents the value of a particular sample along a gradient of

e.g. environmental conditions. CCA makes strong assumptions on the shape of these taxon

response functions [9, 10].

A unified framework for unconstrained and constrained ordination of microbiome read count data
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Fig 1. Unconstrained ordination methods. (A): Principal coordinates (PCoA) sample ordination with Bray-Curtis dissimilarity on relative

abundances of the Turnbaugh mice dataset. Taxon scores were added as weighted sample scores. Coloured symbols represent mice, percentages on the

axes indicate fraction of eigenvalue to the sum of all eigenvalues. Only the six taxa with taxon scores furthest from the origin are plotted. (B): Biplot of

the unconstrained RC(M) ordination of the same dataset. Arrows represent taxa, the ratios of the ψ parameters reflect the relative importance of the

corresponding dimensions. Only the six taxa with strongest departure from homogeneity are shown for clarity. The sample ordination is similar to

PCoA, but the RC(M) method proposes a more principled approach to identifying the taxa that contribute most to the separation of the samples. LF/

PP: low fat, plantpolysaccharide rich.

https://doi.org/10.1371/journal.pone.0205474.g001
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Fig 2. Constrained ordination methods. (A): Triplot of canonical correspondence analysis (CCA) of the Zeller data.

Dots represent samples, the taxon labels indicate the location of the peaks of the taxon response functions under strict

assumptions. For clarity, only the eight taxa with peaks furthest from the origin are shown. Percentages along the axes

indicate fractions of total inertia (departure from sample homogeneity) explained by the dimension. Arrows depict the

contribution of the variables to the environmental gradient. (B): Triplot of the constrained ordination of the same

dataset by the RC(M) method with linear response functions. Arrows represent taxon response functions, and labels

represent variables constituting the environmental gradient. The ratio of the ψ parameters reflects the relative

A unified framework for unconstrained and constrained ordination of microbiome read count data
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Recently, new data visualization methods for sequence count data have been proposed that

aim to account for their compositionality [12]. Compositional data are constrained to a con-

stant sum that is unrelated to their composition (e.g. the library size for sequencing data). As a

result, only the proportions of the components (e.g. taxa) are meaningful, and an increase in

proportion (relative abundance) of one taxon automatically entails a decrease in proportion of

some other taxon or taxa. These visualization methods take the compositional nature of the

data into account by working on log-ratios of relative abundances, and allow to visualize the

role of the taxa in the ordination. However, since sequence count tables have very high zero

count frequencies, the addition of pseudocounts prior to the log-ratio transformation is

needed to avoid logarithms of zero or division by zero. The choice of the pseudocount is arbi-

trary and can strongly affect the eventual ordination [13]. In addition, normalizing to relative

abundances and using ratios, discards the information on the variance of the counts that is

contained in the library size and taxon abundance [14]. As a result, these methods fail to

account for heteroscedasticity, and can be distorted by technical artefacts such as differences

in library size.

Over the last years, row-column interaction models for unconstrained ordination of eco-

logical data have gained traction. Their main idea is that a statistical model is defined for the

count table, and that within this model a small number of sample-taxon interaction terms is

estimated. These interaction terms summarize the dataset in low dimension and can be used

for plotting purposes. [15–18]. One such method is gomms [17]. However, it assumes inappro-

priate distributions with a common dispersion parameter for all taxa and does not plot the

taxon scores. In ecology, a similar branch of models, referred to as latent variable models, has

recently gained popularity. Unlike the original row-column interaction models [19], latent

variable models consider the sample scores as random effects and make prior distributional

assumptions on them. This renders the fitting procedure computationally intensive, without

providing a clear improvement to the ordination plot as compared to fixed effects models [15,

20, 21]. Latent variable models have also been developed from a finite mixture perspective, in

which samples and taxa are assigned to a small number of latent clusters. The drawback of this

approach is that it lacks the liberty of assigning unique scores to all samples and taxa, such that

the final ordination does not provide a comprehensive overview of the variability of the dataset

[16].

As the preceding examples illustrate, a rich literature exists on ordination of ecological data,

but few methods bridge the gap between unconstrained and constrained ordination. Corre-

spondence analysis [8, 9] is a rare exception, but it is too restrictive for sequence count data.

