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200%, with significant sensitivity which is essential to use these sensors in human motion applications, 
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are essential for wearable applications to monitor human motion with minimal discomfort. 
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Abstract  

The development of the single substrate technique presents a realistic possibility of 

utilising electrochemical noise measurement for on-site evaluations of corrosion behaviour. A 

theoretical model was developed to further understand the effects of reference electrodes on 

the acquired data to increase confidence in the technique. The model demonstrates that the 

reference electrodes can have a significant impact on the measurements, resulting in 

erroneous values if the reference electrodes are not selected carefully. Furthermore, the 

derived equations elucidate how to limit/remove such influence, facilitating accurate 

application of the single substrate technique on bare metal and coated substrates both in 

laboratories and in the field.  

 

1. Introduction  

Electrochemical noise measurement (ENM) of protective coatings has made 

significant progress since the pioneering works of Skerry and Eden in 1987-1991 [1,2]. Quick 

and simple acquisition and analysis of data combined with the advantage of not needing to 

polarise samples has led to significant diversification of how the technique is utilised [3–5]. 
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Of great significance, a number of alternative electrode configurations have been established 

to date in an attempt to move ENM out of laboratories and into the field. These techniques 

are designed to facilitate the acquisition of in-situ quantitative electrochemical data of real 

world corrosion scenarios, particularly with a focus on industrial applications. This has been 

primarily investigated through two separate bodies of work. Firstly, there is the development 

and application of Electrochemical Emission Spectroscopy (EES), first proposed by Chen and 

Bogaerts [6], and advanced by Xia et.al [7–11]. EES utilises a platinum micro-cathode as the 

second working electrode for electrochemical noise measurements, in an attempt to eliminate 

the need for identical working electrodes that are impossible to achieve in reality. Secondly, 

there is the use of the single substrate (SS) and no-connection-to-substrate (NOCS) electrode 

configurations, advanced in the works of Mabbutt and Mills [5,12–15]. These alternative 

electrode configurations are the focus of the present work. Furthermore, there has been 

significant work directed towards theoretical validation of some of these techniques. In a 

review by Cottis on ENM techniques utilising asymmetrical working electrodes, it was 

concluded that under specific circumstances and with the correct assumptions, useful 

information about corrosion behaviour can be obtained [16]. The use of a platinum micro-

cathode in EES was concluded to result in electrochemical current noise measurements being 

dictated by the high impedance of the micro-cathode, although electrochemical potential 

noise measurements were unaffected. In contrast, whilst the practical usage of the SS and 

NOCS electrode configurations has been demonstrated experimentally, to date there has not 

been a fundamental study of the theoretical aspects of either technique. Lastly, the Single Cell 

(SC) technique developed by Jamali et.al can be viewed as an extension to both prior works 

with asymmetrical working electrodes and the SS and NOCS techniques [17]. The SC 

technique requires only a single working electrode, with electrochemical potential and current 

noise data being recorded in sequence instead of simultaneously. Although a promising 

technique for in-situ ENM in its own right, the SC technique, as well as use of asymmetric 

working electrodes, will not be discussed in-depth here as our aim is to conduct a systematic 

analysis on the SS technique in this paper.  

The SS technique differs from the well-established and standardised “salt bridge” 

(SB) configuration in three significant ways. Firstly, only a single connection to the substrate 

metal is required (hence the name), which is made to the reference electrode terminal of the 

measuring instrument. Secondly, two laboratory reference electrodes (LREs) are immersed in 

the corrosive electrolyte and are connected to the working electrode terminals of the 
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measuring instrument. Thirdly, the electrical connection between the two cells is made via 

the metallic substrate and not via a salt bridge [5,12–15]. A comparison of the physical 

models of the SB and SS electrode configurations are outlined in Figures 1 and 2. It is worth 

noting that the NOCS technique takes the SS configuration a step further, replacing the 

connection to the substrate metal with a third LRE immersed in corrosive electrolyte in 

contact with the substrate metal. This third LRE is connected to the reference electrode 

terminal of the measuring instrument [5].  

There is a complication in that connecting LREs to the working electrode terminals in 

the SS technique introduces two additional impedances to the equivalent electrical circuit 

(EEC) (as shown in Figure 3 for SB in comparison to Figure 4 for SS). In conventional direct 

current (DC) and alternating current (AC) electrochemical testing, it is recommended that the 

impedance of LREs be as low as possible [18–20]. Failure to maintain low reference 

electrode impedance can result in artefacts during AC electrochemical measurements, the 

effects of which are well documented [21–27]. The exact influence of connecting LREs to the 

working electrode terminals on acquired data through use of the SS technique has not been 

closely investigated from a theoretical perspective. It is sensible to assume that the impedance 

of any LREs used should be negligible relative to the impedance of the system being 

analysed, or their presence could have a significant impact on the ENM data. This has been 

considered previously by Mabbutt et.al [14]. It is a concern of the authors that even the use of 

well-maintained low impedance LREs will influence measurements of low impedance 

electrochemical systems via the SS technique, reducing confidence in the results. The SS 

technique has found favour amongst researchers performing electrochemical assessment of 

coated metallic substrates, but not bare metals. The effect of LREs on acquired data may be 

the root cause.  

To date, researchers that have used the SS technique to assess corroding bare metals 

and coated metallic substrates have been able to empirically validate their results in the 

laboratory with other electrochemical techniques, lending credibility to the SS configuration 

[5,12–15,28–33]. It may be a safe assumption that the impedance of well-maintained LREs is 

negligible relative to a protective high impedance coating [14,15]. But a high impedance 

coating applied to a metallic substrate will inevitably degrade over time, as water and 

corrosive ions penetrate the coating, abrasion and weathering effects reduce its thickness, and 

under-film corrosion compromises adhesion. Thus it is also safe to assume that the service 

life of a given coating is a transition from being a protective, high impedance coating to a 
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non-protective, low impedance coating. The time required to undergo this transition will vary 

widely, and will be dependent on the properties of the coating in question, the environment it 

is exposed to, and other factors. Therefore, the assumption of a high impedance coating may 

not be valid when the coating is analysed via ENM in the field, and verifying any in-field 

ENM data using alternative laboratory techniques is impractical if not impossible. Without 

knowing exactly what effect the LREs have on the acquired data, one cannot have confidence 

that valid data representative of the corroding system is being recorded. This is viewed by the 

authors as a significant hindrance to the widespread use of ENM in the field.  

