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Abstract: Desiccant solutions play an essential role in desiccant cooling systems to absorb 8 

moisture from the process air. This paper presents the characterisation of a new working 9 

solution for liquid desiccant cooling systems. The new working solution was prepared through 10 

dispersion of micro-encapsulated phase change materials (MPCMs) into lithium chloride (LiCl) 11 

desiccant solutions to ensure that the dehumidification process was achieved under a low 12 

temperature condition and to improve thermal capacity and moisture removal efficiency of the 13 

mixture. The properties of the new solution, including density, enthalpy-temperature 14 

relationship, particle size distribution, thermal conductivity, and vapour pressure were 15 

characterised through either experimental tests or theoretical analysis. It was shown that the 16 

density and thermal conductivity of the new working solution slightly decreased with the 17 

increase of the mass fraction of the MPCMs in the mixture. The thermal capacity of the new 18 

working solution substantially increased in the melting temperature range of the MPCMs used. 19 

The vapour pressure of the new working solution decreased due to the existence of the MPCM 20 

particles. It is expected that the dehumidification efficiency of adiabatic dehumidifiers can be 21 
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potentially improved when using this new working solution due to the decreased vapour 22 

pressure and increased thermal capacity of the PCM-LiCl desiccant solution. 23 

Keywords: Desiccant cooling; phase change material; new working solution; characterisation; 24 

vapour pressure. 25 

 26 

Nomenclature 27 

d  diameter (m) 28 

h  enthalpy (J/kg) 29 

k  thermal conductivity (W/m K) 30 

m  mass (kg) 31 

P  vapour pressure (Pa) 32 

t  time (s) 33 

T  temperature (oC) 34 

xm  mass fraction 35 

xv  volume fraction 36 

 37 

Greek symbols 38 

𝛼  coefficient 39 

αR  equivalent thermal conductivity depression 40 

β  coefficient 41 

θ  reduced temperature 42 
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π  coefficient 43 

ρ  density (kg/m3) 44 

 45 

Subscripts 46 

a   air 47 

c   core 48 

e   equivalent 49 

LiCl  lithium chloride desiccant solution 50 

PCM  micro-encapsulated phase change material 51 

PCM-LiCl phase change enhanced LiCl desiccant solution 52 

s   shell 53 

 54 

1. Introduction 55 

 Air conditioning is essential to our lives and is greatly impacting the quality of our life and 56 

even saves lives during intense heat waves [1]. The amount of installed air conditioning systems 57 

is expected to increase dramatically in the coming decades, largely driven by economic growth 58 

and global warming [2]. Nowadays, the majority of air conditioning systems used were 59 

developed based on the vapour compression cycle [3]. These systems can control sensible load 60 

effectively but are very inefficient to deal with latent load, in particular under hot and humid 61 

climatic conditions. This is because a significant amount of energy is required to dehumidify 62 

the air by overcooling the air below its dew point temperature in order to remove the moisture 63 
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through condensation and then heating it to the desired temperature [4].  64 

 Liquid desiccant cooling as one of the alternative solutions has received increasing attention 65 

for air conditioning and dehumidification due to its effectiveness in humidity control and great 66 

potentials in energy savings [5-7]. A liquid desiccant is generally a concentrated salt solution 67 

such as lithium bromide (LiBr), lithium chloride (LiCl), and calcium chloride (CaCl2) that 68 

directly absorbs moisture without cooling the air below its dew point. Liquid desiccant cooling 69 

can be driven by low-grade thermal energy (50-90 oC) such as waste heat or solar energy [8]. 70 

As the building peak cooling demand generally occurs at approximately the same time as local 71 

peak solar radiation, this opens up opportunities of using solar energy to drive liquid desiccant 72 

cooling and even to take air conditioning off the grid with the assistance of thermal energy 73 

storage systems.  74 

 Various types of liquid desiccant cooling systems and their potentials to maintain 75 

acceptable indoor thermal comfort under different climatic conditions have been studied. Ham 76 

et al. [9], for instance, developed a liquid desiccant and dew point evaporative cooling assisted 77 