Existing row-column interaction methods [15, 17] and compositional data analysis have no

counterpart for constrained analysis [12], whereas distance based methods have to resort to

inefficient two-step approaches [22]. On the other hand, many methods for constrained ordi-

nation focus on the estimation of either the gradient or the response curve. As a result, they

do not produce comprehensive triplots which simultaneously show the relationships between

samples, taxa and sample-specific variables [10, 23, 24].

Upon combining ideas of log-linear analysis of contingency tables [18, 19], dispersion esti-

mation for sequencing data [25] and flexible response function estimation [10, 24], we present

a row-column interaction model tailored to the visualization of the strongest signals in a

importance of the corresponding dimensions. Only the eight taxa that react most strongly to the environmental

gradients (the longest arrows) are shown. Two Fusobacterium species are among the taxa most sensitive to the

environmental gradient, and are more abundant in cancer patients than in the others, which is in accordance with the

findings of [11].

https://doi.org/10.1371/journal.pone.0205474.g002
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microbiome count dataset. Being based on a statistical regression model, like other model-

based approaches, our method has the flexibility to correct for observed confounders such as

sequencing center or technology, and to adequately deal with the mean-variance relationships

of sequencing data. Our method integrates unconstrained and constrained ordination into the

same framework, which simplifies the workflow of microbiome data exploration. Our fitting

algorithm is simpler, faster and more stable than that of other model-based ordination meth-

ods. It is implemented in R [26] in the form of the RCM package, which enables the creation of

annotated graphs of the ordinations. Unlike distance-based ordination methods, the underly-

ing assumptions of our method are explicitly stated and can be verified through simple diag-

nostic plots. Still, it is important to note that the RC(M) method cannot be used for statistical

inference, but is meant only for explorative visualization.

Comparisons of ordination methods have mainly focused on sample ordination, either

from the viewpoint of ordination along a gradient [5, 27–31] or clustering [6, 14], but their

conclusions are not in accordance. They rely mainly on simulated data based on gradients

with hypothesized response functions [27–30, 32], and on clusters of samples with similar

compositions [5, 30, 32] or on real datasets with supposedly known gradients or clusters [5,

30–33]. Few studies pay attention to the role of the taxa in the ordination, but none of them

does so in a quantitative way [5, 32, 34, 35]. Here we present a simulation study that evaluates

sample ordination as well as identification of taxa that contribute to the separation of the

samples.

Materials and methods

Real data analyses were run on a Dell laptop, and simulations were run on a server with 12

cores and on the high performance computing facilities of VSC (the Flemish Supercomputer

Center). All analyses were run with the R programming language versions 3.3.1, 3.4.3 and

3.5.1 [26]. All R-code used for the publication is available in the S1 File. The code for fitting

and plotting the RC(M) models can be found in the R-package RCM, which can be installed

from https://github.com/CenterForStatistics-UGent/RCM.

Datasets

The Human Microbiome Project (HMP, V1-3 region of the 16S rRNA gene) [36] and the

American Gut Project (AGP) [37] provide microbiome count datasets of healthy human vol-

unteers. Data from two studies on the colorectal microbiome of cancer patients, referred to as

the Zeller data [11] and the Kostic data [38] are also included. Furthermore, a study on several

generations of gnotobiotic mice, referred to as the Turnbaugh data [39], provides non-human

microbiome data. A study on microbes in cooling water provides data from a non-mammalian

source, referred to as the Props data [40]. All datasets are available in the S2 File.