The authors present here a theoretical model for use of the SS technique of ENM 

based on a simple linear EEC. The analysis follows previous such efforts performed by Cottis 

et.al and Jamali et.al to elucidate the effects of solution resistance and coating impedance on 

ENM data respectively [34,35]. Experimental data demonstrating the effects of LRE 

impedance on a simple corrosion system of low carbon steel exposed to 3.5wt% NaCl 

solution is also presented. It is noteworthy that the focus of this manuscript is solely on 

examining the validity of data acquisition with the SS electrode configuration and not the 

statistical methods of data analysis.  

 

2. Theoretical Model  

As with the earlier efforts by Cottis et.al and Jamali et.al, it is important for the 

purposes of our analysis to break down the complex ENM setups into simple linear EECs, 

and clarify a number of underlying assumptions [34,35]. It is important to note that the EEC 

and subsequent analysis for the SB technique presented here is ultimately identical to the 

analysis presented in earlier publications for the purpose of determining the effect of coating 

impedance and solution resistance respectively on ENM data [34,35]. As such, the analysis 

presented here derives the same equations, and is included merely for the sake of 

convenience and ease of comparison to the analysis of the SS technique. A more detailed 

assessment of the effects of coating impedance and solution resistance on ENM data can be 

found in Ref. [34,35]. The physical systems analysed here are those presented in Figures 1 

and 2; two identical coated metallic sections of equal size exposed to a specific quantity of 

corrosive electrolyte. In both setups, the sections of exposed metal are assumed to be 

identical in composition and surface condition, and the quantity and composition of corrosive 



5 

 

electrolyte in each cell is assumed to be identical. Henceforth, all references of current noise 

and potential noise refer to the electrochemical current noise and electrochemical potential 

noise, respectively.  

It is assumed that anodic and cathodic electrochemical reactions at the metal-solution 

interface are not hindered by the presence of the coating film, and hence the generation of 

electrochemical noise takes place independently of the coating. The solution resistance at the 

interface between the coating film and the metal is not considered in this model, as typically 

the solution is of very high ionic activity with very low resistance, and is assumed to be of 

constant composition for our analysis. Furthermore, whilst electrochemical reactions take 

place independently of the coating, the transport of corrosive ions through the coating film 

itself is assumed to be the rate-controlling process, and not the electrochemical reactions or 

the permeability of oxygen through the coating [35]. As demonstrated by Cottis et.al, both 

anodic and cathodic reactions at the metal-solution interface are assumed to be the singular 

source of current noise, whilst the potential noise is considered to be a response of the action 

of the current noise on the components of the electrical system in both setups [34]. Although 

the neutrality rule necessitates that the overall anodic and cathodic reactions are in balance 

and are therefore not independent, at any discrete time instance these reaction events are 

considered to be independent of each other and hence independent sources of current noise 

for the purposes of our analysis. The LREs used in both setups are assumed to be noiseless 

and identical, and therefore all potential noise is ultimately a consequence of electrochemical 

reactions at the exposed metal-solution interface. Furthermore, it is assumed that the source 

of the noise produced by the system is solely a consequence of the electrochemical reactions 

on the surface of the exposed metal, and not at all the result of mass transport events or the 

evolution of hydrogen gas such that bubbles are produced that alter the exposed surface area. 

A more detailed explanation of these assumptions can be found in previous works [34,35]. 

Finally, the exposed metal areas, electrolyte and LREs used in the SB setup are also assumed 

to be identical to those used in the SS setup.  

In the SB technique of ENM, the measured current noise of one working electrode is 

the current signal from one electrode to the other. Assuming that the currents from two 

separate uncoated working electrodes are uncorrelated, negligible solution resistance, and 

identical working electrodes such that Zm-s.1 = Zm-s.2, the current noise generated by working 

electrode 1 (WE1) will be halved, with one half flowing towards working electrode 2 (WE2) 
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and the other half dissipating in electrochemical processes on WE1. Only the current that 

flows to WE2 is measured by the zero resistance ammeter (ZRA) as current noise power [34].  

Therefore, based on these assumptions, the current noise power of each individual 

working electrode is:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 =  

𝐼𝑛
2

4
  (eq.1)  

Where: 𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = current noise recorded by ZRA  

 𝐼𝑛
2 = mean current noise or current noise power  

Again, assuming currents are uncorrelated, the current noise powers add to give:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 =  

𝐼𝑛
2

4
+  

𝐼𝑛
2

4
 

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 =  

𝐼𝑛
2

2
  (eq.2)  

This has been demonstrated previously [34].  

 

 
Figure 1: Diagram of the physical setup of the “salt bridge” technique of ENM.  
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Figure 2: Diagram of the physical setup of the “single substrate” technique of ENM.  

 

 
Figure 3: Equivalent electrical circuit diagram of the “salt bridge” technique of ENM.  
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Figure 4: Equivalent electrical circuit diagram of the “single substrate” technique of ENM.  

 

However, in the presence of significant solution resistance and a coating film, the 

current flowing from one electrode to the other will be attenuated. Therefore, the measured 

current noise power will be reduced. For example, considering the current noise source In.1 of 

WE1, the current will be split between the interfacial impedance Zm-s.1 and the series chain of 

Zf.1 + Rsol.1 + Rsol.2 +Zf.2 + Zm-s.2 as outlined in Figure 5.  

