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Early antipsychotic exposure affects NMDA and GABAA receptor
binding in the brains of juvenile rats

Abstract
Antipsychotics were developed to treat schizophrenia in adults; however they have been increasingly
prescribed in children and adolescents. The NMDA and GABAA receptors are involved in neurodevelopment
and the pathophysiology of various mental disorders in children and adolescents. Male and female juvenile
rats were treated orally with risperidone (0.3 mg/kg, 3 times/day), aripiprazole (1 mg/kg), olanzapine (1
mg/kg) or vehicle (control), starting from postnatal day (PD) 23 (±1 day) for 3 weeks (corresponding to the
childhood-adolescent period in humans). Quantitative autoradiography was used to detect the binding
density of [3H]MK-801 (an NMDA receptor antagonist) and [3H]muscimol (a selective GABAA receptor
agonist). Aripiprazole elevated the [3H]MK801 binding levels in the NAcC of male rats, and the NAcS and
CPu of female rats. Risperidone increased [3H]MK801 levels in the CPu of female rats, and the NAcS of male
rats. Aripiprazole upregulated [3H]muscimol binding levels in the CPu and NAcC of male rats, while it
elevated the [3H]muscimol levels in the PFC of female rats, compared to controls. These results suggest that
early treatment with these antipsychotics modulates NMDA and GABAA neurotransmission in juveniles,
which may play a role in their clinical efficacy in the control of mental disorders in children and adolescents.
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Abstract

Antipsychotics were developed to treat schizophrenia in adults; however they have been 

increasingly prescribed in children and adolescents. The NMDA and GABAA receptors are 

involved in neurodevelopment and the pathophysiology of various mental disorders in 

children and adolescents. Male and female juvenile rats were treated orally with risperidone 

(0.3 mg/kg, 3 times/day), aripiprazole (1 mg/kg), olanzapine (1 mg/kg)  or vehicle (control), 

starting from postnatal day (PD) 23 (±1 day) for 3 weeks (corresponding to the childhood-

adolescent period in humans). Quantitative autoradiography was used to detect the binding 

density of [3H]MK-801 (an NMDA receptor antagonist) and [3H]muscimol (a selective 

GABAA receptor agonist). Aripiprazole elevated the [3H]MK801 binding levels in the NAcC 

of male rats, and the NAcS and CPu of female rats. Risperidone increased [3H]MK801 levels 

in the CPu of female rats, and the NAcS of male rats. Aripiprazole upregulated [3H]muscimol 

binding levels in the CPu and NAcC of male rats, while it elevated the [3H]muscimol levels 

in the PFC of female rats, compared to controls. These results suggest that early treatment 

with these antipsychotics modulates NMDA and GABAA neurotransmission in juveniles, 

which may play a role in their clinical efficacy in the control of mental disorders in children 

and adolescents.

Key Words: aripiprazole; risperidone; olanzapine; NMDA receptor, GABAA receptor; 
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Introduction

Since approximately one fifth of children and adolescents have been diagnosed with mental 

illness, antipsychotic prescriptions (mostly off-label) have increased rapidly for children and 

adolescents over the past decades (Ji and Findling, 2015; Olfson et al., 2014; Rettew et al., 

2015). Atypical antipsychotic drugs, such as risperidone, aripiprazole, and olanzapine, have 

been used widely for treating a range of childhood mental disorders, such as autism, bipolar 

disorder, attention-deficit/hyperactively disorder (ADHD), and childhood-onset schizophrenia 

(Daviss et al., 2016; Fraguas et al., 2011), while typical antipsychotics (such as haloperidol) 

are now used less frequently in children and adolescents due to their serious extrapyramidal 

side effects (Karanges et al., 2014). Since children/adolescents are in a critical period of brain 

development, and more sensitive to the effects of antipsychotics than adults (Caccia et al., 

2013), it is vital to investigate the neuropharmacological effects of antipsychotics in 

children/adolescents in order to improve antipsychotic medication in patients of this age 

group. 