100% outdoor air system. The simulation results showed that 12% of the primary energy can 78 

be saved by using this system, in comparison with a typical variable air volume system. Elmer 79 

et al. [10] developed a liquid desiccant cooling system consisting of a regenerator, a 80 

dehumidifier and an evaporative inter-cooler integrated with an energy exchanger. The 81 

experimental results showed that the dehumidification effectiveness of this system was 30-47% 82 

with an average electrical COP of 2.5. Chen et al. [11] proposed a liquid desiccant dehumidifier 83 

and a regenerative indirect evaporative cooling system for fresh air treatment. The thermal 84 
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energy obtained from solar collectors was used for liquid desiccant regeneration. The results 85 

showed that the energy saving of this system was 22.4-53.2% under various inlet air conditions, 86 

in comparison to a conventional chilled water air conditioning system. A solar driven liquid 87 

desiccant cooling system was developed by a company named L-DCS Technology [12]. This 88 

system was installed in a building in Singapore and used for cooling and dehumidification [13]. 89 

 A dehumidifier is a key component in a liquid desiccant cooling system. Adiabatic 90 

dehumidifiers are relatively simple units, but they must work with a high desiccant flow rate 91 

and a high air flow rate in order to achieve a better dehumidification efficiency [6, 14]. In 92 

adiabatic dehumidifiers, the temperature of the desiccant solution continuously increases along 93 

the desiccant flow direction. The increase in the solution temperature deteriorates the 94 

dehumidification efficiency as the ability of a desiccant solution to attract water vapour from 95 

an air stream decreases with the increase of the solution temperature and the decrease of the 96 

solution concentration [15]. In order to ensure dehumidifiers work with high efficiency and 97 

minimise the carryover of desiccant droplets, internally cooled dehumidifiers which can allow 98 

the desiccant solution working in a low temperature and low flow rate condition were studied 99 

[16]. The performance comparison of an adiabatic dehumidifier with an internally cooled 100 

dehumidifier showed that the dehumidification effectiveness of the internally cooled 101 

dehumidifier was improved from 0.3876 - 0.4771 to 0.4769 - 0.7058, in comparison to that of 102 

the adiabatic dehumidifier [17]. However, the inherent complex configuration of the internally 103 

cooled dehumidifiers and high maintenance costs make these systems less attractive.  104 

 Phase change materials (PCMs) with an ability to provide high energy storage densities and 105 
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the characteristics to store thermal energy at relatively constant temperatures have attracted 106 

wide attention for developing high-performance buildings [18, 19]. The development of PCMs 107 

and PCM thermal energy storage for liquid desiccant cooling systems have been reported in a 108 

few studies [20-22]. Niu et al. [20], for instance, proposed to use micro-nanoencapsulated 109 

PCMs as a heat transfer fluid to improve the performance of internally cooled dehumidifiers in 110 

liquid desiccant cooling systems. The micro-nanoencapsulated PCMs were prepared and their 111 

thermo-physical properties were characterised. However, the real application of such materials 112 

in dehumidifiers was not reported. Al-Abidi et al. [21] and Mahdi and Nsofor [22] respectively 113 

developed a triplex tube PCM thermal energy storage for liquid desiccant cooling systems. Al-114 

Abidi et al. [21] experimentally tested the charging performance of the PCM thermal storage 115 

unit using a paraffin wax with a melting temperature of 82 oC while Mahdi and Nsofor [22] 116 

numerically investigated the charging performance of the thermal energy storage using the same 117 

paraffin wax but was enhanced by alumina nanoparticles and a porous copper foam. However, 118 

both studies did not integrate the PCM thermal energy storage into liquid desiccant cooling 119 

systems. 120 

 In this study, a novel phase change enhanced LiCl (i.e. PCM-LiCl) desiccant solution was 121 

proposed to improve the dehumidification efficiency of adiabatic dehumidifiers. The new 122 

solution was prepared by dispersing micro-encapsulated PCMs (MPCMs) into LiCl desiccant 123 

solutions. As MPCMs have a relatively large thermal storage capacity, the dispersion of 124 

MPCMs into liquid desiccant solutions can ensure the mixture work under a low temperature 125 

condition, improving overall dehumidification efficiency. The properties of the new PCM-LiCl 126 
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desiccant solution such as density, enthalpy-temperature (h-T) relationship, particle size 127 

distribution, thermal conductivity, and vapour pressure were characterised through either 128 

experimental measurements or theoretical investigation.  129 

2. Development and characterisation of PCM-LiCl desiccant solutions 130 

 Dehumidifiers can generally offer a better performance when the desiccant solution is 131 

working in a low temperature condition such as in the range of 20-30 oC [23-24]. As shown in 132 