Simulation study

Simulations were set up by assuming a particular count distribution, for which the parameters

were estimated from a real dataset. Parameter values for the taxa and samples were then sam-

pled from this pool of realistic parameter estimates for every Monte Carlo simulation. We

chose the negative binomial, zero-inflated negative binomial and Dirichlet multinomial as

count distributions. The Dirichlet multinomial distribution generates even higher zero fre-

quencies than observed in microbiome data [41], but it was included because of its common

use in microbiome science [42]. Parameter values were obtained as follows. Library sizes were

randomly sampled from a pool of observed library sizes of the HMP datasets. The taxon-wise

mean abundance and dispersion parameters from the negative binomial distribution were

A unified framework for unconstrained and constrained ordination of microbiome read count data
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estimated by maximum likelihood from the mid-vagina, stool and tongue dorsum samples

from the HMP and from the AGP data. The overdispersion parameter of the Dirichlet multi-

nomial was estimated from the AGP dataset using the method of moments. The mixing pro-

portions of the zero-inflated negative binomial were estimated by maximum likelihood from

the AGP data. Datasets were generated with 60 samples and 1000 taxa.

Two sets of scenarios were considered. In a first set, no biological signal was introduced.

The first scenario consisted in simulating data with the negative binomial distribution such

that in each of four groups of 15 samples, the sampled library sizes were multiplied with a con-

stant: 0.2, 1, 5 and 10 for the four groups. This generates technical variability that should not

be picked up by the ordination method. The second scenario was similar, but now the sampled

taxon-wise dispersions were multiplied by 0.2, 1, 2 and 5 for the four groups. The second set

of scenarios were designed to represent different types of biological signal that should be

detected and visualized by the ordination method. Counts were also generated for 4 equally

sized groups of samples, but with different taxa compositions.

In the first scenario, which will be referred to as NB, initially one taxa composition was sam-

pled for all the groups. This composition was then altered for every group separately by multi-

plying a random sample of 10% of the taxon abundances by a fold change of 5 so as to make

them differentially abundant (DA). Counts were generated with the negative binomial distri-

bution. The second setting, referred to as NB(cor), was identical to the first, except that counts

were generated with between-taxon correlations. These taxon correlation networks were esti-

mated by SpiecEasi [43] on the mid-vagina, stool and tongue dorsum datasets of the HMP

and on the AGP data. A correlation network was sampled for every Monte Carlo instance. The

third scenario, referred to as NB(phy), was also similar to NB, only now a random phyloge-

netic tree was created for every dataset. Next, the tree was divided into 20 clusters of related

taxa, and differential abundance was introduced in one of the clusters with a fold change of 5.

This assures that the DA taxa are phylogenetically related, similar to the second approach in

[44]. The fourth simulation scenario, which will be referred to as DM, used the Dirichlet multi-

nomial distribution, for which DA is introduced as for the NB scenario. The fifth scenario,

referred to as ZINB, was again similar to the NB setup, but used the zero-inflated negative

binomial distribution. The DA is introduced only in the count part of the distribution. Further

details and additional simulation scenarios can be found in Section 3.1 of the S1 Appendix.

Except for the data generated with the Dirichlet multinomial distribution, the data generated

in this way are not compositional, as they do not obey a sum constraint. However, any analysis

method that incorporates an estimate of the sequencing depth will implicitly treat the data as

compositional.

Competitor ordination methods. As competitor ordination methods we include (1)

detrended correspondence analysis (DCA), (2) ordination through PCoA with (a) Bray-Curtis

dissimilarities on absolute abundances (Bray-Curtis-Abs), rarefied absolute abundances (Bray-

Curtis-rare), relative abundances (Bray-Curtis) and log-transformed abundances (after adding

a pseudocount of 1) (Bray-Curtis-Log), with (b) Jensen-Shannon divergence (JSD), with (c)

unweighted and weighted UniFrac distances (UniFrac and w-UniFrac), and (3) ordination

through non-metric multidimensional scaling with Bray-Curtis dissimilarities on relative

abundances (Bray-Curtis-NMDS) and (4) DPCoA using phyloseq [45]. Correspondence analy-

sis approximating the Pearson’s chi-squared (CApearson), the contingency ratio (CAcontRat)

and the chi-squared distance (CAchisq) was implemented according to [46]. The ordination

based on the Hellinger distance (Hellinger) follows [47]. Compositional data analysis (CoDa)

biplots follow [12]. The gomms R-package was used to run the GOMMS ordination method

[17] and the tsne R-package for the t-SNE method [48]. The gllvm method augmented with the

negative binomial distribution was fitted with the gllvm R-package [49]. All methods were

A unified framework for unconstrained and constrained ordination of microbiome read count data
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applied to count matrices trimmed for taxa below a prevalence threshold of 5% or with a

total count lower than 10% of the number of samples. Ordinations in three dimensions were

requested.

