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Synopsis 
 
Biomarkers are critically important in clinical oncology. In addition to providing valuable 

prognostic information, biomarkers assist in patient risk assessment, prediction of response to 

treatment, and monitoring progress of disease, all key factors in improving the individualisation 

and delivery of treatment. Furthermore, biomarkers provide insight into the mechanisms of 

cancer and identify novel targets for therapeutic agents. This thesis investigates both molecular 

biomarkers in gastroesophageal cancer and clinical biomarkers in colon cancer and identifies 

several molecular targets and clinical markers of interest. 

 

Chapter 1 provides a summary of the literature on the selected biomarkers in gastrointestinal 

cancer, concentrating on cancer stem cells (CSC), the urokinase plasminogen activation system, 

and circulating tumour cells in gastroesophageal cancer, and clinical biomarkers in colon 

cancer. 

 

Chapter 2 examines the role of the urokinase plasminogen activation system, including the 

urokinase plasminogen activator receptor (uPAR), in resected primary gastroesophageal 

cancers.  In this comprehensive systematic review and meta-analysis, the results of 41 studies 

containing 2689 patients were analysed and summarised, providing level 1 evidence identifying 

uPA, uPAR, and plasminogen activator inhibitor 1 (PAI-1) as novel, clinically relevant, 

biomarkers in resected gastroesophageal cancer. 

 

These results are then extended in Chapter 3, which details an immunohistochemical study 

exploring expression of CSC markers and uPAR on metastatic deposits of gastroesophageal 

cancer. CD44, a CSC marker in gastroesophageal cancers, and uPAR are shown to be 

independent prognostic factors associated with poorer overall survival in multivariate analysis. 

CD44 expression is also shown to be associated with uPAR expression providing evidence of 

the links between the stem cell phenotype and the uPA system.  

 

Circulating tumour cells (CTCs) provide the essential link between the primary tumour and the 

distant metastatic disease. After confirming uPAR as a clinically relevant biomarker in both 

primary and metastatic gastroesophageal cancer, we explored uPAR as a biomarker on CTCs. 

Due to logistical constraints, it was necessary to develop a method for the cryopreservation of 

patient samples for subsequent CTC analysis. Chapter 4 outlines a robust and feasible protocol 

for the delayed isolation of CTCs, and demonstrates the validity of this approach by confirming 

CTC enumeration on cryopreserved specimens remains an independent prognostic factor.  CTC 
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uPAR expression did not improve on currently employed markers, but the technical issues 

which are the likely cause of this result are addressed.   

 

The biology of CTCs is further explored in Chapter 5, in which the establishment and 

characterisation of two novel long term CTC cultures derived from CTCs from patients with 

gastroesophageal cancer are described in detail.  These two cell lines exhibit distinct and 

contrasting phenotypic and genotypic profiles, accurately recapitulating the features of the 

source tumour and highlighting the marked heterogeneity seen between patients with 

gastroesophageal cancers.  In addition to extensive characterisation, cytotoxic and radiotherapy 

assays on the cell lines were undertaken, with the results consistent with the molecular biology 

of each line, as well as the clinical picture of the source patient.  

 

Chapter 6 examines two key clinical biomarkers in locoregional colon cancer using a large 

purpose built database derived from the NSW Clinical Cancer Registry, and linked to numerous 

government datasets to reduce bias and provide additional validity for our results. We were able 

to control for important confounders in our multivariate analyses including patient 

comorbidities and treatment received, providing a uniquely detailed analysis of population level 

data. 

The first study explored importance of primary tumour location in early stage colon cancer. 

Strong evidence of an association of right sided tumours with older age and poor tumour 

clinicopathological factors  was found. The impact of primary tumour location on overall 

survival varied by stage; patients with right sided colon cancer had a lower all-cause mortality 

in stage II, but a higher mortality in stage III disease, likely driven by underlying differences in 

tumour biology. 

The second study examined the use of chronological age as a biomarker to select suitability for 

adjuvant chemotherapy in stage III colon cancer, a hotly debated and controversial topic. It was 

first demonstrated that elderly patients (defined as 70 years and older) were less likely to receive 

the standard adjuvant chemotherapy than younger patients. Multivariable cox hazard regression 

models were then used to show a persistent survival benefit to adjuvant oxaliplatin doublet 

chemotherapy in those elderly patients deemed fit enough to receive it. However this survival 

benefit came at the cost of a modest increase in toxicity, as reflected by an increase in hospital 

admissions. 

 

Chapter 7 addresses the main findings of each study, placing the coalesced results in the 

context of the overall thesis and wider literature, and completes the thesis with a discussion of 

future directions for research. 
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1.1 Gastrointestinal cancers 

Gastrointestinal cancers are a leading cause of cancer related death.  They arise in the 

gastrointestinal tract and accessory digestive organs of digestion, including the oesophagus, 

stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. 

Gastrointestinal cancers are classified and treated according to anatomical site of origin. This 

thesis focuses on gastric, oesophageal and colon cancer. 

1.1.1 Gastric and oesophageal cancer 

Gastroesophageal cancers are the most common gastrointestinal malignancy worldwide.  

Gastric adenocarcinoma is the fifth most common type of cancer and the third leading cause of 

cancer-related death worldwide, and oesophageal cancer is the eighth most common cancer 

worldwide 1,2.  Gastric and oesophageal cancers differ in incidence, geographic distribution, and 

aetiology. Most gastric cancers are adenocarcinomas, although are highly heterogeneous in 

molecular pathogenesis.  Gastrointestinal stromal tumours (GIST), lymphomas, and 

neuroendocrine tumours are found in a small minority of cases 3.  There are several key risk 

factors for gastric cancer. A small proportion of gastric cancers are due to heritable causes such 

as E-cadherin gene (CDH1) mutations (leading to hereditary diffuse gastric cancer) and DNA 

repair enzyme deficiency in Lynch Syndrome 4. The primary risk factor for most sporadic distal 

gastric cancers is chronic inflammation caused by Helicobacter pylori infection 5-7.  

The histology of oesophageal cancer varies by location; most upper and middle third 

oesophageal cancers are squamous cell carcinomas (SCC), while the majority of lower 

oesophageal and gastroesophageal junction (GEJ) tumours are adenocarincomas. Cigarette 

smoking, alcohol consumption, and diets low in vegetables and fruits are the predominate 

causes of oesophageal SCC 8. The aetiology and incidence of gastroesophageal cancers in 

Western countries is changing, with upper oesophageal SCC and distal gastric cancer becoming 

more uncommon, while incidence of adenocarcinomas of gastric cardia and gastroesophageal 

junction are rapidly rising 9,10. This is thought to be due to lifestyle changes with increasing 

obesity and gastroesophageal reflux disease 8.    

The Cancer Genome Atlas has described 4 major gastroesophageal adenocarcinoma subtypes 

(Figure 1). Of note, oesophageal SCC (ESCC) is a distinct disease entity and is not discussed 

further in this thesis.  1) EBV tumours which are positive for the Epstein Barr virus (EBV). 

These tumours display recurrent PIK3CA mutations, extreme DNA hypermethylation, JAK2 

amplification, and overexpression of PD-L1 and PD-L2. 2) Microsatellite unstable tumours 

(MSI) with high mutation rates including in key targetable oncogenic pathways. 3) Genomically 

stable (GS) tumours with mutations of RHOA or fusions involving RHO-family GTPase-

activating proteins. 4) Tumours with chromosomal instability (CIN), with TP53 mutation, RTK-
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RAS activation and marked aneuploidy 11. Analysis of oesophageal adenocarcinomas show 

marked similarity with the CIN subtype of the gastric cancers, suggesting these tumours can be 

considered a single disease entity 12.   

 

 
Figure 1: Gradation of molecular subclass of gastroesophageal carcinoma. 

Schematic representing shifting proportion of subtypes of gastroesophageal carcinoma from the 

proximal oesophagus to the distal stomach. The widths of the colour bands represent the 

proportion of the subtypes present within anatomic regions. Taken from The Cancer Genome 

Atlas 12 . 

 

Similarly, despite differences in epidemiology, currently employed systemic treatments have not 

shown significant differences in efficacy or toxicity between distal oesophageal, 

gastroesophageal and gastric adenocarcinoma. Consequently these malignancies are treated in a 

similar fashion in the advanced setting, with most clinical trials including patients with distal 

oesophageal, GEJ, and gastric adenocarcinomas 13.  
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1.1.2 Colorectal cancer 

Colorectal cancer (CRC) is one of the most common cancers worldwide and projected to 

account for 13% of all new cancer cases diagnosed in Australia in 201514.  While CRC remains 

the fourth most common cause of cancer death worldwide, mortality is improving in Western 

countries due to the institution of cancer screening programs with the subsequent detection and 

removal of adenomas and early cancerous lesions15.  

 

CRC is a disease related to aging, with almost 40% of CRC diagnosed above the age of 75 years 

in Australia, and occurring only rarely in patients younger than 4016. Apart from age, there are 

two broad categories of risk factors for developing colon cancer, genetic determinants and 

lifestyle factors. A minority of colon cancers (5-10%) are due to inherited syndromes such as 

Familial Adenomatous Polyposis (FAP) or Lynch associated syndromes17. In addition, patients 

with a personal history of adenoma, colon cancer or inflammatory bowel disease, as well as a 

significant family history of CRC, are considered at high risk of colon cancer and recommended 

to undergo screening18. There are a large number of lifestyle factors which are associated with a 

small increased risk in CRC including obesity, diabetes mellitus, red and processed meat, 

smoking and alcohol intake18.  

 

The molecular pathogenesis of CRC is a well characterised multistep process of inherited or 

acquired genetic mutations driving the progression of normal colon epithelium to invasive 

cancer via the intermediate precursor lesion, the adenomatous polyp19. Three key pathways have 

been identified in CRC tumorigenesis. The chromosomal instability pathway (CIN) is 

characterised by gross chromosomal abnormalities, from reduced activity of tumour suppressor 

genes or activation of growth promoting pathways, due to inherited (typified by FAP) or 

sporadic mutations20,21. In the DNA mismatch repair (MMR) pathway, seen in both Lynch 

syndrome and sporadic CRCs, cells with aberrant DNA repair pathways, due to germline 

mutations or epigenetic hypermethylation of the MMR gene promotor, accumulate widespread 

DNA errors throughout the genome, presenting phenotypically with high levels of microsatellite 

instability22.  The hypermethylation phenotype (CIMP positive) is a distinct subtype of CRC, 

characterised by CpG island hypermethylation and serrated adenoma precursors, associated with 

microsatellite instability, BRAF mutations, and poor clinical outcomes 23. 

 

While there are a number of important prognostic factors identified in CRC, tumour stage at 

diagnosis remains the most important prognostic variable.  While stage I colon cancer is cured 

with surgical resection alone, stage II and III colon cancer is usually treated with curative intent 

using a combination of surgery and adjuvant chemotherapy 18.  Although Stage IV disease was 
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traditionally treated as palliative, aggressive local treatment of metastatic disease, combined 

with chemotherapy and biological treatments (including VEGF and EGFR targeted agents) have 

markedly improved patient outcomes 24. 

1.2 Biomarkers in gastroesophageal adenocarcinoma 

Tumour, node and metastasis (TNM) stage is the most important prognostic factor in 

gastroesophageal cancers 25.  Multimodality approaches which include chemotherapy, 

radiotherapy, and surgical resection offer potential cure in localised disease 26.  However the 

majority of patients with gastroesophageal cancer present with locally advanced or metastatic 

disease 27. Despite improvements in systemic treatments, and numerous active systemic agents, 

prognosis remains poor with median overall survival of less than 12 months 28. 

 

There is a paucity of biomarkers in gastroesophageal cancer to guide systemic treatment. 

Molecular classification using the HER2 status is the sole routine tissue biomarker currently 

used in gastroesophageal cancers.  HER2 amplification or overexpression is seen in 22% of 

patients with advanced disease29. There is contrasting evidence regarding the prognostic 

importance of HER2 status, with some but not all studies reporting worse prognosis 30-32. The 

TOGA trial demonstrated improved overall survival and progression free survival with the 

addition of trastuzumab, a monoclonal antibody against HER2, in combination with 

chemotherapy in HER2 positive locally advanced or metastatic gastroesophageal cancers, 

leading to routine incorporation of HER2 testing in all advanced gastroesophageal cancers 33. 

There is an increasing focus on the use of gene signatures as biomarkers to predict response to 

chemotherapy34. While retrospective data is encouraging, prospective studies to validate these 

findings are required prior to clinical use. 

 

Similarly, there are very limited circulating biomarkers currently in clinical use. While 

monitoring of blood levels of carcinoembryonic antigen (CEA) and Cancer Antigen 19.9 

(Ca19.9) is routinely preformed in clinical practice to monitor disease response, these serum 

markers are limited by poor sensitivity and specificity, and may not always reliably reflect 

responses to treatment 35.  

 

There are several key biomarkers identified from the literature that show promise as potential 

clinically relevant biomarkers in gastroesophageal cancer. These include cancer stems cells 

(CSC), the plasminogen activation system (PAS) and circulating tumour cells (CTCs) and are 

discussed below. 
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1.2.1 Cancer Stem cells in Gastroesophageal cancer  

1.2.1.1 Cancer Stem Cells (CSC) 

A key oncological issue is whether cancer growth is driven by the majority of tumour cells, or 

by a rare subpopulation of CSCs. There are several proposed models. The clonal evolution 

model states that each cell within a tumour has equal potential to acquire genetic/epigenetic 

changes which confer growth advantages and subsequent new tumour growth36. The CSC model 

on the other hand proposes that the growth of a tumour is driven by a small population of self-

sustaining cells with the stem-cell properties of longevity, infinite proliferation, and ability to 

differentiate into the entire heterogeneous population of the tumour 37. Integral to the CSC 

model is a subpopulation at the apex of the hierarchy (usually comprising less than 5% of the 

cancer) responsible for the formation, maintenance and continued growth of the tumour 38. Stem 

cells can symmetrically divide into self- renewing identical daughter stem cells with self-

renewal capacity, or asymmetrically divide to both a differentiated progenitor cell and a stem 

cell 39 .  

 

Recent refinements to the CSC theory propose a more dynamic model, with a fluid CSC 

population regulated by the tumour-cell environment, rather than a rigid hierarchical structure 
37,40.  It is now apparent that a CSC phenotype can be induced in differentiated cancer cells by 

exposure to growth factors secreted from stromal cells, suggesting a bidirectional pathway 

between the CSC and differentiated cell populations 41,42. Furthermore, some types of leukaemic 

stem cells have been shown to be subjected to clonal evolution 43. The reacquisition of self-

renewal properties in non-CSC populations, in addition to genotypic and phenotypic 

heterogeneity within CSCs, highlight that the CSC population is fluid in both numbers and 

character (Figure 2). 

 

Cancer stem cells are defined functionally rather than from cellular origin, with CSCs having 

superior tumour initiating, growth, and metastatic potential than other tumour cells 44. In vitro 

studies with cultured gastric CSCs indicate these cells to be more resistant to chemotherapy and 

radiotherapy 45,46, possibly due to high expression of anti-apoptotic proteins, increased 

efficiency of DNA repair, and alterations in cell cycle kinetics 37,39 .  CSCs are responsible for 

the renewal of tumour mass following systemic treatment, and the development of treatment 

resistant subclones 39. The CSC’s long proliferative lifespan and repeated DNA replication 

events renders them more susceptible to further mutations and epigenetic changes creating 

further malignant clones 47.  

 

The first definitive evidence of a CSC population was provided by Bonnet et al (1997), who 
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demonstrated that a cell population defined by the CD34+/38- phenotype was able to serially 

reproduce acute myeloid leukaemia in immunodeficient mice 48. Crucially this cell population 

did not only self-renew, but could reconstitute the full spectrum of cell populations seen in 

AML. This approach has been used to isolate CSCs in solid malignancies including breast 

cancer 49, prostate cancer 50,   pancreatic cancer 51,52, melanoma 53, colon cancer 54,55, brain 

cancer 56,57, and liver cancer 58, supporting the model of cancer growth initiated and maintained 

by CSCs.  The presence of CSCs in solid malignancy has been confirmed with lineage tracing 

studies which identified a subpopulation of cells which reconstitute the entire tumour following 

chemotherapy 59. 

 

Experimental evidence for CSCs must demonstrate both self-renewal and ability to differentiate 

into the heterogeneous cell population that constitute a tumour 60. Serial transplantation in 

animal models fulfils these criteria and is proposed as the best functional assay to identify CSCs 
60. An alternative experimental model is in vitro spheroid colony formation of candidate CSCs 

in culture media, as continued growth of colonies indicates self-renewal 61. Although serial 

passage in animal models is considered the gold standard, the two methods seem to provide 

similar results when identifying candidate CSCs 61.  

 

The CSC model has important clinical implications, as it infers that anti-neoplastic treatments 

should focus on eliminating both a small population of CSCs within the tumour, as well as the 

rapidly dividing but terminally differentiated bulk of cancer 60. Figure 2 illustrates the various 

models schematically. 
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Figure 2: Three models of tumour growth and their clinical implications (a) The clonal 

model, where each cell has the potential to acquire additional mutations which confer a growth 

advantage. Chemotherapy selects a treatment resistant subclone which subsequently 

reconstitutes the tumour mass. (b) The hierarchic cancer stem cell (CSC) model, whereby a 

small population of self-renewing CSCs are responsible for all tumour growth,  giving rise to 

progenitor cells, which subsequently de-differentiate into the bulk of the tumour which has lost 

capacity to self renewal. The chemo-resistant CSC population is enriched by chemotherapy, and 

is able to restore the tumour bulk. (c) The dynamic CSC model is a more refined CSC model, 

demonstrating the bi-directional flow of cells between the stem cell and differentiated 

compartments. This model highlights the need to combine a CSC targeted agent with 

chemotherapy. The CSC targeted agent eliminates the chemo-resistant CSC population 

preventing the reconstitution of the tumour bulk, while the chemotherapy reduces the tumour 

bulk of differentiated cells, stopping these cells de-differentiating to replenish the CSC 

population. 
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1.2.1.2 CSC and metastases 

The CSCs unique properties of self-renewal and multi lineage differentiation suggest a likely 

role in the initiation and progression of distant metastatic disease.  Although there is no direct 

experimental evidence of CSCs as the origin of metastases many studies provide supporting 

data 62.  The presence of unique tumour subpopulations with CSC markers have been shown to 

be integral for the development of metastatic disease in a variety of malignancies including 

pancreatic 51, colorectal 63, and breast 64 cancer, as depletion of this population prevented the 

metastatic spread of the tumour 51.  Dieter et al demonstrated differential contributions of 

individual CSC clones to the growth of primary and metastatic tumours, and identified a 

subpopulation of CSCs in colon cancer solely responsible for metastases formation 65.   In 

addition, immunohistochemical studies in gastric cancer have shown an increased risk of 

metastatic disease associated with CSC marker expression in the primary tumour 66,67.   

A proposed mechanism underlying the progression of cancer to metastases is the epithelial-

mesenchymal transition (EMT) 68.  EMT is the process whereby tumour cells lose epithelial 

characteristics and acquire a mesenchymal phenotype to facilitate cancer metastasis and 

survival. It becomes more and more evident that EMT and CSC phenotypes are largely 

overlapping and provide properties of invasion, tumour seeding, drug resistance, and survival. It 

is thought that CSCs in primary tumours can metastasise to distant sites via EMT 69. 

Furthermore a CSC phenotype can be obtained by inducing an EMT state 70,71.  Tumour cells 

disseminated in the blood (circulating tumour cells) are enriched for both an EMT and CSC 

phenotype 72. Gastric cancer patients who have detectable circulating tumour cells (CTCs) 

which express CSC markers have a poorer prognosis than those with CTCs without CSC 

markers 73. This is reinforced by clinical evidence of an association between EMT and CSCs, 

with immunohistochemical expression of CD44, a gastric CSC marker, significantly correlated 

with expression of EMT markers such as Snail-1 and ZEB1 in resected gastric cancer 74. Gastric 

CSCs isolated from a cell line showed increased expression of EMT markers (including Snail, 

Twist, and vimentin) and CD44 75. Moreover, analysis of combined expression of CD44 with 

EMT markers was predictive of a poorer disease free survival and overall survival (OS) in a 

multivariate model, consistent with the aggressive phenotype of cells expressing CSC and EMT 

markers 74.  

1.2.1.3 Identification of Cancer Stem Cells 

A key issue in the study of CSCs is development of reproducible and reliable methods for CSC 

isolation and identification. The American Association for Cancer Research (AACR) defines 

CSCs as subpopulations of cells within a tumour that possess the capacity for self-renewal and 

cause the heterogeneous lineage of cancer cells that constitute the tumour 60. As discussed 

above, the experimental methods used to confirm a population of cells as CSCs are serial 
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passage of tumours in animal models, or tumour-spheroid assays. Animal model serial 

transplantation is regarded as the gold standard as it is considered a physiologically relevant 

functional assay to demonstrate self-renewal and lineage capacity 60. However some groups 

have questioned this paradigm as the rarity of CSCs found in human cancers may be due to an 

inadequate local environment in the xenograft 76,77.  Tumour spheroid assays are a more rapid 

method (as serial transplantation can take several months), and have been shown to increase 

expression of stem cell markers, but have potential pitfalls as not all isolated CSCs form 

spheroids 46,78. 

 

There are many challenges in identifying a CSC population within a tumour. Firstly, as 

discussed above, the CSC population is dynamic with bidirectional flow between the CSC and 

differentiated cell populations.  Secondly, the currently utilised CSC markers are not specific, 

and are expressed on non-malignant cells, as well as early progenitor cells which have lost stem 

cell features but retained phenotypic markers. Thirdly, multiple populations of CSCs may exist 

within a tumour mass, and combinations of multiple markers may be required to identify the 

complete CSC population.  

 

Candidate CSCs are currently identified predominantly by two methods: the side population 

assay or expression of CSC surface markers.  

1.2.1.3.1 Side Population Assay 

The side population (SP) assay identifies the fraction of cells that efflux Hoechst dye by ATP 

binding cassette (ABC). It is a highly preserved marker of stem cells across a variety of tissues 

and tumours, with a higher capacity for self-renewal, leading some authors to suggest that the 

SP subset may represent a universal CSC population 79. However the SP assay is hampered by 

poor specificity, with differentiated adults cells in the gastrointestinal tract demonstrating a SP 

phenotype 80.  

 

There are inconsistent results regarding SP assays as a potential CSC marker in gastric cancer. 

Zhange et al showed CSC properties in SP cells from the MKN-45 cell line, but not from the 

BGC-823 cell line 81 . Although some studies in gastric cancer lines have shown CSC properties 

in the SP 82,83, others have found no difference compared to a non-SP subset 45,84,85. Overall the 

utility of the SP assay to identify gastric CSC remains controversial. 

1.2.1.3.2 Expression of Cell Surface Markers 

An integral tool in the identification and isolation of candidate CSCs is the expression of unique 

combinations of cell surface markers. This approach has allowed isolation of CSCs in many 

solid malignancies by flow cytometry or magnetic cell sorting.  Currently identified CSC 
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markers are expressed in an overlapping manner on a variety of tumours, as well as normal stem 

cells.  A summary of the most common markers described for solid tumours is provided in 

Table 1. Many of these potential markers are found in gastric cancer. 

 

Table 1: Cell Surface Expression of Cancer Stem Cell Markers in Different Solid Tumour 

types. 

Tumour Described Cell Markers Reference 

Colon CD133, CD44, CD166. EpCam, CD24, 

ALDH1 

Botchkina 2013 86 

Pancreas CD133, CD44/CD24, ALHD1 Zhan et al 2015 87 

Breast CD44+/CD24-, ALDH1 Carrasco et al 2014 88 

Brain CD133, CD44 Jackson et al 2015 89 

Lung CD133 Lundin et al 2013 90 

Melanoma CD20, CD133, CD271 Lang et al 2013 91 

Prostate CD44+/CD24-, CD133, ALDH,  Sharpe et al 2013 92 

 

1.2.1.4 Gastric Cancer Stem Cells 

1.2.1.4.1 Origin of gastric cancer stem cells 

The origin of gastric CSCs remains uncertain.  A possible source of gastric CSCs is gastric stem 

cells which have lost regulated quiescence. The existence of multipotent gastric stem cells 

which give rise to all major epithelial cell types has been demonstrated in mouse models 93.  

There are multiple populations of gastric stem cells. The Lgr5+ cells arise at the base of the 

gastric gland and continuously differentiate into all antral unit cells, while the Villin+ cells are 

located at the isthmus and are a quiescent stem cell population which require cytokine 

stimulation to activate, acting as a stem cell source if the Lgr5+ cells are damaged 94-96. Sox2+ 

cells, present in the antrum and corpus, are able to differentiate into all cell types found in a 

gastric unit, and ablation of the Sox2+ population prevents renewal of gastric epithelium 97. 

Further populations of differentiated gastric cells, such as chief cells expressing the marker 

Troy, have been shown to de-differentiate and function as multipotent stem cells, acting as 

reserve stem cell populations 98.  

 

Aberrant genetic and epigenetic mutations in these gastric stem cells, in conjunction with 

stimulating factors from the microenvironment, may lead to the formation of CSCs 47. For 

example, APC deletion in Lgr5+ stem cells led to rapid development of adenomas in a mouse 

model due to expansion of the stem cell compartment 95. Wu et al demonstrated co-localisation 

of CSC markers (CD26, CD44, ALDH1, CD133) with Lgr5+ cells in gastric cancer suggesting 
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they may be functionally related 94. Similarly Sox2 expression is altered during gastric cancer 

pathogenesis 99,100, although reports are contradictory as to whether Sox2 is overexpressed and 

oncogenic 101,102, or downregulated and anti-oncogenic, with lower Sox2 levels associated with 

poorer clinical outcomes 99,103. Another proposed gastrointestinal stem cell marker, 

doublecortin-like kinase (Dclk1), is highly expressed on cells in the stem cell zone of mouse 

gastric glands 104.  K-ras induced chronic inflammation in K19-K-ras-V12 transgenic mice led to 

expansion of the Dclk1+ cell population during the development of high grade dysplasia 105. 

