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Abstract— In this paper, we develop a novel multi-objective 

modeling approach to support supply network configuration 
decisions, while considering varying demand profiles. In so 
doing, we illustrate how such an approach could contribute to 
building supply network robustness and resilience. The proposed 
model entails two key objectives; minimizing lead time and cost 
across the supply network. The solution approach first employs a 
bidding mechanism to select a set of supply network entities that 
match with a given demand profile from a candidate pool of 
entities. It then applies the popular technique known as Non-
dominated Sorting Genetic Algorithm-II to generate a set of 
Pareto-optimal solutions representing alternative supply network 
configurations. The proposed model is tested on a case study of a 
refrigerator supply network to draw delivery time and cost 
comparisons under static and dynamic demand profiles.    

Keywords—supply network configuration, demand profile, 
dynamics, bidding  

I. INTRODUCTION  
Facilitated by the ongoing advancements in technology and 

information systems, as well as the pursuit of broad-based 
initiatives such as Industry 4.0, supply networks are becoming 
more distributed and globally dispersed [1]. Additionally, 
shifting demand profiles and evolving competitive dynamics 
demand ongoing adjustments to supply chain (SC) structures 
[2]. The combined effects of these developments mean that 
appropriately responding to both unforeseen and anticipated 
disruptions is critical to maintaining fast, efficient and 
responsive SCs. The capacity for timely responding to these 
disruptions can be built through measures aimed at improving 
SC resilience and robustness as part of design considerations or 
operational control. Our review of literature on SC disruptions 
indicates that, compared to the work undertaken in the area of 
unforeseen disruptions, efforts directed towards the 
development of comprehensive responses to anticipated 
disruptions are sparse.    

In this study, we develop a novel multi-objective modeling 
approach to support supply network configuration (SNC) 
decisions to suit varying demand profiles. In so doing, we 
make an effort to illustrate how SNC decisions could 
contribute to building SC robustness and resilience. The paper 
is organized as follows. Following this brief introduction, we 
present a summary review of extant literature on the SNC 

problem, while also focusing on measures aimed at addressing 
SC disruptions. Next, the mathematical formulation of the SNC 
problem is presented, followed by an overview of the solution 
approach employed in solving the SNC problem. We then test 
the proposed modeling approach using a case study of a 
refrigerator production network. 

II. LITERATURE REVIEW 
SC disruptions reported in the literature include unforeseen 

incidents such as transportation mishaps, natural calamities, 
and intentional attacks [3], as well as anticipated circumstances 
like facility breakdowns, failures of the supplier base, offensive 
actions of competitors and abrupt changes in demand [4-5]. 
Some authors have treated such events in terms of endogenous 
disruptions and exogenous disruptions [6]. Irrespective of the 
way they are classified, all disruptions are known to induce 
significant risks in terms of their impact on SC functioning or 
performance. Mitigating the impact of such risks involves 
improving SC robustness and resilience through building 
capacity to: withstand disruptions, including any structural 
adjustments required; respond quickly to disruptions; and 
recover effectively from any disruptive incidents [7-8]. 
Specific measures of risk mitigation that have been proposed in 
the literature include: strategies such as holding buffer stocks, 
maintaining back-up capacity, multiple-sourcing and adaptive 
ordering [3-4]; structural adjustments in supply networks [2]; 
and dynamic integration of logistics capabilities [9]. For 
instance, [10] proposed six measures covering both operational 
strategies and structural adjustments to deal with SC 
disruptions and uncertainty, namely facility dispersion, facility 
reinforcement, use of sub-assemblies, multiple sourcing, and 
keeping inventory and considering primary and alternative bills 
of material (BOM). Overall, the literature cited above 
highlights the existence of an array of measures that could 
potentially be used to mitigate the risks associated with SC 
disruptions, through building SC robustness and resilience. 
Such capacity can be built through SNC decisions leading to 
targeted proactive and reactive actions. 