 
Figure 5: Equivalent electrical circuit diagram for current noise source In.1 for the “salt bridge” 

technique of ENM.  
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Following our assumption that the current noise signals from two separate working 

electrodes are uncorrelated, the current noise powers add:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 =  (

(𝑍𝑚−𝑠.1𝐼𝑛.1)+ (𝑍𝑚−𝑠.2𝐼𝑛.2)

𝑅𝑠𝑜𝑙.1+ 𝑅𝑠𝑜𝑙.2+ 𝑍𝑓.1+ 𝑍𝑓.2 + 𝑍𝑚−𝑠.1+ 𝑍𝑚−𝑠.2
)

2

  (eq.3)  

Thus eq.3 gives the measured current noise power for the SB technique of ENM 

outlined in Figure 1 with dissimilar coated metallic sections, such that Zm-s.1 ≠ Zm-s.2, In.1 ≠ 

In.2, and Zf.1 ≠ Zf.2, and with the LRE not equidistant between the two working electrodes 

(Rsol.1 ≠ Rsol.2).  

Assuming that the exposed metallic sections are identical such that Zm-s.1 = Zm-s.2 = 

Zm-s, In.1 = In.2 = In, and Zf.1 = Zf.2 = Zf, and assuming that the LRE is equidistant between the 

two working electrodes such that Rsol.1 = Rsol.2 = Rsol/2 (or Rsol.1 + Rsol.2 = Rsol), eq.3 simplifies 

to:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 = 2 (

𝑍𝑚−𝑠

𝑅𝑠𝑜𝑙+ 2𝑍𝑓 + 2𝑍𝑚−𝑠
)

2

𝐼𝑛
2  (eq.4)  

For uncoated metallic sections assessed using the SB technique, Zf = 0, and eq.4 

simplifies to:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 = 2 (

𝑍𝑚−𝑠

𝑅𝑠𝑜𝑙+ 2𝑍𝑚−𝑠
)

2

𝐼𝑛
2  (eq.5)  

Finally, when solution resistance is negligible, such that Rsol = 0, eq.5 simplifies to 

eq.2. This is in agreement with earlier studies [34,35].  

For the SS technique, as for the SB technique, the current from one metallic section to 

another will be attenuated. Similarly, the measured current noise power will be reduced. For 

example, for the current noise source In.3, the current will be split between the interfacial 

impedance Zm-s.3 and the series chain of Zf.3 + Rsol.3 + ZWE.1 + ZWE.2 + Rsol.4 +Zf.4 + Zm-s.4 as 

outlined in Figure 6.  
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Figure 6: Equivalent electrical circuit diagram for current noise source In.3 for the “single substrate” 

technique of ENM.  

 

Following our assumption that the current noise signals from two separate current 

noise sources are uncorrelated, the current noise powers add:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 =  (

(𝑍𝑚−𝑠.3𝐼𝑛.3)+ (𝑍𝑚−𝑠.4𝐼𝑛.4)

𝑅𝑠𝑜𝑙.3+ 𝑅𝑠𝑜𝑙.4+ 𝑍𝑓.3+ 𝑍𝑓.4 + 𝑍𝑊𝐸.1+ 𝑍𝑊𝐸.2+ 𝑍𝑚−𝑠.4+ 𝑍𝑚−𝑠.3
)

2

  (eq.6)  

Thus eq.6 gives the measured current noise power for the SS technique of ENM 

outlined in Figure 2 with dissimilar coated metallic sections, such that Zm-s.3 ≠ Zm-s.4, In.3 ≠ 

In.4, and Zf.3 ≠ Zf.4, and dissimilar LREs (ZWE.1 ≠ ZWE.2) not equidistant from their associated 

exposed metallic sections (Rsol.3 ≠ Rsol.4).  

Assuming that the exposed metallic sections are identical such that Zm-s.3 = Zm-s.4 = 

Zm-s, In.3 = In.4 = In, and Zf.3 = Zf.4 = Zf, and assuming that the LREs connected to the working 

electrode terminals are both identical and equidistant from their associated exposed metallic 

sections such that ZWE.1 = ZWE.2 = ZWE and Rsol.3/2 = Rsol.4/2 = Rsol, and eq.6 simplifies to:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 =  2 (

𝑍𝑚−𝑠

𝑅𝑠𝑜𝑙+ 2𝑍𝑓 + 2𝑍𝑊𝐸+ 2𝑍𝑚−𝑠
)

2

𝐼𝑛
2  (eq.7)  

For uncoated metallic sections assessed using the SS technique, Zf = 0, and eq.7 

simplifies to:  

𝐼𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 =  2 (

𝑍𝑚−𝑠

𝑅𝑠𝑜𝑙+ 2𝑍𝑊𝐸+ 2𝑍𝑚−𝑠
)

2

𝐼𝑛
2  (eq.8)  

Of critical importance, assuming the use of ideal LREs with negligible (or near-zero) 

impedance, eq.7 simplifies to eq.4 and eq.8 simplifies to eq.5. As previously stated, when 

solution resistance is negligible, such that Rsol = 0, eq.5 simplifies to eq.2.  
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Thus, assuming that the exposed metallic sections are identical, and assuming solution 

resistance is negligible as is often the case (Rsol = 0), it can be concluded that both the SB and 

SS techniques will measure the same current noise power only if the LREs connected to the 

working electrode terminals are ideal (and preferably identical), such that ZWE.1 = ZWE.2 = 0, 

that is, their impedance is negligible. Mathematically:  

𝐼𝑛 (𝑆𝐵)
2 =  𝐼𝑛 (𝑆𝑆)

2  

Otherwise, the current noise signal is attenuated by the impedance of the LREs.  

As clarified earlier, the current noise is produced by the electrochemical reactions as a 

consequence of the metallic section exposed to the corrosive electrolyte. The potential noise 

is produced by the current noise acting on the interfacial impedance (Zm-s) of the exposed 

metallic section, in parallel with the solution resistance, coating film impedances and 

polarisation resistance of the second exposed section. In the absence of solution resistance 

and coating film impedance, the potential noise power for one current noise source is given 

by:  

𝐸𝑛
2 =  

𝐼𝑛
2𝑍𝑚−𝑠

2

4
  (eq.9)  

Where: 𝐸𝑛
2 = potential noise power  

 𝐼𝑛
2 = mean current noise or current noise power  

 𝑍𝑚−𝑠 = interfacial impedance at metal surface  

This is in agreement with earlier studies [34,35].  

