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Abstract
Improving the walkability of built environments to promote healthy lifestyles and reduce high body mass is
increasingly considered in regional development plans. Walkability indexes have the potential to inform,
benchmark and monitor these plans if they are associated with variation in body mass outcomes at spatial
scales used for health and urban planning. We assessed relationships between area-level walkability and
prevalence and geographic variation in overweight and obesity using an Australian population-based cohort
comprising 92,157 Sydney respondents to the 45 and Up Study baseline survey between January 2006 and
April 2009. Individual-level data on overweight and obesity were aggregated to 2006 Australian postal areas
and analysed as a function of area-level Sydney Walkability Index quartiles using conditional auto regression
spatial models adjusted for demographic, social, economic, health and socioeconomic factors. Both
overweight and obesity were highly clustered with higher-than-expected prevalence concentrated in the urban
sprawl region of western Sydney, and lower-than-expected prevalence in central and eastern Sydney. In fully
adjusted spatial models, prevalence of overweight and obesity was 6% and 11% lower in medium-high versus
low, and 10% and 15% lower in high versus low walkability postcodes, respectively. Postal area walkability
explained approximately 20% and 9% of the excess spatial variation in overweight and obesity that remained
after accounting for other individual- and area-level factors. These findings provide support for the potential of
area-level walkability indexes to inform, benchmark and monitor regional plans aimed at targeted approaches
to reducing population-levels of high body mass through environmental interventions. Future research should
consider potential confounding due to neighbourhood self-selection on area-level walkability relations.
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Abstract: Improving the walkability of built environments to promote healthy lifestyles and reduce
high body mass is increasingly considered in regional development plans. Walkability indexes have
the potential to inform, benchmark and monitor these plans if they are associated with variation in
body mass outcomes at spatial scales used for health and urban planning. We assessed relationships
between area-level walkability and prevalence and geographic variation in overweight and obesity
using an Australian population-based cohort comprising 92,157 Sydney respondents to the 45 and
Up Study baseline survey between January 2006 and April 2009. Individual-level data on overweight
and obesity were aggregated to 2006 Australian postal areas and analysed as a function of area-level
Sydney Walkability Index quartiles using conditional auto regression spatial models adjusted for
demographic, social, economic, health and socioeconomic factors. Both overweight and obesity were
highly clustered with higher-than-expected prevalence concentrated in the urban sprawl region of
western Sydney, and lower-than-expected prevalence in central and eastern Sydney. In fully adjusted
spatial models, prevalence of overweight and obesity was 6% and 11% lower in medium-high versus
low, and 10% and 15% lower in high versus low walkability postcodes, respectively. Postal area
walkability explained approximately 20% and 9% of the excess spatial variation in overweight and
obesity that remained after accounting for other individual- and area-level factors. These findings
provide support for the potential of area-level walkability indexes to inform, benchmark and monitor
regional plans aimed at targeted approaches to reducing population-levels of high body mass
through environmental interventions. Future research should consider potential confounding due to
neighbourhood self-selection on area-level walkability relations.
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1. Introduction

The increasing prevalence of overweight and obesity is a universal and urgent public health
problem [1]. High body mass index ≥25 kg/m2 (overweight or obese) contributed 5.7% of total
disability adjusted life years (DALY) to the global burden of disease in 2016, making it the fifth leading
risk factor—up from 2.7% of total DALYs and a ranking of 12 in 1990 [2]. High body mass is a risk
factor for cardiovascular disease, cancer, type 2 diabetes mellitus, and musculoskeletal conditions [3,4],
while its economic costs to health care systems and communities grow with increasing levels of
overweight and obesity [5]. The physiological energy imbalance that underlies high body mass is
influenced by genetic, behavioural, social, economic, and environmental factors operating within
multiple complex systems [6–8]. Reducing the health and economic burdens of overweight and obesity
will require shifts in these population-level systems [7]. For example, environmental interventions
that typically produce small individual-level effects may aggregate into large population-level benefits
because exposure is ubiquitous [8,9] and relatively persistent [10,11].

The built environment refers to that “part of the physical environment...Constructed by human
activity” ( [12] p. S550), and is hypothesised to contribute to high body mass by influencing lifestyle
behaviours that underlie its development [8]. The emerging consensus from the extensive literature
is that the built environment evidence base is sufficiently developed to incorporate into planning,
policy and interventions aimed at reducing high body mass [7,13], although uncertainties remain
(see reviews by [14–18]). ”Walkability” describes the capacity of the built environment to promote
walking for multiple purposes [19], and may contribute to reducing overweight and obesity by
promoting participation in total daily moderate-intensity physical activity [8,9,17,20–22]. To this
end, it is increasingly considered in development plans aimed at enhancing physical and social
infrastructure to promote healthy lifestyles and reduce the burden of chronic conditions like high body
mass on populations (e.g., [23–26]).

Walkability indexes have been identified as potentially useful tools for planning, benchmarking
and monitoring environmental policies and interventions to improve walkability, and translating
the outcomes of walkability research from rhetoric to action [27,28]. While numerous indexes exist
(e.g., [29–37]), the Neighborhood Quality of Life Study (NQLS) [38] and Physical Activity in Localities
and Community Environments (PLACE) Study [19] indexes remain the most influential [39]; underpin
a majority of research linking walkability to health behaviours and outcomes, including high body
mass [17]; and are applicable in planning, policy and practice settings [28], which is facilitated by
their capacity to be constructed at multiple spatial resolutions [38,40]. These indexes operationalise
walkability using residential density, street connectivity, land use mix and, if available, retail floor
area ratio, destinations or density within a geographic information system [19,38,40]. Index variables
serve as proxy measures for built environment attributes associated with walking. Land use mix
measures the diversity and concentration of land uses in an area, while intersection density measures
the directness of paths [38]. Compact areas with diverse land uses that are highly connected promote
walking by reducing the distance between origins and destinations [9,19,40]. Similarly, high population
densities provide critical masses that concentrate diverse destinations within compact areas [12,38,40],
and is measured by residential density. The ratio of retail floor area to retail land use is a measure of
pedestrian access, with larger values indicating greater area given to pedestrian uses and less area to
car parking [41].

The extent to which walkability indexes are associated with health outcomes at population
scales is a key consideration in their utility to benchmark and guide planning and policy aimed
at reducing population-levels of overweight and obesity [27,42]. This is because health and
urban planning that influences environmental walkability occurs at local, urban and regional
scales [43,44]; that is, for communities and populations. These meso (neighbourhoods/communities)
and macro (cities) geographic scales are much coarser than typically used in studies to derive built
environment exposure-response evidence [42,45], which mostly focus on individual (micro) level
risk (see reviews by [14–17,22,46]). Measured at the micro-scale, walkability is typically derived
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within a radial or street-based network buffer of 200–1600 metres around a residential address; reflects
the immediate built environment to which an individual is exposed [47,48]; and is preferred for
individual-level research.

In contrast, when measured at meso- and macro-scales, walkability (or sprawl) is usually
calculated within an administrative boundary; represents a contextual variable describing the shared
built environment to which groups, communities and populations are exposed; and is especially
useful for area-level (ecological) research and planning applications [42]. Using individual-level
walkability evidence to inform activity at coarser planning scales has raised concern in the literature
for its potential to result in flawed public health action [49]. This is a concern about atomistic [50] or
individualistic [51] fallacy, which is the area-level corollary of the ecological fallacy and refers to the
erroneous use of data on individuals to make inferences about groups [52].

