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Abstract
We synthesize the phosphor Na3HTi1-xMnxF8 (Na3HTiF8:Mn4+) material series using a coprecipitation
method. We determine the complete phase and crystallographic structure of the Na3HTiF8 series end-
member, including the determination of the H atoms at the 4b (0, 1/2, 0) crystallographic site within the
Cmcm space group symmetry structure, resulting in a quantum efficiency of ∼44%, which is comparative to
the Na2SiF6:Mn4+ phosphor materials. We successfully model the luminescent properties of the
Na3HTi1-xMnxF8 material series, including temperature and time-dependent photoluminescence, providing a
good prediction of the decay properties at low and high temperature and revealing the existence of Mn5+

during the ionization process. Notably, LED package data indicates that the Na3HTi1-xMnxF8 material series
could be a promising candidate for high-level and back-lighting devices. This research reveals the role that
hydrogen plays in determining fluoride phosphor structure and properties, revealing a new path for the
synthesis of fluoride phosphors.
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ABSTRACT 

We synthesize the phosphor Na3HTi1-xMnxF8 (Na3HTiF8:Mn4+) material series using a

co-precipitation method. We determine the complete phase and crystallographic structure of the 

Na3HTiF8 series end-member, including the determination of the H atoms at the 4b (0, 1/2, 0) 

crystallographic site within the Cmcm space group symmetry structure, resulting in a quantum 
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efficiency of ~ 44%, which is comparative to the Na2SiF6:Mn4+ phosphor materials. We 

successfully model the luminescent properties of the Na3HTi1-xMnxF8 material series, including 

temperature and time-dependent photoluminescence, providing a good prediction of the decay 

properties at low and high temperature, and revealing the existence of Mn5+ during the ionization 

process. Notably, LED package data indicates that the Na3HTi1-xMnxF8 material series could be a 

promising candidate for high-level and back lighting devices. This research reveals the role that 

hydrogen plays in determining fluoride phosphor structure and properties, revealing a new path 

for the synthesis of fluoride phosphors. 

 

TOC GRAPHICS 

 

White light-emitting diodes (LEDs) are eco-friendly, affordable, and have high 

efficiency. Phosphor, as a matrix material for controlling the luminescent color of LED devices, 

has become a field of interest,1-4 with Mn4+-doped phosphors in particular gaining attention as a 

result of being rare-earth-free and having relatively narrow band emission spectra. Amongst host 
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phosphors, Mn4+-doped fluorides can generate a red emission with an emission peak ~ 630 nm, 

beneficial for high-level back lighting devices. The narrow-emission of these materials avoids 

the substantial energy losses at wavelengths beyond 650 nm that occurs in traditional red 

phosphor materials, such as CaAlSiN3:Eu2+ and Sr2Si5N8:Eu2+.5-7 Therefore, Mn4+-doped 

fluorides have sharp emissions over adequate luminescent wavelengths leading to zero-waste 

photon ratios.8 Accordingly, efforts have focused on synthesis methods for such materials, 

including the synthesis of Mn4+-doped fluoride phosphors using wet chemical etching9-13 and the 

development of cation-exchange methods to synthesize the K2TiF6:Mn4+ phosphor, resulting in 

enhanced quantum efficiency and luminous efficacy of LED devices.14  The most common 

synthetic approach being co-precipitation using two solutions that are mixed to obtain a Mn4+-

doped fluoride phosphor.15-16 Most fluoride phosphors synthesized to date belong to the chemical 

composition A2MF6:Mn4+, BMF6:Mn4+, and D3MF7:Mn4+ (A = NH4
+, Li+, Na+, K+, Rb+, Cs+, B = 

Mg2+, Ca2+, Sr2+, Ba2+ , D = Zr and M = Si, Ge, Zr, Sn, Ti ). A major drawback of the co-

precipitation method is the limitation of the species of the host material, which has limited the 

development of fluoride phosphors and consequently, the development of the luminescence 

properties of Mn4+ in more complicated structures. By contrast, cation exchange is a relatively-

easy method of synthesizing a Mn4+-doped phosphor in a specified material. Although more 

diverse host materials can be produced in this way, the lower quantum efficiencies of materials 

produced by cation-exchange compared to co-precipitation methods limit the practical 

application of cation-exchange produced materials in white LEDs. 

In this study, we synthesize the novel Na3HTi1-xMnxF8 (Na3HTiF8:Mn4+) material series 

using a modified co-precipitation method. High-resolution neutron powder diffraction (NPD) is 

used to comprehensively characterize and determine the complete crystallographic details of the 
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Na3HTiF8 end-member material, which we use a basis for understanding the luminescent 

properties of the Mn4+ phosphor series that we measure, where LED package data showing 

promise of the material series for high-level back lighting devices. 