To calculate potential noise power in the presence of solution resistance and coating 

film impedance for the SB technique, the effects of each source of current noise must be 

analysed independently, with all other voltage sources treated as short circuits, and all other 

current sources treated as open circuits. Consider the current noise source In.1 of WE1. The 

current will be split between the interfacial impedance Zm-s.1 and the series chain of Zf.1 + 

Rsol.1 + Rsol.2 +Zf.2 + Zm-s.2 as outlined in Figure 5. The potential will be measured at junction 

j.2 between Rsol.1 and Rsol.2. Thus for In.1, using the potential dividing rule:  

𝐸𝑚−𝑠.1 =  (
𝑍𝑚−𝑠.1(𝑅𝑠𝑜𝑙.2+ 𝑍𝑓.2+ 𝑍𝑚−𝑠.2)

𝑅𝑠𝑜𝑙.1+ 𝑅𝑠𝑜𝑙.2+ 𝑍𝑓.1+ 𝑍𝑓.2+ 𝑍𝑚−𝑠.2+ 𝑍𝑚−𝑠.1
) 𝐼𝑛.1  (eq.10)  
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Similarly, for In.2:  

𝐸𝑚−𝑠.2 =  (
𝑍𝑚−𝑠.2(𝑅𝑠𝑜𝑙.1+ 𝑍𝑓.1+ 𝑍𝑚−𝑠.1)

𝑅𝑠𝑜𝑙.1+ 𝑅𝑠𝑜𝑙.2+ 𝑍𝑓.1+ 𝑍𝑓.2+ 𝑍𝑚−𝑠.2+ 𝑍𝑚−𝑠.1
) 𝐼𝑛.2  (eq.11)  

As per our earlier assumption, since the current noise sources are uncorrelated, the 

total potential noise power is given by:  

𝐸𝑛
2 =  

(𝐼𝑛.1𝑍𝑚−𝑠.1(𝑅𝑠𝑜𝑙.2+ 𝑍𝑓.2+ 𝑍𝑚−𝑠.2))
2

+ (𝐼𝑛.2𝑍𝑚−𝑠.2(𝑅𝑠𝑜𝑙.1+ 𝑍𝑓.1+ 𝑍𝑚−𝑠.1))
2

(𝑅𝑠𝑜𝑙.1+ 𝑅𝑠𝑜𝑙.2+ 𝑍𝑓.1+ 𝑍𝑓.2+ 𝑍𝑚−𝑠.2+ 𝑍𝑚−𝑠.1)
2   (eq.12)  

Thus eq.12 gives the measured potential noise power for the SB technique of ENM 

outlined in Figure 1 with dissimilar coated metallic sections, such that Zm-s.1 ≠ Zm-s.2, In.1 ≠ 

In.2, and Zf.1 ≠ Zf.2.  

Assuming that the exposed metallic sections are identical, such that Zm-s.1 = Zm-s.2 = 

Zm-s, In.1 = In.2 = In, and Zf.1 = Zf.2 = Zf, and assuming the LRE is equidistant between the two 

working electrodes such that Rsol.1 = Rsol.2 = Rsol/2 (or Rsol.1 + Rsol.2 = Rsol), eq.12 expands and 

simplifies to:  

𝐸𝑛
2 =  

𝐼𝑛
2𝑍𝑚−𝑠

2

2
  (eq.13)  

Note that the potential noise power generated by two identical but separate current 

noise sources as expressed in eq.13 is double that generated by a single current noise source 

(eq.9). Thus for identical exposed metallic sections, electrochemical potential noise power is 

unaffected by solution resistance or coating film impedance. This has been demonstrated 

previously [34,35].  

Considering the SS technique, the potential noise is produced by the current noise 

acting on the interfacial impedance of the exposed metallic sections (Zm-s) in parallel with the 

solution resistance, the coating film impedances, the impedances of the two LREs, and the 

polarisation resistance of the second exposed section. In the absence of these elements, the 

potential noise power for one current noise source is given by eq.9. As before, to calculate 

potential noise power in the presence of these elements, the effects of each source of current 

must again be analysed independently, with all other voltage sources treated as short circuits, 

and all other current noise sources treated as open circuits. Consider the current noise source 

In.3, the current will be split between the interfacial impedance Zm-s.3 and the series chain of 

Zf.3 + Rsol.3 + ZWE.1 + ZWE.2 + Rsol.4 + Zf.4 + Zm-s.4, as outlined in Figure 6.  
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The potential will be measured at junction j.8 where Zm-s.4 meets Zm-s.3, as this 

junction is at the substrate metal which is what is physically connected to the reference 

electrode terminal of the measuring instrument. This is in turn electrically equivalent to 

measuring the potential at j.9, where the other end of the connection for potential 

measurement is made (i.e. potential is measured between junctions j.8 and j.9), between ZWE.1 

and ZWE.2, though this will mean the polarity of the measurement is reversed. Thus, for In.3 

using the potential dividing rule:  

𝐸𝑚−𝑠.3 =  (
−𝑍𝑚−𝑠.3(𝑍𝑊𝐸.2+ 𝑅𝑠𝑜𝑙.4+ 𝑍𝑓.4+ 𝑍𝑚−𝑠.4)

𝑅𝑠𝑜𝑙.3+ 𝑅𝑠𝑜𝑙.4+ 𝑍𝑓.3+ 𝑍𝑓.4 + 𝑍𝑊𝐸.1+ 𝑍𝑊𝐸.2+ 𝑍𝑚−𝑠.3+ 𝑍𝑚−𝑠.4
) 𝐼𝑛.3  (eq.14)  

Similarly, for In.4:  

𝐸𝑚−𝑠.4 =  (
−𝑍𝑚−𝑠.4(𝑍𝑊𝐸.1+ 𝑅𝑠𝑜𝑙.3+ 𝑍𝑓.3+ 𝑍𝑚−𝑠.3)