Analysis at the geographic scale of planning addresses concern about erroneous cross-level
inference [42], and has been identified as highly relevant to “local area” walkability planning because
it produces evidence at the level where decisions are made [43]. Rydin and colleagues have also
identified the need for “urban scale” data to inform planning and policy interventions that maintain
the urban advantage in health outcomes [44]. However, studies that match walkability exposures and
body mass outcomes at these planning scales are uncommon [16,17,46], despite calls from planners
and policy makers for evidence at this level [45,53–55]. What evidence is available at these planning
scales comes largely from ecological analyses in the United States, which have consistently found
higher body mass and prevalence of obesity in sprawling versus compact counties (e.g., [30,53,56–58]).
Compactness at this scale is generally considered synonymous with more walkable environments.
However, sprawl indexes have been criticized for conflating multiple built environment concepts,
and not providing a coherent, unitary measure of walkability [38,40].

Geographic variation in overweight and obesity has been reported within many countries [59],
and needs to be considered in health programming and planning. In addition to identifying areas
at increased risk of adverse health outcomes [59,60], geographic variation in excess of that due to
known factors can indicate place-based influences on health that are distinct to the contextual effects
arising from differences in the demographic, social and economic composition of populations between
areas [61,62]. Spatial analysis is particularly useful in identifying these place-based effects because
it quantifies the contribution of both observed and unobserved factors to geographic variation in
outcomes while accounting for spatial autocorrelation that can lead to biased statistical inference [62].
In this context, geographic variation encompasses more than just differences between areas, which is
well addressed in the body mass literature (e.g., [63–72]). It is also the spatial expression or distribution
of this variation [73]. Spatial analysis is concerned with location [74]. It leverages the underlying
process giving rise to the geographic variation rather than reducing it to a naïve dummy-coded
comparison of areas in the case of fixed-effects analysis, or focusing on reductions in intraclass
correlation coefficients that conflate spatial and non-spatial sources of variation through a common
random effect term as in multilevel analysis [42].

Spatial analysis has the potential to provide unique information on relations between walkability
and high body mass. For example, we have previously reported that physical activity is geographically
structured in Sydney, and that area-level walkability accounts for some of this spatial patterning [42].
The ”disease mapping” approach [75] used in this study also produces smoothed maps that can
be used to communicate spatially varying risks to planners, policy-makers and other interested
stakeholders [42]. Identifying spatial disparities in contextual factors that contribute to adverse health
outcomes at appropriate intervention scales has been identified as essential for informing place-based
interventions aimed at improving population health [76]. Spatial analysis is uniquely placed to
assist in addressing these disparities and environmental inequalities through its capacity to identify
and target geographic areas where environment-related health risks are disproportionately higher
and potentially amenable to intervention [42,77]. However, despite an increasing use of geographic
information systems in the high body mass literature, the application of spatial analysis at any scale
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is rare [78]. For example, only a few area-level studies have used an explicitly spatial approach to
address geographic variation in overweight and obesity [56,59,62,72,79–89]; an even smaller number
have considered built environment influences on this geographic variation [62,81,82,89]; and only one
appears to have evaluated the contribution of walkability to this geographic variation directly [81].

The objective of this study was to build on our previous work in the Sydney statistical
district [39,42] and assess relations between area-level walkability and population-levels of overweight
and obesity using an explicitly spatial approach, and at a geographic scale representative of those
used for “local area” [43] and “urban scale” [44] planning. The specific aims of the study were
to (i) assess area-level associations between walkability and prevalence of overweight and obesity
in Sydney; (ii) assess geographic variation in area-level prevalence of overweight and obesity in
Sydney; and (iii) assess the extent to which area-level walkability accounts for geographic variation in
overweight and obesity in Sydney beyond that due to individual-level demographic, social, economic
and health factors, and area-level socioeconomic disadvantage.

2. Materials and Methods

2.1. Study Design and Area

We investigated associations between area-level walkability and prevalence of overweight and
obesity in the Sydney statistical division of New South Wales, Australia [90], using a cross-sectional
ecological study design, which is appropriate and valid for area-level inference [52]. Sydney has a
land area of 12,142 km2, and was Australia’s most populous city at the 2006 Australian Census with an
estimated resident population of 4.1 million people living in 1.6 million dwellings [91]. We used Census
postal areas as our units of analysis to coincide with the smallest spatial unit at which individual-level
data were geographically identified by the data custodian. In 2006 there were 260 conterminous postal
areas across the Sydney statistical division [92] with median and inter quartile range (IQR) values
for land area of 7.6 (IQR = 3.7–19.4) km2, 5304 (IQR = 2694–8426) residential dwellings, and 13,090
(IQR = 6529–22,092) residents [91]. The median land area of postal areas corresponds to a radial buffer
of 1550 m, which is within the range of buffer sizes for which consistent environment-behaviour
associations have been reported in individual-level studies of walkability [47,48], and is likely a
reasonable analogue of the “local areas” and “urban scales” at which health and urban planning
decisions occur [43,44].

2.2. Participants

Individual-level data used in this study were obtained from participants of The Sax Institute
45 and Up Study [93] approved and monitored by the University of New South Wales Human
Research Ethics Committee (ref no. HREC 05035/HREC 10186). This population-based cohort study
was established to investigate healthy ageing in the New South Wales population aged 45 years
and over [93]. Study recruitment occurred between January 2006 and December 2009 [94] for a
final cohort size of 267,153 participants or approximately 10% of the total New South Wales target
population [95]. Eligible persons were randomly sampled from the the Department of Human Services
(formerly Medicare Australia) enrolment database. Selected individuals were mailed an invitation
letter, and asked to return a signed, written consent form with their baseline survey via reply-paid mail
if they consented to participating in the study [93]. We were provided access to the April 2009 data
release, which the data custodian had geocoded to 2006 Census statistical divisions and postal areas.
We limited our analysis to 115,153 respondents living in the Sydney statistical division to coincide
with the spatial extent of our exposure variable. Our research comprised a sub-study of the Social,
Environmental, and Economic Factors Study approved and monitored by the University of Sydney
Human Research Ethics Committee (ref No. 10-2009/12187). Details on accessing 45 and Up Study
data are available on The Sax Institute website (www.saxinstitute.org.au/our-work/45-up-study).

https://www.saxinstitute.org.au/our-work/45-up-study/
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2.3. Data

Individual-level data included self-reported responses to the baseline survey of 45 and Up Study
collected between January 2006 and April 2009 [93], which we used to calculate and adjust area-level
outcome variables. Postal area contextual variables comprised the Sydney Walkability Index (SWI) [40]
and 2006 Index of Relative Socioeconomic Disadvantage [96], which we included as study and covariate
factors, respectively.