 

An alternative hypothesis suggests that gastric CSCs arise from bone marrow derived 

mesenchymal stem cells, pluripotent adult stem cells which are recruited to peripheral organs in 

response to chronic inflammation. Their function is to assist in regeneration after failure of local 

stem cells 106. Bone marrow derived cells (BMDC) have been shown to repopulate gastric 

mucosa in response to chronic inflammation due to H. Pylori infection, and may contribute to 

carcinogenesis 107,108.  In a mouse model infected with H. pylori, almost a quarter of high grade 

dysplastic gastric lesions included BMDC 109. The BMDC are proposed to differentiate in the 

gastric mucosa by cell-cell fusion with local gastric epithelial cells, and in the context of further 

chronic inflammation, induce EMT and the emergence of CSCs 106,110.  It is important to note 

however, despite these provocative findings, the majority of dysplastic lesions do not arise from 

BMDC. Further studies are required to fully explore the pathogenesis of gastric CSCs. 

1.2.1.4.2 Gastroesophgeal CSC markers: 

1.2.1.4.2.1 CD44 and CD44 variants 

CD44 is a transmembrane glycoprotein expressed on leukocytes, endothelial cells, hepatocytes, 

and mesenchymal cells, and has a variety of physiological roles including matrix adhesion, cell 

migration, and differentiation 111.  CD44 is encoded by the 20 exon CD44 gene, with exon 1-5 

encoding the constant region of the extracellular domain, and exon 16-20 spliced together to 

form the standard isoform 112. The variant exons 6-15 are subject to alternative splicing and can 

be assembled in different combinations with the standard exon to make variant isoforms 112. 

CD44 variants (designated as CD44v) have been proposed as a more specific CSC marker than 

CD44 due to their more restricted distribution pattern.  Generally, expression of CD44v on 

gastric cancers cells is well correlated with CD44 expression 66,112.  

 

CD44 has been proposed to mediate signal transduction of oncogenic pathways such as the 

human epidermal growth factor receptor (HER) pathway 113.  Cancer cells with high CD44 

expression have an enhanced resistance to reactive oxygen species due to increased glutathione 

synthesis and upregulation of anti-oxidant genes 114. The first evidence of gastric CSCs was 

demonstrated with the self-renewal and heterogeneous linage of a CD44+ subpopulation 45. 
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There are now numerous studies which support CD44 as a marker for CSC in gastric cancer 

(Table 2). Although most studies support CD44 as a CSC marker, two studies were unable to 

demonstrate stem-cell properties in the CD44+ purified subset of patient derived gastric cancer 

cells, perhaps due to inappropriate microenvironment in mouse models 115,116. CSC populations 

have also been identified using a combination of CD44+ and other markers including EpCam 
112,117, CD54+ 118, and CD24 119.  

 

Despite this, CD44 is not a specific or sensitive marker for gastric CSC. The true CSC 

population has been estimated at <5% of CD44+ cells 45, and CD44 is widely expressed on non-

malignant tissue. Other markers are required in addition to CD44 to improve the specificity of 

CSC identification.  

 

There is only limited evidence of CD44v as a CSC marker. Lau et al showed CD44v8-10 was 

the predominate CD44v expressed on CD44+ gastric cancer cells (79% of CD44+ cells), and 

demonstrated self-renewal and heterogeneous linage in serial transplants of CD44v8-10 in 

mouse models 112.  Although the CD44v8-10+ fraction was more tumourigenic in mouse 

models, both the CD44v8-10+ and CD44v8-10- cells were able to form tumour spheres 112. 

While CD44v appears to be a more specific marker for gastric cancer than CD44, more research 

needs to be performed to elucidate their biological role and confirm CSC characteristics. 
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Table 2: Summary of cancer stem cell markers in gastric cancer (in vitro and mouse model 

studies). 

Stem Cell Characteristic Marker References 

Self –Renewal 

(serial transplantation in  mouse 

models, or maintained in serial? 

spheroid culture for weeks) 

CD44+ Takaishi et al 2009 45,  

CD44v8-10 Lau et al 2014 112 

CD133+ Nil study identified  

ALDH1 Katsuno et al 2012 120, Nishikawa et al 2013 121 

Multi lineage differentiation CD44+ Takaishi et al 2009 45,  

CD44v8-10 Lau et al 2014 112 

CD133+ Fukamachi et al 2011 122 

ALDH1 Katsuno et al 2012 120 

Increased resistance to 

chemotherapy/radiotherapy 

CD44+ 

 

Takaishi et al 2009 45, Zhang 2011 119, Yoon et 

al 2014 123,  

CD133+ Zhu et al 2014 124 

ALDH1 Zhi et al 2011 125, Nishikawa et al 2013 121  

Increased tumourigenicity 

(faster growing tumours, or smaller 

tumour seeding volume) 

CD44+ Takaishi et al 2009 45, Song et al 2011 119,  

CD133+ Nil study identified 

ALDH1 Zhi et al 2011 125, Katsuno et al 2012 120, 

Nishikawa et al 2013 121,  

Attenuation of stem cell 

characteristics with knock-down 

model 

CD44+ Takaishi et al 2009 45 

CD133+ Zhu et al 2014 124 

ALDH1 Nil Study identified 

Upregulated stem cell or 

mesenchymal markers 

CD44+ Yu et al 2014 126 

CD133+ Song et al 2011 127 

ALDH1 Zhi et al 2011 125, Nishikawa et al 2013 121,  

 

1.2.1.4.2.2 CD133 

CD133 is a transmembrane glycoprotein plasma membrane protein found on embryonic 

epithelial structures and hematopoietic stem cells 128. It is proposed to function as an organiser 

of plasma membrane topology, and have a role maintaining appropriate lipid composition of 

plasma membrane 129. CD133 has been identified as a CSC marker in a variety of solid tumours 

(Table 1).  

 

Most studies have identified CSCs using AC133, an antibody which detects a glycosylated 

epitope of CD133 130. Some authors have recommended caution using CD133 as a marker to 

identify CSC after they showed downregulation of CD133 epitopes (including the target of 
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AC133) during differentiation. However constant CD133 protein expression suggests 

differentiated cells may express CD133, but with masked epitopes due to differential 

glycosylation 131.  Post translational modification of CD133 may have roles in invasion and 

metastasis, and influence antibody binding by altering the epitope’s accessibility 130. 

 

Consequently there is debate regarding the utility of CD133 as CSC marker in gastric cancer.  

Although some studies have demonstrated CSC properties with the CD133+ subpopulation, 

several groups have found contrasting results, with CD133- cells able to initiate tumours 45,112,115 

(Table 2).  

1.2.1.4.2.3 ALDH1 

Aldehyde Dehydrogenase (ALDH) is a family of enzymes that have a role in cellular 

detoxification, differentiation and drug resistance via oxidation of cellular aldehydes 132. 

ALDH1 functions as a modulator of cell proliferation and stem cell differentiation, and is a 

marker of CSCs in a variety of cancers (Table 1). High activity of ALDH1 confers resistance to 

chemotherapeutic agents 133. ALDHhigh cell populations are identified with the Aldeflour assay 

or by ALDH1 antibody, and have been shown to correlate with CD44 expression 121. 

 

Katsuno et al 120 demonstrated CSC properties of ALDH1+ cells isolated from gastric cancer 

cell lines including self-renewal, heterogeneous linage and increased tumourogenicity. 

Interestingly, in contrast to other cancers, they found TGF-β inhibited the function of the CSC 

population120.  Studies demonstrating the CSC properties of ALDH1 in gastric cancer are 

summarised in Table 2. 

1.2.1.4.2.4 Other potential CSC markers 

Numerous other molecules have been identified as potential gastric CSC markers and these are 

addressed below. However, it must be borne in mind that the evidence for these molecules as 

markers is either limited or contradictory. Further studies are thus required to either confirm or 

refute their utility as markers of the CSC population.   

 

CD24 is a cell surface adhesion molecule expressed on leukocytes, normal gastric parietal cells, 

and intestinal stem cells 134. CD24 expression is associated with aggressive clinicopathological 

features in gastric cancer, and facilitates cell migration and invasion of gastric cancer cells 
134,135. Evidence for CD24 as a CSC marker in gastric cancer is conflicting. Zang et al found that 

the CD44+/CD24+ fraction isolated a CSC population in gastric cancer cell lines 119, while 

Takaishi et al was unable to find evidence of CSC characteristics in a CD24+ population in 

spheroid and mouse models 45.  
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The epithelial cellular adhesion molecule (EpCam) is a transmembrane glycoprotein detected in 

the majority of epithelial tissues, with roles in cell adhesion, signalling, migration, proliferation 

and differentiation 136. EpCam is overexpressed in gastric cancer and gastric cancer cell lines 
121,137. Several studies have shown that gastric CSCs lie within the EpCam+ population, with the 

EpCam- population unable to form tumours in mouse models or tumourspheres 112,117. However, 

additional more specific markers are required in addition to EpCam as the majority of gastric 

cancer cells are EpCam positive. 

 

CD49f is a subunit of laminin receptors which has been used to isolate CSCs in prostate, breast, 

brain and colon cancers 116. Fukamachi et al demonstrated CSC properties of self-renewal, 

heterogeneous linage, and chemotherapy resistance to the CD49f selected cells from primary 

gastric cancer mouse xenografts 116. Further studies are needed to confirm CD49f stem cell 

properties.  

 

CD54 (also known as intercellular adhesion molecule-1; ICAM-1) is an adhesion molecule 

essential for arrest and transmigration of leukocytes out of blood vessels, and is widely 

expressed on immune, stromal and malignant cells138. Decreased CD54 expression on resected 

gastric cancer is associated with poorer prognosis and increased risk of lymphatic spread 139. 

CD44+/54+ cells that were isolated from primary gastric cancers and peripheral blood samples, 

demonstrated superior tumourigenicity, multiple linage capability and self-renewal, compared to 

CD44- or CD54- cells, suggestive of a CSC population in both the primary tumour and in the 

circulation 118.  

 

CD90 is expressed in bone marrow derived mesenchymal stem cells, haematopoietic stem cells, 

keratinocytic stem cells, and has been used to identify CSC populations in liver, breast and brain 

cancer 140. CD90+ cells isolated from patient derived gastric cancer xenografts demonstrated 

self-renewal and a heterogeneous linage 140. CSCs obtained by preconditioning a gastric cancer 

cell line with chemotherapy displayed increased expression of CD90 as well as bonafide CSC 

markers 75.  

 

CD71 (also known as the transferrin receptor) is a membrane protein highly expressed on 

myocytes, keratinocytes, hepatocytes, pancreatic cells, and erythroid precursors, with a 

physiological role in mediating the uptake of transferrin-iron complexes. CD71 has been 

proposed as a negative selection marker, with the CD71 negative subpopulation of a gastric 

cancer cell line displaying chemoresistance, self-renewal, heterogeneous linage, and increased 

tumourigenicity in mouse models 141.  
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Finally, several transcription factors, including Sox2, Oct4, and Nanog are expressed on gastric 

stem cells, and have been proposed as potential CSC markers. Gastric CSCs enriched by the 

side population assay or spheroid formation have a higher expression of Sox2, Oct4 and Nanog 

compared with parental cells 46. As discussed above however, studies evaluating the association 

between clinicopathological variables with immunohistochemical expression of Sox2 in 

resected gastric cancer have shown conflicting results 99,100,103,142. Similarly, although some 

studies have shown poorer prognosis with Oct4 expression in resected gastric cancer 143,144, 

another large patient series found the opposite result 101. 

 

1.2.1.5 Clinical Implications of Gastric Cancer Stem Cells 

1.2.1.5.1 Gastric CSC marker expression and patient prognosis 

CSC marker expression in cancer tissue is emerging as a clinically relevant prognostic 

biomarker in the management of gastric cancer. Most studies have shown a correlation between 

advanced pathological features, such as tumour size, invasion and metastatic spread, and 

expression of CSC markers. In addition, CD44 and CD133 expression was found to be an 

independent predictor of poorer disease free survival (in resected gastric cancer) and overall 

survival (see Table 3). These findings support the preclinical evidence of CD44 and CD133 as 

CSC markers, as patients with tumours expressing these markers would be expected to have a 

poorer prognosis due to the CSC traits of chemoradioresistance, increased tumourigenicity and 

metastatic potential. 

 

CD44 is expressed on up to 80% of primary gastric cancer resection specimens145 and is 

associated with more advanced clinicopathological features and poorer prognosis (Table 3). A 

meta-analysis which included 18 studies examining CD44 expression in gastric cancer, although 

limited by significant methodological flaws, including no qualitative analysis of included 

studies, and considerable heterogeneity in pooled result, found statistically significant 

associations with advanced tumour stage (pooled odds ratio (OR) = 2.05, 95% confidence 

interval (CI): 1.12-3.75, P = 0.02), tumor size (pooled OR = 1.42, 95% CI: 1.08-1.87, P = 0.01), 

and lymph node (LN) metastasis (pooled OR = 1.50, 95% CI: 1.14-1.98, P = 0.004) 146.  

Although four studies have shown CD44+ expression to be an independent predictor of survival, 

it is important to note that the two largest case series did not show an impact of CD44 

expression on overall survival 147,148. The heterogeneity in results is likely due to variation in 

experimental procedures and patient populations.  

 

Despite the contradictory pre-clinical data, CD133 role as a CSC marker is supported by 

numerous immunohistochemical studies in resected primary gastric cancer which show a 
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consistent association with numerous high risk clinicopathological features, and independent 

correlation with poorer disease free and overall survival (Table 3). A recent meta-analysis found 

strong evidence that CD133 expression in resected gastric cancer was associated with poorer 5 

year overall survival (OR= 0.2, 95% CI 0.14-0.29, p<0.00001), although it should be noted that 

all included studies were conducted in Asian populations, limiting the applicability to Western 

patients 149.   Furthermore, a recent study which detected circulating CSCs using CD133 and 

ABCG2 as markers, found that the presence of peripheral blood CD133+ cells correlated with a 

poorer prognosis, and isolated CD133+/ABCG2+ cells were able to be passaged in mouse 

models and showed self-renewal, heterogeneous linage and increased tumourigenicity 150. 

 

CD44 variant expression appears to be more specific for malignant tissue. Expression of CD44 

variants, including v5, v6 and v9, in resected gastric cancer is associated with adverse clinical 

outcomes including worse overall survival, more advanced tumours and lymphovascular 

invasion. A meta-analysis found CD44v6 expression was related with LN metastasis (pooled 

OR = 2.26, 95% CI: 1.40-3.64, P = 0.0008), lymphatic invasion (pooled OR = 1.45, 95% CI: 

1.05-2.01, P = 0.02) , and venous invasion (pooled OR = 1.62, 95% CI: 1.20-2.18, P = 0.001) , 

but not tumour stage (pooled OR = 0.68, 95% CI: 0.36-1.28, P = 0.23) 146. 

 

ALDH1 expression has been shown to be associated with poor prognostic clinicopathological 

features in resected primary gastric cancer, although it is not significantly associated with poorer 

survival 132.   
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Table 3: Statistically significant clinicopathological and prognostic associations with CD44 

and CD133 immunohistochemical expression in gastric cancer. 

Association CD44 References CD133 References 

Intestinal histology 

 

Mayer et al 1993 66 

Hong et al 1995 151 

Ghaffarzadehgan et al 2008 152 

Nosrati et al 2014 153 

Wakamatsu et al 2011 132 

Lee et al 2012 154 

Nosrati et al 2014 153 

 

Higher TNM stage Wakamatsu et al 2012 132 

Chen et al 2013 67 

Yu et al 2010 155 

Zhao et al 2010 156 

Hashimoto et al 2014 157 

Chen et al 2013 67 

Larger tumour size / Deeper 

invasion 

Nosrati et al 2014 153 Yu et al 2010 155 

Zhao et al 2010 156 

Lee et al 2012 154 

Chen et al 2013 67 

Lymphovascular invasion Nosrati et al 2014 153 Lee et al 2012 154 

Higher grade / Poorer 

differentiation 

Wang et al 2011 145 

Chen et al 2013 67 

 

Zhao et al 2010 156 

Jiang et al 2012 158 

Hashimoto et al 2014 157 

Presence of distant metastasis 

 

Mayer et al 1993 66 

Chen et al 2013 67 

Chen et al 2013 67 

Hashimoto et al 2014 157 

Positive lymph nodes Wakamatsu et al 2012 132 Yu et al 2010 155 

Zhao et al 2010 156 

Wakamatsu et al 2011 132 

Hashimoto et al 2014 157 

Poorer disease free survival 

(multivariate) 

Mayer et al 1993 66 Lee et al 2012 154 

Hashimoto et al 2014 157 

Poorer overall survival 

(multivariate) 

Mayer et al 1993 66 

Ghaffarzadehgan et al 2008 152 

Wakamatsu et al 2012 132 

Chen et al 2013 67 

 

Yu et al 2010 155 

Zhao et al 2010 156 

Wang et al 2011 145 

Lee et al 2012 154 

Chen et al 2013 67 

Hashimoto et al 2014 157 

Wakamatsu et al 2011 132 
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1.2.2 Targeting CSCs in gastric cancer 

The CSC model has important clinical implications for cancer treatment. There is strong 

evidence that CSCs are resistant to traditional chemotherapy and radiotherapy, and are enriched 

in the residual tumour after these treatments 45,119,123,159.  The CSCs subsequently renew the 

tumour bulk with the development of treatment resistant clones.  Consequently, a specific and 

efficacious CSC targeted treatment is required for the complete elimination of a cancer. These 

targeted treatments should be administered in conjunction with conventional 

chemotherapy/radiotherapy to reduce the tumour bulk and minimise the risk of differentiated 

cancer cells acquiring CSC-like properties 40.  

 

1.2.2.1 Targeting cancer stem cell surface markers 

One proposed method of CSC specific treatment is drugs targeted at CSC surface markers. As 

discussed above, there are significant challenges with this approach due to the widespread 

expression of these markers on non-malignant tissue, and the rarity of CSCs in the tumour. 

Although there is promising data emerging from the preclinical setting targeting CD44, CD133, 

EpCam and CD90 (discussed below), the largest hurdle will be demonstrating safety and 

efficacy in vivo.  

 

Methodologies targeting CD44 include anti-CD44 monoclonal antibodies 160, and anti-CD44 

antibody or aptamer labelled liposomes 161,162. The CD44 ligand, hyaluronic acid, has also been 

used to label nanocarriers and conjugates, with demonstrated efficacy in reducing CD44+ cells 

in pancreatic 163 and gastric cancer 164,165. Although these studies are promising in demonstrating 

reduction in CSC populations, the clinical utility of these agents may be limited by off-target 

toxicities 166,167.  

 

Similarly, CD133 has been successfully targeted in preclinical models by anti-CD133 antibody-

cytotoxic conjugates in breast 168, ovarian 169, hepatocellular and gastric cancer 170. Smith et al 

developed a CD133-cytotoxic conjugate which inhibited growth of gastric cancer cell lines in 

vitro 170. 

 

The anti-EpCam antibody MT201 has shown tumour suppression in preclinical studies in 

prostate and colon cancer, and has advanced to human trials 170,171. A phase I study has shown 

reasonable tolerability in combination with chemotherapy in heavily pre-treated breast cancer, 

with further studies evaluating efficacy underway 172. 

 

It may also be possible to reduce the CSC population through indirect targeting. Jiang et al 
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noted candidate CSC marker CD90 correlated with HER2 expression in gastric cancer 140.While 

chemotherapy enriched the CD90+ population in primary cancer culture, a combination of 

chemotherapy and anti-HER2 treatment (trastuzumab) significantly reduced the CD90+ 

population and prevented tumour growth 140.  The mechanism of this result remains unclear, but 

suggests an interesting hypothesis to explain why some breast cancer patients with normal 

HER2 gene expression benefit from trastuzumab 173. 

 

1.2.2.2 Targeting the cancer stem cell signalling pathways 

Aberrations in important normal stem cell signalling pathways, such as Hedgehog (HH), Notch, 

and Wnt, result in the formation of CSCs 47. These pathways have been shown to be important 

potential targets for treating CSCs 174. 

 

The Wnt/β-catenin pathway has a physiological role in balancing proliferation, differentiation, 

and “stemness” of cells, with over-activation leading to tumourigenesis 175. It is an important 

pathway in CSC regulation, and many of the cell surface markers discussed above, including 

CD44, CD24, EpCam, are Wnt targets 176. Blockage of the Wnt pathways reduces the self-

renewal capacity of gastric cancer tumourspheres 177.  Gastric cancer cells overexpressing Wnt-1 

resulted in larger mouse xenograft tumours, with increased expression of CSC markers such as 

CD44, compared to control cells 178. When salinomycin was used to suppress Wnt and β-catenin 

expression, the tumours were smaller with reduced CSC populations 178.  Another group 

disrupted Wnt signalling in CD44+ selected gastric cancer cells using a Wnt-1 antagonist 

(Dickkopf-1) delivered by adenovirus serotype 5, inhibiting cancer cell survival, colony 

formation and invasion 179. These agents are awaiting clinical validation.  

 

Aberrant activation of the HH pathway causes neoplastic transformation in a variety of tumours 

including gastric cancer 180. HH signalling maintains the CSC phenotype, and in vitro targeting 

of the HH pathway decreases the tumourigenicity and invasion capability of gastric cancer 

spheroids 123, and reverses chemoresistance 127.  Yoon et al 123 retrospectively performed 

immunohistochemistry on gastric cancer samples from a negative randomised phase II trial 

examining the addition of a HH inhibitor (vismodegib) to chemotherapy in gastric cancer, and 

found that there was improved survival in patients expressing CSC markers (CD44).  This 

exciting finding is the first evidence of CSC expression as a predictive biomarker in gastric 

cancer, and demonstrates the immediate clinical applicability of targeting CSC pathways as an 

adjunct to chemotherapy.  

 

Notch signalling is important in gastric epithelial stem cell homeostasis, and is implicated in 
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gastric cancer tumourigenesis 181-183. Gamma-Secretase inhibitors which block the Notch 

pathway reduce CSC markers and cancer growth 184. They are currently in early clinical trials, 

but may be limited by toxicity due to their non-specific activity. 

 

1.2.3 Urokinase Plasminogen activation (uPA) system and gastro-oesophageal 

cancer 

1.2.3.1 The uPA system and malignancy 

A key process in the development and progression of cancer, including establishment of 

metastatic disease, is the invasion of malignant cells into normal tissue. This complex process 

relies on tumour-associated proteolysis, resulting in the breakdown of extracellular matrix 

(ECM) and basement membranes barriers 185.  The plasminogen activation system is critical for 

tumour associated proteolysis 186,187. Two distinct serine protease plasminogen activators, 

urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) 

activate the circulating zymogen plasminogen to the broad spectrum serine protease plasmin, 

which has a well-defined role in fibrinolysis of clots 186,188. While tPA is primarily associated 

with vascular fibrinolysis, uPA has a more defined role in tissue degradation as well as 

extravascular fibrinolysis and is thus considered to be responsible for most of the activated 

plasminogen associated with cancer invasion and metastasis 186,189,190. 
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Figure 3: Schematic representation of the urokinase plasminogen activation (uPA) system. 

The membrane bound urokinase receptor (uPAR) binds circulating inactive pro-uPA, 

facilitating the activation of pro-uPA to uPA which subsequently converts cell surface co-

localised plasminogen to plasmin that can directly degrade components of the extracellular 

matrix (ECM) and activate pro-matrix metalloproteases (MMP) to further break down ECM. 

Plasminogen activator inhibitors 1 or 2 (PAI-1, PAI-2) are efficient endogenous inhibitors of 

uPA.  

 

The uPA protein is secreted as a zymogen (pro-urokinase), and is activated after it binds with 

very high affinity to its specific cell surface receptor, uPAR, through cleavage of the uPA 

Lys158-Ile159 peptide bond by various proteases, including plasmin 186,191. Once activated, the 

disulphide-bonded two-chain uPA catalyses the activation of plasmin from co-localised 

plasminogen, which in turn directly degrades components  of the ECM, and promotes further 

degradation and tissue remodelling by activating pro-metalloproteinases (MMPs) and by 

releasing, thus activating, latent  growth factors from the ECM 185,190. MMP-2 is overexpressed 

in uPA/uPAR positive gastric cancer, suggesting that the MMP and uPA system cooperate 

during tumour invasion 192.  uPA has reported uPAR independent roles, including mitogentic 

effects 193, and proteolysis of plasmin to allow cellular migration 194. As uPAR increases the 

plasminogen activator activity of uPA several hundred fold, the majority of the uPA effect was 
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traditionally thought to be uPAR dependent 190. However, this paradigm has been challenged 

following a recent study which demonstrated that the development of metastases was dependent 

on uPA, but not uPAR, in a murine transgenic MMTV-PyMT breast cancer model 195. 

The uPAR protein has a glycosyl phosphatidyl anchor attaching it to the plasma membrane 
196,197. Invasion of cancer cells into lymphvascular spaces is facilitated by the expression of 

uPAR on the invasive front of a tumour 198,199. This may be by focussing uPA, hence plasmin 

activity, at the cell surface and/or through complex direct and indirect interactions with a range 

of binding partners (including vitronectin, integrins, growth factor receptors, and others) 200,201, 

through which uPAR affects cellular migration, angiogenesis, regulating cAMP levels, and is 

thus essential for the intravasation of blood vessels 196,202,203. uPAR expression may represent a 

suitable marker for early detection of the onset of invasion for both gastrointestinal and breast 

cancers, expressed only on invasive carcinomas but not premalignant states such as Barrett’s 

oesophagus or carcinoma in situ 204,205. 

 

uPAis efficiently inhibited by two subtypes of serpin (serine proteinase inhibitor) family 

members, plasminogen activator inhibitor-1 (PAI-1/SerpinE1) and -2 (PAI-2 /SerpinB2) which 

have disparate roles in cancer growth and metastasis. PAI-1 is considered to be the major 

inhibitor of the uPA system, forming a covalent complex with active uPA bound to uPAR, 

leading to the internalisation of the entire complex via the Low Density Lipoprotein related 

protein-1 and other endocytosis receptors of the LDLR family 206 . Following lysosome 

degradation of the complex, uPAR is recycled back to the cell surface 207.  Although believed to 

have a physiological role as an inhibitor of the uPA system, PAI-1 has a paradoxical 

protumourigenic role, increasing tumour invasion and angiogenesis, and correlated with poor 

prognosis 208. Cancer cell models suggest that a critical balance of both uPA and PAI-1 is 

required for invasion 209. 