𝑅𝑠𝑜𝑙.3+ 𝑍𝑊𝐸.1+ 𝑍𝑓.3+ 𝑍𝑓.4+ 𝑍𝑊𝐸.2+ 𝑅𝑠𝑜𝑙.4+ 𝑍𝑚−𝑠.3+ 𝑍𝑚−𝑠.4
) 𝐼𝑛.4  (eq.15)  

As per our earlier assumption, since the current noise sources are uncorrelated, the 

total potential noise power is given by:  

𝐸𝑛
2 =  

(−𝐼𝑛.3𝑍𝑚−𝑠.3(𝑍𝑊𝐸.2+ 𝑅𝑠𝑜𝑙.4+ 𝑍𝑓.4+ 𝑍𝑚−𝑠.4))
2

+ (−𝐼𝑛.4𝑍𝑚−𝑠.4(𝑍𝑊𝐸.1+ 𝑅𝑠𝑜𝑙.3+ 𝑍𝑓.3+ 𝑍𝑚−𝑠.3))
2

(𝑅𝑠𝑜𝑙.3+ 𝑍𝑊𝐸.1+ 𝑍𝑓.3+ 𝑍𝑓.4+ 𝑍𝑊𝐸.2+ 𝑅𝑠𝑜𝑙.4+ 𝑍𝑚−𝑠.3+ 𝑍𝑚−𝑠.4)
2   

(eq.16)  

Eq.16 gives the measured potential noise power for the SS technique of ENM outlined 

in Figure 2 with dissimilar coated metallic sections, such that Zm-s.3 ≠ Zm-s.4, In.3 ≠ In.4, and Zf.3 

≠ Zf.4, and dissimilar LREs (ZWE.1 ≠ ZWE.2) not equidistant from their associated exposed 

metallic sections (Rsol.3 ≠ Rsol.4).  

Assuming that the exposed metallic sections are identical, such that Zm-s.3 = Zm-s.4 = 

Zm-s, In.3 = In.4 = In, and Zf.3 = Zf.4 = Zf, and assuming that the LREs connected to the working 

electrode terminals are both identical and equidistant from their associated exposed metallic 

sections such that ZWE.1 = ZWE.2 = ZWE and Rsol.3/2 = Rsol.4/2 = Rsol, eq.16 expands and 

simplifies to:  

𝐸𝑛
2 =  

𝐼𝑛
2𝑍𝑚−𝑠

2

2
  (eq.13)  

As stated previously, the potential noise power generated by two identical but 

separate current noise sources as expressed in eq.13 is double that generated by a single 

current noise source (eq.9). Thus, for identical exposed metallic sections with coating films, 
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electrochemical potential noise power is unaffected by solution resistance, coating film 

impedance or any impedance introduced by connecting LREs to the working electrode 

terminals. Mathematically:  

𝐸𝑛 (𝑆𝐵)
2 =  𝐸𝑛 (𝑆𝑆)

2  

As explained earlier and outlined in eq.14 and eq.15, the polarity of any measured 

potential noise will be reversed, as may be expected intuitively since the current noise 

sources are connected to the reference electrode terminal of the measuring instrument. This 

has been demonstrated experimentally in the literature [5,12–15] and is again demonstrated 

experimentally in Section 4.3. Mathematically:  

𝐸𝑛(𝑆𝑆) =  𝐸𝑚−𝑠.3 + 𝐸𝑚−𝑠.4 

𝐸𝑛(𝑆𝐵) =  𝐸𝑚−𝑠.1 +  𝐸𝑚−𝑠.2 

According to eq.14 and eq.15, Em-s.3 and Em-s.4 are negative values due to the polarity 

reversal, and since potential noise power is unaffected by solution resistance, coating film 

impedance or the impedance of the LREs, we can conclude:  

𝐸𝑛(𝑆𝐵) =  −𝐸𝑛(𝑆𝑆) 

Noise resistance is defined by the ratio of the standard deviations of the potential and 

current noise [21]. Mathematically:  

𝑅𝑛 =  
𝜎𝑣

𝜎𝑖
  (eq.17)  

For the SB technique, substituting σv with eq.13 and σi with eq.4:  

𝑅𝑛 =  
𝑅𝑠𝑜𝑙

2
+  𝑍𝑓 +  𝑍𝑚−𝑠  (eq.18)  

For uncoated metallic sections assessed using the SB technique, Zf = 0, and eq.18 

simplifies to:  

𝑅𝑛 =  
𝑅𝑠𝑜𝑙

2
+  𝑍𝑚−𝑠  (eq.19)  

Thus in the presence of negligible solution resistance, Rn = Zm-s, or rather noise 

resistance is equal to the interfacial impedance of the metallic sections being analysed. This 

has been demonstrated previously [35].  
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For the SS technique, substituting σv with eq.13 and σi with eq.7, we get:  

𝑅𝑛 =  
𝑅𝑠𝑜𝑙

2
+  𝑍𝑓 +  𝑍𝑊𝐸  +  𝑍𝑚−𝑠  (eq.20)  

Considering that ZWE = ZWE.1 + ZWE.2, eq.20 is better expressed as:  

𝑅𝑛 =  
𝑅𝑠𝑜𝑙

2
+  

𝑍𝑊𝐸.1+ 𝑍𝑊𝐸.2

2
 +  𝑍𝑓 + 𝑍𝑚−𝑠  (eq.21)  

For uncoated metallic samples assessed using the SS technique, Zf = 0, and eq.21 

simplifies to:  

𝑅𝑛 =  
𝑅𝑠𝑜𝑙

2
+  

𝑍𝑊𝐸.1+ 𝑍𝑊𝐸.2

2
 +  𝑍𝑚−𝑠  (eq.22)  

In the presence of negligible solution resistance, and assuming ideal (and identical) 

LREs connected to the working electrode terminals, eq.22 simplifies to Rn = Zm-s, noise 

resistance being equal to the interfacial impedance of the metallic sections being analysed. 

Thus, based on these assumptions:  

𝑅𝑛(𝑆𝐵) =  𝑅𝑛(𝑆𝑆) 

Therefore, it can be concluded that when using ideal LREs, the SB and SS techniques 

measure the same electrochemical phenomena and will produce identical results, with the 

exception that the potential polarity will be reversed. Otherwise, the impedance of the LREs 

adds to the overall noise resistance.  