2.4. Outcome Variable

The primary outcome measures used in our study were self-reported overweight and obesity,
which we defined using the standard body mass index (BMI) formula of weight in kilograms (kg)
over height in metres (m) squared (kg/m2) and World Health Organisation (WHO) cut-points of
25.0–<30.0 kg/m2 for overweight and ≥30.0 kg/m2 for obesity [97]. Self-reported BMI has been
validated against measured BMI as a generally appropriate method for quantifying body size in the 45
and Up Study cohort, although it is known to underestimate prevalence of obesity when classified
using standard BMI categories [98]. Overweight and obesity status were represented as dichotomous
(yes/no) variables for individual-level analyses, and as counts of overweight and obese respondents
within postcodes in area-level analyses.

2.5. Exposure Variable

The exposure variable used for all analyses was postal area walkability, which we measured
using the Sydney Walkability Index [40]. This three-factor index is derived using methods and
data comparable to the PLACE and NQLS walkability index [19,38]. The Sydney Walkability Index
is calculated within a geographical information system using three built environment variables:
residential dwelling density (the number of residential dwellings per square kilometre of residential
land use); intersection density (the number of intersections with three or more roads per square
kilometre of total land area); and land use mix (the entropy of residential, commercial, industrial,
recreational and other land uses). The Sydney Walkability Index was derived at the 2006 postal area
level using 2007 spatial data to temporally align it with the midpoint of the of the 45 and Up Study
baseline data collection.

Environmental variable values are divided into deciles, scored from 1 (lowest) to 10 (highest),
summed to give a total score between 3–30, and then divided into quartiles corresponding to low,
low-medium, medium-high and high walkability [40]. Environmental values increase monotonically
within strata and have median values of 2.3, 13.4, 19.8 and 46 dwellings per hectare for residential
density; 3.4, 46.1, 79.5 and 162.5 intersections per square kilometre for street network connectivity;
and entropies of 0.005, 0.033, 0.056, and 0.134 for land use mix (see [42]). The Sydney Walkability Index
has predictive validity for utilitarian walking, is comparable to four-variable indexes in the research
literature, and is associated with population-levels of moderate and vigorous physical activity [40,42].

Walkability was entered as an index in our analysis for consistency with the interest expressed in
the literature on using “walkability indexes” to benchmark, inform and monitor regional development
plans [27,28], and because the non-parametric functions used in other studies [99–101] to model
index components separately would have made our already computationally-intensive spatial
analyses intractable.

2.6. Covariates

Individual- and area-level factors from the 45 and Up Study and substantive literature likely
to contribute to, or confound, associations between walkability and body mass were included as
covariates in our analysis (see [102–113]). Individual-level covariates included self-reported sex;
five-year age group at baseline interview; language spoken at home; educational level; relationship
status; employment status; health insurance type; level of psychosocial distress measured using the
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Kessler Psychological Distress Scale [114] (minor, moderate, high, very high [115–117]); smoking status;
number of chronic conditions ever diagnosed and treated in the previous four weeks; and functional
capacity, which was measured using the Medical Outcomes Study (MOS) 36-Item Short-Form Health
Survey (SF-36) physical functioning scale [118,119] and classified as none (0 to <60), minor (60 to <90),
moderate (90 to <100), and severe (100) [120]. Postal area socioeconomic disadvantage was measured
using the Index of Relative Socio-economic Disadvantage from the 2006 Australian Census [96]. We did
not include physical activity in our analysis because it likely mediates relations between the built
environment and high body mass [8,14–17].

2.7. Statistical Analysis

The objective of our analysis was to assess relations between walkability and the prevalence
and geographic distribution of overweight and obesity in the Sydney statistical district at a scale
analogous to those at which health and urban planning decisions are made. This objective is
appropriately addressed by an ecological (spatial) analysis because the targets of inference are areas,
not individuals [52]. We have previously identified high levels of spatial autocorrelation in 45 and
Up Study data that have both research and planning utility, and the potential to bias inference if
not addressed in the analysis [42]. Multilevel models can account for spatial autocorrelation but
typically conflate spatial and non-spatial variation through a common variance component [42].
We therefore explicitly modelled the underlying spatial and non-spatial sources of variation in our
data using a relative risk implementation of the ecological Besag, York and Mollié (BYM) conditional
auto regressive model.

The BYM is a fully Bayesian ecological spatial model fit to aggregate data, which is commonly used
in epidemiology for “disease mapping” applications [75]. The goal of disease mapping is to recover a
map displaying variation in the geographic distribution of risks for spatial units within a study area
that is “smoothed” of extreme and unreliable estimates that can arise from differences between units
in the sizes of their underlying populations [75]. This is achieved in the BYM model by decomposing
map variation into an unstructured variance component that smooths risk estimates towards the global
mean of the study area, and a spatially structured (geographic) variance component that smooths risk
estimates towards the local mean of contiguous spatial units [75,121]. These components also indicate
the extent to which map variation is due to structured (spatial) and unstructured (non-spatial) factors.

The BYM model can be extended to ecological regression problems by incorporating area-level
covariates into its specification [75], but it cannot parsimoniously control for individual-level factors
that may confound area-level effect estimates. We therefore used a two stage modelling strategy
adopted by other researchers in the epidemiological literature whereby individual-level regression
models are used to estimate expected cases for each outcome, which are then used as offset terms
in area-level spatial analyses to adjust for the varying size and composition of populations between
spatial units (see [39,42,122–124]).

In the first step, we estimated the predicted log odds (lij) of overweight and obesity for individuals
using conditional fixed-effects logistic regression models:

l̂ij = α + xiβ (1)

where l̂ij is the predicted log odds of being either overweight or obese for the ith person in the jth

postal area, α is the model intercept, and xiβ is an optional vector of individual-level covariates. We fit
two models for each outcome: (1) an unadjusted null model with no covariates; and (2) an adjusted
model including all individual-level covariates described previously. The log odds for individuals
from each model were converted to a predicted probability using the inverse link function:

Ŷij =
elij

1 + elij
(2)
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We then summed these probabilities within each postal area to obtain the expected number of cases
for each outcome based on (1) the prevalence in the study area from unadjusted logistic regression
estimates; and (2) the underlying respondent structure of our sample from adjusted logistic regression
estimates (see [39,42,122–124]). These expected case counts were used as offsets in the spatial Poisson
regressions described in step 2, and are referred to as unadjusted and adjusted offsets, respectively.

In the second step, we used relative risk implementations of the BYM model with Poisson
likelihoods to estimate prevalence ratios for postal areas relative to the study area [125]. The BYM
model is a fully Bayesian spatial model fit to aggregate data that decomposes total variation into
observed and unobserved sources [75,121] using:

log(θj) = α + xjβ + sj + uj + log(ej) (3)

where θj is the prevalence ratio for the jth postal area; α is the prevalence ratio for the study area; xj
and β are vectors of observed area-level explanatory variables and associated regression parameters
estimates; sj and uj are unobserved spatially structured and unstructured random effects; and ej is
an offset term representing the expected number cases in the jth area. The unstructured variance
(uj) is a normal independent and identically distributed residual, while the spatial variance (sj) is
conditionally normally distributed on the mean prevalence of the surrounding k contiguous postal
areas [75]. Model offsets (ej) corresponded to those derived for postal areas in step one, and were
either unadjusted or adjusted for individual-level factors.