Fig. 1a [25], the temperature of the LiCl desiccant solution is continuously increased along the 133 

height of the adiabatic dehumidifier due to the heat and mass transfer between the process air 134 

and the liquid desiccant and the absorption heat released during the dehumidification process. 135 

This increased temperature will lead to the increase in the vapour pressure of the liquid 136 

desiccant and therefore decrease the vapour pressure difference between the process air and 137 

liquid desiccant, which deteriorates the moisture transfer and dehumidification effectiveness of 138 

the adiabatic dehumidifier. This deterioration can be further confirmed by the results (see Fig. 139 

1b) reported in another study [26], in which it was shown that the mass flux of moisture between 140 

the process air and liquid desiccant decreased along the flow direction of the liquid desiccant. 141 

As PCMs have a large storage density, the dispersion of MPCMs into liquid desiccants can 142 

improve the thermal capacity of the mixture and therefore can decrease the temperature increase 143 

of the liquid desiccant along the flow direction of the adiabatic dehumidifier, improving overall 144 

dehumidification effectiveness. 145 
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 146 

a) Temperature of the liquid desiccant [25] 147 

 148 

b) Mass flux of moisture [26] 149 

Fig. 1. Temperature of LiCl liquid desiccant and mass flux of moisture along the flow 150 

direction of an adiabatic dehumidifier. 151 

In this study, two commercially available MPCM products, i.e. BASF Micronal DS 5038X 152 

and Micronal DS 5040X with a melting temperature of 25 oC and 23 oC respectively, were used 153 

to prepare phase change enhanced LiCl desiccant solutions. Both MPCMs were made of a 154 

highly crosslinked polymethylmethacrylate (PMMA) polymer wall and paraffin inside as the 155 

PCM. It is noted that the MPCMs used in this study might not be optimal. As the temperature 156 

of the inlet working solution of the dehumidifier is a controlled variable, the phase change 157 

materials should be selected based on the set-point of the inlet working solution temperature in 158 

order to ensure that the PCM undergoes the phase change process during the dehumidification. 159 
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Deionized water and LiCl with a purity higher than 98% were used to prepare LiCl desiccant 160 

solutions. The PCM-LiCl desiccant solution was prepared through directly dispersing the 161 

MPCM particles into the LiCl desiccant solution via mechanical stirring. 162 

2.1 Characterisation of PCM-LiCl desiccant solutions 163 

 To understand the likely benefits of using this new working solution for air 164 

dehumidification, the properties of the PCM-LiCl desiccant solutions, including density, h-T 165 

relationship, particle size distribution, thermal conductivity, and vapour pressure should be first 166 

characterised. In this study, these properties were characterised through either theoretical 167 

analysis or experimental measurements.  168 

2.1.1 Density 169 

 The density of the PCM-LiCl desiccant solution was determined based on the density of 170 

each insoluble component of the mixture as the potential non-homogeneity of the new solution 171 

might introduce errors in measurements of the mixture. As the PMMA has good resistance to 172 

LiCl and is insoluble in LiCl desiccant solutions, the density of the PCM-LiCl desiccant 173 

solution can be calculated using Eq. (1) [27], in which the density of the MPCM was measured 174 

using a pycnometer (to be introduced in Section 2.2) and the density of the LiCl desiccant 175 

solution was determined using the correlation expressed in Eq. (2) [28]. 176 

ρ
PCM-LiCl

=
ρPCMρLiCl

ρPCM
(1−xm,PCM)+ρLiClxm,PCM

           (1) 177 

ρ
LiCl

=ρ
H2O

∑ αi(
xm,LiCl

1−xm,LiCl
)
i3

i=0             (2) 178 

where ρ is the density, αi are the parameters and the values of α0–α3 were 1.0, 0.540966, -179 

0.303792, 0.100791, respectively [28], xm is the mass fraction, and the subscripts PCM-LiCl, 180 
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PCM and LiCl indicate phase change enhanced LiCl desiccant solution, micro-encapsulated 181 

phase change material, and LiCl desiccant solution, respectively.  182 

2.1.2 Enthalpy-temperature (h-T) relationship 183 

 Differential scanning calorimeter (DSC) tests are commonly used to measure h-T 184 

relationships of PCMs. In this study, the h-T relationship of the PCM-LiCl desiccant solution 185 

was not measured directly as LiCl desiccant solutions may corrode the metal container of the 186 