There has been well documented usage of the SS and NOCS techniques in the 

literature to date [5,12–15,28–33]. However, all of these investigations conclude that the 

choice of LRE, or pseudo-reference electrode in the case of platinum foil, has no significant 

effect on the acquired ENM data. It is clear from eq.21 and eq.22 that this is only true for 

LREs with negligible impedance compared to that of the electrochemical system being 

examined. In Section 4, the effects of significant LRE impedance when utilising the SS 

technique is demonstrated experimentally.  
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3. Consequences of the Theoretical Model  

It is recommended that the impedance of LREs be as low as possible for both DC and 

AC electrochemical tests [18–20]. Ideally, the impedance of LREs should in fact be zero in 

order to make the best use of the sensitivity of the recording instrument, though in reality this 

is not possible [18,19]. However, since many electrochemical tests necessitate the use of a 

high impedance input voltmeter to measure electrode potentials via a LRE, the impact of 

reference electrode impedance is not widely understood, and is frequently ignored [19,20]. 

Utilising LREs for ENM via the SS technique without understanding and measuring the 

impedance of the recording electrodes could lead to significant error, as outlined by eq.21 and 

eq.22.  

When utilising the SS technique, the impedance of the LREs used should be 

negligible relative to the impedance of the system being analysed. This is easier to achieve 

when assessing protective organic coatings over metallic substrates as outlined by Mabbutt 

et.al, since the impedance of the system being analysed is almost certain to be much higher 

relative to the impedance of a LRE (e.g. 1-100MΩ compared to 1kΩ for a “good” LRE) [14]. 

However, there are instances where the SS technique has been utilised to assess low 

impedance/resistance systems (~10kΩ), such as uncoated metals or damaged/scribed coatings 

over metallic substrates, with no consideration for what influence the LREs may have upon 

noise resistance measurements [5,12,13,15]. The authors do not suggest that such 

measurements may be incorrect. In all cases any data obtained with the SS technique has 

been verified using other electrochemical analysis techniques. It is erroneous however to 

simply assume that the impedance contribution of a LRE is negligible in relation to the 

impedance of the system being analysed. Each LRE will contribute to the impedance of the 

circuit when utilizing the SS technique, as dictated by eq.21 and eq.22. Furthermore, using 

LREs to record electrochemical current noise data via the SS technique for low 

impedance/resistance systems may pose additional problems. Specifically, a higher flow of 

current through the LREs may affect their stability, and the exact effects of this on recorded 

data it is not known at present.  

In order to circumvent this limitation of the SS technique and increase confidence in 

ENM data, as a minimum, the impedance of any LRE used should be measured in the 

laboratory prior to performing ENM in the field. When presenting noise resistance data, use 
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of the SS technique should be made clear, and the impedance of the LREs used should also 

be reported and compared with the noise resistance (Rn) values obtained.  

Alternatively, inert metallic electrodes such as platinum foil can be used as pseudo-

reference electrodes instead of LREs to acquire ENM data using the SS technique. Several 

researchers have demonstrated this as a viable method in the literature through the use of 

platinum foil electrodes embedded in organic coatings over metallic substrates [28–33]. In 

each instance, the researchers positioned a platinum foil electrode between the organic 

coating primer and topcoat, electrically isolating the foil from the metallic substrate and the 

external environment. These platinum foil sections were then connected to the working 

electrode terminals of the measuring instrument, whilst a single electrical connection from 

the metallic substrate was made to the reference electrode terminal. All researchers reported 

good correlation between ENM data obtained in this way and ENM data obtained by 

conventional means [28–33]. It is important to note that whilst the authors expect a minimal 

impedance contribution from platinum electrodes on ENM data, and whilst the experimental 

data referenced here appears to support this, the effects of pseudo-reference electrode 

impedance on ENM data for platinum foil electrodes has not been discussed or investigated 

specifically to date.  

Mabbutt et.al investigated the influence of different LREs and pseudo-reference 

electrodes specifically for the SS and NOCS electrode configurations, although the 

motivation for doing so was due to concerns over the noise intrinsic to LREs contributing to 

the measured noise data, and not due to the influence of LRE impedance [5]. Mabbutt 

conceived that when utilising the SS and NOCS techniques there are more sources of noise 

owing to the use of two or three LREs for the techniques respectively. Whilst ideally LREs 

should be noiseless, and are frequently assumed to be so, in reality this is not true [4,21,34]. 

Saturated calomel electrodes (SCEs), silver/silver chloride (Ag/AgCl) electrodes and 

platinum foil electrodes were investigated. It was concluded that choice of recording 

electrode was independent of the Rn for each coated sample measured via the NOCS 

technique [5]. Though not discussed, this result implies that the LRE’s used had negligible 

impedance relative to the coating systems analysed.  

There is one final consequence of the theoretical model. Concerning the SB 

technique, it is clear from previous work that it is the current noise source and metal-solution 

interface impedance produced by the two exposed metallic sections that must be identical, or 
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approximately so, in order for the calculated noise resistance (Rn) to be inversely proportional 

to corrosion rate [36,37]. These metallic sections are identified as the working electrodes, and 

as stated previously, identical working electrodes are not possible in reality. There have been 

claims that data acquired using the SS technique is of noticeably improved accuracy, owing 

to the use of more identical working electrodes in the form of LREs [12,14,15]. The authors 

dispute this claim, as there is no theoretical or mathematical basis to support it. Considering 

the SS technique, it is again the current noise source and metal-solution interface impedance 

produced by the two exposed metallic sections that must be nominally identical. The fact that 

this coupled pair are identified as the reference electrode whilst LREs are identified as the 

working electrodes does not change the theoretical requirements of identical current noise 

sources. In addition, the LREs used should be as close to identical and “ideal” as possible, 

i.e., they should both have a stable and identical potential, contribute negligible noise to the 

electrochemical system, and have negligible or near-zero impedance, as stated earlier. There 

have also been claims that data acquired using the SS method contains less DC drift than data 

acquired using the SB method [12]. This is likely due to the two current noise sources being 

electrically connected (being the same section of material) prior to ENM, whereas two 

separate samples are required for the SB method. This could be remedied by electrically 

connecting the metallic section working electrodes of the SB method for a time prior to 

ENM.  