Performance metrics. The results of all ordinations on the simulated datasets were evalu-

ated for separation of the sample clusters through silhouettes [50] and through a pseudo F-

statistic [33, 51]. The contribution of the taxa to the correct separation of the samples is quanti-

fied by the “taxon ratio”. This metric is based on the average inner product of the DA taxon

scores and the sample scores (see next section for a definition of the scores) of samples in

which the taxa are known to be differentially abundant. This yields a measure of how much

these DA taxa contribute to the separation of the samples. The mean inner product of the non-

DA taxon scores with the same sample scores should be small for an ordination method that

can discriminate between DA and non-DA taxa. The ratio of the former to the latter mean

inner product is the taxon ratio. It is used as a measure of method performance in terms of

taxon identification. Evidently, these performance metrics can only be calculated when the

underlying truth is known, e.g. in simulations, but not for real data. Finally, also the correla-

tions of the sample scores with the observed library size are calculated. These summary mea-

sures allow a quick evaluation of all simulation runs, but inevitably high values for these

measures do not always correspond to an aesthetically pleasing biplot. As a result these mea-

sures should only be used for the comparison of different methods in relative terms.

Results

The RC(M) model

The unconstrained RC(M) method and biplots. A typical microbiome count dataset is

represented as an n×p count table X for n samples and p taxa. An n×d matrix of sample-spe-

cific variables Q (the metadata) can also be available; categorical variables are represented by

0/1 dummy variables. In the unconstrained Row-Column interaction model of dimension M

(RC(M)), the expected count of taxon j in sample i is modelled as

logðEðXijÞÞ ¼ ui þ vj þ
XM

m¼1

cmrimsjm; ð1Þ

in which ui + vj represents the independence model (note that we refer to the model as “RC

(M)”, and to the R-package as “RCM”). The independence model describes the expected

counts under the assumption of equal taxa composition in all samples (sample homogeneity).

In the current context, exp(ui) is a measure of sequencing depth of sample i, and exp(vj) is the

mean relative abundance of taxon j. The factor rim is a sample score that captures departure

from homogeneity in sample i in dimension m, and sjm is a taxon score for taxon j in dimen-

sion m. Because the sample and taxon scores are normalized for identifiability (see Section

2.1.5 of the S1 Appendix), the parameter ψm is a measure of overall strength of departure

from homogeneity in dimension m. The constant M is the number of dimensions of the ordi-

nation, which is usually 2 or 3, as this is the number of dimensions that can be plotted. This

mean model is augmented with a negative binomial count distribution for Xij, which captures

the high variance and high zero frequency in microbiome count data [5, 14]. The term
PM

m¼1
cmrimsjm in Eq 1 can be used to make interpretable biplots for visualizing departures

from homogeneity. In 2D one can plot ψ1ri1 versus ψ2ri2 to obtain a sample ordination plot.

Samples close together on this plot depart similarly from homogeneity and thus have similar

taxa compositions (see Fig 1B). To reveal the role of the individual taxa in this ordination, we

add the p taxon scores sj1 versus sj2 as arrows on the same plot. The orthogonal projection of

A unified framework for unconstrained and constrained ordination of microbiome read count data
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(sj1, sj2) on (ψ1ri1, ψ2ri2) gives
P2

m¼1
cmrimsjm, which quantifies the deviation of taxon j in sam-

ple i from sample homogeneity; see Eq 1.

Loosely speaking, taxa have a higher expected abundance in samples for which the sample

dots and taxon arrows lie at the same side of the origin, and a lower expected abundance if

they lie at opposite sides. See Section 2 of the S1 Appendix for a detailed description of the esti-

mating algorithm and the construction of biplots, Section 4 for real data examples.

Finally, it is important to note that the RC(M) model in all its forms is overparametrized.