In general, the term SC refers to the sequential arrangement 
of organizational entities involved in acquiring raw materials, 
transforming them into components and assemblies, and then 
distributing the final product to end-users. However, given that 
an organizational entity can be part of more than one SC, a 
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Fig. 1: Conceptual representation of a SN (with the 
selected SNC highlighted) 

more realistic alternative would be to consider the notion of 
supply network (SN). With the notion of SN comes the 
existence of multiple SCs that are capable of catering to a 
given demand profile. This then introduces the possibility of 
differentiating such SCs with respect to their performance in 
terms of speed, efficiency and responsiveness. It is common 
practice in the industry to use the same set of supply entities for 
a given demand profile and for a prolonged period, considering 
such factors as the benefits of maintaining long-term 
relationships, contractual arrangements and ease of 
coordination and communication [11]. However, on the one 
hand, sticking to the same SC for too long can lead to the loss 
of competitiveness at the SC level, because developments such 
as the emergence of high-performing SC entities, the adoption 
of new technology and the introduction of new and better 
substitute products can significantly alter the overall 
competitiveness of alternative SCs. On the other hand, shifting 
demand profiles means a SC that has been configured to serve 
a given demand profile at a particular point in time could 
become less competitive if it is no longer aligned with the 
current demand profile [12-13]. As such, SNC decisions can 
play a critical role in sustaining the overall SC performance 
under evolving conditions or in the face of disruptions. 

SNCs are alternative arrangements of organizational 
entities, processes and resources where, as a whole, they can be 
differentiated based on key performance metrics such as cost, 
lead-time and fill rate [14-16]. Previous studies have addressed 
SN design issues related to the decisions involving facility 
location, supplier selection and the optimal number of facilities 
required, often assuming static conditions and centralized 
decision-making [17-18]. However, more recent literature has 
contributed to accounting for disruptions and uncertainties in 
the design stage by introducing stochastic programing to the 
modeling environment [19]. There are also several other 
studies that have attempted to address the structural, spatial and 
temporal aspects of SNC decisions with the help of simulation 
modeling approaches, including the application of meta-
heuristics [20]. While structural characteristics are substantially 
covered in the literature, spatial and temporal characteristics 
such as changing demand profiles need to be further explored 
[20]. Although a market segment could be profiled using 
multiple attributes such as product volume, delivery time and 
price range, the treatment of demand profiles in existing SNC 
literature limits to the attribute of volume [20]. Similarly, 
changes in demand profile over time have not adequately 
addressed in the literature [20]. As such, this study focuses on 
dynamic demand profiles defined by the attributes of product 
volume, expected delivery time and willingness to pay (WTP) 
price. 

Similar to the areas of research such as SN design and 
logistics network planning, optimization techniques play a 
major role in SNC literature. In most cases, SNC problems are 
considered to be of combinatorial optimization type and, 
therefore, researchers have used meta-heuristics approaches. 
Among them, the Genetic Algorithm [15-16], the Ant Colony 
Optimization [21] and the Bee Algorithm [22] are widely used 
for SNC. The Ant Colony Optimization and Bee Algorithm-
based studies address multiple objectives such as optimizing 
both delivery time and cost. Agent-based modeling has also 

been used in a few studies [23-25], often, implemented in the 
context of rather narrowly defined SNs (e.g. single product and 
static demand). Reference [23] combined both agent-based 
modeling and optimization. 

Overall, the literature points to several limitations in the 
current approaches to modeling structural, spatial and temporal 
characteristics of SNs. This study covers these three aspects 
with a focus on modeling multi-echelon SNs consisting of 
geographically dispersed entities responding to varying 
demand profiles. The proposed model entails two objectives; 
minimizing delivery time (DT) and total supply network cost 
(TSNC). The solution methodology involves a bidding 
mechanism to select SN entities from an available pool, and 
Non-dominated Sorting Genetic Algorithm-II NSGA-II is used 
to find a set of Pareto optimal solutions which meet the two 
key objectives referred to above. This model is tested on a case 
study of a refrigerator SN. 