The glutamatergic N-methyl-D-aspartate (NMDA) receptor plays a key role in 

neurodevelopment and other neuronal functions including synaptic transmission, neuronal 

migration, excitability, plasticity and long-term potentiation (Naaijen et al., 2017). Thus, the 

alteration of NMDA receptor neurotransmission is involved in various neuropathological 

processes (Niciu et al., 2012). Gamma-aminobutyric acid (GABA) is the most abundant 

inhibitory neurotransmitter in the brain, and binds to two GABA receptors, GABAA and 

GABAB (Naaijen et al., 2017). The interactions between glutamate and GABA 

neurotransmission play an important role in brain development and functioning in the 

frontostriatal circuits (Keunen et al., 2015; Wu and Sun, 2015). Abnormalities of both the 

NMDA and GABAA receptors have been found in the brain of juvenile patients with mental 
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disorders such as schizophrenia, autism, bipolar disorder, and ADHD  (Deng and Huang, 

2006; Edden et al., 2012; Lakhan et al., 2013; MacMaster et al., 2003; Naaijen et al., 2017; 

Panaccione et al., 2013; Schmidt and Mirnics, 2015). The genes encoding the NMDA and 

GABA receptors and transporters have been identified as candidate genes for several 

neuropsychiatric disorders, including autism, ADHD and schizophrenia (Purkayastha et al., 

2015; Williams et al., 2002).  For example, a recent report illustrated that the genes encoding 

subunits of the GABAA receptor, including GABRB3 (rs2081648 and rs1426217), GABRA5 

(rs35586628), and GABRG3 (rs208129) are involved in the pathogenesis of autistic spectrum 

disorders, which play a key role in the symptom-based and developmental deficits in Chinese 

Han Children and adolescents with autism spectrum disorders (Yang et al., 2017). 

 

The therapeutic effects of antipsychotics are attributed to their antagonism at the 

dopaminergic D2 and serotonergic 5-HT2 receptors (Ginovart and Kapur, 2012; Meltzer and 

Massey, 2011). Recent studies reported that early antipsychotic treatment altered 

dopaminergic and serotonergic neurotransmission (De Santis et al., 2018; De Santis et al., 

2016; Lian et al., 2016). There is interaction between dopamine and NMDA 

neurotransmission in various brain regions in the nigrostriatal and mesostriatal circuits 

(Gardoni and Bellone, 2015). Furthermore, NMDA and GABAA receptors both modulate  

release of dopamine and 5-HT in the subcortical systems (Celada et al., 2013). On the other 

hand, the D1 and D2 receptors contribute to mediate the depolarisation-evoked release of 

GABA in the striatum (Arias-Montano et al., 2007; Tritsch and Sabatini, 2012). Previous 

research demonstrated that the reduced glutamate and GABA levels were observed in the 

nucleus accumbens (NAc) after three weeks’ of olanzapine treatment in adolescent male rats 

(Xu et al., 2015). Another study illustrated that, after 3 weeks’ of risperidone administration 

to juvenile male rats, risperidone significantly reduced NMDA receptor bindings in the NAc 
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and caudate putamen (CPu), while it elevated the AMPA receptor bindings in the medial 

prefrontal cortex (PFC) and CPu of male juvenile rats (Choi et al., 2009). Recent studies in 

our group have reported that aripiprazole and haloperidol could up-regulate the levels of 

NMDA NR1 and NR2A subunits via the D2 receptor downstream protein kinase B (Akt)-

glycogen synthase kinase 3β (GSK3β) pathway in the NAc of adult rats, while these 

antipsychotics mediate GABAA receptors via the cyclic adenosine monophosphate (cAMP)-

protein kinase A (PKA) pathway (Pan et al., 2016a; Pan et al., 2016b). However, limited 

studies have examined the effects of early antipsychotic treatment on NMDA and GABA 

receptor neurotransmission in children and adolescents. Therefore, the effects of early 

antipsychotic exposure on NMDA and GABAA receptor binding levels have been examined 

in the brains of both male and female juvenile rats. 