DSC device and further damage the equipment. Thus, the h-T relationship of the new solution 187 

was determined using Eq. (3), based on the enthalpy of the LiCl desiccant solution determined 188 

using Eq. (4) [29] and the DSC test results of the MPCMs. 189 

hPCM-LiCl=xm,PCM hPCM+(1 − xm,PCM) hLiCl          (3) 190 

hLiCl=A+BT+CT2               (4) 191 

where h is the enthalpy, T is the temperature, and the coefficients of A, B, and C are calculated 192 

using Eqs. (5-7) [29], respectively. 193 

A=- 66.2324+11.2711xm,LiCl − 0.79853xm,LiCl
2 +(2.1534E-02)xm,LiCl

3 − (1.66352E-04)xm,LiCl
4   194 

                  (5) 195 

B=4.5751 − 0.146924xm,LiCl+(6.307226E-03)xm,LiCl
2 −196 

(1.38054E-04)xm,LiCl
3 +(1.06690E-06)xm,LiCl

4          (6) 197 

C=(-8.09689E-04)+(2.18145E-04)xm,LiCl − (1.36194E-05)xm,LiCl
2 +(3.20998E-07)xm,LiCl

3 −198 

(2.64266E-09)xm,LiCl
4

              (7) 199 

2.1.3 Thermal conductivity 200 

 The thermal conductivity of the PCM-LiCl desiccant solution was calculated using 201 
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Maxwell’s equation as shown in Eq. (8), which has been widely used to calculate the thermal 202 

conductivity of MPCM suspensions [27, 30]. The thermal conductivity of the MPCM particles 203 

(kPCM) was determined using the composite sphere approach reported by Goel et al. [30], in 204 

which the heat transfer resistance of the shell material was determined based on the thickness 205 

of the MPCM shell. The heat transfer resistance of the core material was evaluated based on 206 

the assumption that a solid sphere is in an infinite medium [31]. The thermal conductivity of 207 

the MPCM can then be calculated using Eq. (9) [30]. The diameter of the MPCM particle was 208 

measured using a particle size analyser to be introduced in Section 2.2 and the thickness of the 209 

PMMA shell was determined using the composition of the MPCM measured using a 210 

thermogravimetric analyser (see Section 2.2). The thermal conductivity of the LiCl desiccant 211 

solution is calculated using Eq. (10) [28]. 212 

kPCM-LiCl

kLiCl
=

2kLiCl+kPCM+2xv,PCM(kPCM−kLiCl)

2kLiCl+kPCM−xv,PCM(kPCM−kLiCl)
          (8) 213 

1

kPCMdPCM
=

1

kcdc
+

dPCM-dc

ksdPCMdc
             (9) 214 

kLiCl=kH2O − αR x
m,LiCl,e

             (10) 215 

where k is the thermal conductivity, xv is the volume fraction, d is the diameter, αR is the 216 

equivalent thermal conductivity depression, xm,LiCl,e is the equivalent ionic concentration, and 217 

the subscripts s and c indicate shell and core, respectively. 218 

2.1.4 Vapour pressure  219 

 The dehumidification performance of a liquid desiccant is directly influenced by the vapour 220 

pressure difference between the liquid desiccant and process air [5]. In this study, the vapour 221 

pressure of the PCM-LiCl desiccant solution was measured using a thermogravimetric method 222 
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[32]. In this method, the mass loss of the sample is measured using a thermogravimetric 223 

analyser (i.e. TGA 5500 from TA Instruments was used in this study) and the result is then used 224 

to determine the vapour pressure of the solution by using the Langmuir equation for free 225 

vaporisation, as shown in Eq. (11) [33]. 226 

log(PT) =𝛽1 log (
1

𝛽2
|
dm

dt
|
T
) +𝛽3            (11) 227 

where |
dm

dt
|
T
  and PT are the mass loss rate and the vapour pressure at a given temperature 228 

respectively, and β1, β2 and β3 are the coefficients influenced by the geometry structure of the 229 

crucible. In this study, these three coefficients were determined based on the experimental 230 

results for a reference substance (i.e. pure water) with the known vapour pressure. 231 

 During the test, the sample was placed in a sealed crucible with a 0.35 mm-diameter hole 232 

on the lid, as illustrated in Fig. 2a. The crucible was then placed on the holder of the balance 233 

inside the thermogravimetric analyser (Fig. 2b). The sample was purged by a pure nitrogen gas 234 

flow in order to maintain the water content outside the crucible close to zero. 235 