 

The role of PAI-2 in cancer is less clear. Although both PAIs mediate uPA/uPAR endocytosis in 

an LDLR dependant process, the uPA-PAI-2 complex interacts with these endocytosis receptors 

with different binding kinetics to those of uPA:PAI-1 and without stimulating intracellular 

signalling events over and above that of uPA binding to uPAR 210-212. PAI-2 expression is 

increased in tumour compared to normal tissue, perhaps due to a host inflammatory response, 

but high stromal expression is associated with prolonged (in contrast to the other components of 

the uPA system) survival in breast cancer 191.  

 

The uPA system is expressed on both cancer cells and the supporting stroma 188. In one of the 

original in-situ hybridization studies in colon cancer, uPA and uPAR were found to be mainly 

expressed on the stromal and tumour cells, respectively, at the invasive front of a tumour, 
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facilitating proteolysis required for invasion 213.  While immunohistochemical studies in gastric 

cancer have shown stromal uPA/uPAR expression, higher expression is seen on tumour cells, 

and it is postulated that this tumour cell specific uPA/uPAR explains the aggressive biology 

exhibited by these cancers, and is more relevant for prognostic outcomes 214-216.  

 

Expression of the uPA system has been shown to be an important prognostic marker in a variety 

of cancers including breast cancer217-219, lung cancer 220, and colorectal cancer 221, with the 

combination of uPA and PAI-1 expression recommended to be incorporated into routine clinical 

care of node negative breast cancer by the American Society of Clinical Oncologists222,223.  

 

1.2.3.2 The uPA system and gastroesophageal cancer 

The prognostic role of expression of the uPA system in gastroesophageal cancer is not clear. 

While numerous studies have been performed to investigate this association, the studies have 

employed differing methodology and included different patient populations, leading to 

contrasting results. Conclusions from a previous meta-analysis are limited by significant 

methodological flaws and the pooled analysis of gastric and colon cancer 224. 
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1.2.4 Circulating tumour cells 

As cancers form and grow, tumours cells are shed from the tumour mass into the circulation, 

where they can be detected in blood samples. Study of these circulating tumour cells (CTCs) is 

a rapidly developing field in oncology research. There is an increasing recognition of the 

limitations of using primary tumour features to guide systemic cancer treatment, due to tumour 

heterogeneity and the frequent disparity observed between primary and metastatic sites 225. 

Metastatic biopsies are rarely undertaken however, due to both inaccessibility of metastatic sites 

and procedure morbidity.  CTC sampling therefore provides a ‘real time’ view of the cancer 

using only peripheral blood samples, avoiding the need of repeat invasive biopsies 226. 

 

1.2.4.1 Techniques for isolating CTCs – technical challenges 

As CTCs occur at very low concentrations in the peripheral blood (ranging 1-10 cells per 10 ml 

of blood in most cancer patients) there are considerable technical challenges in developing 

robust detection protocols226. 

 

Most CTC detection protocols require two steps. Initially the peripheral blood is enriched for 

CTCs using physical properties (such as ficoll density gradient) or expression of cell surface 

markers, using either positive selection or negative depletion.  For example, the CellSearch 

system (Menarini-Silicon Biosystems, Huntington Valley, PA, USA)- the only current FDA 

approved CTC system, uses positive immunomagnetic isolation of EpCAM (an epithelial cell 

marker) positive cells using anti human EpCAM antibody conjugated magnetic beads 227.  The 

CellSearch system immunoprobes the cells enriched by EpCAM targeting for cytokeratins (a 

second epithelial marker to improve specificity), DAPI (nuclear stain), and excludes CD45 (a 

leukocyte marker) positive cells. As such, CTCs are defined as EpCAM/cytokeratin(CK)/DAPI 

positive and CD45 negative cells isolated from a blood sample. CTCs enumerated using this 

approach have been shown to be clinically relevant prognostic biomarkers in a range of cancers 

including breast 228, bowel 229, and prostate cancer 230. Other strategies of CTC enrichment rely 

on physical differences of tumour cells versus blood cells, mainly size (filter enrichment of cells 

larger than most blood cells) or the plasticity of cells. Nevertheless, these methods still need 

CTC identification by usually immunostaining to verify the nature of CTCs versus residual 

blood cells. CTC isolation approaches have been thoroughly reviewed by Alix-Panabières et al 
222. 

 

Each approach to CTC enrichment has potential advantages and drawbacks. Positive selection 

using techniques such as immunomagnetic separation based on cell molecular expression (eg 

with EpCAM in the CellSearch System) is quite specific, reproducible and fully validated in 
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regards to correlation of detected CTC numbers to clinical parameters. It is limited by the fact 

that CTCs have to express the isolation target (usually EpCAM) and the identification marker 

(usually cytokeratin). Overall the technology has relatively low sensitivity, high costs, and 

further analysis of the enriched CTCs is often dependent on further purification of single or 

pooled CTCs. In contrast, density gradient (eg Ficoll, OncoQUick) and size based filtrations are 

simple, cheaper, but also limited by CTC molecular phenotype establishment using 

immunostaining (usually EpCAM and/or cytokeratin probing). The advantages of some 

methods are that they allow for easier subsequent analysis of CTCs. However they are limited 

by poor enrichment and low specificity/sensitivity 231.  

 

Similarly each detection method of CTCs within the enriched specimen has different strengths.  

A cytometric approach allows the user to assess to some degree cell morphology and other 

characteristics for enumeration and molecular characterisation. However ideal CTC markers 

have yet to be identified, and there is the potential for lower sensitivity. Nucleic acid based (RT-

qPCR) techniques are antibody independent, highly sensitive and allow for multimarker assays, 

but are limited by high false positive rates and the user is unable to isolate or assess CTCs. 

There is therefore a need to identify new CTC biomarkers in order to overcome limitations of 

the current approach.  

 

1.2.4.2 EpCAM based CTC capture and enumeration in gastroesophageal 

adenocarcinoma: 

Enumeration of CTCs has been confirmed as a clinically relevant prognostic marker in 

gastroesophageal cancer. The strongest evidence is from studies with EpCAM based capture 

using the CellSearch platform, the most commonly used approach (studies summarised in Table 

4). 
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Table 4: CTC studies using EpCAM based capture (CellSearch platform) in 

gastroesophageal cancers including resectable gastric cancer (RGC), advanced gastric cancer 

(AGC), resectable esophageal cancer (REC), and advanced gastroesophageal cancer (AGOC). 

Study Patient 

Population 

 

Collection 

time points 

Positive 

cutoff 

CTC/7.5ml 

Summary of results 

Allard et al 

2004 227 

9 AGC Prior to 

treatment 

≥2 Detection rate 31% 

 

Hiraiwa et al 

2008 232 

17 RGC 

27 AGC 

Prior to 

treatment 

≥2 Healthy volunteers 0% 

Non metastatic: 14.3% 

Metastatic 55.6%  

Matasusaka et 

al 2010 233 

52 AGC 

 

Prior to tx, 

2wks, 4 wks 

 

>4 Detected in 33% of cases 

CTC levels at 2 and 4 weeks predictive 

of response and prognostic 

Uenosone  

et al 2013 234 

148 RGC 

103 AGC 

 

Prior to 

treatment  

≥ 1 No CTC detected in healthy volunteers 

11.3% in RGC 

60.2% in AGC 

Average 3.5 CTCs / 7.5ml 

Poorer DFS and OS with positive CTCs 

Sclafani et al 

2014 235 

18 AGC Prior to 

treatment 

≥2 44% at baseline 

Small numbers, closure of commercial 

support 

Lee et al 2015 
236 

100 AGC Prior to 

treatment 

≥5 Detection rate 28% 

Poorer OS and PFS with positive CTC  

Reeh et al 

2015 237 

68 REC 

(adeno) 

Prior to 

treatment 

≥1 Detection rate 20.6% 

Poorer RFS and OS with positive CTCs 

Okabe et al 

2015 238 

25 AGC Prior to 

treatment 

≥1 Detection rate 18.4% 

Poorer PFS with positive CTCs 

 

Li et al 2016239 136 AGC Prior to tx 

and 6 weeks  

≥3 Positive CTCs after 6 weeks associated 

with poor PFS, response rate, and OS 

Pernot et al 

2017 240 

106 AGOC Prior to 

treatment and 

day 28 

≥2 Poorer DFS and OS with detectable 

CTCs 

CTCs at day 28 predictive of disease 

control 
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These studies confirm the validity of EpCAM capture for enumeration of CTCs in 

gastroesophageal cancer and demonstrate the following results: CTCs were detected in 11.6 – 

60.2% of patients with gastroesophageal cancer; detectable and higher numbers of CTCs more 

often occurs in patients with advanced stages of disease 238;  higher CTC counts correlate with 

worse clinicopathological features such as tumour size/invasion, lymphovascular invasion and 

lymph node status234,238; similar to other solid tumours, a positive CTC count is an independent 

risk factor associated with poorer clinical outcomes233,234,236-239; and dynamic changes in CTCs 

with treatment may provide an early prediction of response238-240. A subsequent meta-analysis of 

the above CTC studies confirm these findings 241. 

 

Despite the utility of EpCAM, a major challenge in the use of CTCs as biomarkers is the 

development of an ideal marker to detect the rare cancer cells in the large numbers of benign 

cells – that is – a marker that is always and only expressed on malignant cells 226.  Single 

marker, such as CK expression alone, has high false positive results (from 20 to 50%), which is 

reduced by using a second marker 242. Moreover, there are likely heterogeneous subpopulations 

of CTCs which have differing malignant potential.  For example, EpCAM and CK are 

downregulated as cells undergo epithelial-mesenchymal transition (EMT), and consequently 

methods using EpCAM capture do not detect CTCs in the EMT phenotype 243.  Although 

confirmed as prognostic, CTC enumeration using current markers has more limited success in 

guiding treatments 244. Furthermore, modelling studies suggest that 1 in 60 million CTCs form 

viable metastases 245, and there have been studies reporting long term (>22years) persisting 

CTCs with no clinically visible disease 246.  Therefore there is a need to develop novel CTCs 

markers, beyond the currently utilised EpCAM/CK markers, to identify CTCs responsible for 

metastatic disease. CSC biomarkers and the uPA system hold potential for the detection of 

CTCs beyond traditional EpCAM methods. 

1.2.4.3 CSC markers and CTCs 

As discussed in section 1.2.1, CSC are the subpopulation of cancer cells that are capable of 

initiating tumour growth and therefore responsible for the initiation and propagation of 

metastatic disease. CTCs are therefore likely to be enriched for CSCs, and CSC markers may 

provide an improved means for detecting biologically relevant CTCs 247.  Several small studies 

have explored the role of CSC markers in CTCs in gastroesophageal cancer using CD44 and 

CD133. Li et al showed CK/CD44 positive cells within the peripheral blood mononuclear cell 

(PMBC) layer was prognostic in patients with gastric cancer 73. Yuan et al used CD45 depletion 

combined with CD44 positive selection to isolate tumourigenic CTCs 248. The CD44+ fraction 

of EpCAM+ cells in peripheral blood samples isolated by flow cytometry shows correlation 

with disease stage and venous invasion, as well as response to chemotherapy, while the CD44- 
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fraction did not 249. The number of CD133+ cells isolated in peripheral blood samples was 

significantly associated with clinical outcomes for patients with gastric cancer 150. So far, no 

study has compared the utility of CSC markers to identify CTCs to the widely accepted 

EpCAM+/CK+/DAPI+/CD45- phenotype.  

As indicated above, one important limitation of this approach is the widespread expression of 

CD44 and CD133 on non-malignant tissue. For example, CD44 is expressed on many cells 

found in the circulation including leukocytes and endothelial cells250, and may reduce specificity 

of CTC detection, thus a combination strategy probing for EpCAM/CK/CD45 plus CD44 and 

CD133 maybe a viable method. 

 

1.2.4.4 CTCs and the uPA system 

The uPA system is the key proteolytic pathway to facilitate invasion of cancer cells into stromal 

tissue.  uPAR has been identified as an important marker on CTCs in breast cancer, with uPAR+ 

CTCs enriched for stem cell pathways,  and able to adhere, proliferate and invade 251.  While 

there are no studies examining expression of the uPA system in gastroesophageal cancer CTCs, 

there are some compelling results supporting the importance of uPA system in disseminated 

tumour cells (DTC) in bone marrow.  DTCs are thought to represent the fraction of CTCs 

capable of entering distant sites as the first step in establishing metastases 252.  Allgayer et al 

used CK18 to identify DTC in the bone marrow in 156 patients who had undergone a curative 

resection for localised gastric cancer. They found while overall CK18+ DTC was not associated 

with prognosis, the CK18+/uPAR+ subset was, suggesting uPAR identifies the critical 

subpopulation of cells responsible for establishment of metastasis 253,254. 

 

1.2.4.5 Circulating tumour cell culture 

Research into the mechanism of metastasis initiation, formation, and propagation has been 

hampered by limited access to cancer cells within the various stages of the metastatic cascade. 

CTCs provide a unique window into the biology of cancer as it spreads through the blood 

stream. As CTCs are very rare cells and few CTCs are isolated (often 1 – 10 cells per 10 ml of 

blood) by current methodologies, this research has been hampered by the low number of cells 

available for analysis. CTC culture provides an expanded cell population for expression 

analysis, functional assays, and drug sensitivity 255,256. Moreover, long term primary CTC 

cultures provide a laboratory tool for the investigation of the biology of metastasis formation 257.  

However establishment of long term primary CTC cell cultures has proven to be challenging. 

Despite intensive efforts, only four long term CTCs cultures have been established and reported 

in the literature 258-261, with no reported success in gastroesophageal cancer (Table 5). 
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Table 5: Long term CTC cell lines established worldwide  

ULA – Ultra low attachment; Ab/Am – Antibiotic/Antimycotic; EGF – epithelial growth factor; 

FGF – fibroblast growth factor 

 

 

 

Study Cancer Isolation Method Media / culture conditions Culture success 
rate (successful 
cultures/all 
patients) 

Yu et al 
2014259 
 

Breast 20ml EDTA 
CTC-iChip 

RPMI 1640 
EGF 20ng/ml 
FGF 20ng/ml 
B27 
1x Ab/Am 
Hypoxic incubator 
ULA plate 

6/36  

Cayrefourcq 
et al 2015258 
 

Colorectal 10ml EDTA 
Stemcell 
RosetteSep CD45 
depletion 
 

DMEM/F12 , Insulin 20ug/ml, 
1% N2, EGF 20ng/ml, L-
Gutamine 2mM 
FGF2 10ng/ml, 2% FCS 
24 well ULA plate,  

1/71  
 

Zhang et al  
2013261 
 

Breast 20 – 45ml 
 

Medium 1 (1wk) 
DMEM/F12, Insulin 5mg/ml 
Hydrocort 0.5mg/ml, EGF 
20ng/ml, FGF-2 20ng/ml 
Medium 2 (D7-D22) 
EpiCult-C with 10% FBS and 
1% P/S, T75 flask 
Medium 3 (>22d) 
DMEM/F12 , 10% FCS, 
1%P/S 

3/8  

Gao et al 
2014260 
 
 

Prostate 8ml EDTA 
 
Stemcell 
RosetteSep CD45 
depletion 
Seeded in growth 
factor reduced 
matrigrel 

Complex media (see supp 
materials) 
DMEM/F12 
EGF 50ng/ml 
FGF10 10ng/ml 
FGF2  1ng/ml 
Testosterone, nicotinamide 
R-spondin 1 
B27 
Glutamx 
HEPES 
Primocin 

1/100  
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Short term cultures have also been developed in a variety of tumours. One group has used the 

MetaCell assay and RPMI-1640 supplemented with fetal bovine serum to establish short term 

(<14 days) CTC cultures in prostate, pancreatic, oesophageal, gastric and bladder cancer 262-265. 

The EPISPOT assay detects cytokeratin secretion by CTCs during short term culture following 

CD45 depletion as an enrichment step 266,267, and the Vitatex (Vitatex Inc, Stony Brook NY, 

USA) detects the invasion ability of CTCs through a fluorescent matrix 268. 

 

An alternative approach is to expand the CTC population by injecting them into 

immunodeficient mice. This approach has been used successfully in breast cancer 269, although 

required >1000 CTCs/7.5 ml blood, a far higher number than is seen in most patients. A CTC 

xenograft model has also been demonstrated in gastric cancer. The CD45 negative fraction of 

peripheral blood mononuclear cells from patients with gastric cancer formed tumour like 

structures in nine immunodeficient mice. One of the nine tumours expressed gastric epithelial 

markers and CSC markers, providing proof of concept of the xenograft as a functional CTC 

assay 270. 

 

1.3 Clinical Biomarkers in Colon Cancer 

A key challenge in modern clinical oncology is the integration of diverse types of prognostic 

information to provide an accurate, but highly individualised, estimate of prognosis. Despite 

intensive efforts and hundreds of publications, there are very few biomarkers that are currently 

routinely incorporated into the clinical care of patients with colon cancer 271. While  there is 

emerging evidence for many molecular markers, including microRNA, circulating tumour 

DNA, tumour suppressor genes, and molecular signatures such as the Oncotype DX (Genomic 

Health Inc, Redwood City, CA, USA) colon cancer assay, however these await further study 

and external validation prior to clinical use. Despite initial promise, subsequent studies on the 

same or related markers have demonstrated inconsistent or contradictory results 271 .  

 

As noted above, the most important prognostic factor in colon cancer is pathological stage at 

diagnosis 25. Other validated, clinically utilised, prognostic factors include lymphovascular and 

perineural invasion 272-274, histological grade 275, and CEA level 276-278. Important molecular 

biomarkers include microsatellite instability (MSI) 279, RAS and BRAF mutations 280-282, and 

more recently, the consensus molecular subtype 283, although MSI is the only molecular 

biomarker routinely used in early stage colon cancer in Australia.  

 

The consensus molecular subtype (CMS, Figure 4), developed through an international 

collaboration to resolve inconsistencies in molecular profiling between independent groups, is 
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the most widely adopted approach to classify colorectal cancer into distinct molecular subtypes 

with significant biological differences283.  The CMS proposes 4 distinct molecular subtypes. 

CMS1 (MSI-like) include hypermutated and microsatellite instable tumours, and are enriched 

for CIMP and BRAF mutations. CMS2 (canonical) are tumours with chromosomal instability 

and marked Wnt and MYC activation.  CMS3 (metabolic) demonstrate disruption of metabolic 

pathways and are enriched for KRAS mutations. CMS4 (mesenchymal) show prominent stromal 

invasion, angiogenesis and a mesenchymal phenotype283. Importantly the CMS has shown 

significant prognostic associations, with CMS4 tumours associated with the poorest survival284. 

Although it is hoped that the CMS will facilitate molecular guidance for individuation of 

treatments, the large number of genes included in the CMS has prevented widespread adoption 

in routine clinical care285  

 
Figure 4: The consensus molecular subtype (CMS) outlining key features and proportion 

of the four subtypes of colorectal cancer. Taken from Guinney et al283 

 

Clinical factors are known to act as surrogates for tumour biology. For example, Asian female 

patients with advanced non-small cell lung cancer are enriched for the targetable EGFR 

mutation 286.  Identifying key clinical factors in colon cancer may not only identify prognostic 

markers, but also provide insight into the underlying pathobiology. 

 

1.3.1 Primary tumour location in colon cancer 

There is an increasing interest in identifying the differences between right sided (RsCC) and left 

sided colon cancer (LsCC), with a growing body of evidence to suggest that right sided colon 

cancers follow a different disease process compared to left sided tumours.  The proximal and 

distal colons are physiologically separate, arising from distinct embryological origins, with 

differences in tumour genetics, histology, presentation, and clinical features 287-289. Patients with 
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right colon cancer are older, more likely to be female, have more comorbidities, with poorer 

tumour histopathological features 290-293. Epidemiological studies suggest a recent shift from 

right to left sided colon cancer 294. RsCCs are more likely to have adverse histological features, 

higher rates of BRAF mutations and MSI, and demonstrate a molecular profile distinct from 

LsCC 283,287,295-297. 

Despite this, there is ongoing debate whether primary tumour location is an independent 

prognostic factor in colon cancer.  Most, but not all studies have found poorer survival with 

right colon cancer 292,293,298-300.  Tumour stage may play a role, with a large Surveillance, 

Epidemiology, and End Results (SEER) program study showing worse overall survival in Stage 

III RsCC patients, but not in Stage I or II 292, although these finding have been recently 

challenged by a propensity score matched analysis of the SEER database, which showed a better 

prognosis in RsCC patients 298. Further studies are required to elucidate the differences between 

LsCC and RsCC, particularly in locoregional disease.  

 

1.3.2 Age as a predictor of benefit to adjuvant chemotherapy 

Adjuvant (post operative) chemotherapy is an essential component of treatment in stage III and 

high risk stage II colon cancers. The fluoropyrimidines are the most efficacious single agent in 

CRC and are commonly utilised as the backbone in combination treatments. Oral 

fluropyrimidines (capecitabine) are as efficacious as intravenous (fluorouracil; 5-FU with 

modulating leucovorin) with an improved safety profile 301,302.   Large randomised control trials 

establish fluoropyrimidine based chemotherapy as the standard of care in the adjuvant setting, 

with pooled analysis including 3302 patients with stage II and III colorectal cancer showing  a 

30% reduction in risk of recurrence and 26% decreased risk of death with fluourouracil based 

adjuvant chemotherapy 303.  The MOSAIC trial demonstrated an additional 23% DFS and 20% 

OS benefit by adding oxaliplatin to 5-FU in patients with stage III CRC 304, with a similar result 

seen in the NSABP C-07 trial 305.   

 

Despite the above evidence, the optimum regimen for elderly patients remains uncertain. As 

only a minority of patients in clinical trials are older than 70 years, the efficacy and safety of 

adjuvant chemotherapy with an oxaliplatin doublet in elderly patients is unclear. For example, 

in the adjuvant colon cancer end points database (ACCENT) which includes individual patient 

data from 14500 participants in 18 fluoropyrimidine - based adjuvant trials, only 18% are older 

than 70 years 306.   

 

Currently available trial data for adjuvant chemotherapy in elderly population is conflicting. 

Subgroup analyses from the pivotal phase III MOSAIC and NSABP C-07 trials show a survival 
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benefit only in patients <70 years 304,305. Similarly, there was no DFS) or OS improvement with 

the addition of oxaliplatin in the 2575 patients ≥70 years in the ACCENT database 306. In 

contrast however, pooled individual patient data from 904 patients ≥70 years from the NSABP 

C-08, XELOXA, X-ACT, and AVANT studies showed an attenuated, but statistically 

significant benefit to the addition of oxaliplatin, including those with comorbidities 307.  

 

Similarly, retrospective patient series demonstrate contrasting results. While the largest series, 

drawn from multiple USA databases including the SEER database, found a statistically 

significant benefit to adjuvant oxaliplatin in elderly patients (70-74 years old) and those with 

comorbidities 308, this was less clear in patients >75 309 and was not seen in other, smaller studies 
310,311.  

As a consequence of these uncertainties, current guidelines recommend discussing incorporation 

of oxaliplatin with patients over 70 years based on individual circumstances, although 

fluoropyrimidine monotherapy is an appropriate choice for adjuvant therapy in the elderly 
18,312,313. 

 

1.4 Aims and Objectives 

It is clear that cancer biomarkers are critically important in clinical oncology. In addition to 

providing valuable prognostic information, biomarkers assist in patient risk assessment, 

prediction of response to treatment, and monitoring progress of disease, all key factors in 

improving the individualisation and delivery of treatment. Furthermore, biomarkers provide 

insight into the mechanisms of cancer and identify novel targets for therapeutic agents. Despite 

improvements in systemic treatments, prognosis remains poor for the majority of patients with 

gastroesophageal cancer. This is largely due to the lack of robust biomarkers available in 

gastroesophageal cancer to guide systemic treatment. 

 

The overall aim of this thesis was to identify clinical and molecular biomarkers of 

gastrointestinal cancer to ultimately improve delivery of treatment to patients with these 

diseases.   

 

The specific aims of this work were to: 

i) Determine if expression of the urokinase plasminogen activator (uPA) system and 

cancer stem cell (CSC) markers are biomarkers in gastroesophageal cancer  

ii) Develop and validate a protocol for the cryopreservation and thawing of samples 

for circulating tumour cell (CTC) analysis  
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iii) Determine if uPA receptor (uPAR) expression improves the prognostic value of 

circulating tumour cells above currently employed markers 

iv) Establish primary cancer cell cultures from circulating tumours cells isolated from 

patients with gastroesophageal cancer 

v) Explore primary tumour location as biomarker in locoregional colon cancer.  

vi) Investigate the suitability of age as a predictive determinate of benefit to 

oxaliplatin-based adjuvant chemotherapy in locoregional colon cancer 
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Abstract 

 
Background: The urokinase plasminogen activation (uPA) system is a crucial pathway for tumour 

invasion and establishment of metastasis. Although there is good evidence that uPA system 

expression is a clinically relevant biomarker in some solid tumours, its role in gastroesophageal 

cancer is uncertain. 

 

 Methods: We undertook a systematic review evaluating expression of uPA, urokinase plasminogen 

activator receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1/SerpinE1) and plasminogen 

activator inhibitor-2 (PAI-2/SerpinB2) on primary oesophageal, gastro-oesophageal junction, and 

gastric adenocarcinomas. We performed a meta-analysis of clinicopathological associations, overall 

survival (OS) and recurrence free survival (RFS).  

 

Results: We identified 41 studies encompassing 2689 patients which fulfilled the inclusion criteria.  

uPA, uPAR, or PAI-1 expression is significantly associated with high risk clinicopathological 

features. High uPA expression is associated with a shorter RFS (HR 1.90 95% 1.16 – 3.11, p=0.01) 

and OS (HR 2.21 95% CI 1.74 – 2.80, p<0.0001). High uPAR expression is associated with poorer 

OS (HR 2.21 95%CI 1.82 – 2.69, p<0.0001). High PAI-1 expression is associated with shorter RFS 

(HR 1.96 96% CI 1.07 – 3.58, p=0.03) and OS (HR 1.84 95%CI 1.28 – 2.64, p<0.0001).  There was 

no significant association between PAI-2 expression and OS (HR 0.97 95%CI 0.48 – 1.94, p<0.92) 

although data was limited. 

 

Conclusion: We conclude that the uPA system is a clinically relevant biomarker in primary 

gastroesophageal cancer, with higher expression of uPA, uPAR and PAI-1 associated with higher risk 

disease and poorer prognosis. This also highlights the potential utility of the uPA system as a 

therapeutic target for improved treatment strategies. 
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2.1   Introduction 

Gastroesophageal cancer is a common and lethal malignancy, marked by modest response to systemic 

therapies1.  A deeper understanding of molecular events characterising carcinogenesis, invasion, 

progression and metastasis is central for the development of novel therapies. 