Methods

Animals, diet and experimental procedures

Timed pregnant Sprague Dawley rats (at gestation day 16) were obtained from the Animal 

Resources Centre (Perth, WA, Australia). They were housed in individual cages and allowed 

ad-libitum access to standard laboratory chow diet and water under a light (07:00 to 19:00) 

and dark (19:00 to 7:00) cycle, and temperature control (22ºC) throughout the experiment 

(Deng et al., 2012; Lian et al., 2014). Day of birth was recognised as postnatal day (PD) 0. 

Pups were sexed on PD14, and 24 male and 24 female rats were weaned on PD21 and housed 

in individual cages. 

Before the treatment procedures, rats were trained for self-administration of the drug by 

feeding them 0.3 g cookie dough without drug twice a day during PD18-21. The postnatal 

male and female rats (PD23±1) were then randomly assigned to one of four treatment groups 
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as follows: (1) Aripiprazole (1 mg/kg, 3 times/day, Otsuka, Japan; n=6), (2) Olanzapine (1 

mg/kg, 3 times/day, Eli Lilly, USA; n=6), (3) Risperidone (0.3 mg/kg, 3 times/day, Janssen, 

USA; n=6) or (4) Vehicle (control; n=6) for 3 weeks (a period corresponding to the 

childhood-adolescent period in humans) (Andersen, 2003). These antipsychotics have been 

chosen because they are widely prescribed to children and adolescent (Caccia, 2013; 

Karanges et al., 2014). The dosages used in this study were translated based on the 

recommended dosages for the psychiatric treatment of paediatric patients based on body 

surface area, according to the US Food and Drug Administration (FDA) guideline for clinical 

trials (FDA, 2005; Reagan-Shaw et al., 2008; Taylor et al., 2009; Zuddas et al., 2011). It has 

also been previously reported that, at these dosages, aripiprazole treatment reaches above 90% 

DA D2 receptor occupancy rates in the rat brains (Natesan et al., 2006), while olanzapine and  

risperidone reaches between 65-80% DA D2 receptor occupancy (Kapur et al., 2003; Natesan 

et al., 2006).  Drugs were prepared in advance by mixing with cookie dough pellets and 

droplets of water, and were administered 3 times per day at 7:00, 15:00, and 21:00 (8±1 hour 

intervals) orally for 3 weeks (Deng et al., 2012; Lian et al., 2014). The rats in the control 

group received an equivalent pellet without drugs. Rats were observed throughout the 

experiment to ensure all cookie dough pellets were consumed. This study was approved by 

the Animal Ethics Committee, University of Wollongong, Australia (AE12/20); and all the 

procedures complied with the Australian Code of Practice for the Care and Use of Animals 

for Scientific Purposes (2004). 

Histological procedures

The rats were sacrificed 48 hours after the last drug treatment, the brain tissue was removed 

and frozen in liquid nitrogen, and then stored at -80 ºC until analysis. Brains were coronally 

sectioned at -18 ºC into 14 μm sections using a cryostat (Leica CM1850, Leica Microsystem, 
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Germany) for receptor autoradiography. Sections were thaw-mounted onto Polysine™ 

Microscope Slides (Menzel GmbH & Co. KG, Braunchweig, Germany) and stored at -20 ºC. 

NMDA receptor binding using [3H]MK-801

The NMDA receptor binding using [3H]MK-801 (a potent, selective and noncompetitive 

antagonist of the NMDA receptor) was performed as previously described (Wang et al., 2014). 