To allow for model identifiability, restrictions are imposed on some of its parameters (see Sec-

tion 2.1.5 of the S1 Appendix). This also implies that the RC(M) model fit is no longer a full

maximum-likelihood solution, and classical statistical inference, such as hypothesis testing

and confidence intervals, are not available. The RC(M) method should thus only be used for

data exploration.

Conditioning in the RC(M)-model. Technical sample-specific variables such as batch

effects and sequencing center and technology are known to affect the observed counts [52].

When these confounding variables are known, they can be included in the RC(M) model. This

effectively filters out their effect, similar to conditioning in correspondence analysis [53] and

latent variable models [54, 55]. With G an n×k confounder matrix (a subset of Q), model (1) is

extended to

logðEðXijÞÞ ¼ ui þ vj
zfflfflffl}|fflfflffl{

Independence model

þ
Xk

l¼1

zjlgil
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Extended null model

þ
XM

m¼1

cmrimsjm

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
Biological signal

: ð2Þ

In this model, zjl is a parameter such that the interaction term zjl gil captures the departure

from homogeneity of taxon j in sample i due to variable l. As a result, the biological signal

term
PM

m¼1
cmrimsjm is free of the effect of the confounding variables. This is illustrated in Fig

3. Details can be found in Section 2.1.4 of the S1 Appendix. Conditioning on observed con-

founders can be applied in the unconstrained as well as in the constrained RC(M) model (see

next section).

The constrained RC(M) model. The idea of a constrained ordination is to visualize the

variability in the dataset that can be explained by sample-specific variables [9, 10]. Constrained

ordination is traditionally performed by finding an environmental gradient αm for every

dimension m. Let ci represent the ith row of C (a subset of Q, excluding G) containing the sam-

ple-specific variables for which one wishes to investigate the effect on the taxa composition.

The environmental gradient then defines an environmental score him ¼ αt
mci for every sample

i. This him can be seen as an equivalent of the row score rim, but constrained to be a linear com-

bination of sample-specific variables. Each taxon j is allowed to react to this environmental

score in a different way through taxon-specific response functions fjm(him). The constrained

RC(M) model then becomes

logðEðXijÞÞ ¼ ui þ vj þ
XM

m¼1

cmfjmðα
t
mciÞ; ð3Þ

in which ui, vj and ψm play the same role as in models 1 and 2. The difference with the classical

gradient analysis methods is that we use the response functions to model the departure from
homogeneity. In this way, our method automatically accounts for differences in sequencing

depth and taxon abundance. The environmental gradient αm is estimated by maximizing the

likelihood ratio between a model with the taxon-specific response functions fjm of model 3,
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and a model with a common response function, fm = f1m = f2m = � � � = fpm, for all taxa. This

encourages maximal niche separation between the taxa [10]. The correct shape of the response

function has been the subject of theoretical debate [18, 23, 56], but it evidently depends on the

taxon, as well as on the available sample-specific variables and their observed values. For easy

interpretability we propose to use linear response functions fjm(him) = β0jm + β1jm him, analo-

gous to redundancy analysis [57] (see Section 2.1.5 of the Supplementary material for details of

the estimation procedure). These response functions can easily be represented in two dimen-

sions by an arrow originating in (�
b0j1
b1j1
; �

b0j2
b1j2

), with slope
b1j2
b1j1

and magnitude proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2

1j1 þ b
2

1j2

q
. The origin of the arrow then corresponds to the values of the environmental

scores, (hi1, hi2), at which the taxon j does not depart from homogeneity in the first two dimen-

sions. The direction and magnitude of the arrow indicate to which sample-specific variables

the taxa abundances respond most strongly, and in which samples the departure from homo-

geneity is largest. See Fig 2B for an example of such an ordination. The (approximate) validity

of the linearity assumption can be verified through diagnostic plots (see Fig 4 and Section 4.4.3

in the S1 Appendix).