The total count of overweight and obese respondents (oj) in each postal area served as the
dependent variable in each model. We fit six BYM spatial regressions for each outcome: (1) a null
model with unadjusted offsets; (2) a null model with adjusted offsets; (3) a covariate model with
adjusted offsets and postal area walkability; (4) a covariate model with adjusted offsets and postal area
socioeconomic disadvantage; (5) a covariate model with adjusted offsets and postal area walkability
and socioeconomic disadvantage, and (6) an effect modification model with adjusted offsets, postal
area walkability and socioeconomic disadvantage, and their interaction. A total of 10,000 draws from
the posterior distributions of two Monte Carlo Markov Chains sampled every 250th iteration were used
to obtain medians and 95% credible intervals for each model. Chain convergence was assessed using
autocorrelation plots and the Gelman-Rubin diagnostic [126]. We chose between alternate models
using the Deviance Information Criterion (DIC) [127], and mapped exponentiated linear predictors
and variance estimates using quintiles to visualise geographic variation in risk of high body mass.
The spatial fraction (ρ) for each model was calculated from the marginal variances of the random
effects, and used to index the proportion of residual variation due to unobserved spatial factors
(i.e., σ2

s /[σ2
s + σ2

u ]) (see [128,129]). Models were fit in WinBUGS 1.4.3 using R 3.3.2 and unweighted
survey data, which produce unbiased, representative and generalisable relative effect estimates for
individual- and area-level analyses in this cohort [42,130,131].

3. Results

Complete data were available for 92,157 of 115,153 (80.0%) Sydney respondents residing in 254 of
260 (97.7%) study postal areas. The median number of respondents per postal area was 212, and ranged
from 0 to 2532 with an inter-quartile range of 110–363. Individual-level attributes for respondents
included in analyses are shown in the Characteristics section of Table 1. Consistent with the larger 45
and Up Study cohort [132], our sample had a similar gender and employment profile to the study area
but was otherwise younger, more highly educated, less likely to speak a language other than English
at home, and more likely to be living with a partner than the general Sydney population aged 45 years
and over [91].
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Table 1. Sample characteristics and prevalence of overweight and obesity among study participants.

Variable

Characteristics Prevalence

Overweight Obesity

N % n % n %

AREA-LEVEL VARIABLES
Walkability

Low 25,454 27.6 10,150 52.9 6251 40.8
Low-medium 31,404 34.1 12,380 50.0 6655 35.0
Medium-high 19,449 21.1 7543 47.2 3454 29.0
High 15,850 17.2 5861 44.0 2516 25.2

Socioeconomic disadvantage
Q1 - Most 17,425 18.9 6697 52.1 4559 42.5
Q2 19,517 21.2 7579 51.7 4847 40.6
Q3 - Middling 14,984 16.3 5877 49.4 3082 33.8
Q4 19,982 21.7 7938 47.8 3392 28.2
Q5 - Least 20,249 22.0 7843 45.5 2996 24.1

INDIVIDUAL-LEVEL VARIABLES
Sex

Male 44,690 48.5 20,802 58.1 8912 37.3
Female 47,467 51.5 15,132 40.3 9964 30.8

Age
45–49 13,550 14.7 4871 45.1 2761 31.8
50–54 16,723 18.1 6188 47.4 3665 34.8
55–59 16,717 18.1 6568 51.2 3885 38.3
60–64 13,742 14.9 5696 53.7 3136 39.0
65–69 10,188 11.1 4297 54.0 2227 37.8
70–74 6910 7.5 2969 53.3 1341 34.0
75–79 4999 5.4 2047 49.0 820 27.8
80–84 6614 7.2 2513 43.2 801 19.5
85+ 2714 2.9 785 31.7 240 12.4

Language spoken at home
English 78,028 84.7 30,768 49.9 16,330 34.6
Other 14,129 15.3 5166 44.6 2546 28.4

Education level
Less than secondary school 7434 8.1 2704 50.6 2086 44.1
Secondary school graduation 26,741 29.0 10,171 49.2 6052 36.5
Trade, certificate or diploma 28,932 31.4 11,814 51.8 6143 35.9
University degree 29,050 31.5 11,245 46.0 4595 25.8

Relationship status
Partner 68,759 74.6 27,826 50.7 13,863 33.9
No partner 23,398 25.4 8108 44.1 5013 32.8

Employment status
Full-time work 32,716 35.5 13,622 53.5 7246 37.9
Part-time work 13,177 14.3 4418 41.0 2408 27.5
Other work 1358 1.5 426 39.6 281 30.2
Not working 44,906 48.7 17,468 48.6 8941 32.6

Health insurance type
Private with extras 54,218 58.8 21,751 50.1 10,830 33.4
Private without extras 12,961 14.1 5058 47.2 2255 28.5
Government health care card 11,993 13.0 4351 47.8 2881 37.7
None 12,985 14.1 4774 47.4 2910 35.4

Smoking status
Never smoked 54,117 58.7 20,518 46.6 10,072 30.0
Past smoker 31,639 34.3 13,145 54.2 7397 40.0
Current smoker 6401 6.9 2271 45.5 1407 34.1
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Table 1. Cont.

Variable

Characteristics Prevalence

Overweight Obesity

N % n % n %

Psychosocial distress
Low 70,218 76.2 27,960 49.1 13,318 31.5
Moderate 14,573 15.8 5433 49.0 3475 38.0
High 5152 5.6 1828 48.4 1375 41.4
Very high 2214 2.4 713 47.3 708 47.2

Diagnosed chronic conditions
0 31,297 34.0 11,955 44.1 4218 21.8
1 36,917 40.1 14,726 50.2 7560 34.1
2 18,186 19.7 7145 54.4 5040 45.6
3 or more 5757 6.2 2108 57.0 2058 56.4

Treated chronic conditions
0 41,580 45.1 15,904 45.5 6590 25.7
1 30,121 32.7 12,141 51.3 6448 35.9
2 14,524 15.8 5721 53.5 3835 43.6
3 or more 5932 6.4 2168 55.2 2003 53.2

Limited physical functioning
None 32,392 35.1 12,656 44.4 3908 19.8
Minor 25,125 27.3 10,628 52.4 4838 33.4
Moderate 20,316 22.0 7801 52.8 5555 44.4
Severe 14,324 15.5 4849 49.7 4575 48.3

SENSITIVITY VARIABLES
Total physical activity

0 min 5478 5.9 1868 50.9 1807 50.1
1–149 min 15,365 16.7 5895 52.1 4053 42.8
150–299 min 15,833 17.2 6241 50.5 3468 36.2
≥300 min 55,481 60.2 21,930 47.7 9548 28.5

N—Stratum total, n—Stratum outcome frequency, %—Stratum outcome per cent.

3.1. Prevalence Overweight and Obesity

The within-cohort prevalence of overweight and obesity were 49.0% (48.7–49.4%) and 33.6%
(33.2–34.0%), respectively. Table 1 reports prevalence by area- and individual-level characteristics.
Prevalence of both overweight and obesity were highest in postal areas with low walkability,
lowest in postal areas with high walkability, and displayed a exposure-response gradient.
Likewise, overweight and obesity reduced with reducing levels of postal area socioeconomic
disadvantage. For individual-level factors, overweight and obesity were more prevalent in males,
persons speaking English at home or living with a partner, less educated individuals and full-time
workers, persons without private health insurance, and past smokers; and increased with age to
65–69 years, psychosocial distress, number of diagnosed and treated chronic health conditions, and
reduced functional capacity.