 236 

 237 

a) Schematic of vapour pressure measurement 238 
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 239 

b) Thermogravimetric analyser used in this study 240 

Fig. 2. Vapour pressure measurement using a thermogravimetric analyser. 241 

2.2 Characterisation of MPCMs and pure LiCl desiccant solutions 242 

 The properties of the MPCMs were determined either using the information provided in 243 

the product data sheet [34] or through the experimental measurements.  244 

 The MPCM used was in a physical form of powder and the bulk density of the MPCM was 245 

provided in the datasheet [34]. However, the particle density of the MPCM was required to 246 

determine the density of the PCM-LiCl desiccant solutions. In this study, a pycnometer was 247 

used to measure the particle density of the MPCM.  248 

 DSC tests were carried out to characterise the h-T relationship of the two MPCMs. The 249 

tests were implemented using a micro DSC (micro DSC III, SETARAM) device with a weight 250 

of the samples of around 300 mg. The heating/cooling rate used was 0.05 K/min. 251 

 The particle size distribution of the MPCM was measured using a laser diffraction particle 252 

size analyser and the sample was pre-processed in an ultrasonic bath for deagglomeration of 253 

the particles before the measurement. The results were analyzed using Mie model [35], which 254 

worked well for homogeneous and spherical particles with a diameter less than 30 μm [36, 37]. 255 

The Mie model was derived by solving Maxwell’s equations describing electromagnetic 256 
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radiation for the light scattered by a homogeneous sphere under the uniform illumination [35]. 257 

 Thermogravimetric analysis was carried out using a thermogravimetric analyser to 258 

determine the composition of the MPCMs, and then to calculate the thickness of the PMMA 259 

shell. During the test, the MPCM was heated to a temperature of 600 oC with a scanning rate of 260 

1.0 K/min, and the test was then carried out using a nitrogen gas flow. 261 

 As LiCl is highly hygroscopic and pure LiCl may absorb the moisture from the air during 262 

the preparation. A thermogravimetric analysis test for LiCl desiccant solutions was therefore 263 

carried out to determine the mass fraction of LiCl in the solution. During the measurement, the 264 

LiCl desiccant solution was heated to a temperature of 350 oC with a scanning rate of 5.0 K/min 265 

and was then maintained at 350 oC for 18 hours [38]. The thermogravimetric analysis test was 266 

also performed with a nitrogen gas flow.  267 

3. Results of properties characterisation 268 

In this section, the properties of the MPCMs and PCM-LiCl desiccant solutions were 269 

respectively characterised using the methods introduced in Section 2. The majority of the tests 270 

presented in this study were repeated in order to confirm the consistency of the results. 271 

3.1 Results of characterisation of MPCM properties  272 

 The measured densities of the MPCM DS 5038X and MPCM DS 5040X were 990.9 ± 0.6 273 

kg/m3 and 1012.6 ± 0.4 kg/m3, respectively. These results were considered to be reasonable as 274 

the density of the two major compositions, i.e. paraffin wax and PMMA, were around 850 kg 275 

m-3 and 1150 kg m-3, respectively. 276 

 The DSC curves of the MPCM DS 5038X and MPCM DS 5040X are presented in Fig. 3 277 
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and their onset temperatures, peak temperatures, and heat of fusion during the cooling and 278 

heating processes are summarized in Table 1. The heat of fusion of the MPCM was calculated 279 

based on the temperature range of 15-28 oC. It can be observed that the peak phase change 280 

temperatures of the MPCM DS 5038X for both heating and cooling were slightly higher than 281 

those of the MPCM DS 5040X. The results from Table 1 also showed that the onset 282 

temperatures of the MPCM DS 5038X were higher than those of the MPCM DS 5040X during 283 

both cooling and heating processes. 284 

Table 1. Onset temperatures, peak temperatures, and heat of fusion of the two MPCMs. 285 

 DS 5038X DS 5040X 

 Onset 

Temp. (oC) 

Peak 

Temp.(oC) 

Heat of 

fusion (J/g)  

Onset 

Temp. (oC) 

Peak Temp. 