A more flexible approach to modelling the taxa niches is provided by non-parametric esti-

mation of the response functions with generalized additive models (GAMs) [58], similar to

[24]. It provides possibly improved constrained sample ordination and gradient estimation,

but also allows the researcher to study the way the taxa react to the environment with less

prejudice. Fig 5 shows that different taxa can react entirely differently (and non-linearly) to

changes in their environment. Quadratic response functions are frequently used implicitly [9]

or explicitly [10, 59] to model unimodal response functions; they are also implemented in the

Fig 3. Effect of conditioning on unconstrained RC(M) ordination. (A): Unconstrained RC(M) sample ordination of the anterior nares samples of the

HMP dataset without conditioning. (B): Ordination of the same sample, but after conditioning on the main sequencing center (Washington University

genome center (WUGC), J. Craig Venter Institute (JCVI), Baylor College of Medicine (BCM) and Broad Institute (BI)). The ratio of the ψ parameters

reflects the relative importance of the corresponding dimensions.

https://doi.org/10.1371/journal.pone.0205474.g003
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RCM R-package. They are, however, harder to depict in a triplot than linear response func-

tions, while still providing less flexibility than non-parametrically estimated response func-

tions. Moreover, for some taxa the estimated parameters of quadratic response functions may

make the response curve convex rather than concave [60].

Diagnostic tools for the RC(M) ordination. Almost all ordination methods come with

certain assumptions, but they are rarely explicitly mentioned, let alone checked by the user.

The advantage of model-based approaches such as the RC(M) model, is that they explicitly

state their assumptions, and allow them to be checked [15, 55]. Deviance residuals are a stan-

dard diagnostic tool in generalized linear models [61], and can be used to detect taxa and sam-

ples that poorly fit the model, or to detect misspecification of the response function. Influence

functions can help to identify samples or taxa with a dominant role in shaping the final ordina-

tion [62]. Both of these diagnostic plots are available in the RCM package and can point

researchers to outlying and possibly interesting samples and taxa that deserve further scrutiny

(see Section 2.4 of the S1 Appendix for examples).

Simulation study

No-Signal Simulations. Fig 6 shows the pseudo F-statistics for the no-signal simulations

with the negative binomial distribution. Since sequencing depths are assumed to be unrelated to

the biological composition of a sample [12, 14], they should not affect the sample ordinations

by, for example, forming clusters of samples with similar library sizes. Many methods appear to

be insensitive to library size variability (as can be seen from their very small pseudo F-statistics),

Fig 4. Diagnostic plots for the constrained RC(M) model with linear response functions on the Zeller data. (A) Triplot with samples coloured by deviance. No

clusters of samples with high deviance are visible, which would have pointed to a group of poorly fit samples. (B) Residual plot in function of the first environmental

gradient. A clear increase in positive deviance residuals is visible towards for positive environmental scores, which points to a violation of the linearity assumption. (C)

Triplot with samples coloured by their influence on the parameter for the “Cancer” level of the diagnosis variable. On the right side of the plot, one sample with a strong

negative and one with a strong positive influence on the parameter estimate are visible. These samples may deserve further scrutiny.

https://doi.org/10.1371/journal.pone.0205474.g004
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except the ordinations based on Hellinger distances, PCoA with Bray-Curtis dissimilarities on

absolute and logged abundances, gllvm and the compositional data analysis (CoDa). The latter

method’s sensitivity to the library sizes can also be seen in S1 Fig, where the correlations between

the sample scores and the library sizes for the first three dimensions are shown. It has been

noted before that distance-based methods are sensitive to differences in dispersion between dif-

ferent sample groups [5, 17]. Our simulations confirm that all PCoA methods investigated, as

well as CoDa, Hellinger distance, gllvm and our RC(M) method tend to cluster samples with the

same dispersion levels together, even when all samples have equal taxa compositions (see Fig 6).