 

4. Experimental Analysis of Reference Electrodes in Single Substrate 

Configuration  

 

4.1 Outline  

ENM was performed utilising the SS technique on low carbon steel S-type Q-panels 

in 3.5wt% NaCl solution. Various LREs were tested in order to demonstrate the effects of 

electrode impedance on ENM data and verify the theoretical model and its consequences.  
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4.2 Experiment Details  

The surface tested was a standard low carbon steel S-type Q-panel. The corrosive 

electrolyte used was a 3.5wt% NaCl solution. An uncoated, S-type Q-panel exposed to 

3.5wt% NaCl solution was chosen in order to produce a worst case scenario for use of the SS 

technique. Corrosion of unprotected and uncoated carbon steel in 3.5wt% NaCl solution 

would be expected to produce a relatively high corrosion current, and hence a high current 

noise signal. This in turn constitutes a low impedance system, making it easier to identify the 

effects of LREs with high impedance, as well as providing greater delineation between 

different LREs. The composition of the alloy was as follows: 0.15wt% C, 0.6wt% Mn, 

0.03wt% P and 0.035wt% S. All samples were stored wrapped in paper containing a vapour 

phase rust inhibitor. All samples were rinsed with acetone, deionised (DI) water and then 

ethanol prior to testing.  

ENM was performed utilising the SS technique with a number of different LREs. The 

LREs tested included; mercury/mercurous sulphate (Hg2SO4) electrodes supplied by CH 

Instruments, Inc. (part number CHI151), and SCEs supplied by Sentek (R1 reference 

electrode). The complete list of LREs used is summarised in Table 1. Examples of these 

LREs can be seen in Figure 7.  

 

Table 1: Details of laboratory reference electrodes used.  

Electrode ID Electrode Type Supplier 

SCE1  mercury/mercury chloride  Sentek  

SCE2  mercury/mercury chloride  Sentek  

Ref.E3  mercury/mercurous sulphate  CHI, Inc.  

Ref.E4  mercury/mercurous sulphate CHI, Inc.  

Ref.E5  mercury/mercurous sulphate CHI, Inc.  

Ref.E6  mercury/mercurous sulphate CHI, Inc.  

 



20 

 

 
Figure 7: Photograph showing a) mercury/mercurous sulphate electrode and b) SCE.  

 

An in-house built Perspex cell setup was held to the Q-panel samples using spring 

clamps and a rubber O-ring (Figure 8). The exposed surface area for each cell during 

electrochemical testing was measured to be 706.86mm2. 7.5ml of corrosive electrolyte was 

poured into each cell. The mercury/mercurous sulphate electrodes were held in place using 

rubber corks (see Figure 8, ventilation holes were drilled in the corks). The SCEs were held 

in place using laboratory stands.  

Immediately after the electrolyte was poured into the cells, the experimental setup was 

connected to a Gammry Reference 600 potentiostat in the SS configuration (the LREs were 

connected to the working electrode terminals and the corroding Q-panel sample was 

connected to the reference electrode terminal, as per Figures 2 and 4). ENM data was 

acquired for 34 minutes and 8 seconds at a sampling frequency of 2Hz, yielding 4096 data 

points total. This data was then separated into eight blocks of 512 data points each. 

ENANALIZ, developed by Cottis, was then used to linearly detrend this data and obtain the 

standard deviation and mean of the current and potential noise signals for each data block. 

The noise resistance of each data block was then calculated, as per eq.17. Though linear 

detrending of ENM data to remove DC drift has been criticised [8], it was considered 

adequate for the present experiment. This reasoning is based on the simple nature of the 

corroding system consistently used in each experiment, and prior use of the ENANALIZ 
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software in the literature for similar experiments [17,35]. Ultimately, the corroding Q-panel is 

present simply to provide a source of significant current noise. Measuring the attenuation of 

this noise by the LREs is the goal of the experiment.  

A control experiment utilising the standard SB technique was also performed; the cell 

setup was similar to that for the SS technique except that two separate sections of Q-panel 

were connected to the working electrode terminals, and a hollow Perspex tube connected the 

two cells forming the salt bridge. In this instance, 15ml of corrosive electrolyte was used and 

a single mercury/mercurous sulphate electrode provided a stable reference potential.  

The AC impedance of each LRE was measured via electrochemical impedance 

spectroscopy (EIS) using a Gammry Reference 600 potentiostat. The LREs were connected 

to the working electrode terminal and a large surface area platinum wire mesh was connected 

to the reference and counter electrode terminals. Both electrodes were immersed in 0.1M 

NaCl solution. An oscillating potential of +/-10mV vs. open circuit potential (OCP) was 

applied to the working electrode terminal, from a frequency of 1,000,000Hz through to 

0.001Hz, with 10 data points per decade, and the AC response was measured.  

 

 
Figure 8: Photograph showing experimental setup for the SS technique.  

 

4.3 Results and Discussion  

As outlined previously, reference electrode impedance has no effect on ENM data for 

the SB technique. Thus, the noise resistance obtained by this technique and presented in 
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Figure 9 can be considered the minimum noise resistance obtainable for the corroding system 

analysed. The noise resistance data is what would be expected of a bare corroding metal; a 

relatively low noise resistance initially followed by a rapid increase (of approximately one 

order of magnitude) to a steady state, likely due to the formation of corrosion products on the 

surface [38].  

It can be seen in Figure 9 that the choice of LRE had a significant impact on the 

calculated noise resistance when using the SS technique. The use of SCEs appears to have 

had a measurable but minimal impact on the noise resistance, implying that these electrodes 

are relatively low impedance. By contrast, the mercury/mercurous sulphate electrodes had a 

significant impact on the noise resistance, with an increase of more than two orders of 

magnitude measured in some instances. Also of great interest, the combination of Ref.E5 and 

Ref.E6 produced a noise resistance approximately one order of magnitude higher than the 

combination of Ref.E3 and Ref.E4, despite all four electrodes being of the same type and 

design, and from the same manufacturer. For all of the LREs, a similar trend in the noise 

resistance over time was observed relative to the results obtained using the SB technique.  