Briefly, brain sections containing the PFC, NAc and CPu were thawed at room temperature, 

then incubated with 20 nM [3H]MK-801 (specific activity: 22.5 Ci/mmol; PerkinElmer, USA) 

in 30 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (pH=7.45), 

containing 100 μM glycine, 100 μM glutamate, and 1 mM ethylenediaminetetraacetic acid 

(EDTA) for 2.5 h at room temperature to determine total binding of the NMDA receptor. 

Non-specific binding was determined by incubating the next sequential sections with 20 nM 

[3H]MK-801 incubation buffer, and the addition of 20 μM MK-801 (Sigma Pharmaceuticals, 

Australia). Slides were washed twice for 20 min in ice-cold 30 mM HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) buffer containing 1 mM EDTA, and then 

dried under a stream of cool air to remove excess buffer salts (Wang et al., 2014).

GABAA receptor binding using [3H]muscimol 

In brief, binding of [3H]muscimol (specific activity: 22.46 Ci/mmol, PerkinElmer, USA) to 

GABAA receptors using [3H]muscimol was performed based on procedures previously 

described (Deng and Huang, 2006; Ling and Caspary, 2013). In brief, sections were pre-

incubated in 50 mM Tris-Citrate buffer (pH=7.0), three times each for 5 min at 4 ºC. Sections 

were then incubated for 45 min at 4 ºC in the same buffer containing 3 nM [3H]muscimol 

(specific activity: 22.46 Ci/mmol; Perkin-Elmer, USA) for the total binding. Non-specific 

binding was determined with the addition of 100 mΜ GABA. After incubation, the sections 
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were washed in ice-cold buffer (4 × 2 s), dipped in distilled water and air dried (Deng and 

Huang, 2006; Ling and Caspary, 2013).

Autoradiography and quantification of receptor bindings

All of the receptor binding slides were exposed to Kodak BioMax MR film for 3 months, 

together with autoradiographic standards ([3H]microscales from Amersham), in X-ray film 

cassettes. This is allowed by the analysis of binding images using the Multi-analyst image 

analysis system (Bio-Rad, USA). The specific binding was calculated by deducting 

nonspecific binding from total binding. A set of sections from each animal was stained with 

0.5% cresyl violet solution (Nissl staining) and used to confirm anatomical structures. 

Specific brain regions in this project were identified by reference to the Nissl-stained sections 

and a standard rat brain atlas (Paxinos and Watson, 2007).

Statistical Analysis

Statistical analysis was performed using SPSS (IBM version 21.0, SPSS Inc., NY, USA). The 

Kolmogorov-Smirnov test was used to examine the distribution of data from all experiments. 

The receptor binding density in relevant rat brain regions was analysed by two-way repeated 

ANOVAs (Treatment × Gender). Dunnett-T tests were followed for comparison between 

groups; and the Mann-Whitney U test was applied to the data with abnormal distribution. All 

data are expressed as mean ± SEM, and statistical significance will be accepted when p<0.05. 

Results

NMDA receptor binding using [3H]MK-801

Examples of [3H]MK-801 binding to NMDA receptors are presented in Figure 1 (A’ and B’). 

Two-way ANOVAs revealed significance in the Treatment factor in the NAcC (F3,40=3.701, 
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p=0.019), NAcS (F3,40=2.945, p=0.044), and CPu (F3,40=2.760, p=0.055). There are borderline 

significant effects of the Gender factor in the CPu (F1,40=3.970, p=0.053), and the interaction 

between Treatment and Gender factors in the CPu (F3,40=2.760, p=0.055). However, there 

were no significant effects of these factors in [3H]MK-801 binding in the PFC (F3,40=1.012, 

p>0.05). Further analysis revealed that overall aripiprazole treatment significantly elevated 

the NMDA receptor binding level in the NAcC, NAcS and CPu (all p<0.05), while 

risperidone significantly increased the [3H]MK-801 binding level in the NAcC (p<0.05).