 

2.1.1 The uPA system 

A key process in the development and progression of cancer, including establishment of metastatic 

disease, is the invasion of malignant cells into normal tissue.  The plasminogen activation system, 

particularly the urokinase-type plasminogen activator (uPA) system, is critical for tumour-associated 

proteolysis to breakdown extracellular matrix (ECM) and basement membranes barriers2,3. The uPA 

system has a defined role in tissue degradation and extravascular fibrinolysis, and is responsible for 

most of the activated plasminogen associated with cancer invasion and metastasis3,4 (Figure 1). 

 
Figure 1: The uPA system:  Schematic representation of the urokinase plasminogen activation (uPA) 

system. The membrane bound urokinase receptor (uPAR) binds circulating inactive pro-uPA, 

facilitating the activation of pro-uPA to uPA which subsequently converts co-localised plasminogen 

to plasmin that can directly degrade components of the extracellular matrix (ECM) and activate pro-

matrix metalloproteases (MMP) to further break down ECM. Plasminogen activator inhibitors 1 or 2 

(PAI-1, PAI-2) are efficient endogenous inhibitors of uPA.  

 

 

 

 

 



63 
 

The uPA protein is secreted as a zymogen and activated on high affinity binding to its specific cell 

surface receptor uPAR. Once activated, uPA catalyses the activation of co-localised plasminogen to 

plasmin, which in turn directly degrades components  of the ECM, and promotes further degradation 

and tissue remodelling by activating pro-metalloproteinases and by releasing, thus activating, latent  

growth factors from the ECM2,4.  

 

The uPA receptor (uPAR) is anchored to the plasma membrane, localising the uPA system to the cell 

surface 5. High expression of uPAR on the invasive front of tumours facilitates invasion and other 

roles in cellular migration and angiogenesis 6,7. uPAR expression may be a suitable marker for the 

onset of invasion of both gastro-intestinal and breast cancer as it is expressed only on invasive 

carcinomas, not premalignant states such as Barrett’s oesophagus 8. 

 

Urokinase-type plasminogen activator is efficiently inhibited by two subtypes of serpin (serine 

proteinase inhibitor) family members, plasminogen activator inhibitor-1 (PAI-1/SerpinE1) and -2 

(PAI-2 /SerpinB2). Both form a covalent complex with uPA/uPAR leading to internalisation of the 

entire complex 9 . Although believed to have a physiological role as an inhibitor of the uPA system, 

PAI-1 has a paradoxical protumourgenic role, increasing tumour invasion and angiogenesis, and 

correlated with poor prognosis 10. The role of PAI-2 in cancer is less clear. Although both PAIs 

mediate uPA/uPAR endocytosis, the uPA-PAI-2 complex interacts with endocytosis receptors with 

different binding kinetics to those of uPA: PAI-1 and without stimulating intracellular signalling 

events over and above that of uPA binding to uPAR 11.  

 

While the uPA system is expressed on both cancer cells and the supporting stroma, higher expression 

is seen on tumour cells, and is postulated that the tumour cell specific uPA/uPAR explains the 

aggressive biology exhibited by these cancers, and is more relevant for prognostic outcomes 12-15.   

Expression of the uPA system has been shown to be an important prognostic marker in a variety of 

cancers including breast cancer16, lung cancer17, and colorectal cancer18, with the combination of uPA 

and PAI-1 expression recommended to be  incorporated into routine clinical care of node negative 

breast cancer19.   

 

In this study we aim to perform a comprehensive systematic review of expression of the uPA system 

encompassing uPA, uPAR, PAI-1, and PAI-2 in primary, resectable gastro-oesophageal cancer, and 

undertake meta-analyses of prognostic outcomes (recurrence free survival and overall survival), and 

association with relevant clinicopathological variables. To the best of our knowledge, this is the first 

meta-analysis to examine and compare the expression of these key components of uPA system in 

primary gastro-oesophageal cancer. 
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2.2    Methods 

Methods are reported according to Preferred Reporting for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines20. 

 

2.2.1 Study eligibility/selection criteria 

We included all studies which examined the following components of the urokinase plasminogen 

activation system uPA, uPAR, PAI-1 or PAI-2, in resected primary esophageal, gastroesophageal 

junction, or gastric adenocarcinomas.  Other tumour pathologies were excluded. For inclusion in the 

quantitative synthesis, studies were required to report the association of the following outcomes with 

uPA system expression: overall survival (OS), recurrence-free survival (RFS), or clinicopathological 

variables. 

 Two authors (DB, JC) independently performed the search and screened the studies.  The primary 

outcome was OS; secondary outcomes were RFS, and correlation of clinicopathological variables 

with uPA system expression.  

 

2.2.2 Study search strategy 

We searched the following databases in February 2015 for all trials fulfilling the above criteria: 

Medline (1950 – present); EMBASE (1966 – present); Cochrane Central Register of Controlled 

Trials, and Cochrane Database of Systematic Reviews; PubMed.  

 To maximize sensitivity the following search terms were used: Stomach Neoplasms (MESH) OR 

Esophageal neoplasms (MESH) OR Gastrointestinal neoplasms (MESH) OR Gastric cancer.mp OR 

Gastric carcinoma.mp OR esophageal cancer.mp OR oesophageal cancer.mp OR gastroesophageal 

cancer.mp AND Receptors, urokinase plasminogen activator (MESH) OR Urokinase-type 

plasminogen activator (MESH) OR Plasminogen activator inhibitor 1 (MESH) OR Plasminogen 

activator inhibitor.mp OR PAI-1.mp OR PAI-2.mp OR Urokinase* plasminogen.mp OR uPA*.mp. 

Reference lists of included studies and review articles were hand searched. The search was restricted 

to studies published in English.   

 

2.2.3 Data collection 

Study data was independently collected by two authors (DB, JC) using standardized electronic data 

collection forms. The following was collected for each study: patient number, primary tumour 

location (gastric/oesophageal/COJ), cancer stage, treatment received by patient; uPA components 

assessed (uPA, uPAR, PAI-1, PAI-2) and method, patient followup; outcomes (OS or RFS), 

clinicopathological correlations (including TMN stage, tumour grade, lymphatic invasion, vascular 
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invasion). For studies which used IHC, expression analysis was restricted to tumour cells only 

(stromal expression was not included in the meta-analysis).  Any disagreement was resolved with 

consensus by a third author (MR) 

 

2.2.4 Assessment of bias within studies 

All studies included in the meta-analyses were assessed for bias using the Quality In Prognosis 

Studies (QUIPS) tool which assesses for potential sources of bias in six domains namely: study 

participation; study attrition and loss to followup; prognostic factor measurement; outcome 

measurement; study confounding; and statistical analysis and reporting21. 

 

2.2.5 Statistical analysis 

We extracted the hazard ratio (HR) and their 95% confidence intervals (CI) for time-to-event 

outcomes including RFS and OS. If both univariate and multivariate HR were published the univariate 

results were preferentially used. Where no HR was provided in published data, it was estimated from 

available results or Kaplan-Meier survival curves using previously described methods22.  

HRs were synthesized using the generic inverse variance method and a random effect model using 

RevMan5.1 analysis software. Statistical heterogeneity was assessed using the I2 statistic. We 

performed pre-specified subgroup analysis for overall survival for: primary location (gastric or 

oesophageal), cancer cell specific expression (using IHC) compared to whole cell lysis (using RT-

PCR/ELISA).  

Clinicopathological associations were summarized using odds ratios (OR) derived from published 

results. This analysis was limited to studies using IHC, as other methods presented expression results 

as means, rather than percentage of patients expressing. Expression rates were described with mean 

and range, and compared using the student’s t-test.  

 

2.3    Results 

 
2.3.1 Included studies 

The trial flow is provided in Figure 2.  We identified 267 reports matching criteria for inclusion in the 

study, of which 109 were selected for abstract review, and 60 subsequently for full text review.  Forty 

one studies (including 2689 patients) fulfilled criteria for inclusion in the systematic review. Of these, 

22 studies (1966 patients) provided sufficient data for inclusion in the formal quantitative meta-

analysis: 19 studies were excluded for the following reasons: 13 studies did not examine prognostic or 

clinicopathological associations23-34, 3 reports were matched case control studies35-37, and 4 studies 

reported insufficient published data to derive a HR38-42.   
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Figure 2: Study selection flow diagram. HR –hazard ratio; OS – overall survival; RFS – recurrence 

free survival. 

 

The characteristics of the included studies are summarized in Supplementary Table 1. Eighteen 

studies evaluated uPA system expression in gastric cancer (1732 patients), one study included 

oesophageal, junctional and gastric cancers (39 patients), and two studies examined oesophageal 

cancer only (105 patients). Expression of the uPA system was assessed using immunohistochemistry 

(IHC, 12 studies, 1273 patients), enzyme-linked immunosorbent assay (ELISA, 5 studies, 344 

patients), reverse transcription polymerase chain reaction (RT-PCR, 3 studies, 153 patients), or in-situ 

hybridisation (ISH, one study, 105 patients).   

 

Hazard ratios directly extracted for 3 studies 8,12,43. The multivariate HR was used when univariate 

267 reports identified 
matching search criteria 

102 abstracts screened 42 reports excluded 
33 not evaluating primary gastro-
oesophageal adenocarcinoma 
9 circulating / soluble uPA studies 
 

 
  

60 full text reports assessed 
for suitability 

19 reports excluded 
 7 language other than English 
 10 duplicate reports 

2 expression assessed on metastatic 
tissue only 

 
  

41 studies 19 studies excluded from meta-analysis 
12 did not evaluate OS/ RFS 
3 matched case control 
4 insufficient published data to derive 
HR  

  
 
  
 

22 studies included in 
formal meta-analysis. 
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value was not provided 43. When only subgroup outcome data (tumour core or peripheral zone) were 

available, the results for peripheral “invasion” zone were used 8,12.  Hazard ratios were estimated for 

the remaining studies using published data. 4 studies reported a “non-statistically significant OS” 

result for uPA system expression, but did not publish sufficient data for inclusion in meta-analysis 39-

42.  

2.3.2 Bias risk 

The risk of bias summary is summarized in Figure 3. Only 4 studies 43-46 were deemed low risk in all 

bias domains.  Fourteen studies did not clearly define the study population 8,13,14,47-57 and 11 studies 

did not report completeness of followup 8,13,14,47-50,53,55,56,58. Most studies adequately reported method 

of measurement of the uPA system, although 5 studies did not report whether there was a second 

independent reviewer or blinding to clinical information14,52,56,57,59.  The follow-up protocol was 

underreported in 14 studies 8,12-14,47-53,55-57, although this is unlikely to bias the results for overall 

survival analyses.  Most studies did not report details of the surgical, medical, or radiation treatments 

received by patients, and were Urokinase plasminogen activator (uPA)  
 
 
 
Study 

Bias Domain 

Study 
Participation 

Study Attrition Prognostic 
factor 

Measurement 

Outcome 
Measurement 

Study 
Confounding 

Statistical 
analysis and 

reporting 
Allott 2012       
Alpizar Alpizar 2012       
Bayer 2006       
Cho 1997       
Ganesh 1996       
Heiss 1995       
Ito 1996       
Kaneko 2003       
Kawasaki 1998       
Laerum  2012       
Lee 2004       
Luebke 2006       
Maeda 1996       
Murata 1998       
Nekarda 1994       
Nekarda 1998       
Okusa  1999       
Plebani 1997       
Sakakibara 2006       
Taniguchi 1998       
Yonemura 1997       
Zhang 2006       

Figure 3: Risk of bias summary.  For each bias domain: green = “low risk” means that sufficient 

data was available to allow assessment of quality and fulfilled criteria for each domain, and 

accordingly is deemed low risk of bias. Orange = “unclear risk” means that insufficient data was 

presented to adequately assess the quality of the domain and accordingly the study has potentially 

high risk of bias. There were no studies deemed high risk of bias.  
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2.3.3 uPA system expression rates 

The expression rates are summarized in table 1. There was no significant difference in expression 

rates seen between cell specific (IHC, ISH) or whole tissue lysate (RT-PCR, ELISA).  

 Number of Studies 

(number of patients) 

Mean expression 

IHC/ISH (%) 

Mean expression 

ELISA/RT-PCR (%) 

p value (students t-

test) 

uPA 19 (1629) 59.5 42.6 0.1 

uPAR 15 (1352) 55.1 56.7 0.4 

PAI-1 15 (1337) 63.7 42.9 0.1 

PAI-2 3 (300) 43 - - 

Table 1: Expression of the uPA system in gastroesophageal cancer . IHC – 

immunohistochemistry, IHC – immunohistochemistry, RT-PCT - reverse transcription polymerase 

chain reaction; ISH – in-situ hybridisation; ELISA - enzyme-linked immunosorbent assay 

 

2.3.4 Urokinase plasminogen activator (uPA) 

2.3.4.1 uPA and clinicopathological associations 

uPA expression is significantly associated with poorer clinicopathological features in resected 

gastroesophageal cancer including: Advanced T stage (T3/4 vs T1/2) (OR 2.79 95% CI 1.80 – 4.32, 

p<0.0001), nodal metastases (OR 2.30  95% CI 1.63 – 3.51, p<0.0001), liver metastases (RR 6.77 

95% CI 2.70 – 16.96, p<0.0001), peritoneal metastases (OR 2.09 95% CI 1.29 – 3.36, p=0.003), 

lymphatic invasion (OR 2.28 95% CI 1.31 – 3.97, p=0.0003), and vascular invasion (OR=2.43 95% 

CI 1.53 – 3.86, p=0.0002) (5 studies, 522 patients, supplementary Figure 1).  There is no significant 

association with histology (poorly differentiated vs well differentiated). 

2.3.4.2 uPA expression and prognosis 

uPA expression was significantly associated with a worse RFS (3 studies, 467 participants, HR 1.90 

95% 1.16 – 3.11, p=0.01) (see supplementary Figure 2).  There was no significant difference in RFS  

seen between studies using IHC (HR 1.77) or ELISA (HR 2.36) to assess uPA expression (test for 

subgroup differences Chi2=0.37, p=0.54). 

 

uPA expression is significantly associated with poorer OS (12 studies, 1094 participants, HR 2.21 

95% CI 1.74 – 2.80, p<0.0001) (see Figure 4). There was no significant difference in OS between 

studies which used IHC (HR 1.94) or ELISA (HR=2.99) to assess uPA expression (p=0.38).  

Sensitivity analysis showed similar results when analysis was restricted to gastric cancer only (HR 

2.07, p<0.00001).  
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Figure 4: Pooled estimate of hazard ratio (HR) for uPA expression and overall survival (OS). 

Pooled estimate of hazard ratio (HR) for overall survival. The square on each bar represents the HR 

for an individual trial, and the bar shows the 95% confidence interval (CI). The diamond represents a 

pooled estimate with the centre of the diamond giving the HR estimate, and the extremes of the 

diamond representing the 95% CI.  

 

2.3.5 Urokinase plasminogen activator receptor (uPAR)  

2.3.5.1 uPAR expression and clinicopathological associations 

uPAR expression on primary resected gastroesophageal cancer is significantly associated with poorer 

clinicopathological features including: advanced TMN stage (stage III/IV vs I/II, OR 3.41 91% CI 

1.55 – 7.53, p=0.002), advanced T stage (OR 2.33 95% CI 1.53 to 3.56, p<0.0001), nodal metastases 

(OR 2.52 95% CI 1.70 – 3.72, p<0.0001),  liver metastases (OR 2.53 95% CI 1.25 – 5.13, p=0.010), 

peritoneal metastases (OR 3.15 95% CI 1.87 – 5.28, p<0.0001),  lymphatic invasion (OR 2.82 95% CI 

1.74 – 4.59, p<0.0001) and vascular invasion (OR 3.85 95% CI 2.53 – 5.88, p<0.0001) (six studies, 

589 patients, supplementary Figure 3). There is no significant association seen with histology (p=0.6).  

 

2.3.5.2 uPAR expression and prognosis 

Only one study provided data for uPAR expression and RFS 59, showing a shorter RFS with uPAR 

expression (203 patients, HR 2.69, p=0.03). 
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uPAR expression is associated with poorer OS (11 studies, 1036 patients, HR 2.19 95%CI 1.80 – 

2.66, p<0.0001) (Figure 5).  There was no significant difference in OS seen between studies which 

used IHC (HR 2.13), ISH (HR 2.34), ELISA (HR 2.19), or RT-PCR (2.66) to assess uPAR expression 

(p=0.96).  

 
Figure 5: Pooled estimate of hazard ratio (HR) for uPAR expression and overall survival (OS). 

 

2.3.6 Plasminogen Activator Inhibitor-1 (PAI-1) 

2.3.6.1 PAI-1 expression and clinicopathological variables 

PAI-1 expression on primary resected gastroesophageal cancer is significantly associated with poorer 

clinicopathological features including: advanced T stage (OR 2.59 95% CI 1.61 to 4.18, p<0.0001), 

nodal metastases (OR 2.03 95% CI 1.27 – 3.22, p<0.003), lymphatic invasion (OR 2.09 95% CI 1.31 

– 3.34, p<0.004) and vascular invasion (OR 1.90 95% CI 1.20 – 3.03, p<0.007) (three studies, 317 

patients, supplementary Figure 4). There was no significant association of PAI-1 expression with 

presence of liver metastases (OR 0.52, p=0.18), peritoneal metastases (OR 1.38, p=0.31), or histology 
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(OR 0.93, p=0.74).  

 

2.3.6.2 PAI-1 expression and prognosis 

PAI-1 expression is associated with shorter RFS (3 studies, 467 patients, HR 1.96 96% CI 1.07 – 3.58, 

p=0.03) (supplementary Figure 5). There was no significant difference in RFS between studies which 

used IHC or ELISA to detect PAI-1 expression (p=0.86) 

 

PAI-1 expression is significantly associated with a shorter OS (10 studies, 839 participants, HR 1.84 

95%CI 1.28 – 2.64, p<0.0001, Figure 6).  Pre-specified subgroup analysis showed a significant 

difference between studies which assessed PAI-1 expression using IHC (HR 1.20, p=0.47) and ELISA 

(HR 2.94, p<0.0001) or RT-PCR (HR 2.83, p<0.0001) (p=0.02).   

 

 
Figure 6: Pooled estimate of hazard ratio (HR) for PAI-1 expression and overall survival (OS). 
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2.3.7 Plasminogen Activator Inhibitor-2 (PAI-2) 

2.3.7.1 PAI-2 expression and clinicopathological variables 

There were no studies with sufficient data analyzing PAI-2 expression and clinicopathological 

variables for inclusion in the meta-analysis.  

 

2.3.7.2 PAI-2 expression and prognosis 

No studies published data on PAI-2 expression and RFS.  There was no significant association of 

PAI-2 expression and OS (2 studies, 145 participants, HR 0.97 95%CI 0.48 – 1.94, p<0.92, 

supplementary Figure 6).  

 

2.3.8 Publication bias 

Examination of the funnel plots for the OS analysis for uPA, uPAR and PAI-1 showed asymmetrical 

plots for all analyses, suggesting absence of smaller negative trials (example plot for uPA provided in 

supplementary Figure 7).  

 

2.4    Discussion 

This meta-analysis confirms the clinical utility of the uPA system as a biomarker in resected gastro-

oesophageal adenocarcinoma.   

 

There is good evidence that high expression of uPA, uPAR, and PAI-1 is associated with most high 

risk clinicopathological features, including advanced T stage, presence of nodal and distant 

metastases, and lymphovascular invasion, in primary gastro-oesophageal adenocarcinoma.  This 

supports the central role of the uPA system in tumour invasion and metastasis.  In contrast, there was 

no significant association of expression found with poorly differentiated histology, consistent with  

previously published work which shows that epithelial cell uPA system expression is higher in 

malignant than benign tissue, but decreases as tumour becomes more poorly differentiated, with a 

corresponding increase in stromal expression60.  

 

We also demonstrated that uPA, uPAR, and PAI-1 expression is associated with poorer prognosis in 

resected gastro-oesophageal cancer, with both a shorter RFS and OS in tumours which expressed 

these markers.  However this result should be interpreted with caution due to the following important 

limitations in our study.  

 

Firstly, only four of the included studies were deemed low risk for all bias domains as assessed by the 

QUIPS tool. In particular, most studies did not report the treatments patients received which is an 
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important potential source of confounding for RFS and OS analyses. Additionally, tumours with 

higher risk clinicopathologic features could reasonably be expected to be more likely to have received 

neoadjuvant treatment prior to surgery, which may in turn have impacted on the expression of the 

uPA system.  Despite this, it should be noted that similar results were seen in studies deemed low and 

high risk of study confounding, and heterogeneity was low in both the uPA and uPAR OS meta-

analyses (I2= 31% and 0% respectively, see Figure 4 and 5).   

 

Secondly, there is evidence of underreporting of non-significant results. This is demonstrated by both 

the funnel plot, as well the selective reporting of only statistically positive findings from included 

studies.  This important bias will cause an overestimation of the effect of expression.  

Thirdly, as demonstrated above, tumours that expressed uPA, uPAR and PAI-1 had higher risk 

features, and would be expected to recur or progress sooner than tumours that did not. The apparent 

difference in prognostic outcomes may be due to unequal baseline characteristics of the included 

participants.  

 

We did not show a significant difference in the prognostic outcomes between studies which used a 

tumour cell specific technique (e.g. IHC) compared to whole tissue lysates (e.g. RT-PCR, ELISA) for 

uPA and uPAR.  This is consistent with other studies which have shown correlation between IHC 

score and median ELISA value, and supports the cancer cells as a major source of uPA and uPAR 

expression in the tumour tissue61.  

 

In contrast, there was a significant different in the expression methodology subgroups in the analysis 

for PAI-1 and OS (p=0.02), with a non-significant outcome seen in studies using IHC (HR 1.20, 

p=0.47), compared to significant results with ELISA (HR 2.94, p<0.0001) and RT-PCR (HR 2.83, 

p=0.0007).  This highlights the importance of the stromal production of PAI-1 within the tumour 

microenvironment 10, as only methods that took into account both stromal and tumour PAI-1 showed 

statistically significant prognostic outcomes.  It has been postulated that in contrast to uPAR, 

fibroblasts and endothelial cells provide the major source of PAI-1 within the tumour tissue 62. It is 

possible that the PAI-1 detected on the tumour cells by IHC may be explained by internalization and 

accumulation of stromal produced uPA-PAI-1 complexes mediated by tumour uPAR 63. No IHC 

studies examined the association between stromal PAI-1 expression and prognostic outcomes in 

gastro-oesophageal cancer.   

 

All IHC study results used in the meta-analysis were restricted to tumour cell expression only.  

Similar to other cancers, uPA system expression was highest at the invasive front of the tumour 
8,12,13,48.  Only four studies reported stromal expression of the uPA system 8,12,13,59. Results were 

conflicting, with only one study showing a significant association of OS with macrophage uPAR 
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expression8.  

 

We were unable to show any significant associations with PAI-2 expression with either 

clinicopathological features or prognostic outcomes, as available data was much more limited. 

Similarly only 3 studies examined oesophageal cancer, which limits applicability of our results to this 

subgroup. Sensitivity analysis did not show a different result when oesophageal cancer was excluded 

from analysis.  

 

In conclusion, expression of the uPA system is a clinically relevant biomarker in gastroesophageal 

cancer. There is good evidence to support the association of uPA, uPAR, and PAI-1 expression and 

high risk clinicopathological features. While we found a statistically significant association between 

uPAR, uPAR and PAI-1 expression and poorer prognosis, our results are tempered by methodical 

limitations discussed above. Prospective studies are required to further confirm its role as an 

independent prognostic marker in this disease.   
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Supplementary Figure 1: Pooled estimate of odds ratio (OR) for uPA expression and 

clinicopathological factors. 
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Supplementary Figure 2: Pooled estimate of hazard ratio (HR) for uPA expression and 

recurrence free survival (RFS). 
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Supplementary Figure 3: Pooled estimate of odds ratio (OR) for uPAR expression and 

clinicopathological factors. 
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Supplementary Figure 4: Pooled estimate of odds ratio (OR) for PAI-1 expression and 

clinicopathological factors. 
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Supplementary Figure 5: Pooled estimate of hazard ratio (HR) for PAI-1 expression and 

recurrence free survival (RFS). 
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Supplementary Figure 6: Pooled estimate of hazard ratio (HR) for PAI-2 expression and overall 

survival (OS). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

Supplementary Figure 7: Funnel plot of uPA studies 
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Supplementary Table 1: Characteristics of included studies. 

 Study (year) Pt 
No. 