Of critical importance, the trends observed in the noise resistance plots (Figure 9) due 

to changes in LRE are repeated in the standard deviation of current noise plots (Figure 10), 

but in reverse. Conversely, there is minimal change in the standard deviation of potential 

noise plots (Figure 11). This demonstrates experimentally that calculated standard deviation 

of current noise is inversely proportional to the impedance of the recording reference 

electrodes, whilst calculated noise resistance is directly proportional to the impedance of said 

electrodes, as dictated by eq.8 and eq.22 respectively. The impedance of the recording 

reference electrodes attenuates measured current noise in the SS technique, and thus adds to 

the calculated noise resistance. Potential noise is unaffected by the impedance of said 

electrodes as per eq.13.  

Although there was limited change in the standard deviation of potential noise 

between the different LREs used, it is clear that there is still a measurable and reproducible 

difference between them (Figure 11). This would at first appear to be in contradiction to 

eq.13. However, it can be seen from the standard deviation of potential noise plots that any 

measured difference is between the different types of LREs used, i.e. mercury/mercurous 

sulphate and SCE. As stated earlier, the combination of Ref.E5 and Ref.E6 produced a noise 

resistance approximately one order of magnitude higher than the combination of Ref.E3 and 
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Ref.E4, but both pairs of electrodes produced an identical standard deviation of potential 

noise. ENM performed using the SB technique with Ref.E5 also produced an identical 

standard deviation of potential noise. Thus it is likely that the measured difference in 

potential noise power is dependent on the type of LRE used and is independent of electrode 

impedance.  

It can be seen in the mean potential noise plots (Figure 12) that use of the SS 

technique has reversed the polarity of the potential measurements, consistent with the 

theoretical model developed in Section 2.  

 

 
Figure 9: Noise resistance vs. time plot for ENM performed with (a) salt bridge technique using 

Ref.E5 (■), (b) single substrate technique using Ref.E3 and Ref.E4 (▲), (c) single substrate technique 

using Ref.E5 and Ref.E6 (♦), and (d) single substrate technique using SCE1 and SCE2 (●). 
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Figure 10: Standard deviation of current noise vs. time plot for ENM performed with (a) salt bridge 

technique using Ref.E5 (■), (b) single substrate technique using Ref.E3 and Ref.E4 (▲), (c) single 

substrate technique using Ref.E5 and Ref.E6 (♦), and (d) single substrate technique using SCE1 and 

SCE2 (●).  

 

 
Figure 11: Standard deviation of potential noise vs. time plot for ENM performed with (a) salt bridge 

technique using Ref.E5 (■), (b) single substrate technique using Ref.E3 and Ref.E4 (▲), (c) single 
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substrate technique using Ref.E5 and Ref.E6 (♦), and (d) single substrate technique using SCE1 and 

SCE2 (●).  

 

 
Figure 12: Mean potential noise plot for ENM performed with (a) salt bridge technique using Ref.E5 

(■), (b) single substrate technique using Ref.E3 and Ref.E4 (▲), (c) single substrate technique using 

Ref.E5 and Ref.E6 (♦), and (d) single substrate technique using SCE1 and SCE2 (●).  

 

A measurement of the impedance modulus and phase shift of each of the LREs is 

given in Figures 13 and 14 respectively. Firstly, it is clear that all of the electrodes tested 

exhibit high impedance in the frequency range 1-100mHz, and especially so in the frequency 

range 1-10mHz. It is also noteworthy that for all of the electrodes tested, the entire 

impedance spectrum is above 1kΩ, the impedance suggested for a “good” LRE in Section 3. 

Secondly, the phase angle results demonstrate that all of the electrodes exhibited significant 

capacitive behaviour, with multiple time constants implied by the many inflections in the 

phase angle plots. Considering this data and the results in Figures 9 and 10, it is likely that 

both the resistive and capacitive characteristics of the electrodes are responsible for the 

consistently higher noise resistance measured via the SS technique relative to the SB 

technique. Of critical importance however, capacitive effects are beyond the scope of the 

strictly linear EEC that the theoretical model presented herein is based on. Therefore, the 
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exact magnitude of the impedance contribution of each individual electrode to the measured 

noise resistance cannot be determined.  

 

 
Figure 13: EIS impedance plots for laboratory reference electrodes (a) Ref.E3, (b) Ref.E4, (c) 

Ref.E5, (d) Ref.E6, (e) SCE1, and (f) SCE2, used in electrochemical noise measurement experiments.  
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Figure 14: EIS phase angle plots for laboratory reference electrodes (a) Ref.E3, (b) Ref.E4, (c) 

Ref.E5, (d) Ref.E6, (e) SCE1, and (f) SCE2, used in electrochemical noise measurement experiments.  

 

5. Conclusion  

A theoretical model for the single substrate (SS) technique of electrochemical noise 

measurement (ENM) was developed, and the effect of connecting laboratory reference 

electrodes (LREs) to the working electrode terminals of the recording instrument was 

determined. According to the theoretical model, when using two identical LREs of 

sufficiently low impedance in solutions with negligible resistance, the noise resistance 

obtained using the SS configuration is equivalent to that obtained using the salt bridge (SB) 

configuration, theoretically validating the SS configuration. The theoretical model also 

demonstrated that should high impedance LREs be utilised with the SS technique, the 

impedance of the two recording LREs will attenuate the electrochemical current noise and 

hence add to the noise resistance.  

In addition, the experimental work presented herein has demonstrated that LREs can 

have significantly high impedance and capacitance, and that these properties can impact 

ENM data obtained via the SS technique. The experimental analysis was consistent with the 
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theoretical model, demonstrating the need to measure the impedance of LREs in the 

laboratory prior to performing ENM in the field.  
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