Biological Signal Simulations. As shown in Fig 7, the biological signal is best detected

with the RC(M) method (large silhouette and pseudo-F values) and RC(M) succeeds best in

Fig 5. RC(M) ordination with nonparametric response functions. One-dimensional triplot of the first dimension of the constrained RC(M) ordination with non-

parametrically estimated response functions of the Zeller data. Coloured lines represent taxon response functions. The horizontal dotted line represents the expected

taxon abundances under sample homogeneity. Only the eight taxa that react most strongly to changes in the environmental score are shown for clarity. Black labels

show the variables constituting the gradient and vertical dashes at the bottom represent the sample scores. The horizontal positions of the variable labels with respect to

the vertical dashed line at zero indicate how much they contribute to the environmental gradient; the vertical stacking is only for readability.

https://doi.org/10.1371/journal.pone.0205474.g005
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identifying the driving taxa (large taxon ratio). This holds for all scenarios, except for data

generated by the Dirichlet multinomial (DM) distribution. Also, detrended correspondence

analysis (DCA) and PCA are good at detecting the important taxa. Note that the variability of

the silhouette and especially of the pseudo F-value is seen to increase with their mean for all

methods under study. This positive mean-variance relation is a known property of non-central

F-distributions. More results, with similar conclusions, can be found in Section 3 of the S1

Appendix.

Discussion

Unconstrained and constrained ordination techniques that are currently employed in micro-

bial ecology rely mainly on eigenvalues/eigenvectors and singular value decompositions.

Fig 6. Results of simulations without signal. Boxplots of the pseudo-F statistic for sample clustering (y-axis) for several ordination methods (x-

axis) for 100 parametric simulation runs. All samples have the same mean taxon composition, but four groups of samples differ in mean library sizes

or mean dispersions. See Section Competitor ordination methods for the meaning of the abbreviations. As clustering according to library size or

dispersion is undesirable, a small pseudo-F value is preferred. Top: Four groups with differences in library sizes. Bottom: Four groups with

differences in dispersions. See S1 Appendix for details.

https://doi.org/10.1371/journal.pone.0205474.g006
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Fig 7. Results of biological signal simulations. Boxplots of the silhouette (top), pseudo-F statistic (center) and taxon ratio (bottom) for several ordination methods

(x-axis) over 100 parametric simulation runs. See Section Competitor ordination methods for the meaning of the abbreviations. 10% of the taxa were made

differentially abundant in each of 4 sample groups, with a fold change of 5. As there are true differences in composition between the groups, a large pseudo-F value is

preferred. Columns correspond to the simulation scenario: negative binomial (NB) (cor: data generation with taxon correlation, phy: phylogenetically correlated taxa

were made differentially abundant), Dirichlet multinomial (DM) and zero-inflated negative binomial (ZINB). See S1 Appendix for details.

https://doi.org/10.1371/journal.pone.0205474.g007
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Although having the advantage of computational efficiency, they are too rigid to deal with

some of the more peculiar aspects of microbial amplicon sequencing data. For instance,

sequencing depths varying between samples and taxon-wise overdispersions are two charac-

teristics of microbiome data that may distort ordinations [5, 15]. One possible reason why

these flaws received little attention, is because the assumptions underlying these ordination

methods are rarely stated explicitly, and hence they are almost never checked. Researchers in

microbial ecology should become more aware of assumptions and limitations of the ordina-

tion methods. Ordination methods developed for ecological data with directly observed species

counts may no longer be valid for sequencing data, because sequence counts are only a proxy

of abundance and the biological and technical variability show specific characteristics. Dimen-

sion reduction for plotting inevitably entails information loss, but using ordination methods

that are inappropriate for the data type may yield misleading results. Another reason for the

wide use of distance-based approaches may be the computational speed of their underlying

matrix calculations. Yet on modern computers, certain simple, model-based methods can also

be fitted within reasonable time spans.

Distance-based methods are currently very popular ordination methods in microbiomics.

However, by calculating distances between samples, the information on which taxa discrimi-

nate the samples is discarded. As a result, distance based methods cannot directly identify

which taxa drive the differences between samples, limiting their use for data exploration.

Compositional data analysis (CoDa) analyzes ratios between taxon counts rather than the

counts themselves. Although sequencing data often should be treated as compositional indeed,

these methods ignore the count origin and the associated heteroscedasticity. As a result, the

sample scores of their ordinations correlate strongly with the library sizes, which are consid-

ered as technical artefacts. This is highly problematic for the interpretation of their ordination

diagrams. Especially in datasets with a low signal-to-noise ratio, differences in library sizes,

rather than biological signal, may be depicted in the ordination graphs. Because of the com-

mon association of library sizes with sample-specific variables, this may incorrectly confirm

the researcher’s prior beliefs in differences in microbiome composition, whereas actually,

none exist.