III. MATHEMATICAL FORMULATION 
In this study, we consider a SN with I number of stages. 

These stages could be any one of the three types, sourcing, 
manufacturing or distribution, and are represented by a set S = 
(S1… Si…SI), where, Si represents ith stage of the SN. At each 
stage, there could be several types of raw material, product 
component or sub-assembly involved, depending on the bill of 
material (BOM) representing a given product. Each of these 
raw material, component and sub-assembly types is 
represented as a node in the SN. Accordingly, there could be 
multiple nodes at any stage. If there is a total of J nodes in the 
SN, then the nodes in the ith stage of the SN are represented by 
the set Si = (Nim… Nij…Nin), where, j є (m, m+1, m+2,…, n). 
At each node, we consider that there are multiple competing 
supply entities, termed as entity options, that are capable of 
performing the value-adding functions at the respective node. 
Depending on such factors as location of facilities, capacity of 
their plants and the processes or technologies utilized, these 
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entities can compete with each other on cost, lead time or 
quality parameters. For example, a local supply entity may be 
able to supply a component at a higher price with a shorter 
lead-time, whereas an overseas supplier may be able to supply 
it at a much lower price but with a considerably longer lead-
time. At a given node Nij, a set of entity options is given by Nij 
={Rij1… Rijk …Rijp} where Rijk is the kth entity option at node j of 
stage i. Here, p is the maximum number of entity options 
available at Nij. Fig. 1 illustrates this SN graphically with 
multiple entity options available at each node of a given stage. 
The SN marked in dashed lines is an instantiation of the SN 
identified as feasible for fulfilling a given demand profile. In 
this instance, entity options selected in stage 1 are R113 and 
R121, in stage 2 are R252 and R261, in stage 3 is R372 and in stage 
4 is R481, so as to fulfil the order profile of consumer region 2. 

The objective of the SNC problem is to fulfil the demand 
profile specific requirements such as product volume and due 
date at the minimal SC-wide cost and delivery lead time. As 
such, this problem is of combinatorial optimization type where 
the optimal set of entity options at each stage are selected for a 
specific demand profile. 

The SNC problem is mathematically expressed as follows. 
Equation 1 and 2 represent objectives of the problem which are 
to minimize the total SN cost (TSNC) and delivery time (DT) 
by optimally configuring the SN to suit a given demand profile. 
The TSNC consists of two primary elements, namely the 
processing cost (PC) and transportation cost (TC), as 
represented by the first and second terms of (1), respectively. 
Similarly, DT includes the processing time (PT) and 
transportation time (TT), as represented by the first and second 
terms of (2), respectively. Unit processing cost of entity option 
Rijk to produce an item is denoted by Cijk and related processing 
time is taken as PTijk. In this case, we have considered 
transportation cost to be proportionate to the distance between 
supply entities. The distance between two selected entity 
options (Rijk and Ri’j’k’) at two consecutive stages (i and i') is 
indicated by Dijk→ i’j’k’ and unit distance transportation cost is 
taken as α and speed is taken as V. Here, Xijk→ i’j’k’ is the 
decision variable which has value 1 when option Rijk in stage i 
and option Ri’j’k’ in stage (i+1) (i.e. i') are selected to fulfil a 
given order; otherwise it is 0. The aggregate demand (volume) 
in consumer region l at time t is represented as Qlt. We assume 
that Qlt follows the normal distribution N(μql, σql). The demand 
for each item at other upstream stages of the SN is determined 
by taking into account both demand at the final stage and the 
BOM of the product. If δij represents the number of 
components per product required at node Nij according to the 
BOM, then demand of that node Nij is calculated as δij. Qlt. 

The objective function of this SNC problem is subject to 
several constraints. Equation (3) sets that only one entity option 
is selected at each node to satisfy the given demand profile. 
Equation (4) ensures that a potential entity option should have 
the production capacity to supply the required number of units 
(δij. Qlt) to satisfy the demand Qlt. The available production 

capacity is calculated as 

 𝑃𝑃𝐶𝐶𝑀𝑀𝑖𝑖𝑖𝑖𝑙𝑙
𝑑𝑑𝑑𝑑𝑀𝑀𝑙𝑙𝑦𝑦 (𝑇𝑇 − 𝑡𝑡)    where T is the end of 

the review period, and t is the start date for fulfilling the 
demand profile of the consumer region l. Equation (5) and (6) 
ensures that entity option Rijk gets selected if the Cijk of Rijk is 
below the reference cost 