Primary location  
(TNM stage) 

Analysis 
Method 

uPA 
component 

Expression Rate 
(%) 

1 Allott (2012) 47 39 Oesophageal (ND) RT-PCR PAI-1 50 
2 Alpizar Alpizar (2012) 12 95 Gastric (I-IV) IHC uPAR 90 
3 Beyer (2006) 43 104 Gastric (I-IV) IHC uPA 

uPAR 
PAI-1 

91 
88 
90 

4 Cho (1997) 44 160 Gastric (I – IV) ELISA uPA 
PAI-1 

28 
33 

5 Ganesh (1996) 46 50 Gastric (I – IV) ELISA uPAR 
PAI-1 

42 
11 

6 Heiss (1995) 59 203 
 

Gastric (I – IV) IHC uPA 
uPAR 
PAI-1 

75 
69 
71 

7 Ito (1996) 48 125 Gastric (ND) IHC uPA 
PAI-1 
PAI-2 

66 
50 
52 

8 Kaneko (2003) 49 101 Gastric (ND) IHC uPA 
uPAR 
PAI-1 

23 
33 
37 

9 Kawasaki (1998) 13 91 Gastric (I – IV) IHC 
ISH 

uPAR 
 
PAI-1 

33 (IHC)  
20 (ISH) 
39 (IHC)   
29 (ISH) 

10 Lærum (2012) 8 66 Oesophageal, GOJ, 
Gastric (I-IV)  

IHC uPAR 90* 

11 Lee (2004) 50 35 Gastric (I – IV) RT-PCR uPAR 63 
12 Luebke (2006) 58 105 Gastric (I – IV) IHC uPA 

PAI-1 
84 
93 

13 Maeda (1996) 64 120 Gastric (I – IV) IHC uPA 
PAI-2 

61 
63 

14 Murata (1998) 52 26 Gastric (IV) IHC uPA 42 
15 Nekarda (1994) 65 76 Gastric (I – IV) ELISA uPA 

PAI-1 
51 
41 

16 Nekarda (1998) 45 38 Oesophageal (I-IV) ELISA uPA 
PAI-1 

34 
32 

17 Okusa (1999) 53 71 Gastric (I – IV) ELISA uPA 50 
18 Plebani (1997) 54 20 

 
Gastric (I – IV) ELISA uPA 

uPAR 
PAI-1 

65 
65 
75 

19 Sakakibara (2006) 55 79 Gastric (I – IV) RT-PCR PAI-1 58 
20 Taniguchi (1998) 56 102 Gastric (ND) IHC uPAR 40 
21 Yonemura (1997) 14 155 Gastric (I – IV) IHC uPAR 14 
22 Zhang (2006) 57 105 Gastric (ND) ISH uPA 

uPAR 
58 
67 

Pt No – number of patients; uPA – urokinase plasminogen activator; uPAR - urokinase plasminogen 
activator receptor; PAI-1 – plasminogen activator receptor 1; PAI-2 - plasminogen activator receptor 
2; IHC – immunohistochemistry, RT-PCT - reverse transcription polymerase chain reaction; ISH – in-
situ hybridisation; ELISA - enzyme-linked immunosorbent assay; GOJ –gastro-oesophageal junction. 
*expression at invasive front 
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Abstract 

 
Background: Gastroesophageal adenocarcinoma is a common and highly lethal malignancy. There is 

a growing evidence base to support the central role of cancer stem cells (CSCs) in the development 

and progression of metastatic disease. While numerous studies have shown the poor clinical outcomes 

associated with expression of the CSC markers CD44, CD133 and ALDH1 in locoregional 

gastroesophageal cancer, there is a paucity of data in distant metastatic disease. We aimed to 

investigate the prognostic significance associated with expression of CSC markers in metastatic 

gastroesophageal cancer.   

 

Methods: We examined the immunohistochemical expression of CD44, CD133, and ALDH1 on 

metastatic deposits from gastroesophageal and gastric adenocarcinomas, and evaluated the association 

of CSC expression with clinicopathological factors, metastases biomarker urokinase plasminogen 

activator receptor (uPAR) expression, and overall survival (OS).  

 

Results: Of the 36 patients included in the study, 16 (44%) were positive for CD44, 13 (36%) were 

positive for CD133, and 26 (72%) were positive for ALDH1. CD44 expression was significantly 

associated with poorer OS in univariate (HR 2.9 95%CI 1.3 – 6.9, p=0.008) and multivariate analyses 

(HR 2.5 95%CI 1.1 – 6.2, p=0.04). ALDH1 expression was significantly associated with poorer OS in 

univariate (HR 2.4 95% CI 1.01 – 5.7, p=0.04) analysis but was not significant in multivariate 

analysis. Both CD44 and ALDH1 expression were significantly associated with uPAR expression. We 

found no association between CD133 expression and OS.  

 

Conclusions: CD44 expression on metastatic disease from gastroesophageal adenocarcinomas is an 

independent prognostic marker associated with poorer OS. These results expand current evidence to 

support the role of CSCs as biomarkers in metastatic gastroesophageal cancer.  
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3.1    Introduction 

 
Gastroesophageal adenocarcinoma, a common and lethal malignancy, is a leading cause of cancer 

mortality worldwide1. Despite advances in treatment, prognosis remains poor due to high rates of 

recurrence after curative surgery, and limited response to systemic treatment in advanced disease2. 

There is an urgent need for novel therapeutic strategies to improve treatments for patients with 

gastroesophageal cancer.  

 

The cancer stem cell (CSC) hypothesis seeks to explain the high rate of relapse and resistance to 

current anti-neoplastic treatments. The CSC model proposes that tumour formation, maintenance, and 

growth is driven by a small population of self-sustaining cells which possess stem cell properties of 

longevity and infinite proliferation, and are able to differentiate into the wide range of cells forming 

the heterogeneous tumour mass3,4.  CSCs, first demonstrated in acute myeloid leukaemia, have been 

described in most solid tumours including breast cancer5, prostate cancer6, pancreatic cancer7,8, 

melanoma9, colon cancer10,11, and brain cancer12,13.  

 

CSC theory has important clinical implications, as it infers that treatment should be directed to the 

small pool of CSCs, as well as the large, terminally differentiated tumour bulk. Lineage tracing 

studies show that CSCs are able to reconstitute the entire tumour bulk following chemotherapy14. 

Promising results from early clinical studies suggest that the inherent resistance of CSCs to 

chemotherapy and radiotherapy can be overcome by the combination of chemotherapy with CSC 

targeted treatment in gastric cancer15,16.  

 

While numerous proteins have been identified as potential markers of CSC in gastroesophageal cancer 

including CD24, CD49, Sox2, Oct4, and Nanog, the most consistent evidence is for three main 

markers; CD44, CD133 and ALD17. 

 

CD44 is a transmembrane glycoprotein with important roles in matrix adhesion, cell migration, 

growth, and survival18,19. CD44 positive cells from gastric cancer cell lines are shown to be more 

tumorigenic in mouse and in vitro models20-22, and resistant to chemotherapy and radiotherapy20,22. 

CD44 is expressed in 44-63% of resected primary gastric cancers 23,24, and is associated with larger 

tumour size, depth of invasion, advanced TNM stage, and positive LN24-26. Primary tumour CD44 

expression is an independent prognostic factor associated with increased risk of recurrence and poorer 

overall survival in resected gastric cancer25-27.   

 

CD133 is a cell surface transmembrane glycoprotein with a proposed role as an organiser of plasma 
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membrane topology28. Preclinical work shows that CD133 positive cells isolated from cell lines 

demonstrate stem cell properties, and are more resistant to chemotherapy12,13,29.  Rates of CD133 

expression on primary gastric cancer resection specimens range from 25 – 90%30,31. Expression on 

resected primary gastric tumours is associated with higher risk pathological features, and is an 

independent factor associated with worse clinical outcomes24,30,32-35 

 

ALDH1 is a member of a family of intracellular enzymes contributing to cellular detoxification, 

differentiation, and drug resistance36.  In vitro, ALDH1 positive cells from gastric cancer cell lines 

show self-renewal, heterogeneous linage and increased tumourogenicity37. Primary tumour ALDH1 

expression is associated with higher TNM stage and pathological factors24,38.  

 

The CSC model proposes disseminated CSCs to be the source of metastases, either as primary 

circulating CSCs or by dedifferentiation though phenotypic plasticity39. The expression of CSC 

markers has been linked to the development of metastatic disease in a variety of malignancies 

including gastric27,34, colorectal40, breast41 and pancreatic7 cancer.   

 

A key step in the formation of metastatic deposits is invasion of the tumour cells into the surrounding 

normal tissue. This is facilitated through the urokinase type plasminogen activator  (uPA) system, the 

critical proteolytic pathway and predominate source of malignant plasminogen activation42. 

Expression of the uPA receptor uPAR is an important independent prognostic factor in many solid 

malignancies including gastroesophageal cancer43-45, and has an emerging role in CSC signalling46,47.  

Although the expression of CSCs markers have been well characterised in resected locoregional 

gastroesophageal adenocarcinoma, there is no data on the expression of CSC markers in metastatic 

disease. In the current study, we aimed to analyse the IHC expression of CD44, CD133 and ALDH1 

on metastatic gastric cancer deposits, and correlate expression with prior treatment, 

clinicopathological factors, uPAR expression, and clinical outcomes. 

 

3.2   Material and Methods 
3.2.1 Patient Population and Tissue samples 

We retrospectively identified all patients with metastatic gastric or gastroesophageal junction 

adenocarcinomas treated at two Australian Tertiary Hospitals  (Wollongong Hospital, St George 

Hospital) between 2010-2014 who had an available tissue sample from a metastatic site  (n=50). 38 

samples were suitable for staining and scoring. Clinicopathological variables extracted from patient 

records included: age, sex, tumour histological type, grade, site of metastases, Eastern Cooperative 

Oncology Group (ECOG) performance status, treatments, progression free survival (defined as the 

time from the date of primary treatment to the date of progression or death) and overall survival (time 
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from diagnosis to death from any cause). The study was approved by South Western Sydney Local 

Health District Human Research Ethics Committee (Project Number 15/072).   

 

3.2.2 Immunohistochemistry 

We used formalin fixed, paraffin embedded tissues from patients who underwent biopsy of a 

metastatic deposit from primary gastroesophageal adenocarcinoma. Immunohistochemical staining 

was done as previously reported 24.  Freshly cut 4 micron sections from patient tissue blocks were 

mounted on aminopropylethoxysilane precoated glass slides.  Sections were deparaffinised in EZ Prep 

and washed in Reaction Buffer (Ventana Medical Systems, Arizona, US). The immunohistochemical 

staining was performed using defined protocols with the Ventana BenchMark Ultra Automated 

IHC/ISH slide staining system.  Antigen retrieval was performed by incubation at 100°C at pH 9.0 for 

between 24 to 32 minutes.  Incubation with primary antibodies was carried out at 37°C for one hour. 

Sections were incubated with the following antibody dilutions: anti-CD44 (clone EPR1013Y, Abcam) 

1:200, CD133 (clone AC133, Miltenyi Biotec) 1:100, ALDH1 (clone 44, BD Transduction 

Laboratories) 1:100, and uPAR (clone R4, Dako) 1:100. A post primary endogenous peroxidase 

inhibition was performed by incubating the slides in 1% hydrogen peroxide for 15 min.  Development 

of colour was achieved by 15 minutes incubation with diaminobenzidine solution, followed by 

counterstaining with haematoxylin. Sections from normal human epithelium, colon adenocarcinoma 

and normal human appendix were used as positive controls for CD44, CD133 and ALDH1 

respectively 24,36. All staining runs were accompanied by appropriate control slides. 

 

3.2.3 Scoring of immunohistochemical staining 

CSC scoring was performed by two independent pathologists blinded to clinical details (AL, and AI 

or NH). Previous reports have shown a significant correlation between CD44, CD133 and ALDH1 

expression and prognosis in primary gastroesophageal cancer 17 . To remain consistent with the 

literature 24,27,48, CD44 and CD133 staining was considered positive if at least 10% of the tumour cells 

were stained.  We noted a much higher proportion of ADLH1 positive cases than previous studies 

(only 5 negative cases using a 10% cutoff); accordingly we increased the threshold to 20% (positive 

result if 20% or more of the tumour cells stained). Staining in surrounding stroma was not included in 

the score for any CSC marker. 

 

uPAR scoring was performed by a third blinded pathologist (MI) experienced with 

immunohistochemical analyses of the uPA system in cancer 43,49. uPAR expression on cancer cells 

varies between the tumour core, and the invading edge of the tumour 49.  Analysis of uPAR expression 

was restricted to the peripheral invasion zone as this has been shown to be prognostic in gastric cancer 
44.  Neutrophils were used as internal positive controls on each slide. Scoring was performed as 
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previously described; 0- No uPAR-positive cells; 1- Less than 1% uPAR-positive cells; 2- 1–5% 

uPAR-positive cells; 3- 5–10% uPAR-positive cells; 4- More than 10% uPAR-positive cells as 

previously reported for gastroesophageal cancer . Samples were considered to be uPAR positive if 

>5% of tumour cells were stained 43,44. 

 

3.2.4 Statistical analysis 

The primary endpoint of this analysis was overall survival (OS) by CSC expression. Summary 

statistics of patients’ demographic and clinicopathological details, and staining status were provided 

in frequencies and percentages.  Bivariate correlations between clinicopathological features and 

CD44, CD133, and ALDH1 expression were performed using the Fisher’s exact test. A Cox 

proportional hazard model was used to estimate effects of CD44, CD133 and ALDH1 positivity on 

each survival endpoint; only covariates significant in univariate analysis were included in the 

multivariate model. uPAR expression was not included in the multivariate model as staining was only 

available for a subset of patients.  All statistical analyses were performed using SAS 9.2 software 

(SAS Institute, Inc., Cary, NC). 

 

3.3     Results 
3.3.1 Patient characteristics and correlation with CSC expression. 

Characteristics of the 36 included patients are summarised in Table 1. Median follow-up was 5.2 

months (Interquartile range 2.8 – 10.7 months). Consistent with the poor prognosis of this disease, 

most patients  (n=32, 89%) had died of their disease. 17  (45%) of patients received treatment for 

loco-regional disease prior to developing metastases, although in all cases this was more than 6 

months prior to biopsy.  Most patients (n=32, 84%) received treatment for the metastatic 

gastroesophageal cancer including chemotherapy (usually a platinum, fluoropyrimidine and 

anthracycline combination), radiotherapy, or surgery (Table 1).  Radiotherapy and surgery were 

employed as palliative local treatments for symptomatic metastases. 
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Table 1: Characteristics of included patients GOJ – gastroesophageal junction; * site of distal 

lymph nodes include mediastinal, supraclavicular, and para-aortic; **All prior treatment was curative 

intent 

Characteristic Number (%) 
Age – median  (range) 64  (39 – 78) 
Sex, n (%) 

Male 
Female 

 
29  (80) 
7  (19) 

Primary tumour location 
GOJ 
Gastric body 

 
16  (44) 
20  (56) 

Site of metastatic biopsy 
Pulmonary 
Peritoneum/omentum/ascites 
Liver 
Bone 
Distal lymph node* 
Soft tissue 

 
4  (11) 
18  (50) 
7  (18) 
2  (5) 
4  (11) 
2  (5) 

ECOG performance status 
0 – 1 
2 – 4  

 
31  (86) 
5  (14) 

Prior Treatment** 
Surgery 
Chemotherapy 
Radiotherapy 
Nil 

 
13  (34) 
13  (34) 
5  (13) 
21  (55) 

Treatment for metastatic disease 
Chemotherapy 
Immunotherapy 
Radiotherapy 
Surgery 
Nil 

 
26  (68) 
1  (3) 
7  (18) 
3  (8) 
6  (16) 
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Figure 1: Representative staining of CSC markers on metastatic deposits with corresponding 

Hematoxylin and eosin stain (20x magnification).  (a) Hematoxylin and eosin stain (b) membranous 

staining of CD44 (c) CD133 staining in apical membranes (d) cytoplasmic staining of ALDH1. 

 

Of all cases, 16 (44%) were positive for CD44, 13 (36%) were positive for CD133, and 26 (72%) 

were positive for ALDH1.  We found no association between CSC markers and clinicopathological 

features, including primary tumour location, site of metastatic disease or biopsy sample, previous 

chemotherapy exposure, or histopathology (Table 2). 
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Table 2: Association of CSC marker staining with clinicopathological features (n=36): GOJ – 

gastroesophageal junction;  

 
Total (%) 

CD44 
16/36 (44%) 

CD133 
13/36 (36%) 

ALDH1 
26/36 (72%) 

% positive cells (mean) 10 – 100% (62) 10 – 100% (38) 10 – 100% (76) 
 Positive rate P-value Positive rate P-value Positive rate P-value 
Primary location       

GOJ 8/16 0.73 6/16 0.98 12/16 0.98 
Gastric 8/20  7/20  14/20  

Sites of Metastatic disease       
Peritoneal/Omentum only 7/18 0.73 4/18 0.16 14/18 0.71 
Other  9/18  9/18  12/18  

Previous Chemotherapy       
Yes 6/13 0.87 5/13 0.83 10/13 0.72 
None 10/23  8/23  16/23  

Histopathology       
Well/mod differentiated 5/16 0.19 5/16 0.73 5/16 0.72 
Poorly differentiated 11/20  8/20  15/20  

 

 

3.3.2 Correlation of CSC marker and uPAR expression 

Samples including the peripheral invasion zone were available for 28 samples (8 samples excluded, 

due to insufficient tissue n=4, or the biopsy included tumour core only n=4).  9/28 (32%) samples 

were positive for cancer cell uPAR. CD44 and ALDH1 expression was significantly associated with 

tumour cell uPAR (p=0.02 and 0.03 respectively, Table 3), with higher tumour uPAR expression in 

CD44 and ALDH1 positive cases. There was no association between CD133 and uPAR expression.  

 

 

Table 3: Association of CSC marker staining with uPAR staining (n=28). uPAR – urokinase 

plasminogen activation receptor 

 Positive uPAR staining P-value  
CD44 

Positive 
Negative 

 
7/15 (54%) 
2/13 (13%) 

 
0.02 
 

CD133 
Positive 
Negative 

 
1/9 (11%) 
8/19 (42%) 

 
0.10 

ALDH1 
Positive 
Negative 

 
9/12 (43%) 
0/7 (0%) 

 
0.03 
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3.3.3  CSC marker expression and prognosis 

In univariate analysis, CD44 positive cases had a poorer OS than CD44 negative cases (HR 2.9 

95%CI 1.3 – 6.9, p=0.008, Table 4). Similarly, ALDH1 positive cases had a poorer OS than ALDH1 

negative cases (HR 2.4 95%CI 1.1 – 5.7, p=0.04). There was no significant difference in OS between 

CD133 positive and negative cases (HR 1.16 95% CI 0.57 – 2.4, p=0.67).   

 

 
Figure 2: Kaplan-Meier survival curves for overall survival stratified by cancer stem cell marker 

expression (a) CD44: univariate HR 2.9 95%CI 1.3 – 6.9, p=0.008.  (b) CD133: univariate HR 1.16 

95% CI 0.57 – 2.4, p=0.67.  (c)ALDH1: univariate HR 2.4 95%CI 1.1 – 5.7, p=0.04 

In multivariate analysis, after adjusting for performance status, tumour grade, and treatment, CD44 

positivity remained a significant independent predictor of OS  (HR 2.5 95%CI 1.1 – 6.2, p=0.04), 

while ALDH1 became non-significant  (HR 2.0 95%CI 0.86 – 5.1, p=0.1)  (Table 4).  

Expression of combinations of CSC markers was also assessed for association with OS. Patients with 

CD44+ive/ALDH1+ive expression (14/36, 39%) had a significantly poorer OS in univariate (HR 4.1 

95%CI 1.7 – 9.5, p=0.0006) and multivariate analysis (HR 4.0 95%CI 1.6 – 10.1, p=0.002). No 

combination including CD133 was significantly associated with OS. 
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Table 4: Univariate Analysis and Multivariate analysis  (significant values in italics) ECOG – 

Eastern Cooperative Oncology group; HR – Hazard ratio; GOJ –gastroesophageal junction; CI – 

confidence interval;  * Radiotherapy and surgery were given as palliative local treatments only and 

therefore had no impact on survival, and were not incorporated into the multivariate model. Systemic 

treatment included chemotherapy or immunotherapy. 

 Univariate Multivariate 
Characteristic Hazard Ratio  

(95% CI) 
P Hazard Ratio  

(95% CI) 
P 

ECOG performance status     
0-1 1 0.0014 1 0.75 
2-4 7.3 (2.1 – 25.0)  1.2 (0.4 – 6.2)  

Age     
<65 1 0.79   
≥65 1.1 (0.5 – 2.2)    

Sex     
Female 1 0.42   
Male 1.5 (0.56 – 3.9)    

Primary location     
GOJ 1 0.09   
Gastric 0.55 (0.26 – 1.1)    

Site of Metastatic disease     
Peritoneal/Omentum 
only 

1 0.16   

All other sites 0.60 (0.29 – 1.2)    
Histopathology     

Well/mod 
differentiated 

1 0.0003 1 0.007 

Poorly differentiated 3.9 (1.8 – 8.6)  3.3 (1.4 – 7.9)  
Treatment     

None 1 0.001 1 0.03 
Systemic Treatment 0.27 (0.12 – 0.62)  0.28 (0.1 – 0.88)  
Radiotherapy 1.1 (0.5 – 2.9) 0.71*   
Surgery 2.2 (0.6 – 7.5) 0.19*   

CD44     
Negative 1 0.008 1 0.04 
Positive 2.9 (1.3 – 6.9)  2.5 (1.1 – 6.2)  

CD133     
Negative 1 0.67   
Positive 1.16 (0.57 – 2.4)    

ALDH1     
Negative 1 0.04 1 0.1 
Positive 2.4 (1.01 – 5.7)  2.0 (0.86 – 5.1)  
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3.4    Discussion 

In the CSC model, establishment and progression of metastatic disease is due to the dissemination of 

CSCs.  While numerous previous studies have demonstrated expression of CSC markers in loco-

regional gastroesophageal cancer to be significantly associated with clinical outcomes, the current 

study is the first to examine the expression of CSC markers in metastatic gastroesophageal cancer. 

We found expression of CD44 and ALDH1, but not CD133, on metastatic deposits to be significantly 

associated with poorer OS. In multivariate analysis, after adjusting for tumour grade, ECOG 

performance status, and treatment received, CD44 expression remained a significant prognostic factor 

associated with poorer OS  (HR 2.5 95%CI 1.1 – 6.2, p=0.04). ALDH1 expression was not 

significantly associated with OS in multivariate analysis (HR 2.0, 95% CI 0.86 – 5.1, p=0.1), although 

the combination of CD44+/ALDH1+ive was strongly associated with poorer OS (HR 4.0 95%CI 1.6 – 

10.1, p=0.002). This finding confirms previous work showing the importance of CSC expression, 

particularly CD44, as a biomarker in gastroesophageal cancer24,27,34.   Our results did not show any 

association between CD133 with OS, either alone or in combination with CD44 or ALDH1.  Recent 

work suggests that only a subset of CD133 positive CSCs are essential for tumour metastases7. We 

hypothesise that additional markers, such as CXCR4, are required in combination with CD133 to 

identify this key subgroup. 

 

We also found expression of CD44 and ALDH1 to be significantly associated with expression of 

uPAR. Our results mirror previous work in other solid tumours showing co-expression of uPAR with 

CSC markers50-52. In addition to a well characterised role in the uPA system, there is increasing 

evidence suggesting uPAR has an important function in CSCs. uPAR overexpression is strongly 

correlated with the CSC properties of an invasive phenotype, drug resistance, and poor prognosis53. 

Moreover, signalling by uPAR induces stem cell like properties in breast, brain, lung and prostate 

cancer cells46,47,54-56.  To the best of our knowledge, this study is the first to show the co-expression of 

CSC and uPAR in gastroesophageal cancers, and further supports the role of uPAR in CSCs. 

 

In resected loco-regional gastroesophageal cancer, the proportion of CD44 and CD133 positive cases 

is estimated at 17-77% and 10-44% respectively57.  Our results demonstrated a similar proportion of 

CD44 positive (44%) and CD133 positive (36%) cases, but a higher expression of ALHD1 than that 

seen in locoregional disease (73% positive cases compared to 50-55%)24,38. This is despite using a 

higher cut-off for positive cases (20% of cells stained compared to 10%). In addition, most ALDH1 

cases were diffusely and strongly stained (mean proportion of positive cells 76%). Our results support 

a previously identified trend of higher ALDH1 expression on local nodal deposits.  In a study 

comparing IHC expression of CSC between primary gastric cancers and matched lymph node 

metastases, Wakamatsu et al also found a higher expression of ALDH1, but not CD44 or CD133, in 
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the lymph nodes24. ALHD1 expression is strongly correlated with expression of matrix 

metalloproteases  (MMPs), which are essential for extracellular matrix degradation and establishment 

of metastatic disease38.   

 

We were unable to show any significant association between CSC staining and other important 

clinicopathological factors. This is in contrast to other IHC studies which have shown strong 

associations between poor pathological factors, such as TNM stage, tumour invasion and grade with 

expression of CSCs17. The small sample size of our study is likely to be a contributing factor. It is 

interesting to note we did not find a higher CSC expression in patients with previous chemotherapy 

exposure. While CSCs are known to be relatively chemotherapy insensitive, leading to enrichment of 

CSCs with chemotherapy, modern CSC models describe a dynamic CSC population with a 

bidirectional pathway between CSC and differentiated cell populations58. As no patient had received 

chemotherapy within 6 months prior to the biopsy, it is likely that the CSC population had re-

established equilibrium with the terminally differentiated tumour bulk.  

 

The key role of CSCs in metastatic gastroesophageal cancer is supported by early clinical results of 

agents targeting the CSC pathway. For example, in a phase II study using the hedgehog inhibitor 

vismodegib with chemotherapy in metastatic gastric cancer, Yoon et al found a survival benefit 

restricted to patients who had a high expression of CD4415. Even more novel approaches using the 

combination of immunotherapy and CSCs are under investigation, with currently recruiting clinical 

trials  employing immune targeting of CSC using dendritic cells59.  The coexpression of CSC markers 

and uPAR may provide additional opportunities to target CSC using uPAR directed therapies52. 

It is important to acknowledge several limitations of this study. Firstly, we found that most 

gastroesophageal cancers, even when metastatic, have histological diagnosis on endoscopy and 

biopsy, rather than biopsy of metastatic deposits. This limited the available patient population and 

study size for the current work. Secondly, most samples used in the current study were biopsy 

specimens, rather than larger resection specimens, which did not allow exploration of tumour 

heterogeneity and differential expression of CSC makers. Thirdly, due to technical limitations, uPAR 

staining was available for most, but not all patients, limiting incorporation into the multivariate OS 

analysis. 

 

In conclusion, expression of the CSC marker CD44 is an independent prognostic factor associated 

with poorer OS in metastatic gastroesophageal cancer. This study provides further evidence that 

expression of CSC markers a valid biomarker in gastroesophageal cancer, and highlights importance 

of CSCs in all stages of gastroesophageal cancer.  
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3.5 Appendix:  uPAR expression in primary and metastatic gastroesophageal 

adenocarcinoma (GOC). 
 

3.5.1  Background 

Expression of uPAR is a clinically relevant biomarker in resected gastroesophageal cancer (Chapter 

245). High expression of uPAR in primary tumours is associated with high risk clinicopathological 

features and poorer OS. Several studies have shown a strong association of uPAR staining in primary 

tumours and the presence of lymph node and distant metastases in gastroesophageal cancer. As 

demonstrated in Chapter 2 (Section 2.3.5) uPAR expression in the primary tumour was significantly 

associated with nodal metastases (OR 2.5, p<0.0001), liver metastases (OR 2.5, p=0.01), and 

peritoneal metastases (OR 3.2, p<0.0001).  