Despite their slightly longer computation times (about one minute per dataset with our

RCM package), ordination methods based on count regression models are more flexible to

deal with these issues, and have gained popularity over the recent years. Model-based ordina-

tion methods can include an offset to account for varying sequencing depths, and can be easily

augmented with skewed count distributions with taxon-wise parameters to address heterosce-

dasticity. Furthermore, they can condition out the effect of other confounding variables. The

main idea is that interaction terms between samples and taxa capture departures from equal

taxa composition in the samples. These interaction terms can then be plotted to visualize the

strongest signal in the dataset. These strongest signals need not necessarily come from the

most abundant taxa. Since an explicit mean model is stated, standard diagnostic tools can be

employed to assess model assumptions. Moreover, outlying or influential observations can be

identified, which can reveal useful information to researchers.

Latent variable models for ordination of ecological data have been developed over the

recent years. They share many of the advantages of row-column interaction models, such

as explicit model statement and the option of conditioning on baseline covariates. However,

the inclusion of latent sample variables as random effects in a Bayesian framework greatly

increases the computational burden. The inclusion of random effects does not improve the

explorative ordination plots, such that simpler fixed effects may be preferable. If statistical

inference were the goal, then random effects would be preferred. Also, latent variable models

have no counterpart for constrained ordination.
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Just as row-column interaction models, correspondence analysis tries to represent depar-

tures from sample homogeneity in few dimensions. Still, for skewed and overdispersed data,

an additive model for departure from equal sample composition is inappropriate and produces

ordination plots dominated by outliers. A multiplicative model as employed in the RC(M)

model is more appropriate for these data.

The performance of ordination methods can be assessed quantitatively through simula-

tions. Our comprehensive simulation study confirms a good performance of the RC(M)

method, both in terms of sample separation as in the identification of taxa that contribute to

these separations. The RC(M) method is not sensitive to library size variation, but, just as

many other ordination methods, it is somewhat sensitive to differences in dispersions between

samples.

We believe the potential of row-column interaction models is underemployed in the analy-

sis of all types of high-dimensional data, despite the availability of contemporary fitting algo-

rithms and computing power. However, given the reasonably good performance of CoDa

techniques in our simulations, a combination of model-based approaches that correctly model

the mean-variance structure, and models that account for compositionality would probably

further improve visualization methods for the microbiome. Also, extending the RC(M)

method to allow for significance testing (e.g. through permutations as in [63]) would be an

interesting avenue for future research.

Constrained ordinations include sample-specific variables in the visualization. Despite a

very rich theoretical foundation, they are less frequently employed in the microbial ecology

practice. We combined the row-column interaction model with flexible response modeling

using linear response functions as well as non-parametrically estimated response functions.

Linear response functions yield easily interpretable triplots, and the linearity assumption can

be verified using diagnostic plots. Non-parametrically estimated response function allow maxi-

mal flexibility in modelling the taxon niches. Our method uniquely combines unconstrained

and constrained ordination into the same framework for fitting and plotting, which greatly

facilitates comprehensive exploration of microbiome datasets.

Our methods for visualization of microbiome data are implemented in the R-package RCM
(available at http://github.com/CenterForStatistics-UGent/RCM). The package comes with a

custom-written fitting algorithm for the RC(M) model as well as several ready-to-use plotting

functions.

Supporting information

S1 Appendix. A detailed discussion of the RC(M) method, with illustrations on real data-

sets. Further, a detailed description of the setup and results of the simulation study, followed

by a list of software versions.

(PDF)

S1 File. Auxiliary R-code. All R-code for making the graphs shown in the publication, along

with the code for the simulation study.

(GZ)

S2 File. Data. All datasets used in this publication.

(GZ)

S1 Fig. Correlations of library sizes and row scores. Boxplots with the correlation of sample

scores with observed library sizes (y-axis) for different ordination methods (x-axis). Side pan-

els indicate the different parametric simulation scenarios, see Section Simulation study for an
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explanation of the codes used. Top panels show the dimension of the sample score.
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