 Energy dispersive spectroscopy (EDS) of Na3HTi0.95Mn0.05F8 sample was performed 

(Figure S1) and confirmed a Na:Ti ratio of 22:7.7, in close agreement to the expected 

composition. X-ray powder diffraction with D2-phaser of the as-prepared Na3HTiF8:Mn4+ 

samples (Figure 1a) produced similar results across the series and could not provide information 

concerning the location of H atoms (not previously determined for the parent Na3HTiF8 material 

in ICSD#14131). The determination of H within the structure, which influences the electronic 

environment of F and therefore the bandgap, was performed using high-resolution NPD. Full 

Rietveld analysis using these data confirmed a main phase of orthorhombic Na3HTiF8 and 

secondary phase of tetragonal Na2TiF6 in the parent Na3HTiF8 material, able to be described 

using the structures in ICSD#14131 and #24477 as starting structures, respectively, resulting in a 

final refined weight fraction of 63:37. The coherent neutron scattering length of the H nucleus (-

0.3742 x 10-12 cm) makes it straightforward to obtain a quantitative refinement of the structural 

model for the material that includes H, with Refinement profiles for models without and with H 

shown in Figure 1b and c, respectively. In the model without H, the residual negative nuclear 

density arising from H in the structure can clearly be observed and a model that includes H at the 

(0, 1/2, 0) 4b crystallographic site refined from this (Figure 1d and Table S1). Following the 

inclusion of the H into the orthorhombic phase model, the weight ratio of the orthorhombic and 

tetragonal phases was 58.7(7):41.3(7). Further, the inclusion of the H atom into the Na3HTiF8 

structure leads to the distortion of the TiF6
2- octahedral units due to the extra bonding in the 

structure. Besides, the HF bond is quite strong, which will also cause the distortion of the TiF6
2- 
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octahedral units. As a result, this effect may contribute to the enhancement of the zero-phonon 

line. According to our previous study, if we define the distortion of Na2TiF6:Mn4+ as 100%, 

Na3HTi1-xMnxF8 possesses around 40% of the distortion of Na2TiF6:Mn4+
.
17 Morphology of these 

phosphor materials is known to affect luminescent intensity, with large and well-ordered 

crystallites usually resulting in high luminescent intensity as a result of reduced surface defect 

concentration. Scanning electron microscopy (SEM) images of Na3HTi0.95Mn0.05F8 (Figure S2) 

reveals high crystallinity, with an unusual appearance for fluoride phosphors that is indicative of 

decreased surface defects and consistent with enhanced photoluminescence intensity. 

  

 
Figure 1. (a) Synchrotron X-ray diffraction data of the Na3HTiF8:Mn4+ material series shown 
alongside the ICSD#14131 entry for the parent Na3HTiF8 material. (b) Rietveld refinement 
profiles of Na3HTiF8 using high-resolution NPD data using a structural model without (b) and 
with (c) H. (d) The Na3HTiF8 structure obtained from (c), overlaid with the Fourier-difference 
map obtained from (b) revealing negative nuclear density (yellow shell and blue inner) arising 
from H. 
 

Photoluminescence (PL) and photoluminescence excitation (PLE) spectra of the 

Na3HTiF8:Mn4+ series are shown in Figure 2a. The Na3HTiF8: Mn4+ series can be excited at 350 

and 460 nm, corresponding to the spin-allowed 4
A2→

 4
T1 and 4

A2→
 4

T2 electron transitions, 

respectively, indicating efficient excitation by the blue LED. The PL spectra exhibit a sharp-line 
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emission and spin-forbidden 2
E→

4
A2 electron transition with a peak at ~ 627 nm, containing a 

zero-phonon line (ZPL) at 618 nm and lines related to phonon-assisted transitions. These spectra 

suggest the materials to be good candidates for LED devices as a result of the zero-waste photon 

ratios corresponding to photon ratios longer and shorter than 650 nm. Moreover, the zero-phonon 

line (ZPL) gains some intensity at around 618 nm, which indicates sensitivity to the local-

coordination environment of Mn4+. The hydrogen-free crystal structure has octahedral 6 

coordinate Ti and Mn4+, which is modified in the Na3HTiF8:Mn4+ series by the introduction of 

octahedral distortion of this unit, which is expected to impact the ZPL. Accordingly, the PL 

spectra for the Na3HTiF8:Mn4+ series show luminescent intensity reaching maximum 5% and 7% 