(oC) 

Heat of 

fusion (J/g)  

Heating 22.55 25.37 96.7 19.87 24.64 94.8 

Cooling 24.37 22.60 96.2 23.83 21.53 93.2 

 286 

 287 

Fig. 3. DSC test results of DS 5038X and DS 5040X. 288 

 The measured particle size distributions of the MPCMs are presented in Fig. 4. The 289 

volumetric average diameters of the MPCMs DS 5038X and DS 5040X were determined as 290 

3.51 μm and 3.68 μm, respectively. It can be observed that the particle size distributions of both 291 

MPCMs were in the range of 1 - 10 μm.  292 
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 293 
a) DS 5038X                           294 

   295 

b) DS 5040X 296 

Fig. 4. Particle size distribution of the two MPCMs. 297 

 The results (i.e. percentage weight and mass loss rate of the sample) from the 298 

thermogravimetric analysis of the MPCMs DS 5038X and DS 5040X and a sample of the 299 

MPCM DS 5038X after the decomposition test are presented in Fig. 5. The thermogravimetric 300 

analysis results of the shell material (i.e. PMMA) obtained from [39] were also provided. It can 301 

be seen that the thermal degradation of the MPCM DS 5038X can be divided into three phases 302 

and the MPCM was mainly decomposed in the first two phases at a temperature below 330 oC, 303 

and the PMMA was completely decomposed at a temperature of around 454 oC (Fig. 5a). 304 

Similar trends were also observed for the MPCM DS 5040X (Fig. 5b). By comparing the 305 

thermogravimetric analysis curve of the MPCM to that of the PMMA, it can be derived that the 306 
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composition of the MPCM DS 5038X was 17.4% wt. PMMA, 67.5% wt. paraffin, and 15.1% 307 

wt. residual and that of the MPCM DS 5040X was 17.1% wt. PMMA, 69.5% wt. paraffin, and 308 

13.4% wt. residual. The similar results were also reported in [37, 40].  309 

 310 

 311 

a) DS 5038X 312 

   313 

b) DS 5040X                           314 

 315 
c) DS 5038X after the decomposition test 316 

Fig. 5. Decomposition of PMMA [39], MPCM DS 5038X and MPCM DS 5040X. 317 

3.2 Results of characterisation of PCM-LiCl desiccant solutions 318 

3.2.1 Verification of vapour pressure measurement 319 

 The vapour pressure of the LiCl desiccant solution was measured using the 320 
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thermogravimetric method and the results were compared with the calculated values determined 321 

using the correlation expressed in Eq. (12) [28]. The concentration of the LiCl desiccant 322 

solution was first determined via a thermogravimetric analysis test and the vapour pressure of 323 

the LiCl desiccant solution was then measured at a temperature of 50 oC using the method 324 

presented in Fig. 2. The test results are presented in Fig. 6, which were measured based on the 325 

initial concentration of the LiCl solution of 29.53%. It can be found that the vapour pressure of 326 

the solution decreased with the increase of the solution concentration and the measured values 327 

generally agreed well with the calculated results. The average and maximum deviations 328 

between the measured and calculated values were 1.9% and 5.5%, respectively. It is worthwhile 329 

to note that the total mass of the test sample used was relatively small due to the capacity of the 330 

crucible used and the increase of the concentration was resulted by the continuous loss of the 331 

water in the solution. 332 

PLiCl=π25f(xm,LiCl,θ)PH2O             (12) 333 

where θ is the reduced temperature, f(xm,LiCl, θ) is determined using Eq. (13) [28], and π25 is 334 

calculated using Eq. (14) [28]. 335 

f(xm,LiCl,θ)=2 − [1+(
xm,LiCl

π0
)
π1

]
 π2

+{[1+(
xm,LiCl

π3
)
π4

]
 π5

− 1}θ     (13) 336 

π25=1 − [1+(
xm,LiCl

π6
)
π7

]
π8

-π9exp( −
(xm,LiCl−0.1)

2

0.005
)        (14) 337 

where π0-π8 are the coefficients and the values used were provided in Table 2 [28]. 338 
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  339 

Fig. 6. Measured and calculated vapour pressures of the LiCl desiccant solution. 340 

 341 

Table 2. Coefficients for vapour pressure calculation of LiCl desiccant solutions [28].  342 

π0 π1 π2 π3 π4 π5 π6 π7 π8 π9 

0.28 4.30 0.60 0.21 5.10 0.49 0.362 -4.75 -0.40 0.03 

 343 

3.2.2 Properties characterisation 344 

 In this study, the LiCl desiccant solution with a concentration of 35% was first prepared 345 

and the MPCMs with different mass fractions were then mixed with the LiCl desiccant solution 346 

to prepare the PCM-LiCl desiccant solutions. The densities of different PCM-LiCl desiccant 347 

solutions were then calculated using Eqs. (1) and (2) and the results are presented in Fig. 7. It 348 

can be seen that the density of the PCM-LiCl desiccant solutions decreased with the increase 349 

of the mass fraction of the MPCMs as the density of the MPCMs was lower than that of the 350 