In the male rats, aripiprazole treatment significantly increased the [3H]MK-801 binding levels 

in the NAcC (p<0.05) compared to the control (Figure 2C). Risperidone treatment elevated 

the [3H]MK-801 receptor binding density with a borderline significance in the NAcC 

(p=0.075) (Figure 2C). In the female rats, aripiprazole treatment significantly increased the 

[3H]MK-801 receptor binding density in the NAcS (p<0.05), while the [3H]MK-801 binding 

density in the CPu was also elevated with a borderline significance by aripiprazole (p=0.082) 

and risperidone (p=0.075) compared to the control (Figure 2B and C). Furthermore, 

risperidone treatment led to higher [3H]MK-801 binding levels in the NAcC of female rats, 

compared to male rats (p=0.083). 

GABAA receptor binding using [3H]muscimol 

Examples of [3H]muscimol binding to GABAA receptors are presented in Figure 1 (A’’ and 

B’’). There is a significant effect of the gender factor on GABAA receptors in the PFC, with 

higher [3H]muscimol bindings observed in male rats than female rats (F1,40=6.933, p=0.012). 

In male rats, aripiprazole treatment increased the [3H]muscimol binding level significantly in 

the NAcC (p<0.05) (Figure 3C), and with a borderline significance in the CPu (p=0.061; 

Figure 3B). For the female rats, aripiprazole led to a higher [3H]muscimol binding in the PFC 
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compared with the control (p=0.078) (Figure 3A). In terms of the gender differences, 

aripiprazole treatment significantly increased [3H]muscimol binding in the NAcC of male but 

not female juvenile rats (p<0.05) (Figure 3C). However, there were no significant alterations 

in the [3H]muscimol binding levels in these brain regions of both male and female juvenile 

rats treated with olanzapine or risperidone compared with the controls (all p>0.05) (Figure 3).

Discussion

This study investigated the effects of olanzapine, risperidone and aripiprazole treatment 

during PD22-42 (a period corresponding to the childhood-adolescence period in humans) on 

the binding of [3H]MK801 for NMDA and [3H]muscimol for GABAA receptors in the brain 

nuclei of both male and female adolescent rats. Our results indicate that early exposure to the 

three antipsychotics have different effects on the NMDA and GABAA receptor bindings in 

various brain regions of male and female juvenile rats, which may be implicated in their 

therapeutic effects in children and adolescents. 

In this study, aripiprazole treatment (1mg/kg, orally 3 times per day) elevated [3H]MK-801 

binding density on NMDA receptors in the NAcC of juvenile male rats, while it increased 

NMDA receptor binding in the NAcS and CPu of female rats. The result is consistent with 

recent reports that aripiprazole increased the expression of NMDA NR1 and NR2 in the NAc 

of male adult and adolescent rats after chronic drug treatment (Pan et al., 2016a; Pan et al., 

2018). The elevated expression of NMDA NR1 and NR2A was also observed in the cortical 

and hippocampal brain regions of adult rats after aripiprazole administration, while a 

decreased NR2D were observed in the cortical areas (Schmitt et al., 2003; Segnitz et al., 
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2011). Aripiprazole treatment (10 mg/kg/day for 4 months or 40mg/kg/day for 4 weeks via 

drinking water) has also been reported to increase [3H]MK-801 bindings in the hippocampal 

and limbic area (Segnitz et al., 2011). While a reduction of [3H]MK-801 bindings in the PFC 

was observed in adult rats with 4 weeks’ treatment with 40mg/kg/day (via drinking water), 

but not in rats with 4 weeks’ treatment with 4mg/kg once daily (Segnitz et al., 2011), this is 

consistent with the findings in this study that aripiprazole (3mg/kg, once daily for 3 weeks) 

did not affect [3H]MK-801 bindings in the PFC.   