Mn4+, before reducing at higher Mn levels. The internal quantum efficiency (IQE), absorption 

(abs.), and external quantum efficiency (EQE) are shown in Table S2, revealing that the 5% 

Mn4+ sample have the highest EQE, of 43.8%, comparable to that of the Na2TiF6:Mn4+ series of 

materials.The energy levels of the octahedrally coordinated Mn4+ are illustrated by the Tanabe-

Sugano diagram (Figure 2b) showing ligand field splitting energies of localized states of the ion 

with respect to the crystal field strength 10Dq.17 The energetic structure of the 3d
3 system is 

described quantitatively by the Racach parameters B and C and by the crystal field strength 

10Dq.19-20 

� =		 (∆�)
�

	
 ��
∆�
��(∆�	
��) 	       (1) 

where �E is the difference between the energy of the lowest 4
T1g and 4

T2g states. Value of C can 

be calculated from the equation:     

    
�( ��� )

� = 3.05 �
� + 7.9 − 1.8 �

�                     (2) 
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To analyze the emission lifetime, we considered the configurational coordinate diagram for 

electrons in Mn4+ in octahedral and distorted octahedral configurations in Figure 2c, where Q is 

the configurational coordinate, which can be considered as the distance between the central ion 

and ligands. The potential energy curves have minima at QE for ground (4
A2g) and excited (2

Eg) 

states and are shifted in energy by value E(2
Eg). In the 4

T2g state the parabola has a minimum at 

Q = QT and energy equal to 10!" − #ℏ% , where S is the Huang ℏ−Rhys factor and ω is the 

energy of local vibration mode. 17 Energy ∆ is defined as the energetic distance between the 

minima of the 4
T2g and 2

Eg electronic states. Energy ∆’ is defined as the difference between the 

4
T2g and 2Eg states for Q = QE (see Figure 2c). These parameters are listed in Table S3. 

 

 
Figure 2. (a) Photoluminescence spectra of the Na3HTiF8:Mn4+ series. (b) Tanabe–Sugano 
diagram for the 3d

3 system. (c) Potential energy surface of the Mn4+ system where QE describes 
the position of F- when electrons in Mn4+ occupy the 4

A2g and 2
Eg states belonging to the t3 

electronic configuration and QT represents the positions of F- when the system is in the 4T2g state. 
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 The PL spectra of the Na3HTiF8:Mn4+ series over 10–350 K are presented in Figure 3a. 

The emission spectra show the usual temperature-dependent increase of the anti-Stokes phonon 

lines ν6’ and ν4’, accompanied by a smaller increases of the Stokes phonon lines with energies  

hν3= ℏ%&= 657 cm-1, hν4 = ℏ%'= 333 cm-1, and hν6 = ℏ%( =214 cm-1
, with respect to the ZPL. 

Evidence of splitting of the ZPL can be seen from the PL spectra below 200 K. 

Figure 3b contains the temperature-dependent intensity ratio of Stokes and anti-Stokes 

sidebands to the ZPL emission intensity, obtained from their integrated areas in the PL spectra. 

The ratio of the Stokes and anti-Stokes line intensity (IS+A) to the ZPL intensity (IZPL) is 

described by:21 

       
()*+,))-./ = ∑ 1234� (5)

16787� coth =ℏ>?@ABC5        (3) 

where k is the Boltzmann constant, T is temperature, ℏ%5 is the energy of the νth vibrational 

mode. The quantities DEFGF@  and DHIJ@ (K) are the effective dipole transition moments related to 

static distortions and distortion created by interaction with the νth vibrational mode, respectively. 

The intensity of the ZPL appears temperature independent and is equal to the strength of 

interaction with the odd parity lattice distortion. Therefore the ratio DHIJ@ (K)/DEFGF@  can be 

obtained from the ratio of the integrated intensities of spectral lines in the low temperature 

experimental spectra, with these parameters presented in Table S4.  

The increase of transition probability causes a decrease in the luminescence lifetime (τ), 

as shown by: 

M(N) = OP
�Q∑ R234� (?)

R6787� STUV=ℏW?�XYC?
            (3a)  
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where τ0 is the lifetime of the 2
Eg state at low temperatures (10K). The temperature dependence 

of IS+A/IZPL obtained using the relation (3) using data from Table S4 is shown by the solid curve 

in Figure 3b. The IS+A/IZPL reproduces DHIJ@ (K)/DEFGF@  and we model this to understand the 

physical processes that lead to the appearance of the sharp line phonon sideband. We apply a 

simplified model in which real phonons are represented by a single phonon mode, and perform 

additional fitting using: 

()*+,))-./ = 1234�
16787� coth =ℏ>Z[[@AB C     (4)  

We obtain 
1234�
16787�  = 5.7 and an effective phonon energy equal to ℏ%\]]=265 cm-1, as presented by 

the dashed red curve in Figure 3b, which reproduces the experimental data well. 