 

There is however, much more limited evidence regarding uPAR expression on distant disease. One 

study by Hong et al compared uPAR expression in primary tumours and matched regional lymph 

nodes from 9 patients with gastric cancer, and found similar expression of uPAR in the primary (56%) 

and lymph nodes (67%) 60.  There are no studies directly comparing primary tumour uPAR expression 

with distant metastases in gastroesophageal cancer. Using matched primary tumours and liver 

metastases from 14 colorectal cancer patients, Illemann et al found only a minority of liver metastases 

demonstrated a similar uPAR expression to the primary tumour, with most metastases exhibiting little 

uPAR expression 61.  In addition, as discussed in Chapter 1 (section 1.2.4.4), uPAR expression on 

disseminated tumour cells (defined by CK+ phenotype) in the bone marrow following curative 

treatment in locoregional disease, was significantly associated with subsequent disease relapse and 

poorer clinical outcomes 62. 

 

The uPA system is expressed on both cancer cells and the supporting stroma 42.  uPAR is known to be 

expressed by many cell types within the tumour, including cancer cells, macrophages, myofibroblasts, 

neutrophils, and nerves. It is postulated that the expression of uPA and uPAR on stromal and tumour 

cells, respectively, at the invasive front of a tumour, facilitate proteolysis required for invasion 63.   

 

3.5.2 Aims 

1) Compare uPAR expression between primary tumours and metastatic  deposits in GOC  

2) Determine the association of uPAR expression on GOC and overall survival using: 

• Expression at the tumour core or invading edge of tumour 

• Stromal (macrophages and myofibroblasts) and cancer cells uPAR expression 
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3.5.3 Methods 

uPAR expression of primary (n=12) and metastatic (n=33) tumour was analysed using IHC (methods 

as per chapter 4).   uPAR scoring was performed individually on cancer cells, macrophages, and 

myofibroblasts. The proportion of uPAR positive cells was scored by evaluation of the whole slide. 

Separate values were obtained for each cell type with the following scores: uPAR-score 0: No uPAR-

positive cells; uPAR-score 1: Less than 1% uPAR-positive cells; uPAR-score 2: 1–5% uPAR-positive 

cells; uPAR-score 3: 5–10% uPAR-positive cells; uPAR-score 4: More than 10% uPAR-positive 

cells. Neutrophil positive uPAR staining on each slide was used as an internal control.  

In addition, all three cell types were scored separately for the invasion front at the tumour periphery, 

and in the tumour core.  As a consequence of limited tissue available in biopsy specimens, tumour 

core scores were only available for 21 metastatic samples (63%), as most biopsy specimens included 

only the invasion front of the tumour. 

 

The association of uPAR expression and OS was determined for each cell type, at both the invasion 

front and the tumour core. Given the small sample size and the absence of a standardised cut-off for 

uPAR expression, a range of values for uPAR expression was tested on each cell type. The cut-off 

with strongest association is presented.  

 

3.5.4 Results 

uPAR expression was evaluable on 45 samples in total (43 invasive front, 24 tumour core, 21 both).  

Characteristics of included patients are shown in Table 1. Representative images of tumour and 

stromal cell uPAR staining are shown in table A1. 
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Table A1: Characteristics of included patients. Treatment subgroup total is greater than 45 as 

individual patients may have received more than one treatment modality. 

 

Characteristic Number (%) 
Age – median (range) 65 (40 – 82) 

Age < 65 yrs 21 (44) 
Age ≥ 65 yrs 24 (56) 

Sex, n (%) 
Male 
Female 

 
37 (82) 
8 (18) 

Primary tumour location 
GOJ 
Gastric body 

 
17 (38) 
28 (62) 

Stage 
II 
III 
IV 

 
8 (18) 
3 (7) 
34 (75) 

Site of biopsy 
Primary tumour 
Metastasis 

 
12 (27) 
33 (73) 

Tumour Grade 
Well/Mod diff 
Poorly diff 

 
23 (51) 
22 (49) 

ECOG performance status 
0 – 1 
2 – 4  

 
39 (87) 
6 (13) 

Treatment  
Chemotherapy 
Radiotherapy 
Surgery 
Nil 

 
29 (67) 
7 (16) 
14 (33) 
8 (19) 
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Figure A1: Three patterns of uPAR staining. a) There is widespread strong uPAR expression on 

cancer cells (Ca) and macrophages and myofibroblasts (stromal cells, St). b) Strong stromal but weak 

cancer cell staining. c) weak stroma staining with strong cancer cell 

 

uPAR scores are summarised below (Table A2). There was non-significant trend to higher uPAR 

expression on cancer cells in the invasion front (Chi Sq p= 0.069). There was no difference in 

macrophage or myofibroblasts expression between tumour areas.  

 

 

Table A2: uPAR expression score for Tumour Core and Invasion Front. Results are presented as 

absolute values and percentages for each subgroup to facilitate comparison. 

 uPAR score 
Cell Type 0 (%) 1 (%) 2 (%) 3 (%) 4 (%) 
Tumour Core (n=24)      
Cancer cell 8 (33) 9 (38) 1 (4) 3 (13) 3 (13) 
Macrophage 2 (8) 3 (13) 7 (29) 1 (4) 11 (46) 
Myofibroblast 7 (29) 4 (17) 4 (17) 4 (17) 5 (21) 
Invasion Front (n=43)      
Cancer cell 11 (26) 6 (14) 9 (21) 5 (12) 12 (28) 
Macrophage 3 (7) 4 (9) 10 (23) 8 (19) 18 (19) 
Myofibroblast 15 (35) 10 (23) 8 (19) 2 (5) 7 (16) 

 

 

 

 

 



106 
 

3.5.4.1 uPAR expression at the tumour invasive Edge (n=43) 

There was no significant difference in uPAR expression on tumour cells (mean uPAR score primary 

tumours 1.8 vs 2.1, t-test p=0.62), myofibroblasts (mean 2.0 vs 1.2, p=0.1), or macrophages (mean 3.3 

vs 2.6, p=0.08) (Figure A2) between primary and metastatic sample. Similarly, there was no 

significant association between tumour cell uPAR score and clinicopathological variables such as 

primary tumour location (Fishers exact p=0.08) or tumour grade (p=0.24). 

 

 
Figure A2: Comparison of uPAR score between primary and metastatic samples. There was no 

significant difference in uPAR score on a) tumour cells (p=0.62) b) macrophages (p=0.08) or c) 

myofibroblasts (p=0.1) 

 

In univariate analysis, uPAR expression on tumour cells was significantly associated with poorer OS 

(uPAR score 2-4 compared to 0-1, HR 2.5 95% CI 1.1 – 5.6, p=0.02) (Figure A3, Table A3). In 

contrast, there was no association with uPAR expression on macrophages (uPAR score 0-2 versus 3 -

4, p=0.9) or myofibroblasts (uPAR score 0-1 versus 2 -4, p=0.4), also it is interesting to note a trend 

to improved survival with higher uPAR score on myofibroblasts, the opposite pattern seen on tumour 

cells (Figure A2). As expected, other important prognostic factors including ECOG performance 

status, primary tumour location, stage, histopathological grade, and receipt of treatment was 

significantly associated with OS (Table A3).   

 

The association of uPAR expression on tumour cells remained significant in multivariate analysis (HR 

1.5 95% CI 1.1 – 2.1, p=0.0004) confirming uPAR expression as an independent prognostic factor 

(Table 3).  

 

When analysis is restricted to metastatic patients only (n=31), high uPAR score remains significantly 

associated with poor OS in univariate (HR 2.5 95%CI 1.1 – 5.7, p=0.03) and multivariate analysis 

(HR 1.5 95% CI 1.1 – 2.1, p<0.0001). 
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Figure A3: Association of uPAR score with OS (n=43). Patients with a high uPAR score on a) 

tumour cells have a significantly worse OS (p=0.02) but not b) macrophages (p=0.9) or c) 

myofibroblasts (p=0.4) 

 

Table A3: Univariate and multivariate analyses for invasion edge uPAR scores and OS. Cancer cell 

uPAR expression was the only cell type with a significant univariate association with OS and 

therefore the only uPAR score included in the multivariate model. 

 Univariate Multivariate 
Characteristic Hazard Ratio (95% 

CI) 
P Hazard Ratio (95% 

CI) 
P 

ECOG performance status     
0-1 1 <0.0001 1 0.9 
2-4 11.2 (3.2 – 39.9)  1.1 (0.2 – 5.8)  

Age     
<65 1 0.47   
≥65 0.77 (0.4 – 1.6)    

Sex     
Female 1 0.8   
Male 1.1 (0.4 – 3.0)    

Primary location     
GOJ 1 0.02 1 0.02 
Gastric 0.43 (0.20 – 0.90)  0.4 (0.1 – 0.9)  

Stage     
II-III 1 0.0002 1 0.001 
IV 9.4 (2.2 – 40)  6.3 (2.0 – 20.0)  

Histopathology     
Well/mod differentiated 1 <0.0001 1 0.3 
Poorly differentiated 4.3 (2.0 – 9.4)  1.7 (0.6 – 4.8)  

Treatment     
None 1 0.004 1 0.0004 
Yes 0.23 (0.1 – 0.6)  0.5 (0.1 - .6)  

Cancer cell uPAR expression     
0-1 1 0.02 1 0.0004 
2-4 2.5 (1.1 – 5.6)  1.5 (1.1 – 2.1)  

Macrophage uPAR expression     
0-2 1 0.9   
3-4 1.0 (0.5 – 2.1)    

Myofibroblast uPAR expression     
0-1 1 0.4   
2-4 0.75 (0.4 – 1.5)    
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3.5.4.2 uPAR expression at the Tumour Core (n=24) 

While there was no difference between uPAR expression on tumour cells between primary tumours 

and metastatic deposits (p=0.8), we found a lower uPAR expression on macrophages (p=0.01) and 

myofibroblasts (p=0.006) on metastatic sample (Figure A4).  

 
Figure A4: Comparison of uPAR score between primary and metastatic samples (n=24). There was 

no significant difference in uPAR score on a) tumour cells (t-test p=0.77) but significantly lower 

uPAR scores on b) macrophages (mean uPAR score 3.5 vs 2.1, p=0.01) or c) myofibroblasts (mean 

uPAR score 2.9 vs 1.2p=0.006) 

 

Although limited by sample size, we did not find a significant association of tumour core cancer cell 

(uPAR score 0-1 vs 2-4, p=0.2) or myofibroblasts (uPAR score 0-1 vs 2-4, p=0.9) uPAR score and 

OS (figure A5). Patients with a higher uPAR score on macrophages had an improved OS (uPAR score 

0-2 vs 3-4, HR 0.3 95% CI 0.1 – 0.7, p= 0.01). In view of the small sample size, no multivariate 

analyses were undertaken. 

 
Figure A5: Association of tumour core uPAR score and OS (n=24). While there was no significant 

association between OS seen for a) cancer cell (p=0.2) or c) myofibroblasts (p=0.9), b) high 

macrophage uPAR expression was significantly associated with improved OS (p=0.01) 
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3.5.5 Discussion 

Our results confirmed that uPAR expression on cancer cells at the invasive edge of tumours is an 

independent prognostic factor in gastroesophageal cancer. After controlling for stage, primary tumour 

location, ECOG performance status, and histopathological grade, cancer cell uPAR expression was 

associated with poorer OS (HR 1.5, p=0.0004). This is consistent with previous studies as discussed 

in chapter 2. 

 

Moreover, we show that cancer cell uPAR expression at the invasive edge of tumours remains a 

significant independent prognostic factor when analysis is restricted to metastatic deposits of 

gastroesophageal cancers (HR 1.5, p<0.0001). uPAR expression on metastatic gastroesophageal 

cancer has not been previously reported.   

 

Consistent with the results of Hong et al 60, we found similar uPAR scores between primary and 

metastatic tumour samples at the invading edge. Our results are in contrast to Illemann et al who 

found all primary tumours, but only a minority (5/14 patients, 36%) of liver metastases, demonstrated 

strong uPAR expression on tumour and stromal compartments on the invasive edge of the tumour61. It 

is important to note however, that this study was conducted on liver metastases from colorectal 

cancer, with most metastases exhibiting a pushing, rather than an invading, growth pattern.  

Interestingly, we found contrasting results from the stromal uPAR staining in the tumour core. Not 

only was there significantly lower expression of uPAR on stromal cells in the tumour core on 

metastatic samples compared to primary tumours, higher macrophage uPAR score in the tumour core 

was associated with an improved OS in univariate analyses (HR 0.3. p=0.01).  Two previous studies 

examining the prognostic association of uPAR expression on stromal cells within the tumour cores of 

primary gastroesophageal cancers did not find significant prognostic associations43,64.  

 

While provocative, there are three important caveats to these results. Firstly the metastatic samples 

were taken from different patients to the primary samples, which introduce confounders into these 

results. Ideally this study should be repeated using matched metastatic and primary tumour samples 

from the same patient. Secondly, the uPAR score is presented as a proportion of cells expressing 

uPAR, rather than an absolute number.  Metastatic samples may have much higher numbers of 

macrophages and myofibroblasts in the samples, leading to a lower proportion of uPAR positive cells 

in primary tumours. We plan to re-stain these samples with CD68, a macrophage marker, to provide 

clarity on this issue. Finally, it is important to acknowledge the limited numbers in this study which 

limits definitive conclusion.  
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3.5.6 Conclusion 

uPAR expression on cancer cells at the invasive edge of metastatic tumours is an independent 

prognostic factor in gastroesophageal cancer.  We found provocative results regarding uPAR stromal 

staining, particularly the improved survival associated with high macrophage uPAR expression in the 

tumour core, which require further validation due to limitations addressed above.  
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Abstract 

 

Background/Aim: Circulating tumor cells (CTCs) are an important circulating biomarker in 

gastroesophageal cancer. However current techniques for CTC isolation require prompt processing of 

prospectively collected blood samples at specialised research facilities limiting widespread 

application. This study aimed to demonstrate the feasibility of cryopreservation of peripheral blood 

mononuclear cells (PBMCs) for prognostic CTCs detection in gastroesophageal cancer. 

 

Method: 7.5 ml blood samples were collected in EDTA tubes from patients with gastroesopheagal 

adenocarcinoma. CTCs were isolated by EpCAM based immunomagnetic capture using the IsoFlux 

platform. Paired specimens from the same blood draw were used to compare CTC isolation from fresh 

and cryopreserved peripheral blood mononuclear cells (PBMCs). CTCs isolated from pre-treatment 

cryopreserved PBMCs were examined for associations with clinicopathological variables and survival 

outcomes.  

 

Results: While there was a significant trend to a decrease in CTC numbers associated with 

cryopreserved specimens (mean number of CTCs 34.4 vs 51.5, p=0.04), this was predominately in 

samples with a total CTC count of >50, with low CTC count samples less affected (p=0.06).  Duration 

of cryopreservation did not affect number of CTCs. CTCs were isolated in most patients (95.5%), 

with higher CTC counts correlated with metastatic disease, and a CTC count >17 significantly 

associated with a poorer overall survival in multivariate analysis (HR 3.7 95%CI 1.2 – 12.4, p=0.03). 

 

Conclusion: We describe a feasible protocol for PBMC cryopreservation for delayed CTC isolation to 

assist with sample collection, transporting and processing. A high number of CTCs in cryopreserved 

specimens remained a poor prognostic factor in our validation cohort. 
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4.1    Introduction 

Circulating tumour cell (CTC) analysis continues to be a rapidly developing field in oncology, 

offering a promising tool to both prognosticate and guide managements for patients1.  Despite recent 

advancements in the field, one persisting challenge to the widespread adoption of CTC analysis for 

translational clinical trials or routine clinical care is the limited time frame considered best for blood 

processing and CTC isolation. Usually fresh blood is processed for CTCs within 24 hours after blood 

draw, requiring prompt transfer to specialised centres for CTC isolation and analysis, which offers 

significant logistical challenges2. To overcome this issue, some studies use blood collection tubes that 

contain fixatives. Fixation of blood samples can allow CTC processing delayed by several days which 

has proven very useful for some CTC analyses3,4. However, fixatives may interfere with down-stream 

molecular analyses that require isolation of nucleic acids5.  

 

An alternative is the use of cryopreservation protocols for peripheral blood nuclear cells (PBMCs) to 

allow delayed CTC isolation from these cells followed by CTC analysis. Cryopreservation should 

overcome fixation related analysis limitations and allow a far more flexible time frames for batched 

CTC processing. However, a defined, robust protocol that is proven to enable analysis of the same or 

at least a relevant proportion of CTCs to that found in fresh samples, needs to be adopted and 

confirmation is needed whether cryopreserved CTCs can still predict disease outcome. 

 

The advantage of cryopreservation of PBMCs is that it requires only minimal local processing, 

possible in most diagnostic settings, as well as feasible cryostorage and frozen transport of PBMC 

samples. 

 

While there are a large number of approaches used to isolate and identify circulating tumor cells 

(recently reviewed by van der Toom et al6) , the best established and widely used is with the 

CellSearchTM system (Menarini-Silicon Biosystems), which uses positive immunomagnetic isolation 

of epithelial cell adhesion molecule (EpCAM, an epithelial cell marker) expressing cells followed by 

cytokeratin (CK), CD45, and DAPI staining2. The CTCs are then identified with automated 

immunofluorescence microscopy, defined by an EpCAM/CK/DAPI positive and CD45 negative 

phenotype. CellSearch CTC counts have shown to be prognostic in large patient series in a variety of 

cancers7-9, including gastroesophageal cancer10-12, but the instrument offers limited sensitivity in 

resectable gastroesophageal cancer, with CTCs detected in less than 15% of patients10,13.  

 

 The IsoFlux system (Fluxion) uses a similar definition of CTCs to CellSearch (EpCAM/CK/DAPI 

positive, CD45 negative phenotype), but has shown a greater sensitivity for CTC detection14-16. This 

platform uses EpCAM targeted immunomagnetic isolation of CTCs within a microfluidic setting, 
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improving isolation of CTCs with lower EpCAM expression, minimising leukocyte contamination, 

and allowing downstream applications including staining, enumeration, or sequencing as shown for 

fresh blood samples 16. 

 

Here, we use a viable method of PBMC cryopreservation that allows subsequent isolation and 

immunocytochemical analysis of CTCs. We demonstrate the feasibility of PBMC cryopreservation 

for delayed CTC isolation using paired cryopreserved and freshly processed blood samples drawn at 

the same time from patients with gastroesophageal adenocarcinoma. Importantly, we also provide 

data confirming that cryopreserved CTCs remain clinically applicable as a circulating prognostic 

marker for overall survival. 

 

4.2    Methods 
 

4.2.1 Patient Population 

Blood samples were collected from patients with histologically confirmed distal oesophageal, 

gastroesophageal junction, or gastric adenocarcinomas treated at Wollongong Hospital, Australia.  

Blood samples were collected in 7.5 ml EDTA Vacutainer tubes (Sarstedt AG & Co.) and maintained 

at room temperature until processing.  

 

In the initial cohort (Cohort 1) to confirm the feasibility of cryopreservation, 15 patients with 

gastroesophageal carcinomas had 2 specimens taken during the one blood draw, one processed within 

24 h (“fresh” specimen), and one cryopreserved with delayed CTC isolation and analysis 

(“cryopreserved” specimen).  Pre-treatment blood samples were cryopreserved from a second, larger 

cohort of patients for correlation with clinical outcomes (Cohort 2).  The study was approved by 

South Western Sydney Local Health District Human Research Ethics Committee (Project Number 

15/072).  A written informed consent was obtained from each participant before sample collection. 

 

4.2.2 Sample Preparation 

Blood samples were processed within 24 h to recover the PBMC fraction using 50 ml SepMate tubes 

and Lymphoprep according to manufacturer’s instructions (Stemcell Technologies, Vancouver, BC, 

Canada).  

 

PBMCs used for fresh analysis were resuspended in Isoflux Binding Buffer and immediately 

processed for CTC isolation (see below). PBMCs for cryopreservation were well resuspended in 1 ml 

of diluted plasma (the supernatant of the PBMC preparation from the matching patient) with the 
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addition of 7.5% final DMSO, and stored at -80°C until further processing. Cryopreserved samples 

were thawed according to the protocol from Fluxion Biosciences, San Francisco, California, USA 17. 

In brief, warmed (37°C) thawing buffer, consisting of RPMI 1640 with 10% Fetal Bovine Serum 

(FBS, Bovogen Biologicals, Australia) and 50 Unit/ml Benzonase (Sigma-Aldrich, Germany), was 

added to thawed samples, washed once in thawing buffer, and resuspended in IsoFlux Binding Buffer 

with 5% FBS.  

 

4.2.3 Circulating Tumor Cell Isolation, staining, and imaging 

As per Fluxion protocol, immunomagnetic beads preconjugated with anti-EpCAM antibodies (CTC 

Enrichment Kit; Fluxion Biosciences Inc) were added to PBMCs suspended in IsoFlux Binding 

Buffer, and incubated for 90 min at 4°C with passive mixing on a rotator. Samples were then loaded 

into the sample well of the microfluidic cartridge and underwent immunomagnetic isolation of CTCs 

with the IsoFlux using the standard protocol (Fluxion Biosciences Inc). 

 

Recovered CTCs were blocked with a final concentration of 1.2 µg/µl mouse IgG in binding buffer 

(Jackson ImmunoResearch, Baltimore, PA) for 30 min, washed and fixed in fixing solution (Fluxion 

Biosciences Inc). The CTCs were then blocked in 10% FBS in binding buffer for 15 min, then 

underwent immunofluorence staining for anti-CD45 antibody conjugated to Alexa Fluor 647 

(Biolegend, Clone HI30). The CTCs were also stained for urokinase plasminogen activator receptor 

(uPAR, CD87), a key receptor in the plasminogen activator system and clinically relevant biomarker 

in primary gastroesophageal cancer 18 (see also Chapter 5 Appendix), using anti-uPAR antibody 

conjugated to AF594 (ThermoFischer, Clone R4). After permeabilization with 0.1% Triton X-100, 

cells were probed with anti-cytokeratin antibody conjugated to FITC (Sigma-Aldrich, Clone PCK-26). 

CTCs were finally stained with Hoechst and mounted using Isoflux mounting media to 24-well glass 

bottom plates (MoBioTec, Goettingen, Germany) for imaging.  

 

Imaging was performed with an inverted epifluorence microscope (Leica DMi8, Leica Microsystems 

Pty Ltd) using the Leica Application Suite. Cells were considered CTCs if they were CK positive, 

CD45 negative, nucleated and morphologically intact. The proportion of uPAR positive CTCs was 

recorded.   

 

4.2.4 Statistical Analysis 

The CTC recovery from matched cryopreserved and fresh samples were compared with the paired t-

test. Correlation between cryopreservation time and CTC number was described with a Pearson 

correlation coefficient, and the Fisher exact test and t-test were used to compare the status of CTCs 

with categorical clinicopathologic factors.  
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For survival analyses, in the absence of established cut-offs for prognostic CTC numbers, the median 

CTC count (17) was used as the discriminator between high and low CTC counts.  Survival analyses 

are conducted using Kaplan-Meier methods, with median survival reported. Unadjusted and 

multivariable Cox proportional hazards regression analyses were used to estimate the association 

between CTC counts and survival, and to calculate corresponding hazard ratios (HRs) and 95% 

confidence intervals (CIs). The following variables were included in the multivariate model: age, sex, 

ECOG, TNM stage, primary tumor location, and CTC count. All statistical analyses were performed 

using SAS 9.2 software (SAS Institute, Inc., Cary, NC).  

 

4.3    Results 

 

4.3.1 Matched fresh and cryopreserved specimens (Cohort 1) 

Matching parallel blood samples, collected from 15 gastroesophageal cancer patients (10 patients had 

blood taken prior to treatment, 5 patients were already on treatment), that had either been 

cryopreserved before CTC processing or were processed fresh, were compared. Cryopreservation of 

PMBCs lasted from 2 weeks to 25.2 months (median 14.6 months). There was no significant 

correlation between cryopreservation time and CTC number (Pearson r -0.25, p=0.09). CTCs isolated 

from cryopreserved samples appeared morphologically similar to fresh samples (Figure 1). There was 

an overall trend for smaller detectable CTC numbers isolated from the cryopreserved samples 

compared to fresh samples that reached significance (mean number of CTCs 34.4 cryopreserved vs 

51.5 fresh, p=0.04, Figure 2), however this difference was predominately attributable to a larger fall in 

CTC numbers in samples with very high CTC counts (>50 CTCs in the fresh specimen). There was no 

significant difference in CTC count between cryopreserved and fresh samples for specimens with 

CTC count less than 50 (n=11 patients, mean number of CTCs 10.7 vs 16.3, p=0.06). Thus CTC loss 

by cryopreservation in patient samples with low CTC counts appears relatively minor (mean 

proportion of CTCs lost in cryopreserved samples = 23.95%). 
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Figure 1: Representative images of CTC isolation from fresh and cryopreserved samples 

demonstrating preservation of leukocyte and CTC morphology. The fresh sample demonstrates a 

nucleated CK+/CD45- CTC which is uPAR negative, as well as a CK-/CD45+ leukocyte. The 

cryopreserved sample shows a uPAR positive CTC.  

 

 

 

 
Figure 2: CTC enumeration by processing method. Mean number of CTCs isolated in the fresh 

specimens were higher than in the matched cryopreserved sample (mean difference in CTCs 17.1 

95%CI 0.7 – 33.6, p=0.043). This difference was mostly driven by larger falls in CTC counts in 

samples with high numbers of CTCs (>50 CTCs in fresh samples), with no significant difference in 

CTC counts for samples with less than 50 CTC in the fresh specimen (p=0.06). 
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4.3.2 Cryopreserved CTCs and clinical outcomes (Cohort 2) 

A larger cohort of 43 gastroesophageal cancer patients (Cohort 2) was analyzed to validate whether 

detectable CTC counts post cryopreservation correlated to disease outcomes. All patient samples were 

taken prior to treatment commencement and had undergone cryopreservation before CTC isolation. 

Cohort 2 included the 10 treatment naive patients from Cohort 1. Patient characteristics of Cohort 2 

are summarised in Table 1.  24 patients had resectable disease (Stage II or III). Post CTC evaluation, 

11 of these patients received neoadjuvant chemoradiotherapy prior to resection (CROSS regimen19 – 

weekly carboplatin AUC2 and paclitaxel 50mg/m2 with concurrent radiotherapy), 3 received 

perioperative chemotherapy (MAGIC regimen20 – three preoperative and three postoperative cycles of 

epirubicin 50mg/m2 and cisplatin 60mg/m2 on day 1, and continuous fluorouracil infusion 

200mg/m2/day for 21 days), and 10 had surgery alone. 19 patients had metastatic disease (stage IV). 