 (𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐 )  and PTijk is less than the 

reference processing time
 (𝑏𝑏𝑀𝑀𝑖𝑖

𝑝𝑝𝑡𝑡) . Both 
 𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐   and 

 𝑏𝑏𝑀𝑀𝑖𝑖
𝑝𝑝𝑡𝑡  

 are random 
numbers generated to fit within the upper and lower bounds of 
the estimated processing cost and processing time of the 
corresponding node, respectively.  The upper and lower bounds 
for
 𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐   are  𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝐶𝐶 .𝑃𝑃𝑙𝑙𝑡𝑡   and  0.85 𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝐶𝐶 .𝑃𝑃𝑙𝑙𝑡𝑡   where 

 𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝐶𝐶  is a pre-defined 
processing cost proportion of Nij and Plt is WTP price of the 

given consumer region l. The upper and lower bounds of 
 𝑏𝑏𝑀𝑀𝑖𝑖

𝑝𝑝𝑡𝑡   
for processing time are   𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝑇𝑇 .𝐷𝐷𝑇𝑇𝑙𝑙𝑡𝑡   and  0.85.𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝑇𝑇 .𝐷𝐷𝑇𝑇𝑙𝑙𝑡𝑡  where 

  𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝑇𝑇  is the processing time proportion assigned to Nij and DTlt 
is expected delivery time for region l. 

IV. SOLUTION APPROACH 
The methodological approach followed in solving the SNC 
problem is illustrated in Fig. 2. Initially, the demand profile of 
each consumer region is estimated in terms of volume (Qlt), 
WTP price (Plt) and expected delivery time (DTlt). 
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Fig. 3. Overview of the solution approach used 
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Fig. 2.  Steps in the NSGA-II algorithm 

 
 

Then, at the order processing stage, Qlt of the demand profile is 
processed using BOM to determine the required number of 
units (δij. Qlt) from each node Nij. This is informed to supply 
entities through the supply entity selection stage. The bidding 
process considers Plt and DTlt to calculate the maximum 
acceptable price ( 𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝐶𝐶 .𝑃𝑃𝑙𝑙𝑡𝑡  ) and processing time ( 𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝑇𝑇 .𝐷𝐷𝑇𝑇𝑙𝑙𝑡𝑡  ) at 
each node. This information is then made available to be used 
at the entity option selection step. At this step a bidding 
mechanism is employed to select a set of feasible entities from 
among the candidate entity options at each node. Accordingly, 
Rijk at each node are informed of the number of units required. 

Bidding mechanism initiates with generating 
 𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐   and 

 𝑏𝑏𝑀𝑀𝑖𝑖
𝑝𝑝𝑡𝑡   as 

given in (5) and (6). As mentioned in section III, 
 𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐   is a 

random number that lies in the range of  𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝐶𝐶 .𝑃𝑃𝑙𝑙𝑡𝑡  and 0.85 𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝐶𝐶 .𝑃𝑃𝑙𝑙𝑡𝑡  . 

For example, if 
 𝑁𝑁𝑀𝑀𝑖𝑖𝑃𝑃𝐶𝐶   is equivalent to 20% of WTP price (i.e. 

0.2 Plt), then 
 𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐   lies in the range of lower bound (i.e. 85% of 

0.2 Plt) and upper bound (i.e. 0.2 Plt). Once the corresponding 
bids (i.e. Cijk and PTijk) to supply the required number of units 
are received from each Rijk at each node, these bids are then 

compared with the
 𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐   and

 𝑏𝑏𝑀𝑀𝑖𝑖
𝑝𝑝𝑡𝑡  . Bids which are lower than 

both
 𝑏𝑏𝑀𝑀𝑖𝑖𝑐𝑐   and 

 𝑏𝑏𝑀𝑀𝑖𝑖
𝑝𝑝𝑡𝑡  are considered as winning bids; i.e. candidates 

Rijk are sent to the optimization step. 

 NSGA-II (as outlined in Fig. 3), one of the most popular 
multi-objective optimization algorithms has been used to find 
the optimal set of SNCs [26]. NSGA-II starts with initial 
population (i.e. parents), which is the set of SNCs having one 
entity option from each node. Then, the TSNC (F1) and DT 
(F2) are calculated to rank the population using the sorting 
algorithm known as Pareto-fast non-dominated (PF-ND). In the 
process of determining TSNC and DT, transporters are 
contacted to get the relevant transportation time and cost 
between entity options. Then, the standard genetic operators 
are applied (i.e. selection, crossover and mutation) within the 
defined criteria for ceasing the process of iterations. Elitism is 
achieved by combining the chosen attributes of parents and 
children, and are ranked with the use of PR-ND sorting. The 
next generation is selected from the highest ranking population, 
which is then sent to the following generation. This process 
continues until the ceasing criteria are met. Finally, the 
solutions in the Pareto front are taken as the optimal SNCs for 
a given set of demand profile requirements. 