 

 

Figure 3. (a) Temperature dependence of PL spectra of the Na3HTiF8:Mn4+ series under 
excitation at 442 nm. (b) Ratio of the intensity of Stokes and anti-Stokes lines (IS+A) to the 

intensity of the ZPL (IZPL) (solid line) and DHIJ@ (K)/DEFGF@  obtained from Table S4 (points) 

shown alongside the model (red dashes). 
 

 Figure 4a shows the temperature-dependent ZPL decay curves under 440 nm pulsed 

excitation where the points in Figure 4b correspond to the temperature dependence of the decay 
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times calculated from a single exponential fit. The decay time changes from 10 ms at 10 K to 

less than 1 ms above 400 K. The initial change of the decay time with temperature can be 

attributed to an increase in the total radiative transition probability due to the thermal population 

of the excited vibrational states.21-22 Above 400 K, the decay time reduces as accompanied by a 

decrease of luminescence intensity, signifying the onset of nonradiative quenching.  

We modeled the temperature dependence of the luminescence decay time using the 

relation (3a) and data from Table S4 where τ(0) = 9 ms, with the result presented as a black 

curve in Figure 4b. We note that this theoretical calculation has no free parameters, using only 

parameters obtained experimentally from the low-temperature PL spectra (ℏ%5 , DHIJ@ (K)/DEFGF@ ). 

The theory reproduces the experimental data below 200 K, and we next applied the relation:20 

 M� = OY_�Q&`ab=c∆XYCd
e�Q∑ R234� (?)

R6787� STUV=ℏW?�XYC	? fg=h*cijk C�Q&`ab=c∆XYCl
				   (5)  

which considers the effect of admixing of the 4
T2g and 2

Eg states due to spin-orbital interaction 

and thermal excitation of the Mn4+ from the 2
Eg to the 4

T2g state, with the latter diminishing the 

luminescence lifetime due to the spin allowed 4
T2g →

4
A2g transition. mE�n  is the spin-orbit 

coupling constant and MB is the time constant interpreted as the radiative lifetime of the 4T2g state. 

The available experimental data for low field materials show that the 4
T2g→

4
A2g transition 

lifetime should be in the range 10-100 µs.23 We obtain a good description of our experimental 

data (blue dashed curve in Figure 4) below 200 K using relation (5) with phonons parameters 

listed in Table S4 and MB = 0.1	op	and	mEn = 215	cm-1. Additionally, we performed calculations 

using a simplified model with lattice phonons represented by the single phonon mode ℏ%\]]  

given by the relation:  
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     M� = OY_�Q&`ab=c∆XYCd
e�QR234�

R6787� STUVuℏWZ[[�XY vfg=h*cijk C�Q&`ab=c∆XYCl
				   (5a)  

The simplified model in (5a) reproduces the experimental data well at low temperatures for 

ℏ%\]]= 265 cm-1 , 
1234�
16787�  =5.7, and MB = 0.1op	, mEn = 215	cm-1, as shown by the blue dashed 

dotted curve in Figure 4b. We note that the simplified effective phonon mode model produces a 

similar result to that using the more complete theory. We address the reduction in lifetime at 

temperature above 200 K by taking into account non-radiative processes by modification of 

relations (5) and (5a), obtaining the relation:  

M� ′ = OY_�Q&`ab=c∆XYCQ`ab=c�4xXY Cd
y�Qz R234� (?)

R6787� STUV=ℏW?�XYC?
{[=h*cijk C�Q&`ab=c∆XYC]Q~4x∙OY	∙`ab=c�4xXY C

  (6) 

which considers all phonons, and relation:  

M� ′ = OY_�Q&`ab=c∆XYCQ`ab=c�4xXY Cd
e�QR234�

R6787� STUVuℏWZ[[�XY v		f[=h*cijk C�Q&`ab=c∆XYC]Q~4x∙OY	∙`ab=c�4xXY C   (6a)  

which considers a single effective phonon.  

In relations (6) and (6a), Enr and pnr are the activation energy and frequency factor (rate) for non-

radiative processes, respectively. We performed calculations using the data from Table S4 in 

relation (6) with 
1234�
16787�  = 5.7 and ℏ%\]] = 265 cm-1 in relation (6a). These models describe the 

experimental data well, with that obtained from relation (6) shown as a solid red curve and from 

relation (6a) as a dotted red curve in Figure 4, with both yielding Enr = 2900 cm-1 and pnr = 12.6 

10
8
 s-1. We note that Enr is smaller than the energy of the 4

T2g state, shown by ∆ in Figure 2c. 