Most of these patients received chemotherapy (7 patients: platinum and capecitabine doublet, 3 

patients: anthracycline, capecitabine, and platinum triplet, 1 patient: irinotecan or paclitaxel 

monotherapy), immunotherapy (2 patients), and 6 patients received no active systemic treatments.  

  CTC count 
 All Patients 

[%] 
n=43 

Low  
[CTC≤17] 

n=23 

High  
[CTC >17] 

n=20 
Age    

Mean (range) 64 (39 – 89) 65 (39 – 89) 64 (48 – 83) 
Sex    

Male 32 (74.4 %) 15 (65.2 %) 20 (85.0 %) 
Female 11 (25.6 %) 8 (34.8 %) 3 (15.0 %) 

ECOG    
0-1 36 (83.7 %) 22 (95.6 %) 14 (70.0 %) 
2-4 7 (16.3 %) 1 (4.3 %) 6 (30.0 %) 

Primary Tumor Location    
Distal Oesophageal 12 (27.9 %) 8 (34.8 %) 4 (20.0 %) 

Gastroesophageal junction 14 (32.6 %) 4 (17.4 %) 10 (50.0 %) 
Gastric  17 (37.5 %) 11 (47.8 %) 6 (30.0 %) 

Stage    
II 18 (41.9 %) 13 (56.5 %) 5 (25.0 %) 
III 6 (14.0 %) 4 (17.4 %) 2 (10.0 %) 
IV 19 (44.2 %) 6 (26.1 %) 13 (65.0 %) 

Table 1: Characteristics of patients in Cohort 2. CTC – circulating tumor cell; ECOG – Eastern 

Cooperative Oncology Group performance status 

CTCs were detected in 42/43 patients (95.5%), with a median CTC of 17 (interquartile range 8 – 38). 

Patients with metastatic disease had a higher number of CTCs than those with resectable disease 

(Figure 3, mean CTC count 53.8 vs 15.8, p=0.0013).  
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Figure 3. Circulating tumor cell count by stage. CTC processing post cryopreservation produced a 

higher mean CTC count in metastatic patients compared to the resectable patients (mean CTC in 

metastatic 53.8 vs resectable 15.8, p=0.0013).  

 

Currently there are no established cut-offs for prognostic CTC numbers detected using the IsoFlux in 

gastroesophageal adenocarcinoma. Therefore we opted to divide our patients by their CTC counts, 

above versus equal or lower than the median CTC count, to test for any correlation with clinical 

outcomes. Patients with a high CTC count (>17) had a poorer overall survival (OS) than those with a 

lower CTC count (≤17) (Figure 4, median OS 2.8 vs 23.2 months, HR 4.4: 95%CI 1.7 – 11.7, 

p=0.0013).  

 
Figure 4: Overall Survival by CTC count. Patients with >17 CTCs isolated from cryopreserved 

specimens had a poorer overall survival compared to those with ≤17 CTCs (median OS 2.8 vs 23.2 

months, HR 4.4: 95%CI 1.7 – 11.7, p=0.0013).  
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In multivariate analysis, after controlling for sex, age, stage, ECOG performance status, and primary 

tumor location, a high CTC count remained an independent prognostic factor  associated with poor 

OS (Table 2, HR 3.7 95%CI 1.2 – 12.4, p=0.03). This association was stronger when the analysis was 

restricted to patients with metastatic disease (n=19, HR 5.5 95%CI 1.2 – 25.5, p=0.01), but not 

observed in patients with resectable disease (n=24, p=0.39), although a high CTC count (>17) was 

associated with a non-significant trend to shorter recurrence free survival in these patients (HR 3.1 

95% CI 0.8 – 12.6, p = 0.09).  

 

 Univariate Multivariate 
Factor HR (95%CI) P HR (95%CI) P 
CTC count (high vs low) 4.4 (1.7 – 11.7) 0.001 3.7 (1.2 – 

12.4) 
0.03 

Age (≥65 vs <65 years old) 0.7 (0.3 – 1.8) 0.46 1.0 (0.9 – 1.1) 0.76 
ECOG (2-4 vs 0-1) 7.2 (2.2 – 23.7) 0.0002 2.3 (0.5 – 

10.1) 
0.14 

Sex (male vs female) 1.2 (0.4 – 3.8) 0.7 0.7 (0.2 – 2.1) 0.49 
Stage (IV vs II-III) 10.0 (3.3 – 30.8) <0.0001 9.9 (2.9 – 

33.8) 
0.0003 

Primary tumor location (gastric vs 
oesophageal/GOJ) 

0.3 (0.1 – 1.01) 0.05 0.4 (0.2 – 1.6) 0.22 

Table 2: Univariate and Multivariate analysis for overall survival for Cohort 2 (n=43). Significant 

values are italicised.  In both univariate and multivariate analysis, a high CTC count (>17) remained 

statistically significant as an independent factor associated with poorer overall survival. CTC – 

circulating tumor cell; ECOG – Eastern Cooperative Oncology Group performance status; GOJ – 

gastroesophageal junction 

 

Most patients had some uPAR positive CTCs (40/43, 93.0%), however the proportion of uPAR 

positive CTCs was similar between patients with localised and metastatic disease (mean proportion 

uPAR positive CTCs 48.8% vs 47.7% respectively, p=0.89), and there was no association with 

survival outcomes (Supplementary Figure 1, median OS 17.0 vs 12.8 months, p=0.6). 

 

4.4    Discussion 

In this study we report the reliable isolation, immunocytochemical identification, and enumeration of 

gastroesophageal cancer CTCs from cryopreserved PBMCs using the IsoFlux platform. The included 

cohort is the largest reported study analysing cryopreservation of patient PBMCs for CTC detection. 

Our data confirms that CTCs isolated from cryopreserved samples remain an independent prognostic 

factor associated with overall survival.  
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The timely processing of patient samples for CTC isolation, usually is recommended within 24 h for 

most isolation methods21, presenting significant logistical challenges for researchers and prohibits 

inclusion of patients from remote areas into clinical trials that would rely on CTCs as outcome 

measures. This is mainly because current methods of CTC analysis require significant expertise, 

instrumentation, time and laboratory resources, usually performed in specialised research centres. 

Protocols using isolation of CTCs from cryopreserved specimens, even though they require some 

basic processing and cryopreservation at the site of blood draw, offer many advantages, including the 

ability to biobank patient samples for prolonged periods of time before central processing. This would 

be a huge benefit for larger scale clinical trials as it would allow inclusion of geographically separated 

sites.  

 

Previous work has shown that the immunochemical properties CK, EpCAM and CD45, central to the 

isolation and identification of CTCs, are not affected by cryopreservation and thawing22,23. In 

agreement, our results demonstrate a similar morphological and immunofluorescent profile between 

cryopreserved and fresh CTCs and leukocytes, suggesting current techniques are suitable for 

cryopreserved samples. This approach is further supported by other work showing close concordance 

in genetic alterations seen on paired fresh and frozen CTCs23. 

 

Given our previous findings that the uPA system is a clinically relevant biomarker in primary 

gastroesophageal cancer 18, we undertook and successfully probed for uPAR expression in CTCs 

derived from cryopreserved and fresh samples. We previously have shown that higher expression of 

uPA, uPAR and PAI-1 in the primary tumour is associated with higher risk disease and poorer 

prognosis however, in this study there was no correlation between CTC uPAR expression with disease 

parameters. This suggests that the selection of epithelial (EpCAM-positive) CTCs might have affected 

any correlation of uPAR  with patient outcome, as CTCs that present mesenchymal phenotypes, such 

as uPAR expressing cells, can escape standard methods of isolation reliant on epithelial markers24. 

Indeed Vishnoi et al. has previously reported the isolation of subsets of EpCAM-negative, uPAR and 

integrin β1 positive breast cancer CTCs, which further supports the concept of CTC heterogeneity25.  

Ultimately, we have successfully stained for a novel biomarker, uPAR, which further supports our 

crypreservation method as a valid CTC isolation approach.  

 

One important concern with cryopreservation is the potential for loss of CTCs due to cell loss during 

freezing, storage, or thawing. In a study by Nejlund et al, who cryopreserved buffy coats in dimethyl 

sulfoxide mixed with Roswell Park Memorial Institute 1640 medium, tumor cell recovery from 

cryopreserved spiked tumor cells in normal controls was variable, with up to a 40% tumor cell loss22. 

However in clinical samples using matched fresh and cryopreserved specimens from the same patient, 

there was no consistent loss of CTCs, with the variation in CTC enumeration similar to those seen in 
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paired fresh samples in other studies 2,22. Friedlander et al found that cryopreservation of PBMCs had 

no significant effect on the cell recovery from patients with metastatic prostate cancer23.  Similarly, Li 

et al found no significant loss of spiked tumour cells in cryopreserved PMBCs, but reported a longer 

elapsed time (greater then 2 hours) between blood draw and crypreservation reduced reproducibility 

of CTC measurement, and altered cell morphology26. We noted a small loss of CTCs associated with 

cryopreservation, however this was predominately in samples with large numbers of CTCs (>50), 

where loss of some CTCs is more acceptable than samples with low CTC counts. We noted samples 

with high numbers of CTCs were more prone to cell clumping despite benzonase. This is normally 

due to the release of viscous DNA from cell death on thawing, leading to aggregates which prevent 

accurate CTC counting. We speculate that the higher disease burden in these patients, coupled with a 

corresponding systemic inflammatory response, lead to poorer cell viability within the PBMCs of 

high CTC-count samples. Some loss of CTCs in these samples will have little impact for prognostic 

and down-stream biomarker analysis purposes. There was no significant loss of CTCs in samples 

where the total CTC count was ≤50 (p=0.06). 

 

Similar to previously published work, we found that duration of cryopreservation was not correlated 

with number of isolated CTCs22. Moreover, we were able to isolate CTCs from specimens stored at -

80C for over two years, suggesting cryopreservation is a suitable approach for long term projects that 

involve biobanking of patient samples. 

 

Even using cryopreservation prior to CTC isolation, we found higher numbers of CTCs (median CTC 

count 17) and a higher number of patient samples with CTCs (98%) compared to other studies using 

EpCAM based CTC capture in gastroesophageal cancer10-12,27. The correlation of CTC numbers with 

disease progression implies that the CTCs we identified are indeed disease related. Increased CTC 

counts are consistent with the higher reported sensitivity of the IsoFlux system compared to other 

platforms, particularly in isolating CTCs with a lower expression of EpCAM14-16. Our results confirm, 

in the largest cohort of patients reported to date, that a high CTC count (>17) in cryopreserved 

specimen was an independent prognostic factor associated with poorer OS (HR 3.7). As expected 

from the minimal CTC loss during cryopreservation, these data indicate that indeed our method is 

suitable for delayed and centralised CTC analysis which could help recruiting patients for major 

clinical trials. In this setting it would be advantageous compared to fixation of blood which allows 

CTC processing delayed by only several days rather than long term biobanking. We are currently 

testing if cryopreservation is also able to overcome limitations associated with using fixative for 

molecular down-stream analysis of CTCs that involves nucleic acid extraction4,5. 

 

In conclusion, we have tested a robust PBMC cryopreservation protocol that allows successful CTC 

isolation even 2 years post freezing. Cryopreservation of CTCs is feasible, with a small loss of tumor 
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cells predominantly in samples with a high CTC load. Enumeration of CTCs from cryopreserved 

samples remained a clinically important prognostic biomarker. Cryopreservation may assist with the 

wider incorporation of CTC collection and analysis in biobanking, retrospective studies, and large 

international clinical trials, by facilitating specimen storage, bulk transporting, and batch processing. 

It may also help to develop diagnostic settings that can service even remote patients with diagnostic 

CTC data potentially relevant for their disease management.  
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Supplementary Figure 1: uPAR and CTCs (a) There was a similar proportion of uPAR positive 

CTCs in patients with localised and metastatic disease (mean proportion uPAR positive CTCs 48.8% 

vs 47.7% respectively, p=0.89) (b) Patients with >50% CTCs positive for uPAR had a similar overall 

survival compared to those with ≤ 50% uPAR positive CTCs (median OS 12.8 vs 17.0 months, 

p=0.60) 
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4.5 Appendix: Expression of uPAR on CTCs in gastroesophageal cancer 

4.5.1 Background 

A major challenge in CTC research is the development of an ideal marker, or combination of markers,  

to isolate and detect the rare CTCs within the large numbers of benign cells1.  The CellSearch system 

- the only current FDA approved CTC system, uses positive immunomagnetic isolation of EpCAM 

(an epithelial cell marker) positive cells using anti human EpCAM antibody labelled magnetic beads. 

The cells are counterstained post enrichment with cytokeratins (a second epithelial marker to improve 

specificity), DAPI (nuclear stain), and CD45 (a leukocyte marker)2. The CTC is then identified with 

automated immunofluourescence microscopy, defined by an EpCAM/CK/DAPI positive and CD45 

negative phenotype. Enumeration of CTCs using this approach have been shown to be clinically 

relevant prognostic biomarker in a range of cancers including breast7, bowel8, and prostate cancer9, 

and is the most widely accepted definition of CTCs. 

 

However there are increasing limitations recognised with this phenotype definition. CTCs undergoing 

epithelial-mesenchymal transition (EMT), an essential step in the passage of malignant cells into the 

blood steam for transit to distal metastatic sites, are known to downregulate EpCAM and CK which 

leads to a reduced sensitivity in detecting CTCs28. In addition, modelling studies suggest that 1 in 60 

million CTCs using the standard phenotype form viable metastases29, and there have been studies 

reporting long term (>22 years) persisting CTCs with no clinically visible disease30. Therefore there is 

a need to develop additional markers to improve sensitivity and specificity of CTC detection. 

 

The uPA system is the key proteolytic pathway to facilitate invasion of cancer cells into stromal tissue 

(Section 1.2.3.1).  uPAR has been identified as an important marker on CTCs in breast cancer, with 

uPAR+ CTCs enriched for stem cell pathways, as well as being able to adhere, proliferate and invade 

in vitro 25.  While there are no studies examining expression of the uPA system in gastroesophageal 

cancer CTCs, there are some compelling results supporting the importance of uPA system in 

disseminated tumour cells (DTC) in bone marrow. DTCs are thought to represent the fraction of 

CTCs capable of entering distant sites as the first step in establishing metastases 31.  Allgayer et al 

used CK18 to identify DTC in the bone marrow in 156 patients who had undergone a curative 

resection for localised gastric cancer. They found while overall CK18+ DTC was not associated with 

prognosis, the CK18+/uPAR+ subset was, suggesting uPAR identifies the critical subpopulation for 

establishment of metastases 32,33. 
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This study had two aims; 

1.  Correlate CTC uPAR expression with tumour tissue uPAR expression in patients with GOC and; 

2. Determine the prognostic significance of CTC uPAR expression in GOC patients 

 

4.5.2 Methods 

CTC isolation and detection was performed as per Chapter 5 methods. It is important to note CTCs 

were isolated using the Isoflux system with EpCAM based CTC capture. CTC uPAR expression was 

characterised by proportion of CTCs (CK+/EpCAM+/DAPI+/CD45- cells) which stained positive for 

uPAR.  

 

Eighteen patients from the CTC cohort (18/43, 42%) had FFPE tissue available for uPAR staining 

(see Chapter 4 for methods). uPAR expression in the tumour tissue was scored as followed: 0- No 

uPAR-positive cells; 1- Less than 1% uPAR-positive cells; 2- 1–5% uPAR-positive cells; 3- 5–10% 

uPAR-positive cells; 4- More than 10% uPAR-positive cells as previously reported for 

gastroesophageal cancer 34,35. The tumour cell uPAR score at the invading edge was used for the 

tumour tissue uPAR score as data was limited for tumour core samples and is further justified by 

results from Chapter 3. Neutrophils were used as internal positive controls for uPAR staining on each 

slide. 

 

4.5.3 Results 

4.5.3.1 CTC and tissue uPAR expression 

There was a trend to increased proportion of uPAR positive CTCs with increased tumour tissue uPAR 

score (Figure A1). 
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Figure A1: Correlation of tumour tissue uPAR score and proportion of CTCs positive for uPAR (n = 

18; p=0.03). 

 

Different cut-off levels for %CTCs positive for uPAR were analysed for significant association with 

tissue FFPE score (Figure A2). There was no significant association using a 50% cut-off (Mann-

Whitney test, p=0.09). However, patients with ≥60% of CTCs positive for uPAR were more likely to 

have a higher tumour tissue uPAR score than patients with <60% CTCs positive for uPAR (mean 

tissue uPAR score 1.3 versus 3.3, p=0.0008).  

 

 
Figure A2: Association of proportion of CTCs positive for uPAR and tumour tissue uPAR score 

using a) 50% or b) 60% cut-off. 
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4.5.3.2 CTC uPAR expression as a prognostic biomarker 

While CTC number was significantly associated with prognosis (Chapter 4), the proportion of CTCs 

positive for uPAR was not significantly associated with survival despite a variety of cut-offs tested. 

Absolute number of CTCs positive for uPAR (using 10 uPAR positive CTCs) had a non-significant 

trend for OS, but this appeared predominately driven by the total number of CTCs (Figure A3). 

 
Figure A3: CTC counts and association with OS (n=43 for all analyses). a) Total CTC count is 

significantly associated with OS (see Chapter 5 for details) b) number of uPAR positive CTCs shows 

a non-significant trend with OS (p=0.06). There is no association with proportion of CTC uPAR 

positive with OS using any cut-off including c) 50% (p=0.6) or d) 60% (p=0.5). 

 

4.5.4 Discussion 

There are three principle findings from this study. Firstly, we found only a weak association between 

CTC uPAR expression and tumour tissue uPAR score, with patients  ≥60% of CTCs positive for 

uPAR having a higher tissue uPAR score than those with <60% CTCs positive for uPAR. Secondly, 

while there were more CTC in metastatic disease than in localised disease, there was no significant 

difference in proportion of CTCs positive for uPAR. Thirdly, we did not find any association between 

CTC uPAR expression and OS. While there was a trend to poorer OS with < 10 uPAR+ CTCs 

compared to ≥10 uPAR+ CTC, this was driven predominately by the total CTC number.   
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The above conclusions are tempered by the selection bias of CTCs used in our study. We employed 

EpCAM immunomagnetic positive selection of CTC prior to staining and enumeration, leading to the 

omission of CTCs which have downregulated EpCAM as part of EMT. In the study by Allgayer et al, 

which demonstrated the strong association of uPAR expression on bone marrow DTC with risk of 

recurrent disease in resected gastroesophageal cancer 32, DTCs were defined solely by the CK+ 

phenotype. Although using EpCAM isolation improves the reliability and specificity of CTC 

isolation, it introduces the potential to miss important subsets of CTCs. Indeed, it has been postulated 

that the EpCAM- CTC population have the strongest potential to form distant metastases, and uPAR 

expression on these CTCs is a key determinate in breast cancer dormancy mechanisms 25. We 

hypothesise that poor prognosis of tumours associated with high uPAR expression may be 

characterised by a higher proportion of  EpCAM-/uPAR+ CTCs, which may be crucial for 

establishment of metastases. New strategies to account for these EMT-CTCs are emerging in recent 

years36,37 and it would be interesting to use such CTC isolation methods to study uPAR expression on 

CTCs more comprehensively in gastric cancer. 

 

 

4.5.5 Conclusion 

There is no benefit to the addition of uPAR to the standard markers in EpCAM selected CTCs in 

GOC. 
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Abstract: 

Most patients with advanced cancer have circulating tumour cells (CTCs) which can be detected in 

peripheral blood samples. CTC enumeration and profiling has been established as a valuable clinical 

tool in many solid malignancies including gastroesophageal cancer, particularly for prognostication 

and monitoring of treatment efficacy. A key challenge in CTC research is the very limited number of 

cells available for study. Long term CTC culture permits expansion of these rare cell populations for 

detailed characterisation, functional assays including drug sensitivity testing, and investigation of the 

pathobiology of metastases. 

 

We report for the first time the establishment and characterisation of two long term CTC cultures 

from patients with gastroesophageal cancer. The two cells lines (designated JICTC and RFCTC) 

exhibit distinct genotypic and phenotypic profiles which are consistent with the tumours of origin. 

JICTC exhibits an EpCAM+, cytokeratin+, CD44+ phenotype, while RFCTC which was derived from 

a patient with metastatic neuroendocrine cancer, displays an EpCAM-, weak cytokeratin phenotype 

with strong expression of neuroendocrine markers. Both cell lines demonstrated rapid tumorigenic 

growth in immunodeficient mice.  

 

Both cell lines have similar characteristics to their cancer of origin and show distinct differences to 

drug and radiation treatment.  The establishment of these two cancer CTC lines will now enable a 

greater understanding of the biological processes driving gastroesophageal disease progression and act 

as a valuable tool to study drug responsiveness both in vitro and in vivo.                                                    
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5.1    Introduction 

Gastroesophageal cancers are among the most common and lethal cancers worldwide1.  Most patients 

present with locally advanced or metastatic disease, or develop recurrent disease following curative 

surgery2. While many systemic treatment options are available, the prognosis of advanced 

gastroesophageal cancer remains poor, with median survival less than 1 year3.  Greater than >90% of 

gastric and gastroesophageal junction cancers are adenocarcinomas, with gastrointestinal stromal 

tumours (GIST), lymphomas, and neuroendocrine tumours found in a small minority of cases4.  

Most patients with gastroesophageal cancer will require systemic treatment at some point in their 

disease management3. There is an increasing recognition of the limitations of using primary tumour 

features to guide systemic cancer treatment, due to tumour heterogeneity and the frequent disparity 

observed between primary and metastatic sites5. Metastatic biopsies are rarely undertaken however 

due to both inaccessibility of metastatic sites and procedure morbidity.  Circulating tumour cells 

(CTCs) are the likely intermediates of metastasis dissemination of cancer, and as such, can be 

expected to include the subpopulations which are responsible for disease progression6. While CTC 

enumeration has an established prognostic role, the true promise of CTCs is to provide a ‘real time’ 

view of the cancer using only peripheral blood samples, avoiding the need of repeat invasive 

biopsies7.  

Moreover, while most cancer deaths are due to the haematological spread of metastases, research into 

the mechanism of metastasis initiation, formation, and propagation has been hampered by limited 

access to cancer cells within the various stages of the metastatic cascade. CTCs provide a unique 

window into the biology of cancer as it spreads through the blood stream. The rarity of CTCs 

compared to normal blood cells has provided significant technical challenges for sensitive but also 

specific isolation methods8.  

 

CTC culture provides an expanded cell population for expression analysis, functional assays, and drug 

sensitivity screening 9,10, and long term primary CTC cultures provide an ideal laboratory tool for the 

investigation of the biology of metastasis formation11.  Establishment of long term primary CTC cell 

cultures has proved to be challenging. To date, despite intensive efforts, only several long term CTC 

cultures have been reported worldwide, including in colorectal12, breast13, and prostate14 cancer, all 

established with modest success rates, with 1-16% of blood samples producing stable cultures. To 

improve culture rates, initial expansion of the CTC population using xenotransplation into 

immunodeficient mice prior to in vitro culture has been trialled 15,16. 

 

In this current work we describe the establishment and characterisation of two novel CTC cell lines 

derived from patients with metastatic gastroesophageal cancer. To the best of our knowledge, this is 

the first report of long term CTC cultures established in gastroesophageal cancer.  
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5.2    Methods 

5.2.1 Patient selection and blood collection 

Peripheral blood samples were collected from patients with metastatic gastroesophageal cancer prior 

to treatment. Patients had histologically confirmed gastric or gastroesophageal cancer treated at the 

Illawarra Cancer Centre, Wollongong Hospital, NSW Australia. Informed consent was obtained from 

each patient prior to enrolment, and the study was approved by South Western Sydney Local Health 

District Human Research Ethics Committee (Project Number 15/072).   

 

Initially 7.5 ml of blood was collected in EDTA tubes. This was increased to 15 ml after seventeen 

patients were enrolled for higher CTC capture to improve culture success rates. Blood samples were 

transported immediately at room temperature for CTC isolation. A second 7.5 ml EDTA blood sample 

was collected at the same blood draw from each patient for EpCAM based capture for CTC 

enumeration using the Isoflux System, and processed as per manufacturer instructions17. Enumerated 

CTCs were defined by the standard EpCAM/Cytokeratin/DAPI positive and CD45 negative 

phenotype18.  

5.2.2 CTC isolation and cell culture 

Blood samples were incubated for 20 min with RosetteSep CTC Enrichment Cocktail with anti CD36 

(Stemcell Technologies) prior to a density gradient separation with LeucoSep tubes (Stemcell 

Technologies) to isolate a peripheral blood mononuclear cell (PBMC) layer. We found excessive 

lymphocyte contamination prohibiting CTC growth with the RosetteSep Human CD45 Depletion 

Cocktail which was improved with the CTC Enrichment Cocktail. The PBMC layer was washed twice 

PBS, then immediately plated into 24 well ultra-low attachment plate (Corning) with serum free 

Advanced DMEM (ADMEM; Sigma Aldrich) supplemented with epidermal growth factor, fibroblast 

growth factor and N2 supplement, or ADMEM with 10% foetal calf serum (FCS) in hypoxic 

conditions. All media was supplemented with antibiotics (see Supplementary Table 1 for media 

formulations). 

Patient 41 was noted to have marked peritoneal disease and gross ascites from gastric 

adenocarcinoma. At the same time as the blood draw for CTC isolation, 200 ml of ascitic fluid was 

collected from a peritoneal catheter. This sample was transferred immediately to the laboratory, 

washed twice in ADMEM with 1% antibiotic/antimycotic (Sigma Aldrich), and cultured as per 

conditions described above. Cultures derived from the CTC and ascites were maintained 

independently under identical conditions. For all subsequent cell culture and experimental assays, 

cells were maintained in ADMEM with 10% FCS and EGF.  
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5.2.3 Immunohistochemical analysis of patient samples, cell lines, and mouse xenografts 

Expression of key proteins on the cell lines, mouse xenografts, and representative sections from the 

matching patient’s tumour specimen were compared using immunohistochemistry (IHC). For cell 

lines, cells were collected, centrifuged with supernatant removed, then clotted with plasma and 

commercially prepared thrombin (Fibriprest Automate from Stago) to prepare a cell block.  All 

samples were fixed in 10% formalin and then paraffin embedded, with 4 µm sections cut for staining. 

Antigen retrieval and development was performed on the fully automated Bond system according to 

manufactures instructions (See Supplementary Table 2 for antibody details), with positive controls 

included on each slide. 