LiCl desiccant solution. The density of the mixture using the MPCM DS 5038X was always 351 

lower than that using the MPCM DS 5040X which was resulted by the relatively low density 352 

of the MPCM DS 5038X. It is noted that the density of the mixture calculated using Eq. (1) [27] 353 
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is applicable to homogenous fluids and the PCM-LiCl desiccant solution developed in this study 354 

can be considered as homogenous when it is well mixed. 355 

 356 

Fig. 7. Density of the PCM-LiCl desiccant solution. 357 

 The h-T relationship of the PCM-LiCl desiccant solutions was determined using Eqs. (3) 358 

and (4). The heating curve of the MPCM obtained from the DSC measurement was used to 359 

evaluate the enthalpy of the MPCM. The results are presented in Fig. 8. The enthalpy of the 360 

LiCl desiccant solution without MPCMs was also presented in this figure. It can be observed 361 

that the enthalpy of the PCM-LiCl desiccant solution increased with the increase of the solution 362 

temperature and the mass fraction of the MPCMs in the mixture. A large increasing rate 363 

occurred in the MPCM melting temperature range of 20-27 oC. The enthalpy of the solution 364 

then increased almost linearly if further increasing the solution temperature. There was not a 365 

clear difference between the use of two different MPCMs. 366 
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   367 

a) DS 5038X 368 

  369 

b) DS 5040X 370 

Fig. 8. Enthalpy-temperature relationships of the pure LiCl desiccant solution and PCM-LiCl 371 

desiccant solutions with different mass fractions of the MPCMs. 372 

 The thermal conductivity of the PCM-LiCl desiccant solution was calculated using Eqs. (8) 373 

and (9) based on the composition and particle size of the MPCM determined. It is noted that 374 

the diameter of the particles dispersed into the LiCl desiccant solution was assumed to be the 375 

same as the volumetric average diameter of the particles. It was also assumed that the residual 376 

of the MPCMs obtained from the thermogravimetric analysis had the same thermal conductivity 377 
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as the PCM used. The resulted thermal conductivity of the PCM-LiCl desiccant solutions is 378 

presented in Fig. 9. It can be observed that the thermal conductivities of the PCM-LiCl desiccant 379 

solutions using the MPCM DS 5040X and DS 5038X were very close to each other when the 380 

mass fraction of the MPCMs was less than 20%. The thermal conductivity of the PCM-LiCl 381 

desiccant solutions decreased with the increase of the mass fraction of the MPCMs as the 382 

thermal conductivity of the MPCM particle was lower than that of the LiCl desiccant solution.  383 

 384 

Fig. 9. Thermal conductivity of the PCM-LiCl desiccant solutions with different mass 385 

fractions of MPCMs. 386 

 The vapour pressures of the PCM-LiCl desiccant solutions with different mass fractions of 387 

the two MPCMs were measured using the thermogravimetric method. As the variation in the 388 

vapour pressures of the PCM-LiCl solutions using the two MPCMs showed a similar trend, the 389 

results of the PCM-LiCl solution using the MPCM DS 5040X under the temperature of 50 oC 390 

were presented only.  391 

 During the measurement, the LiCl desiccant solution was first prepared and the 392 

concentration of the LiCl desiccant solution was determined via a thermogravimetric analysis 393 

test. A relatively low initial concentration of the LiCl desiccant solution (i.e. 29.53%) was used 394 
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to prepare PCM-LiCl desiccant solutions as the concentration of the desiccant solution was 395 

expected to increase during the vapour pressure measurement due to continuous loss of the 396 

water in the solution. The PCM-LiCl desiccant solution was then prepared in the crucible 397 

presented in Fig. 2a. Table 3 summarises the details of the three samples used in the test. It is 398 

worthwhile to note that the mass fraction of the MPCM in each test sample cannot be precisely 399 

controlled during the preparation. 400 

 401 

Table 3. Test samples prepared for vapour pressure measurement. 402 

Test sample  Weight (mg) Mass fraction of the MPCM Mass fraction of the LiCl 

Sample 1  49.158 0.029 0.288 

Sample 2 57.424 0.128 0.258 

Sample 3 54.190 0.180 0.243 

  403 

 The measurement results of the PCM-LiCl desiccant solution using the MPCM DS 5040X 404 