In this study, olanzapine (1mg/kg, orally 3 times per day) had no effect on [3H]MK-801 

binding in the PFC, NAc and CPu, compared with control juvenile rats. Consistent with our 

results, a previous study reported that 4 weeks’ olanzapine treatment (5mg/kg/day by osmotic 

minipump diffusion) did not affect [3H]MK-801 binding density in the PFC and NAc of adult 

male rats, however it reduced [3H]MK-801 binding in the CPu (Tarazi et al., 2003). Similarly, 

no altered mRNA expression of NMDA receptor subunits in the rat stratum was reported 

from chronic olanzapine treatment (Tascedda et al., 2001). The conflicting results in the CPu 

may be attributed to a higher dosage and the use of adult rats in Tarazi’s study compared to 

this study. In this study, risperidone treatment (0.3mg/kg, orally 3 times per day) significantly 

increased the NMDA receptor binding density in the NAcC in males and in the CPu of female 

juvenile rats. Recently, it has been reported that risperidone treatment at the same dosage 

increased the expression of NMDA NR1 subunit in the NAc of male adolescent rats (Pan et 

al., 2018). It has been previously reported that risperidone at a lower dosage (0.3 mg/kg, i.p. 

injection once daily) didn’t change the [3H]MK-801  binding levels in the PFC, NAc and CPu 

of male juvenile rats, while higher dosages (at 1 and 3 mg/kg, i.p. injection daily) decreased 

the [3H]MK-801 binding in the NAc and CPu, but not in the PFC (Choi et al., 2009). A study 

in adult male rats showed that a higher dose of risperidone (3mg/kg/day by osmotic 
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minipump diffusion) decreased [3H]MK-801 binding in the CPu, but not in the PFC and NAc 

(Tarazi et al., 2003). Therefore, to date, all studies showed that risperidone did not affect 

[3H]MK-801 binding in the PFC, however it had a dosage dependent effect in the NAc or 

CPu. 

In terms of [3H]muscimol binding to GABAA receptors, as far as we know this is the first 

study to investigate the effects of antipsychotic treatment on GABAA receptor binding in the 

brain of juvenile rats. Our results showed that aripiprazole upregulated the [3H]muscimol 

binding level in the PFC, NAcC and CPu of juvenile rats. The results were consistent with the 

previous papers from our group that both short-term and chronic treatment of aripiprazole 

increased the expression of GABAA receptor (β-1 subunit) in the NAc of male adult and 

adolescent rats (Pan et al., 2016a; Pan et al., 2016b). Previously, it has been reported that 1 

week treatment with haloperidol (1.5mg/kg/day in drinking water) and olanzapine 

(7mg/kg/day in drinking water) increased the [3H]muscimol binding in the PFC of the male 

adult rats, while this increase was not observed in rats with 2 week or 4 week treatment with 

these drugs (Skilbeck et al., 2007). The result was consistent with this study that 3 weeks’ 

olanzapine treatment did not affect [3H]muscimol binding in the PFC of juvenile rats. The 

brain region specific effects of antipsychotics on GABAA receptor binding have also been 

shown in another study, where 6-month treatment with clozapine and haloperidol increased 

[3H]muscimol binding in the NAc and CPu, and decreased the binding in the anterior 

cingulate and infralimbic cortex, but had no effects in the PFC of adult male rats (Zink et al., 

2004). On the other hand, a time-dependent effect of antipsychotics on GABAA receptor 

binding has also previously been reported – [3H]muscimol binding in the striatum of adult 

male rats was decreased by 7-month olanzapine treatment (0.1mg/kg/day in drinking water) 

and clozapine (0.1mg or 1mg/kg/day in drinking water), but not by 1- or 3-month treatment. 
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Consistent with our findings that aripiprizole and risperidone had different effects on the 

NAcC and NAcS, previous studies have revealed both anatomical and functional differences 

in cognitive processing between the two NAc subnuclei (Salgado and Kaplitt, 2015). 