V. CASE STUDY ANALYSIS 
In this study, we adapted a dataset pertaining to refrigerator 

production which was initially used by [27], and later modified 
by [28-29] with added parameters related to logistics networks, 
to optimize the lifecycle cost. To help demonstrate the efficacy 
of the proposed model, we introduced several new parameters 
to suit the specific SNC problem context. Further details about 
these parameters and associated data are presented below.   

There are five stages in the refrigerator SN; three supply 
stages (i.e. raw material, component and module), the final 
assembly stage and the distribution (of finished products) 
stage. There are 25 different components manufactured using 
four different types of raw material, namely Iron (Fe), Plastic, 
Aluminium (Al) and Copper (Cu). Based on the type of raw 
material used and the nature of the manufacturing process, we 
categorized 25 components into five groups, aimed at reducing 
the complexity of the SN. In the original data set, there were 13 
modules, some of which were sub-modules of the others. We 
classified these 13 modules into two main modules, which are 
assembled to form the final product. The final products are sent 
to distribution centers through which retailers at each consumer 
region receive goods. Accordingly, there is more than one node 
(i.e. Nij) in each stage and there are multiple entity options (i.e. 
Rijk) available to perform the required value-adding functions 
at each node. The connectivity between the nodes is shown in 
Fig. 4. We used ten consumer regions in Europe with distinct 
demand profiles considering the differences in price level 
index and individual income. The possible variations in the 
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Fig. 4.  Illustration of the connectivity between nodes of the 

refrigerator production network 
 

TABLE 1. DEMAND PROFILE OF EACH CONSUMER REGION 

Cus. ID Volume 
(units) (µQl, σQl) 

Delivery time 
(days) (µDTl, σDTl) 

WTP cost 
(dollars) (µPl, σPl) 

1 (33,10) (30,10) (1000,150) 
2 (40,20) (15,10) (900,100) 
3 (100,20) (55,25) (1300,150) 
4 (100,50) (40,10) (1100,100) 
5 (40,14) (40,10) (1500,80) 
6 (80,10) (55,15) (1200,150) 
7 (120,16) (65,10) (1500,170) 
8 (60,10) (45,7) (1100,80) 
9 (150,12) (85,13) (1200,150) 
10 (50,15) (40,7) (800,150) 

 
TABLE II. SOLUTIONS FOR STATIC DEMAND PROFILES (EXPERIMENT 1) 

Experiment 1 setting SNC solutions % Saving 

Cus. 
ID 

Order 
arrival 

day 

Demand profile 
(Qlt, DTlt, Plt) 

TSNC 
range 

DT 
range Cost Time 

1 1 (33,30,1000) [717,746] [17,21] [25,28] [30,43] 
2 10 (40,15,900) [710,786] [20,23] [13,21] -[33,53] 
3 20 (100,55,1300) [696,788] [38,46] [39,46] [31,16] 
4 45 (100,40,1100) [739,802] [29,35] [27,33] [12,27] 
5 60 (40,40,1500) [711,758] [19,24] [49,53] [53,40] 
6 75 (80,55,1200) [698,793] [31,39] [34,42] [44,29] 
7 80 (120,65,1500) [765,791] [45,55] [47,49] [44,15] 
8 85 (60,45,1100) [703,799] [26,33] [27,36] [42,27] 
9 90 (150,85,1200) [692,777] [56,67] [35,42] [30,16] 
10 120 (50,40,700) [704,737] [22,26] -[0.5,5.2] [45,35] 

 

  

  
Fig. 5. Pareto optimal solutions (representing non-dominated SNC 
alternatives) generated by NSGA-II (in 100 runs) 

 TABLE III. SOLUTIONS FOR DYNAMIC DEMAND PROFILES 
(EXPERIEMENT 2) 