3.2. Individual-Level Factors

Table 2 shows adjusted fixed-effects estimates for overweight and obesity used to derive adjusted
offsets for postal area spatial models. All effects were significantly associated with body mass
outcomes and mostly consistent with the prevalence patterns reported in Table 1. The stand-out
exception was a reversal in gradient between obesity and psychosocial distress from positive to
negative after adjustment. This was due to confounding by functional capacity, which was both an
independent risk factor for obesity (see Table 2) and strongly associated with psychosocial distress
(χ2

9 = 4072.4, p < 0.0001). Other notable differences following adjustment were relationship status,
which was unrelated to either overweight or obesity; age, which became associated with monotonically
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decreasing odds of obesity across the lifespan; and smoking status, which became associated with
reduced odds of obesity for current compared to non smokers.

Table 2. Adjusted odds ratios for individual-level analyses of overweight and obesity.

Overweight Obese
OR 95% CI OR 95% CI

Sex p < 0.0001 p < 0.0001
Male 1.00 1.00
Female 0.47 0.46–0.49 0.62 0.59–0.64

Age p < 0.0001 p < 0.0001
45–49 1.00 1.00
50–54 1.00 0.95–1.05 0.94 0.88–1.00
55–59 1.07 1.01–1.13 0.90 0.84–0.97
60–64 1.08 1.02–1.15 0.76 0.70–0.82
65–69 1.00 0.93–1.07 0.59 0.54–0.65
70–74 0.87 0.81–0.94 0.39 0.35–0.43
75–79 0.66 0.60–0.72 0.23 0.21–0.26
80–84 0.50 0.46–0.54 0.12 0.11–0.14
85+ 0.31 0.28–0.35 0.06 0.05–0.07

Language spoken at home p < 0.0001 p < 0.0001
English 1.00 1.00
Other 0.81 0.78–0.84 0.72 0.68–0.77

Education level p < 0.0001 p < 0.0001
Less than secondary school 1.53 1.43–1.63 2.47 2.28–2.67
Secondary school graduation 1.35 1.29–1.40 1.77 1.67–1.86
Trade, certificate or diploma 1.27 1.22–1.32 1.54 1.46–1.62
University degree 1.00 1.00

Relationship status p < 0.0001 p = 0.1285
Partner 1.00 1.00
No partner 0.89 0.86–0.92 0.96 0.92–1.01

Employment status p < 0.0001 p < 0.0001
Full-time work 1.00 1.00
Part-time work 0.75 0.71–0.79 0.61 0.57–0.65
Other work 0.72 0.64–0.82 0.61 0.52–0.71
Not working 0.78 0.75–0.82 0.66 0.62–0.70

Health insurance type p < 0.0001 p < 0.0001
Private with extras 1.00 1.00
Private without extras 0.90 0.86–0.94 0.83 0.78–0.88
Government health care card 0.94 0.89–0.99 1.02 0.96–1.09
None 0.91 0.87–0.95 0.99 0.93–1.05

Smoking status p < 0.0001 p < 0.0001
Never smoked 1.00 1.00
Past smoker 1.17 1.13–1.21 1.28 1.23–1.34
Current smoker 0.78 0.74–0.84 0.73 0.68–0.79

Psychosocial distress p < 0.0001 p < 0.0001
Low 1.00 1.00
Moderate 0.94 0.90–0.98 0.91 0.86–0.96
High 0.88 0.82–0.95 0.82 0.76–0.89
Very high 0.83 0.74–0.92 0.88 0.78–1.00

Diagnosed chronic conditions p < 0.0001 p < 0.0001
0 1.00 1.00
1 1.19 1.15–1.24 1.58 1.51–1.66
2 1.35 1.29–1.42 2.13 2.01–2.27
3 or more 1.48 1.37–1.60 2.69 2.46–2.93
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Table 2. Cont.

Overweight Obese
OR 95% CI OR 95% CI

Treated chronic conditions p < 0.0001 p < 0.0001
0 1.00 1.00
1 1.22 1.18–1.27 1.47 1.40–1.54
2 1.38 1.31–1.45 1.89 1.77–2.01
3 or more 1.57 1.45–1.69 2.48 2.27–2.71

Limited physical functioning p < 0.0001 p < 0.0001
None 1.00 1.00
Minor 1.36 1.30–1.41 2.10 1.99–2.21
Moderate 1.58 1.51–1.65 3.77 3.56–4.00
Severe 1.61 1.52–1.70 5.31 4.96–5.68

OR—Odds ratio, CI—Confidence interval.

3.3. Spatial Analysis

Tables 3 and 4 report parameter estimates and diagnostics for spatial regressions fit to overweight
and obesity data. Smoothed prevalance ratios for postal areas from unadjusted null models ranged
from 0.83–1.16 for overweight and 0.46–1.68 for obesity. Variation in risks between postal areas
was principally due to unobserved spatial factors, with >96% of residual variation attributed to the
spatial variance component for both overweigtht and obesity (see spatial fractions for Model 1 in
Tables 3 and 4). Adjusting for individual-level factors (Model 2) attenuated the ranges of smoothed
prevalence ratios to 0.88–1.08 for overweight and 0.63–1.23 for obesity, but had little effect on the
proportions of residual variation from spatial sources, which remained high at >93% for both outcomes.
Univariable parameter estimates for area-level associations including walkability and socioeconomic
disadvantage are shown in the Model 3 and 4 columns of Tables 3 and 4. Risk ratios for walkability
indicated consistent exposure gradients for both outcomes, with prevalence of overweight reduced
by 4% and 9% and obesity by 8% and 11% in medium-high and high versus low walkability postal
areas. Likewise, high body mass reduced monotonically with decreasing socioeconomic disadvantage.
Overweight was 6% lower in the least versus most disadvantaged postal areas, and obesity was 11%
and 9% lower in the least and second-to-least versus most disadvantaged postal areas. Fully-adjusted
spatial regressions including individual- and area-level factors (Model 5) had the lowest DIC values
and were the best fitting models for both outcomes (see DIC row in Tables 3 and 4). Prevalence
ratios for socioeconomic disadvantage in these models were largely unaffected; however, gradients
for area-level walkability strengthened with overweight 6% and 10% lower and obesity 11% and
15% lower in medium-high and high versus low walkability postcodes. These fully-adjusted spatial
models also had the smallest amounts of residual spatial variation, with 67% of unexplained model
variation attributed to unobserved spatial factors for overweight and 90% for obesity. Interaction
analyses (Models 6) provided no evidence that the observed associations between walkability and
overweight (DICM6 − DICM5 = 18.21) or obesity (DICM6 − DICM5 = 12.12) were modified by postal
area socioeconomic disadvantage.
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Table 3. Spatial regression summaries for postal area analyses of associations between overweight, walkability and relative socioeconomic disadvantage.