Although both NAcC and NAcS receive direct glutamatergic projections from various brain 

regions, there are differences between origins of projections to these subnuclei that, for 

example, the dorsal prelimbic, anterior cingulate, and perirhinal cortices projecting mainly to 

the NAcC, but the infralimbic and posterior piriform cortices projecting preferably to the 

NAcS (Li et al., 2018; Salgado and Kaplitt, 2015). In particular, glutamatergic projections 

from the PFC to NAcS has been reported to play a role in the reinstatement of drug-seeking 

behaviour (Bossert et al., 2012; Salgado and Kaplitt, 2015). On the other hand, GABAA 

receptors are preferentially located in the NAcC (Salgado and Kaplitt, 2015). Many 

psychiatric disorders in children, such as Autism, ADHD and childhood-onset schizophrenia, 

have impairments in behavioural flexibility with deficits in rewarding and learning 

(Bissonette and Roesch, 2016; Peters-Scheffer et al., 2013). Although the PFC has largely 

been involved in behavioural flexibility, recent findings suggest differential roles of the 

NAcC and NAcS in behavioural flexibility (West and Carelli, 2016). Therefore, different 

effects of these antipsychotics on NMDA and GABAA receptors might be suggested to be a 

potential mechanism for the therapeutic effects of these drugs in treating these paediatric 

psychiatric disorders. Further studies are necessary to investigate the effects of antipsychotics 

on NAcC and NAcS in animal models for specific psychiatric disorders in children.

One limitation of this study is that just one dosage for each drug and one time (3 week) point 

have been used, therefore further studies using multiple dosages and several time points are 

important to fully reveal their antipsychotic effects on GABAA and NMDA receptors. With 
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regards to the gender difference, this study found a lower [3H]muscimol binding in the NAcC, 

NAcS and PFC in female rats than those in male rats. Antipsychotics also showed different 

effects on GABAA and NMDA receptors between the male and female rats, although we 

could not completely explain these gender differences. Previously early exposure to 

aripiprazole, olanzapine and risperidone has been reported to have similar gender differences 

in the dopamine D1, D2, 5-HT2A/2C, and cannabinoid receptors in juvenile rats (Lian and 

Deng, 2018; Lian et al., 2016). Juvenile treatment with these drugs also showed a more severe 

effect on adult locomotor activity, anxiety-like, and depressive-like behaviours in male rats 

than in female rats (De Santis et al., 2016). Since the gender difference also occurs in children 

and adolescents with mental disorders (Rapado-Castro et al., 2015; Rucklidge, 2010), it is 

worth paying attention to the potential clinical differences between male and female juvenile 

patients when prescribing these antipsychotics. 

Since antipsychotics do not directly bind with NMDA and GABAA receptors (Correll, 2010), 

the modulation of these receptor observed in this study is possibly through other signalling 

pathways. For instance, aripiprazole is a partial agonist of D2 and 5-HT1A receptors, as well 

as a partial antagonist of 5-HT2A receptors with regionally differential effects on 

dopaminergic and 5-HTergic neurotransmission (Di Sciascio and Riva, 2015; Han et al., 

2009a; Han et al., 2009b). There is evidence that, at therapeutic doses, aripiprazole exhibits 

low levels of 5-HT1A and 5-HT2A receptor occupancy and activity, and acts predominantly 

on dopamine D2 receptors (Mamo et al., 2007; Wood and Reavill, 2007). Therefore, 

aripiprazole-induced alteration of NMDA receptor expression may be regulated via acting on 

dopaminergic D2, such as through D2 receptor downstream protein kinase B (Akt)-glycogen 

synthase kinase 3 beta (GSK3β) and protein kinase A (PKA) signalling pathways (Beaulieu 

and Gainetdinov, 2011; Pan et al., 2016a). It has also been reported that the GABAA receptor 
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could be regulated by aripiprazole via D2 receptor downstream PKA signalling (Connelly et 

al., 2013; Pan et al., 2016b). On the other hand, risperidone is a potent D2 antagonist and also 

5-HT2A/C antagonist (Correll, 2010). It was further reported that risperidone increased the 5-

HT1A receptor levels, but decreased the 5-HT2A and D1 receptor levels in the frontal cortex 

of the rat brain (Choi et al., 2010; Lian et al., 2016; Tarazi et al., 2002). While olanzapine is 

also a 5-HT2A/C and D2 antagonist, it has less binding affinity to D2 receptors than both 

aripiprazole and risperidone (Correll, 2010). The different pharmacological profiles of these 

antipsychotics may explain their different effects on NMDA and GABAA receptor bindings in 

the brain.