Experiment 2 setting SNC solutions % Saving 

Cus. 
ID 

Order 
arrival 

day 

Demand 
profile 

(Qlt, DTlt, Plt) 
TNC range DT range Cost Time 

1 1 (33,30,1000) [717,746] [17,21] [25,28] [30,43] 
(20,15,900)  [727,852] [11,14] [5,19] [7,27] 
(55,32,1030) [704,874] [21,29] [15,32] [9,34] 

2 10 (40,15,900) [710,786] [20,23] [13,21] -[33,53] 
(20,15,1030)  [726,948] [12,14] [8,30] [7,20] 
(45,25,1000) [707,820] [18,25] [18,29] [0,28] 

3 20 (100,55,1300) [696,788] [38,46] [39,46] [16,31] 
(80,23,1100)  [696,1030] [24,38] [6,37] -[4,65] 
(150,70,1265) [690,1012] [41,64] [2,45] [9,70] 

4 45 (100,40,1100) [699,762] [28,34] [31,36] [15,30] 
(150,40,1000) [703,998] 

[1000,1007] 
[44,63] 
[41,46] 

[0.2,30] 
[(-0.7),0] 

-[0.4,58] 
-[0.1,0.6] 

(152,50,900) [704,789] 
[799,1731] 

[50,63] 
[42,50] 

[12,22] 
[-92,11] 

[-(1.3),0] 
[0,16] 

10 120 (50,40,700) [704,737] [22,26] -[0.5,5.2] [35,45] 
(45,40,675) [704,827] [17,24] -[4,23] [40,58] 
(70,35,1000) [698,931] [24,34] [7,30] [3,32] 

 

attributes of the demand profile as defined by their mean and 
standard deviation are given in Table I. 

Two experiments were carried out. In experiment 1, we 
considered a static demand profile by employing only the mean 
value of each demand attribute of the respective demand 
profile. In experiment 2, dynamic demand profiles were 

considered using mean and standard deviation for the selected 
customer region. The proposed multi-objective optimization 
model was tested in both experiments to minimize TSNC, as 
well as DT, while satisfying all the constraints listed in section 
III. NSGA-II was employed to solve the model. Fig. 5 
illustrates the Pareto fronts generated by NSGA-II for a few 
selected demand profiles. The results obtained in experiment 1 
are presented in Table II, which includes TSNC and DT ranges 
for the Pareto-optimal SNCs for each demand profile. 
Accordingly, potential savings ranges, which reflect the 
difference between WTP price and TSNC, are reported. The 
results from experiment 1 can help decision makers to identify 
suitable SN configurations in the presence of static demand 
profiles. An appropriate configuration can be selected from this 
set based on the desired SN evaluation criteria. Table III shows 
the results of experiment 2 with corresponding savings for 
dynamic demand profiles. The results obtained in this analysis 
can be used to find a strategically robust configuration design 
which can withstand the effects of volatile markets that are 
characterized by changing WTP price, lead time and volume, 
or when faced with other disruptions. Additionally, if a 



solution satisfying the desired criteria is not found, then the 
experiments can be re-run with amended demand profiles or re-
negotiated terms of supply.      

VI. CONCLUSION 
This study developed a novel multi-objective optimization 

model to enhance SN performance with respect to TSNC and 
DT when handling SNC decisions under varying demand 
profiles. A multi-echelon SN was considered together with a 
distributed set of supply entities which are available at each 
node at different stages of the SC. The model incorporated a 
bidding mechanism to simulate the competing nature of supply 
entities and to increase the solution quality and computational 
efficiency through the application of NSGA-II. We tested the 
model on a refrigerator SN case study to demonstrate its 
efficacy. Experimental results revealed that a number of 
strategic decisions can be supported by the proposed model, in 
particular, identifying and evaluating robust SNs to suit 
varying demand profiles. We contend that dealing with SNC 
decisions in the manner outlined in this paper can enhance SC 
capabilities in terms of capacity to withstand anticipated 
disruptions, as well as developing contingencies in the case of 
having to recover from disruptions. In future studies, this 
model can be further extended by incorporating agent-based 
modeling to represent a distributed decision-making scenario 
while accounting for both individual entity behaviors and 
whole of the SN dynamics. Innovative bidding procedures can 
also be tested to further enhance the real world behavior and 
performance of SNs when faced with disruptions. 
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