Model 1 Model 2 Model 3 Model 4 Model 5
Individual-level adjustment No Yes Yes Yes Yes

Prevalence ratios (95% CrI)
Constant 0.99 (0.98–1.00) 1.00 (0.98–1.01) 1.03 (1.00–1.06) 1.01 (0.99–1.04) 1.07 (1.02–1.11)
Walkability

Low – – 1.00 – 1.00
Low-medium – – 0.98 (0.95–1.01) – 0.98 (0.95–1.01)
Medium-high – – 0.96 (0.92–1.00) – 0.94 (0.91–0.98)
High – – 0.91 (0.87–0.97) – 0.90 (0.86–0.94)

Socioeconomic disadvantage
Q1 - Most – – – 1.00 1.00
Q2 – – – 1.01 (0.97–1.05) 1.01 (0.97–1.04)
Q3 - Middling – – – 0.99 (0.95–1.03) 0.99 (0.95–1.03)
Q4 – – – 0.97 (0.93–1.01) 0.97 (0.93–1.00)
Q5 - Least – – – 0.94 (0.90–0.99) 0.93 (0.89–0.97)

Model diagnostics
pD 55.73 37.48 33.64 35.05 27.01
DIC 1832.77 1787.67 1787.12 1787.85 1782.70
Spatial fraction 0.965 0.932 0.882 0.900 0.673

CrI—credible interval, pD—effective parameters, DIC—Deviance Information Criterion. Model 1—null model with expected cases proportional to the overall prevalence. Model 2—null
model with expected cases adjusted for individual-level factors. Model 3—Model 2 + Sydney Walkability Index. Model 4—Model 2 + Index of Relative Socioeconomic Disadvantage.
Model 5—Model 3 + Index of Relative Socioeconomic Disadvantage.
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Table 4. Spatial regression summaries for postal area analyses of associations between obesity, walkability and relative socioeconomic disadvantage.

Model 1 Model 2 Model 3 Model 4 Model 5

Individual-level adjustment No Yes Yes Yes Yes
Prevalence ratios (95% CrI)

Constant 0.95 (0.93–0.97) 0.96 (0.95–0.98) 1.02 (0.97–1.08) 1.01 (0.96–1.05) 1.10 (1.02–1.17)
Walkability

Low – – 1.00 – 1.00
Low-medium – – 0.97 (0.91–1.02) – 0.96 (0.91–1.01)
Medium-high – – 0.92 (0.85–0.99) – 0.89 (0.83–0.96)
High – – 0.89 (0.80–0.99) – 0.85 (0.78–0.94)

Socioeconomic disadvantage
Q1 - Most – – – 1.00 1.00
Q2 – – – 1.03 (0.98–1.09) 1.02 (0.97–1.08)
Q3 - Middling – – – 0.97 (0.92–1.03) 0.97 (0.91–1.03)
Q4 – – – 0.91 (0.85–0.97) 0.90 (0.85–0.96)
Q5 - Least – – – 0.88 (0.82–0.95) 0.85 (0.79–0.92)

Model diagnostics
pD 128.60 72.36 70.99 63.02 56.79
DIC 1794.88 1711.26 1712.90 1705.26 1703.00
Spatial fraction 0.992 0.985 0.981 0.978 0.961

CrI—credible interval, pD—effective parameters, DIC—Deviance Information Criterion. Model 1—null model with expected cases proportional to the overall prevalence. Model 1—null
model with expected cases proportional to the overall prevalence. Model 3—Model 2 + Sydney Walkability Index. Model 4—Model 2 + Index of Relative Socioeconomic Disadvantage.
Model 5—Model 3 + Index of Relative Socioeconomic Disadvantage.
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3.4. Prevalence Maps

Figures 1 and 2 graphically display smoothed prevalence ratios for overweight and obesity
obtained from spatial models 1 (unadjusted null model), 2 (adjusted null model) and 5 (adjusted model
with walkability and socioeconomic disadvantage). Total excess prevalence is shown in Maps A, D and
G, and decomposed into excess risk due to spatial factors in maps B, E and H, and unstructured factors
in maps C, F and I. Two features stand-out in each set of maps. First, residual prevalence is principally
due to unobserved place-based factors, with higher ratios in spatial (B, E and H) versus unstructured
(C, F and I) maps; and second, this geographic variation in risk reduces as individual- (Model 2)
and area-level (Model 5) factors are added to spatial models. In unadjusted (Model 1) and adjusted
(Model 2) null models, higher-than-expected prevalence was concentrated in western Sydney, and
lower-than-expected prevalence in central and eastern Sydney. Including area-level walkability and
relative socioeconomic disadvantage (Model 5) substantially attenuated excess prevalence by reducing
excess risk attributable to unobserved spatial factors (see maps G and H of Figures 1 and 2). Final
excess prevalence estimates were reduced in western Sydney and the peri-urban fringe for both
overweight and obesity; and remained higher-than-expected for obesity through south-central Sydney,
and lower-than-expected for both outcomes on the eastern seaboard north of the Sydney central
business district.

Figure 1. Total, Spatial and Unstructured prevalence ratios for overweight body mass in Sydney postal
areas. Total prevalence ratios are derived by exponentiating the sum of spatial (s) and unstructured (u)
random effects; Spatial and Unstructured prevalence ratios are obtained by exponentiating individual
s and u components, respectively. Total, Spatial, and Unstructured prevalence ratio estimates are
reported in maps (A–C) for Model 1, maps (D–F) for Model 2, and maps (G–I) for Model 5.
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Figure 2. Total, Spatial and Unstructured prevalence ratios for obese body mass in Sydney postal
areas. Total prevalence ratios are derived by exponentiating the sum of spatial (s) and unstructured (u)
random effects; Spatial and Unstructured prevalence ratios are obtained by exponentiating individual
s and u components, respectively. Total, Spatial, and Unstructured prevalence ratio estimates are
reported in maps (A–C) for Model 1, maps (D–F) for Model 2, and maps (G–I) for Model 5.

4. Discussion

This is one of only a small number of studies to examine geographic variation in high body
mass and its association with environmental walkability using a large population-derived cohort and
spatial analytic framework. We find strong support for associations between postal area walkability
and area-levels of overweight and obesity among persons aged 45 years and over living in Sydney,
Australia. Prevalence in postal areas with medium-high and high walkability is reduced by 6% and
10% for overweight and 11% and 15% for obesity compared to postal areas with low walkability,
and are independent of individual-level social, economic and health status factors, and area-level
socioeconomic disadvantage. We also find that both overweight and obesity are geographically
clustered at the postal area level with lowest prevalence in and to the north of the central business
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district, and highest prevalence in western Sydney. Postal area walkability explains approximately 20%
and 9% of this geographic variation in overweight and obesity, respectively, that is not attributable to
individual-level factors and area-level socioeconomic disadvantage. Our findings confirm associations
between high body mass and walkability at spatial scales typical of those used for public health
planning; highlight the potential for spatial analysis to better integrate “place” into walkability research;
and provide novel methods and data for New South Wales Government initiatives aimed at creating
built environments that support active transportation and promote healthy lifestyles, and monitoring
these initiatives.