Therefore, we can tentatively attribute the non-radiative state excitation to ionization, which 

diminishes the number of electrons in the Mn ion, creating Mn5+. Hence, Mn5+ + e- should be 
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presented in the potential energy surface shown in Figure 2c, manifesting as parabola shifted to 

the left as a result of the diminished central ion - ligand distance (shown in red in Figure 2c). 

 

 

Figure 4. Temperature dependence of (a) ZPL decay profiles and (b) ZPL decay time under an 
excitation wavelength of 440 nm. Decay times were obtained by a single exponential decay fit 
(straight lines in (a)). The black curve is calculated using the relation (3), the blue dashed curve 
is calculated using the relation (5), the blue dashed-dotted curve is obtained using the relation 
(5a), the red solid curve is calculated using the relation (6), and the red curve is calculated using 
the relation (6a). 
 

To evaluate the potential of the Na3HTiF8:Mn4+ material series for practical applications, 

a blue-chip LED was fabricated using the β-SiAlON:Eu2+  and Na3HTi0.95Mn0.05F8 phosphors. 

The narrow-band emission of Na3HTiF8:Mn4+ was observed in the electroluminescence spectra 

under the excitation as shown in Figure 5. The narrowband emission property makes it more 

suitable for the application in the backlighting system. The driving current was set to 0.02 A, 

which provided a luminous efficacy of 83.0 lm/W. In the Commission Internationale de 

l’˚clairage (CIE) 1931 color spaces, chromaticity coordinates (0.27,0.24) is close to the ideal 

backlighting color point (0.28,0.24). The generated area on the CIE diagram is around 91.4% of 
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NTSC area, which indicates that Na3HTiF8:Mn4+ can be a potential candidate of red phosphors 

for the backlighting system in the future. 

Moreover, we also evaluate the chemical and thermal stability of Na3HTiF8:Mn4+.             

Na3HTi0.95Mn0.05F8 powders were put into an ethanol/water solution with a ratio of 2:3 as shown 

in Figure S3. Na3HTi1-xMnxF8 maintained its strong luminescent intensity in the solution for 12 

hr. To quantify its stability, we measure the relative luminescence intensity of the sample, which 

around 80% of its original intensity can be obtained after 12 hr. Also, the thermal property of 

Na3HTi0.95Mn0.05F8 is analyzed by the temperature-dependent photoluminescence as shown in 

Figure S4. We keep the sample for one minute for each data point to make sure the uniform 

temperature of the powder before measuring. The temperature for the backlighting system is 

around 400 K. Na3HTi1-xMnxF8 can maintain 95% of its original luminescent intensity at 400 K, 

which can be a potential candidate for the backlighting-used phosphor materials. 

 



 14

  
Figure 5. Color gamut of the LED employing β-SiAlON:Eu2+ and Na3HTi0.95Mn0.05F8 phosphors 
(Red triangle) compared with NTSC (dashed blue triangle). The inset figure is the 
electroluminescence (EL) spectrum of the fabricated LED. 
 

In conclusion, a completely new series of Na3HTiF8:Mn4+ fluoride phosphors with high 

crystallinity are synthesized via a modified co-precipitation method. We use neutron powder 

diffraction to locate the H atom within the undoped parent of the series at the (0,1/2,0) position 

of the 4b crystallographic site within the Cmcm space group symmetry orthorhombic structure, 

resulting in a distortion of the octahedral TiF6 unit, and impacting luminescence. Analysis of 

temperature-dependent photoluminescence and decay times considered three processes: (1) 

admixing of 4
T2g and 2

Eg states due to spin-orbital interaction and thermal excitation of the Mn4+ 

from the 2
Eg to the 4

T2g states, (2) the spin allowed 4
T2g →

4
A2g transition from thermal 

population, and (3) non-radiative processes. The given model described experimental data well 

and allowed the prediction of decay properties at low and high temperature, revealing the likely 
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presence of Mn5+ during the ionization process. A LED fabricated from a series member 

demonstrated the potential of the Na3HTiF8:Mn4+ material series as candidates for backlighting 

system. 

This study provides a new route for the synthesis of fluoride phosphors and demonstrates 

a good theoretical approach to predict the properties of the Mn4+ system, providing a path to 

address discrepancies between the theory and experiment of this class of materials. 
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