In summary, this present study investigated the effects of early antipsychotics exposure on 

NMDA and GABAA receptor binding levels. Overall, the current study identified that 

aripiprazole and risperidone elevated the NMDA receptors binding in these therapeutic effect-

related brain regions, but with gender difference. Furthermore, aripiprazole also increased the 

GABA receptor binding levels in these brain regions. Since abnormal NMDA and GABAA 

receptor neurotransmission is associated with various mental disorders, the result of this study 

suggests that these antipsychotics may have these therapeutic effects for treating mental 

disorders in childhood-adolescence via modulating NMDA and GABAA receptors. It is of 

note that healthy animals were used in this study; further studies should be conducted to 

investigate the effects of antipsychotics in the juvenile animal models for mental disorders, 

which may improve the antipsychotic treatment of children/adolescents.
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Figure Legends 

Figure 1. Examples of [3H]MK-801 and [3H]Muscimol bindings in the rat brain. A-B, The 

schematic diagram is adapted from a rat brain atlas (Paxinos and Watson, 2007) showing the 

level of Bregma 4.68  mm (A) and 1.08 mm (B). A’-B’, examples of autoradiograms to show 

[3H]MK-801 binding. A’’-B’’, examples of [3H]Muscimol binding. Abbreviations: PFC, 

prefrontal cortex; CPu, caudate putamen; NAcC, nucleus accumbens core; NAcS, nucleus 

accumbens shell. 

Figure 2. The effects of aripiprazole, olanzapine, and risperidone treatment on [3H]MK801 

binding (nCi/mg tissue) in (A) the prefrontal cortex (PFC), (B) caudate putamen (CPu), (C) 

nucleus accumbens, core (NAcC), and (D) nucleus accumbens, shell (NAcS) of both male 

and female juvenile rats (n=6/group). *p<0.05, **p<0.01 vs. control. t(*) 0.05<p<0.1 vs. 

control..

Figure 3. The effects of aripiprazole, olanzapine, and risperidone treatment on [3H]Muscimol 

binding (nCi/mg tissue) in (A) the prefrontal cortex (PFC), (B) caudate putamen (CPu), (C) 

nucleus accumbens, core (NAcC) and (D) nucleus accumbens, shell (NAcS) of both male and 

female juvenile rats (n=6/group). *p<0.05, **p<0.01 vs. control. # p<0.05, male vs. female. 

t(*) 0.05<p<0.1 vs. control.



21

Abbreviation

5-HT Serotonin

5-HT1A Serotonin 5-HT1A receptor

5-HT2A                    Serotonin 5-HT2A receptor

5-HT2C                    Serotonin 5-HT2C receptor 

ADHD             Attention Deficit Hyperactivity Disorder

AMPA α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid

ANOVA Analysis of Variance

Akt                              Protein Kinase B

cAMP                        cyclic adenosine monophosphate

CPu Caudate Putamen

D2                               Dopamine D2 Receptor

EDTA                        ethylenediaminetetraacetic acid

GABA γ-Aminobutryric Acid

GABAA GABAA receptor

GSK3�                       glycogen synthase kinase 3�

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

MK-801 Dizocilpine

NAc              Nucleus Accumbens

NAcC                         Nucleus accumbens core

NAcS                          Nucleus accumbens shell 

PFC Prefrontal cortex

PKA                           protein kinase A 

PD Postnatal Day
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