Despite some limitations, the existing built environment evidence base appears sufficiently
developed to inform interventions aimed at addressing high body mass at individual and population
levels [13]. A recent review concluded that the strongest evidence is for meso- and macro-level
correlates, and identifies urban sprawl, land use mix, street connectivity, population density, and
proximity to services and destinations as the important environmental characteristics at these levels [17].
Walkability indexes combine many of these key environmental variables into summary metrics that
can be easily implemented at multiple spatial scales for planning purposes [19,27,28,40]. Our study is
novel because it directly addresses exposure-outcome relations at a geographic scale more proximal to
those typically used by government agencies for population-level health and urban planning [43–45].
We observed that higher levels of postal area walkability measured by our index were associated with
lower prevalence of overweight and obesity in postal area populations aged ≥45 years, even after
adjusting for other individual- and area-level characteristics related to body mass. These findings
coincide with the small but consistent body of area-level findings that increased body mass and
prevalence of obesity are associated with greater urban sprawl (see review by [17]), and extend recent
individual-level associations between walkability and body mass [133–137] to populations and the
spatial scales at which health and urban planning decisions are made. Our study also provides new
evidence on the potential of tools like the Sydney Walkability Index [40] to benchmark, inform and
monitor health and urban planning activities aimed at reducing population-levels of overweight
and obesity. This will have relevance in the Australian context where open-access tools have been
developed that allow researchers and planners to calculate NQLS-PLACE index values at mutiple
spatial scales (see [28,138]).

Action to address overweight and obesity should target populations of greatest need [59,60].
However, it is unlikely that at-risk groups will be uniformly distributed across an area such as the
Sydney statistical district [88]. Spatial analysis is especially useful in this regard with its ability to
identify geographic locations with higher (or lower) than expected rates of overweight and obesity,
and whether this variation is explained by, or in addition to, factors known to influence the distribution
of health, such as demographic and socioeconomic characteristics [61]. We observed very strong
clustering of overweight and obesity through central Sydney that was due to unobserved and spatially
structured factors, and which contributed the majority of excess risk. Including individual-level
demographic, social, economic and health status factors in our analysis attenuated excess prevalence
of high body mass and reduced spatial variance but had little effect on outcome clustering across the
study region. This is consistent with Canadian findings that individual-level variables were important
correlates of within-region variation but explained little between-area geographic variation [85].
In contrast, adding postal-area walkability and socioeconomic disadvantage to our models reduced
area-level clustering of overweight and, to a lesser extent, obesity. However, our final maps remained
weakly clustered. This residual variation could suggest the presence of other unobserved spatial
factors structuring the residual prevalence of high body mass in our study area. Identifying these
additional factors was beyond the aims of our study but may include greenspace, access to shops
and services, aesthetics, the food environment, and proximity to public transport [7,8,13,62]. It is also
possible that some of this residual variation is due to residual confounding of associations between
walkability and high body mass by sociodemographic factors. For example, Frank and colleagues have
reported that features of walkable neighbourhoods are associated with lower overweight in males
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but greater overweight in females without a degree, and with lower obesity in men with a degree
but higher obesity in unemployed non-white men without a degree and white women without a
degree [139]. Likewise, there is some evidence that higher body mass is negatively associated with
features of walkable neighbourhoods in high socioeconomic communities, and positively associated in
low socioeconomic minority communities [140]. Future spatial studies employing our approach should
consider alternate adjustment techniques to account for this possibility; for example, by calculating
offsets using a logistic machine learning classifier.

Our findings are consistent with a growing evidence base indicating geographic variation at
multiple spatial scales in the distribution of overweight and obesity that have relevance for health,
urban and transport planning [56,59,62,79–89], although only a few studies have investigated built
environment correlates of this variation within a geospatial context [62,81,82]. While Shuurman
and colleagues were unable to assess whether population density—included in most walkability
indexes—patterned obesity in Metro Vancouver because obesity itself did not cluster in their study
area [82], Congdon has reported that not only are obesity rates 13–20% higher in sprawling versus
compact US counties—an effect size similar to that obtained for physical inactivity, but that adding
environmental measures to spatial models of county-level obesity prevalence reduced unexplained
spatial variation by 22%. Lathey et al. have also examined associations between obesity rates and
sprawl factors, including walkability, for census blocks in Maricopa County, Arizona [81]. They defined
walkability as accessibility to places of social interaction, and found it was the strongest model predictor
of being in a ”high disease” obesity cluster with odds halved for the most versus least walkable census
blocks [81]. Cluster membership was also associated with residential and commercial land use, and
street connectivity, although effect sizes were very small [81]. Unfortunately, the focus on correlates of
cluster membership reduces the analysis to a consideration of between-group differences, which is
not especially informative geographically. Our study adds to the evidence base by its explicit focus
on walkability and its contribution to geographical variation in high body mass at the spatial scales
where health and urban planning decisions are made. We found effect sizes for walkability that
were meaningful at population-scales [10], and sizable reductions in unexplained spatial variation
comparable to other area-level spatial analyses [62].

Despite substantial reductions in unexplained variation due to spatially structured factors of
93.6% for overweight and 89.1% for obese, we observed little impact on spatial fractions except for
overweight model 5, which reduced from ≥88.2% (models 1–4) to 67.3%. This is not surprising
given the unstructured variance reduced by just 12.9% for overweight and 46.1% for obesity over the
range of models fitted; with most of this decrease occurring between models 1 and 2 when we first
adjusted for individual-level factors. Lunn et al. have noted that either the spatial (s) or unstructured
(u) variance component will typically dominate the other in practical implementations of the Besag,
York and Mollié model but will only be apparent once the posterior distributions of the components
are examined [141]. A key strength of the Besag, York and Mollié model is its robustness to spatial and
non spatial variation, and will produce unbiased parameter and variance estimates in the absence of
either [142]. The large residual spatial fractions from our analyses also suggests the likely existence of
additional geographically distributed factors related to overweight and obesity within in the Sydney
Statistical Division.

The geographic variation observed in our data and reported in the substantive literature
highlight the importance of appropriately controlling for spatial autocorrelation at analysis [39,42,61].
Spatial autocorrelation is problematic for standard regression methods that assume model residuals are
independently and identically distributed (IDD), and its violation may result in biased inference [143].
Clustering is most typically handled by multilevel models that conflate unexplained spatial and
non-spatial variation into a single random effect error term [42]. This approach addresses the issue
of spatial autocorrelation; however, the potential value of the spatial variation for informing health
planning is lost in the process. We have consistently identified variation in health risk-factors and
outcomes in the Sydney region using 45 and Up Study data that indicate geographic areas with excess
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risk attributable to unobserved and spatially structured factors [39,42]. For example, we have reported
variation in physical activity [42] and psychosocial distress [39] that indicates excess risk due to
unobserved and spatially structured factors in addition to that attributable to observed individual-level
factors, and postal area walkability and relative socioeconomic disadvantage. Pattenden and colleagues
contend that outcome variation in excess of socioeconomic factors may indicate opportunities to
address disparities in health status [61], while Fitzpatrick et al highlight its potential role in suggesting
causal pathways [144]. We believe our approach is helpful because it not only locates inequalities in
the geographic distribution of risk but also quantifies that attributable to known factors that may, or
may not, be amenable to intervention, and to unknown factors requiring further investigation.