under the temperature of 50 oC are presented in Figs. 10 and 11. The vapour pressures of LiCl 405 

desiccant solutions without the MPCM were also presented, which were calculated based on 406 

the same temperature condition and the same initial mass fractions of LiCl in the desiccant 407 

solutions as those presented in Table 3. The vapour pressure of the pure LiCl desiccant solution 408 

was determined using Eqs. (12)-(14). It can be seen that the vapour pressures of the PCM-LiCl 409 

desiccant solutions of three samples continuously decreased as a function of time. This is 410 

because the mass fractions of both MPCM and LiCl continuously increased with time during 411 

the test due to the water loss (Fig. 11). For each test sample, the vapour pressure of the PCM-412 

LiCl desiccant solution was always lower than that of the pure LiCl desiccant solution during 413 
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the test period due to the existence of the MPCM particles. The vapour pressure of the PCM-414 

LiCl desiccant solution decreased with the increase of the mass fraction of the MPCM in the 415 

mixture.  416 

 417 

Fig. 10. Variation of vapour pressure of the PCM-LiCl desiccant solutions and pure LiCl 418 

desiccant solutions as a function of time. 419 

 420 

Fig. 11. Variation of mass fractions of the MPCM and LiCl in the PCM-LiCl desiccant 421 

solutions as a function of time. 422 

 423 

 From the above results, it can be concluded that the dispersion of MPCMs into the liquid 424 
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desiccant solution can decrease the vapour pressure and increase the thermal capacity of the 425 

mixture, which can improve the dehumidification efficiency of adiabatic dehumidifiers 426 

although the thermal conductivity of the mixture was slightly decreased. In principle, a low 427 

solution flow rate can be used in the liquid desiccant cooling system when using the PCM-LiCl 428 

desiccant solution due to the increased thermal capacity and reduced vapour pressure. It is also 429 

expected that the size of the dehumidifier using the new working solution can be decreased 430 

without compromising the dehumidification performance, when compared to the dehumidifier 431 

using pure desiccant solutions. In addition, the temperature of the inlet solution to the 432 

dehumidifier should be optimised in order to maximise the benefits of using MPCMs in the 433 

desiccant solution. It is also noteworthy that thermal regeneration might not be an optimal 434 

method for liquid desiccant cooling systems when using PCM-LiCl desiccant solutions and 435 

non-thermal regeneration methods may be required, which will be investigated in future studies. 436 

However, the potential benefits of using PCM-LiCl desiccant solutions should be evaluated in 437 

liquid desiccant cooling systems by considering the influence of the MPCM particles in both 438 

dehumidifiers and regenerators. Adding the MPCM particles into liquid desiccant solutions 439 

may increase the power consumptions of the circulation pump. Meanwhile, the mass fraction 440 

of the MPCMs in the mixture should be optimised. The long-term performance and potential 441 

segregation of MPCM particles in the new working solution should also be examined. 442 

4. Conclusions 443 

 This study presented the development and characterisation of a new phase change enhanced 444 

working solution for liquid desiccant cooling systems. The new solution was prepared through 445 
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dispersion of micro-encapsulated PCMs (i.e. Micronal DS 5038X and DS 5040X) into the base 446 

fluid of the LiCl desiccant solution. The properties including density, h-T relationship, thermal 447 

conductivity, particle size distribution, and vapour pressure of the new solution were 448 

characterised either through direct measurement or theoretical analysis.  449 

 The results showed that the density of the phase change enhanced LiCl (PCM-LiCl) 450 

desiccant solution decreased with the increase of the mass fraction of the MPCMs in the mixture 451 

due to the lower density of the MPCMs used in comparison with the pure LiCl solutions. The 452 

thermal capacity of the PCM-LiCl desiccant solutions was substantially increased in the melting 453 

range of the MPCMs. The thermal conductivities of the PCM-LiCl desiccant solutions using 454 

the MPCMs DS 5038X and DS 5040X were very close to each other when the mass fraction of 455 

the MPCMs was less than 20% and the thermal conductivity decreased with the increase of the 456 

mass fraction of the MPCMs. The vapour pressure of the new working solution decreased due 457 

to the existence of the MPCM particle as compared to the LiCl solution without using the 458 

MPCMs. The dehumidification performance of adiabatic dehumidifiers could be potentially 459 

improved by using this new working solution due to its decreased vapour pressure and increased 460 

thermal capacity, which will be investigated in our future studies.   461 
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