We observed statistically significant associations between most individual-level covariates
and body mass outcomes in all fixed-effects models used to derive offset terms in spatial models.
Consistent with our previous work on physical activity [42] and psychosocial distress [39] in this
cohort, we observed strong positive associations between prevalence of high body mass and numbers
of chronic care conditions ever diagnosed and recently treated, and even stronger associations with
reduced functional capacity. These findings agree with previous reports on this cohort [103,120] and in
the broader literature [145–147]. High body mass is considered a “gateway” into non-communicable
diseases [148], and possibly multi-morbidity [149–152] and reduced physical functioning [145,153,154],
although reverse causality is plausible with multi-morbidity and reduced physical functioning leading
to lower levels of physical activity and poorer dietary choices [155]. We also observed an inverse
association between high body mass and lower levels of psychosocial distress after adjusting for
functional capacity. This is consistent with previous findings of increased risk of psychosocial distress
with greater functional limitations in this cohort [39,156,157], and a strong contemporaneous effect of
physical disability on depressive symptoms [158]. Depression and anxiety disorders are also known
causes of weight loss in community-dwelling older adults [159], and may be influential on our findings
as the Kessler Psychological Distress Scale [114] is specific for current anxiety and affective disorders
in Australian community populations at the cut-points used in our study [160].

A major strength of our study is the large sample size drawn from the 45 and Up Study [93].
This high-quality, population-based cohort comprises approximately 10% of the Sydney statistical
district aged 45 and over. While we make no claims to the external validity of our point-estimates
beyond our sample, it is well established in the epidemiological literature that relative measures of
effect are generalisable irrespective of representativeness and non response [161,162]. Methodological
investigations of the 45 and Up Study cohort support this likelihood. Mealing et al. [130] have reported
that odds ratios derived from the full cohort correspond to those from the population-representative
New South Wales Adult Population Health Survey [163], while we have reported high correlations
between postal area relative risks and disease maps estimated from unweighted and post-stratification
weighted data [42,131]. These observations support the generalisability of our risk estimators and
their geographical distribution to postal area populations within the Sydney Statistical Division
area. We also used the Sydney Walkability Index as our exposure metric, which is derived using
high-quality government agency spatial data [40]. The strengths of this index include its demonstrated
predictive validity for moderate-intensity walking at multiple spatial scales, a cohesive latent variable
structure, and comparability to other indexes (e.g., NQLS [38] and PLACE [19]) frequently used in
walkability research [40,42]. The spatial data used in its construction are routinely updated to support
NSW Government business, and are accessible via the NSW Open Data Policy [164]. This allows the
Sydney Walkability Index to be re-calculated annually to monitor changes in the spatial distribution of
walkability across the Sydney statistical district. There is also an ongoing effort to develop a national
walkability index using similar methods to our index that would benchmark and monitor changes
in walkability across Australia [28]. Finally, our study employed an explicitly spatial approach that
controlled for individual-level factors to investigate geographic variation in high body mass and its
association with environmental walkability at the postal area level. The substantial levels of clustering
in our data indicate the importance of accounting for spatial autocorrelation in analyses where it is
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expected or observed, and highlights the potentially informative nature of this variation for health and
urban planning that is ignored when spatial and non-spatial sources of variation are conflated [42].

Our study reported on associations between postal area walkability and high body mass
outcomes, which are not necessarily causal. An important limitation of our study is that we
were unable to control for potential bias due to participant self-selection into postal areas, which
raises the potential for reverse causation. Self-selection bias occurs when individuals choose to
live in neighbourhoods that support their physical activity and travel behaviour preferences [8,17].
Systematic reviews indicate that neighbourhood self-selection may account for up to 50% of the built
environment’s effect on physical activity [17]. Its contribution to built environment associations with
high body mass is less clear. Some studies have reported that self-selection fully accounts for these
associations [165,166], while others have reported more modest attenuation effects [167–169]. There is
also some evidence that it may selectively attenuate associations for continuous but not categorical
body mass outcomes [170,171]. The 45 and Up Study does not collect information on respondents’
preferences for the neighbourhoods in which they reside, and so we are unable to discount this as
contributing to some portion of the estimated effect of walkability in our study.

We used self-reported BMI to classify overweight and obesity, which is generally appropriate for
quantifying body size in the 45 and Up Study cohort but known to underestimate prevalence of obesity
using standard BMI classifications by 6% [98]. In the context of our study, this means both overweight
and obesity are likely to have been systematically misclassified. Monte Carlo simulation studies have
found that systematic misclassification of binary dependent variables on the order of 2–5% can bias
relative effects estimates by 12–25% in either direction [172,173]. This has the potential to weaken
the magnitude of our observed associations for both overweight and obesity, but would still result in
meaningful effect sizes at the population-level [8,10]. Another limitation of our analysis is that it was
conducted at a single geographic scale, and so our findings may differ if conducted at a finer or coarser
scale. This is the Modifiable Areal Unit Problem [174,175], which is germane to all analyses using areal
units or zones [175]. We were only provided with access to postal area identifiers by the data custodian,
and so were unable to assess the sensitivity of our results to different spatial scales. We have previously
examined associations between walkability and health-enhancing physical activity at different spatial
scales and found similar relations [40,42], which provides some reassurance on the robustness of our
findings to spatial scale. However, the influence of scale on matched exposure-response relations in
the walkability literature remains opens and warrants further investigation.

The Sydney Walkability Index [40] is comparable to other indexes used in the substantive
literature [19] and so is subject to the same limitation that walkability quartiles may be data-dependent
as they are derived using population-specific cut-points [176,177]. We therefore encourage planners,
policy makers and researchers to review the quartile cut-points used in constructing the Sydney
Walkability Index to evaluate their appropriateness and the applicability of our findings to their
geographic context. Further, modelling walkability as an index means we are unable to identify which
built environment components in the index contribute to the observed associations with prevalence
and geographic distribution of overweight and obesity, which would be useful for framing policy
interventions. This was partly a choice for consistency with the expressed interest in the literature about
the potential for “walkability indexes” to benchmark, inform and monitor development plans, but also
because the added complexity would have made our models intractable. Our analysis used a two stage
approach in which individual-level conditional probabilities of overweight and obesity were modelled
first and then used as offset terms to adjust spatial models. While this approach is not uncommon
in the epidemiological literature (see [39,42,122–124]), ideally we would have modelled individual
and area-level effects simultaneously in a single, parsimonious model. However, despite the relative
ease with which Besag, York and Mollié models can be fit in available software [75,178], they remain
computationally prohibitive to implement outside of high performance computing environments when
extended to multi-level problems comprising samples of the size used in our study [179]. Our units of
analysis comprised Australian postal areas, which correspond in spatial extent to the upper limit of
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buffers sizes used in individual-level research linking walkability to high body mass but may not be
representative of all spatial extents at which health and urban planning decisions occur. Finally, our
study precludes causal inference due to its cross-sectional design.

5. Conclusions

Walkability indexes have been identified as potentially useful tools for planning and monitoring
the built environment to improve health [27]. Our results provide support for their potential application
to body mass outcomes by demonstrating that: (1) rates of overweight and obesity are negatively
associated walkability at the postcode level for Sydney residents aged ≥45 years; and (2) that area-level
walkability makes a small but meaningful contribution to the geographic clustering of high body
mass in the Sydney metropolitan region. Our results also suggest the presence of other unobserved
and spatially structured factors contributing to this clustering. The Greater Sydney Region Plan aims to
create healthy, resilient and socially connected communities over the next 40 years by creating fine
scaled urban form, mixed land use and amenity within walkable urban centres [25]. The methods and
outcomes described here may assist in the geographical targeting of strategies and monitoring their
progress towards achieving its liveability objectives.
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