 

5.2.4 DNA and RNA extraction 

Tumour and cell culture nucleic acids were extracted using AllPrep DNA/RNA FFPE Kit (80234, 

Qiagen) or AllPrep DNA/RNA/Protein Mini Kit (80004,Qiagen),  respectively, according to the 

manufacturer’s instructions. All samples were quantified using the NanoDrop (ND1000, 

Thermoscientific). RNA samples had A260/280 ratio between 1.7 and 2.3 (see supplementary Table 

3).  

5.2.5 Nanostring Analysis  

Cell line RNA expression was explored and compared to the corresponding patient tumour and mouse 

xenograft using the Nanostring platform. 25 ng of RNA from fresh-frozen samples and 150 ng from 

FFPE samples were run on the NanoString nCounter Sprint system using the 770 gene PanCancer 

Pathways panel with additional cancer stem cell and proteolytic genes as per the manufacturer's 

instructions (NanoString Technologies). Results were analysed using the NanoString nSolver 3.0 and 

PanCancer Pathways Advanced Analysis Module, which normalizes gene expression to a set of 

positive and negative control genes built into the platform.  Differential expression of genes from key 

pathways were compared between cell lines, with fold change and P values calculated using nCounter 

default settings. As recommended, genes whose expression levels were at or below the level of the 

negative controls were removed from analysis. With the remaining list of genes, a filter cutoff of ≥ ±2 

fold change and P value < 0.05 were used to identify the significant gene expression changes based on 

the nCounter analysis. 

 

5.2.6 Short Tandem Repeat (STR) analysis 

STR profiles for the cell lines and their matching patient FFPE tumour tissue were verified by the 

PowerPlexR 18D System, using the following 18 markers (seventeen STR loci and Amelogenin): 

D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta 

D, Amelogenin, vWA, D8S1179, TPOX, FGA, D19S433 and D2S1338. As per standard practice, cell 
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lines were considered to match if profiles are more than 80% identical to source patient sample. 

 

5.2.7 Mouse xenograft  tumourogenicity 

For confirmation of tumourigenicity, 2x 106 cells from early passages of each cell line were injected 

subcutaneously into the flank of NOD scid gamma (NOD.Cg-Prkdc<scid>IL2rg<tm1Wjl>/ SzJAusb) 

mice.  Mice were monitored for tumour growth and sacrificed when the tumour grew greater than 10 

x10 mm, or the animal demonstrated signs of stress (such as >15% weight loss) or evidence of 

impedance of tumour on movement.  Tumours were collected from the sacrificed mice for culture, 

RNA and DNA extraction, and histological analysis. For culture from xenografts, tumour tissues were 

cut into approximately 1 mm pieces and then incubated with Milteny tumour dissociation enzymes in 

ADMEM, after which the tumour homogenate was centrifuged, the pellet resuspended, and plated. 

Epithelial cultures derived from JICTC and JIASC xenografts grew rapidly as loosely attached cells 

and were easily separated from mouse stromal cells by mechanical pipetting at P0. These were 

designated as RFCTC-M and JICTC-M respectively, to denote the fact that they were passaged 

through mice. All procedures were carried out in accordance to the Australian Code for the Care and 

Use of Animal for Scientific Purposes 2013, and approved by the University of Wollongong’s Animal 

Ethics Committee (study AE15/17) 

 

5.2.8 Cytotoxic Assay 

Approximately 10,000 cells were seeded per well in triplicate into a 96-well plate 48 - 72 h prior to 

drug treatment with carboplatin, etoposide, paclitaxel or oxaliplatin (obtained from excess patient 

stock from private hospital). Cells were incubated with serial dilutions of each drug for 72 h with drug 

vehicle (either water, 0.9% saline or DMSO, depending on drug solubility) dilution kept constant 

across all drug concentrations and controls (final concentration of 0.2%). The viability of cells were 

assayed using CellTitre 96® Aqueous One Solution Cell Proliferation Assay (Cat # G3581, Promega 

Corporation, Fitchburg, Wisconsin, USA) using a Spectromax 250 UV plate reader and Softmax Pro 

software (Molecular Devices, Sunnyvale, California, USA). Cell viability of treated cells were 

normalized against cells receiving vehicle controls. This data were analysed using a logarithmic 

sigmoidal dose–response curve using the variable slope parameter to determine IC50 (GraphPad Prism 

6.0). (GraphPad Inc.). Data is presented as a mean ± standard deviation (SD) from ≥2 independent 

experiments. 

5.2.9 Radiotherapy Assay 

The sensitivity of the cells to radiation with drug pretreatment was also investigated using clonogenic 

survival as the radiobiological endpoint. Cells were first acclimated for at least a week in normoxic 

conditions, then plated into 12.5 cm2 tissue culture flasks in regular cell culture media (as above) in 
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order to reach ~60% confluency 3 days later. Cells were then pre-sensitized with 0, 1, 2 or 5 µM 

Carboplatin for 48 h prior to exposure to 1 or 2 Gy X-Ray radiation.  Cells were then passaged into 

triplicate tissue-culture petri dishes (100 mm x 20 mm Falcon BD; Pacific Laboratory Products) in 10 

mL of ADMEM with 10% FCS, pencillin/streptomycin, EGF and l-glutamine, at different cell 

densities per dish (ranging from 1000 to 20000 cells per dish). After approximately 15 doubling times, 

petri dishes were washed with PBS and adherent cell colonies fixed and stained with a 1:3 crystal 

violet:ethanol solution. Colonies (> 50 cells/colony) were manually counted and presented as Mean 

Plating Efficiency (MPE; [number of colonies]/[number of cells plated]*100) and surviving fraction 

(SF; MPE of treatment group/MPE of control group) as previously described 19. 

 

5.3 Results 

5.3.1 Establishment of long term in vitro CTC cultures in patients with metastatic 

gastroesophageal cancer 

A total of 41 blood samples were processed for CTC culture, with 23 samples processed using the 

optimised protocol (15 ml blood sample with negative selection using the CTC Enrichment Cocktail). 

CTC were detected in 38/40 samples (93%) by the Isoflux system (one sample unable to be processed 

for CTC enumeration due to clotted specimen), with ≥10 CTCs found in 22 (54%) of samples. 

Numbers of CTCs detected ranged from 0 – 150, with the mean number of CTCs 27.3 (summarised in 

Supplementary Table 4). 

 

Long term CTC cultures were established from two patients by processing 15 ml blood samples using 

the optimised protocol (Table 1). The first was established from patient 20 (cell line RFCTC), who 

had a low CTC count of 3 by EpCAM based capture despite widespread nodal and bone metastases. 

Patient 20 had a distal oesophageal/gastroesophageal junction carcinoma diagnosed on endoscopy. 

The patient received concurrent chemoradiotherapy to the primary tumour and locoregional nodal 

disease as planned neoadjuvant treatment. Despite an excellent local response to chemoradiotherapy, 

the patient rapidly developed widespread metastatic disease including a dural metastasis causing 

spinal cord compression. At the time of CTC sampling the patient underwent resection of this 

metastasis, with histopathology demonstrating high grade neuroendocrine carcinoma, a rare and 

highly lethal subtype of cancer occurring in <1% of patients with gastrointestinal cancers 20 .  

The second long term culture was established from patient 41 (cell line JICTC) who had a high 

EpCAM based CTC count (109). This patient presented with diffuse bone and peritoneal metastasis. 

Endoscopy demonstrated a large ulcerated gastric mass confirmed on biopsy to be a gastric 

adenocarcinoma. A matched culture was established simultaneously from the ascitic fluid sample 

from the same patient (JIASC). Unfortunately both patients progressed rapidly prior to receiving 

further treatment and passed away. 
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Table 1: Characteristics of the source patients of long term CTC cell lines. 

Patient 

Number 

Primary 

Tumour 

Sites of 

metastatic 

disease at 

blood draw 

Treatment prior to 

blood sampling 

CTC 

count by 

Isoflux 

System  

(7.5ml 

sample) 

Key protein 

expression of 

cell line 

20 Distal 

oesophageal 

high grade 

neuroendocrine 

carcinoma 

Bone 

Widespread 

nodal 

Hepatic 

 

Chemoradiotherapy 

with carboplatin and 

paclitaxel to primary 

tumour and regional 

nodal disease 

3 Synaptophysin + 

CGA+ CD56+ 

EpCAM - 

Cytokeratin 

weak/low 

41 Gastric 

adenocarcinoma 

Bone 

Peritoneal 

Nil 109 EpCAM + 

Cytokeratin + 

CD44 + 

 

In both CTC cultures, viable cell colonies were seen within 3 weeks. In the RFCTC culture a large 

number of residual CD45+ lymphocytes persisted for the initial 4 passages. Cell populations 

expanded rapidly, and have been maintained continuously for over 12 months to date.  Once 

established, the cultures have been adapted to grow in a variety of conditions, including serum free 

media supplemented with various growth factors or with 10% fetal calf serum, hypoxic or normoxic 

atmosphere, or ultra low attachment (ULA) or standard culture vessels, and remain viable after 

freezing at various passages and thawing.  

 

The cell lines display discrete in vitro growth characteristics. JICTC grows in long mucinous, loosely 

aggregated strands (Figure 1). These strands are weakly attached to the flask surface and require only 

gentle mechanical dissociation for passaging. Altering growth conditions (such as media) does not 

have any discernible effect on JICTC phenotype.  In contrast, RFCTC grow as an adherent culture, 

requiring trypsinisation for passaging, although a loose adherent spheroid phenotype is inducible with 

a hypoxic environment and serum free media (Figure 2). Similar growth characteristics were seen in 

hypoxic and normoxic conditions once the cell line was established (data not shown). 

 

5.3.2 CTC culture recapitulates the pathological characteristics of source patient 

The two established CTC cell lines demonstrate markedly different phenotypes and protein and gene 

expression patterns which faithfully recapitulate patterns of the source tumour (Figures 1, 2 and 3).  

As discussed, cell line JICTC was established from a patient with metastatic gastric adenocarcinoma 
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with widespread liver and peritoneal metastases.  Both the patient’s primary tumour and JICTC 

demonstrated high grade appearances by hematoxylin and eosin (H+E) stain (Figure 1) with a high 

Ki67 (>80%).  As expected in adenocarcinoma, both the tumour and cell line strongly expressed 

cytokeratins (CAM5.2; Figure 3), in particular CK-20 (Figure 1).  The JIASC cell line expressed an 

almost identical phenotype to JICTC. Strikingly, the gastric cancer stem cell marker CD44, was 

strongly positive in JICTC, while JIASC were negative (Figure 1). 

 

In contrast, RFCTC, established from a patient with high grade gastroesophageal neuroendocrine 

tumour, had only weak patchy cytokeratin staining, but as expected expressed high levels of the 

neuroendocrine marker synaptophysin, CD56, and Chromogranin A typical of this cancer (Figure 2). 

Protein expression was constant from cell line to mouse xenograft and subsequent cell culture created 

from the mouse xenograft (Figure 2). This cell line had an otherwise bland IHC profile, with no 

staining for epithelial or stem cell markers (Figure 2, 3).  H+E staining showed a high grade poorly 

differentiated tumour with high Ki67 (80 – 100%) (Figure 2). Differing media (10%FCS or serum 

free media) did not change the phenotype detected by IHC (data not shown). 

 

Neither cell line expressed mesenychmal markers (Vimentin or N-Cadherin) or urokinase 

plasminogen activator receptor (uPAR), a key receptor for the initiation of the proteolytic cascade 

(Figure 3). No cell line showed any CD45 expression at any stage confirming these cultures did not 

derive from lymphocytes (Figure 3). 
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Figure 1: JICTC cell culture. (A) Representative images of the loose aggregates formed by JICTC. 

Scale bar 50 µm. (B) IHC analyses of primary tumour and cell line from patient 41 (cell line JICTC 

and JIASC). Both cell lines showed a very similar IHC profile, with strong pan-cytokeratin and CK-

20 staining, and weak CK-7 staining, with an identical expression profile in tumours formed in the 

mouse xenograft. Scale bar 100 µm. (C) Expression of cancer stem cell markers in JICTC and JIASC. 

Scale bar 100 µm. (D) JICTC rapidly formed tumours in immunocompromised mice, with all mice 

reaching tumour endpoints within 4 weeks (mean ±SD of n= 4 mice).  
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Figure 2: RFCTC cell culture. (A) Representative images of late passage (passage 40) RFCTC in 

varied culture conditions. While RFCTC grows attached to standard culture vessels in 10% FCS in 

normoxia and hypoxia (top image), a loosely adhered spheroid phenotype is inducible with serum free 

media and hypoxia (bottom image). Scale bar 50 µm.  (B) IHC analyses of tumour, cell line, mouse 

xenograft, and cell line derived from mouse xenograft (RFCTC-M) from patient 20 showing stable 

and strong expression of the neuroendocrine marker synaptophysin, with consistent patchy 

cytokeratin positivity. Scale bar 100 µm. (C) IHC analysis of RFCTC showing strong expression of 

neuroendocrine markers (CD56 and CGA), a high Ki67, but no expression of CSC markers (CD44, 

CD133, ALDH1). (D) RFCTC rapidly formed tumours in immunocompromised mice, with all tumour 

endpoints reached within 3 weeks (data points are the mean ±SD of n= 4 mice).  
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Figure 3: Comparison of JICTC and RFCTC (A) Immunohistochemical expression of key proteins. 

The distinct phenotypes of the two CTC cell lines are highlighted in this figure; JICTC expresses 

epithelial markers (EpCAM and E-Cadherin) as well as strong cytokeratin staining. In contrast 

RFCTC has no epithelial staining and weak/patchy cytokeratin staining. Both cell lines show a high 

Ki67 supporting a high proliferation rate. No CD45 staining was observed in any of the cell lines. 

Scale bar 100 µm.  (B) Heatmap of RNA expression profiling of CTC cell lines (RFCTC, JICTC) 

with matching patient FFPE sample and mouse xenograft. Key highly differently expressed genes are 

displayed. JIASC cell line, established simultaneously from an ascites sample from the same patient is 

also reported (green = high expression, red = low expression) (C) Dose response curves for cytotoxic 

drugs on RFCTC (top) and  (JICTC). Cell culture for all analyses was performed under hypoxic 

conditions. Cell viability of treated cells were normalised against vehicle controls, and presented as 

mean ± standard deviation (SD) from ≥2 independent experiments.  Cell survival of RFCTC 

determined by clonogenic assay (bottom). Cells were irradiated with or without carboplatin (1μM) 

pre-treatment. Surviving fractions of irradiated cells only (no drug) and drug only were normalized to 

non-irradiated non drug treated control. Each data point represents the means ±SD of at least two 

independent experiments performed in triplicate. 
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5.3.3 Mouse Xenograft tumourigenicity 

Both cell lines rapidly formed tumours when injected subcutaneously into the flanks of 

immunodeficient mice.  Tumour endpoints (>10 x10 mm) were reached within 3 weeks for JICTC 

and 4 weeks for RFCTC cell injection.  IHC on excised tumours confirmed identical expression of 

human cytokeratins and cell surface protein markers to the original patient tumour and corresponding 

cell line (Figure 1 and 2). Cell cultures were established from the two CTC cell lines from the mouse 

xenograft (RFCTC-M and JICTC-M). 

 

5.3.4 Tumour authentication 

Detailed DNA analyses were limited by poor DNA quality from both source patient’s FFPE samples. 

However, by STR analysis, 24/28 (85.8%) alleles of JIASC and JICTC were identical to the primary 

tumour from patient 41 confirming the source of the cell lines (see Supplementary Material). Despite 

multiple attempts, there was inadequate DNA extracted from FFPE samples of patient 20’s tumour 

preventing analyses including STR. However we note the STR profile of RFCTC did not match any 

known cell lines in the American Type Culture Collection (ATCC), Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ), or Garvan internal databases, demonstrating the that 

RFCTC is a novel high grade neuroendocrine cancer cell line.  

 

5.3.5 CTC cell lines have distinct gene expression profiles 

RNA expression analysis by Nanostring confirmed the IHC and STR findings showing two distinct 

CTC cell lines which reflect the source patient’s tumour. While JICTC had a higher expression of 

CDH1 (encoding e-cadherin), RFCTC, as expected, had higher expression of genes for 

neuroendocrine markers including CNTFR, PAX-5 and NGFR21-23. 

 

Interestingly, differential expression analysis demonstrated JICTC, when compared to RFCTC, had a 

higher expression of genes known to be involved in Helicobater Pylori mediated carcinogenesis such 

as AKT24, ETS225 and MYC26, supporting endoscopic finding that patient 41’s tumour was likely 

related to H. Pylori gastritis. There was also overexpression of genes encoding the gastric cancer stem 

cell markers CD44, ALDH1 and CD133, as well as key stem cell pathways such as NOTCH and 

WNT, including the notch delta-like ligands (DLL-1 and DLL-4) and PLA2GA, an important regular 

of metastases in gastric cancer and expressed with constitutively active Wnt 27-29. JICTC also showed 

higher expression than RFCTC of targetable pathways including EGFR, FGFR2, HER-2, and MET, 

as well as key genes in the JAK/STAT pathway, genes which overexpression are frequently reported 

in gastric adenocarcinomas but not gastrointestinal neuroendocrine cancers20,30,31.  
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RFCTC showed a high expression of DLL-3, which is known to be expressed on most high grade 

neuroendocrine cancers, particularly small cell lung cancer. Importantly it is targetable with the 

antibody-drug conjugate Rovalpituzumab tesirine32,33. RFCTC also showed a lower expression of key 

DNA repair kinases, including ATM and ATR. We did not observe other reported molecular features 

of high grade neuroendocrine cancers such as BCL-2 overexpression or Rb inactivation.  

 

JICTC demonstrated a very similar RNA expression profile to JIASC.  We did not find 

overexpression of CSC or epithelial to mesenchymal transition (EMT) genes in JICTC compared to 

JIASC.   

 

Gene expression was preserved between cell lines and their corresponding mouse xenograft, with no 

significant difference in expression observed (Supplementary figure 1). 

 

5.3.6 Cytotoxic and Radiosensitivity Assay 

In vitro sensitivity of both CTC cell lines to the following cytotoxic drugs; carboplatin,  etoposide, 

paclitaxel or oxaliplatin was evaluated using the MTS assay. JICTC and RFCTC demonstrated similar 

sensitivity to carboplatin and oxaliplatin, with both IC50 values (0.18 and 0.93 respectively) consistent 

with previously reported values for gastroesophageal cell lines (Table 2, Figure 3)34.  Although patient 

20 received chemotherapy with carboplatin and paclitaxel as a radiosensitiser prior to sampling for the 

CTC culture, RFCTC remained sensitive to both agents compared to the JICTC cell line.  

 

Table 2: IC50 values for carboplatin, etoposide, paclitaxel and oxaliplatin on RFCTC and JICTC (all 

hypoxic conditions). 

 IC50 (µM) 

Drugs RFCTC JICTC 

Carboplatin 40.80 ± 2.94 33.40 ± 11.3 

Etoposide 1.57 ± 0.40 0.04 ± 0.02 

Paclitaxel 0.01 ± 0.03 0.55 ± 0.35 

Oxaliplatin 0.93 ± 0.26  0.28 ± 0.13 

 

We then investigated the sensitivity of each CTC cell line to radiotherapy with and without 

carboplatin sensitisation using the clonogenic assay. Unfortunately JICTC was found to be unsuitable 

for this assay due to the weak attachment to the culture plate.  RFCTC displayed marked sensitivity to 

radiotherapy alone with a mean surviving fraction of 67% and 18% after 1Gy and 2Gy respectively. 

The prep-treatment of low dose carboplatin (1μM) significantly enhanced the effect of radiotherapy 

despite being much lower that then IC50 of carboplatin in RFCTC (40.8 μM) (Figure 3). 
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5.4 Discussion 

We report the establishment and characteristation of two novel long term (>1 year, >40 passages) 

gastroesophageal cancer cell lines derived from CTCs. These two cell lines are genotypically and 

phenotypically distinct, reflective of differing tumour biology in the donor patients. 

 

By IHC strong differences in the expression of key proteins were observed between the cell lines. 

Similar to other reported CTC lines, JICTC displayed an EpCAM+, cytokeratin (Cam5.2)+ , CD44+, 

phenotype. In contrast, RFCTC, isolated from a patient with neuroendocrine tumour, showed only 

patchy weak cytokeratin (Cam5.2) by immunostaining with strong expression of neuroendocrine 

markers (CD56+, synaptophysin+, chromogranin A+). RFCTC had no detectable EpCAM, 

mesenchymal (NCAD-, Vimentin-), or cancer stem cell markers (CD44-, CD133-, ALDH1-). This 

phenotype makes RFCTC a unique CTC cell line.   

 

Overall both CTC derived cell lines as well as the ascites derived cell line recapitulated the phenotype 

of the source patient’s tumour, highlighting that CTCs are a representative tumour source. It was 

interesting to detect differences in CD44, ALDH1 protein and STAT3 gene expression between the 

JICTC and JIASC, which probably reflects the different pathways of tumour cell dissemination.  Of 

note, higher expression of cancer stem cell markers (CSC) and key stem pathways was also found on 

JICTC versus RFCTC, despite ALDH1, CD44, and CD133 reported as CSC markers in both 

adenocarcinomas and high grade neuroendocrine tumours35,36. Both demonstrated rapid in vitro and in 

vivo growth, had high grade histological appearance, and a high Ki67 (>80%), supportive of a stem 

cell phenotype. The RNA expression profiling confirmed these data, with each cell line’s expression 

clustered with the source patient’s tumour and the corresponding mouse xenograft.  

 

STR analysis confirmed patient 41 as the source of JICTC. While we were unable to extract sufficient 

quality DNA from patient 20’s FFPE tumour sample for any analysis, RFCTC’s STR profile was 

unique. 

 

Together with the confirmed tumourigenicity of the cell lines by the rapid development of tumours 

(within 4 weeks of inoculation) in all xenografted mice, these data confirm the establishment of two 

novel CTC derived immortalised cell lines. The tumours excised from the mice and the cell cultures 

(JICTC-M, RFCTC-M) derived from these tumours retained the overall RNA expression profile and 

IHC staining pattern seen in the corresponding cell line and source patient tumour. This highlights 

that these procedures, at least in short term cultures, do not grossly alter the original tumour 

characteristics, making CTC derived cell lines an excellent model to study tumour behaviour and 

response to treatment.  
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We also undertook limited cytotoxic and radiotherapy assays of the CTC cell lines based on standard 

cytotoxic drugs used for these cancers. We found drug sensitivities were generally similar to those 

previously reported for gastroesophageal cell lines34.  We note the extreme sensitivity of RFCTC to 

radiotherapy, and the synergistic effect of carboplatin. This is consistent with the clinical experience 

of high grade neuroendocrine cancers, driven by low ATM and ATR expression, key DNA damage 

response enzymes and associated with increased response to radiotherapy37-39.  Decreased ATM 

expression has been strongly associated with metastases in high grade neuroendocrine cancer from the 

gastrointestinal cancer40. RFCTC showing very low ATM and ATR gene expression together with the 

fact that the patient rapidly developed widespread metastatic disease indicates the capacity of CTCs 

for establishing metastases.  

 

Multiple other potential therapeutic targets were identified by RNA expression profiling. JICTC had 

high expression of EGFR, FGFR2, ERBB2, and JAK/STAT pathway, suggesting potential sensitivity 

to treatments directed at these validated targets. Targeting ERBB2 has improved clinical outcomes in 

HER2 overexpressed gastric cancer, and ongoing clinical trials are exploring the use of FGFR2 and 

JAK inhibitors in these cancers41-43. Relative to JICTC,RFCTC had high expression of DLL3, known 

to be overexpressed in high grade neuroendocrine tumours, and  targetable by Rovalpituzumab 

tesirine. These data show that CTC derived cell lines can be used to define personalised drug 

sensitivities for gastric cancer patients, an approach which has been shown to complement molecular 

profiling in personalising systemic treatments in cancer44More comprehensive drug sensitivity testing 

including drugs tailored against the suggested targets should be performed on these cell lines in the 

future. 

 

Other studies have suggested a high CTC count (>300) is necessary for successful culture12, however 

this is complicated with the inherent biases when selecting the isolation method and definition used 

for CTC enumeration.  We employed the standard EpCAM based isolation and cytokeratin based 

CTC identification in the matched blood sample. Due to the biological differences discussed above, 

our successful cultures derived from samples with high (109) and low (3) CTC counts, subsequently 

developing EpCAM positive and negative cell lines, respectively. This finding highlights a key issue 

in the CTC field. While patient 20 has a low EpCAM+ CTC count, the successful establishment of a 

CTC cell line argues that this patient had a high number of EpCAM- CTCs with the ability to 

establish metastatic deposits. These biologically relevant cells are missed using standard CTC 

isolation techniques. Moreover, it is important to emphasise that these neuroendocrine CTCs would 

also not be well enumerated based on mesenchymal protein based CTC isolation, thus neuroendocrine 

CTCs likely still represent an understudied yet potentially highly aggressive population of CTCs. The 

negative selection used for CTC culture (CD45 depletion), rather than the positive selection used for 

CTC enumeration (EpCAM capture) was critical to detect these cells. The optimal isolation method of 



156 
 

CTCs continues to evolve in the face of these challenges and while more emphasis has been given to 

epithelial to mesenchymal transition (EMT) phenotype CTCs in recent years45 the data presented here 

highlight that better detection of neuroendocrine CTCs need to be considered as well.  

 

The matched culture derived from ascitic fluid (JIASC) simultaneously established from patient 41 as 

JICTC demonstrated an identical phenotype, with the exception  of  cancer stem cell expression. 

JICTC was strongly positive for CD44, a key CSC marker in gastric cancer28, while JIASC was 

negative for CD44.  This is consistent with other results showing that CTC cultures exhibit a stem cell 

phenotype. This further supports the notion that CTC cultures develop from the CTC population 

which are able to establish metastases12,46 47. 

 

In conclusion, we report the first two long term CTC cell lines developed from patients with 

metastatic gastroesophageal cancer. The two cell lines displayed distinct profiles which faithfully 

recapitulate the source patient’s tumour.  Our results support the developing role of CTC culture as an 

essential laboratory resource for the understanding of the biology of metastases and importantly 

undertake personalised screening for therapeutic strategies.  
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5.5 Supplementary Material 

Supplementary Table 1: CTC culture media 

 Supplier Concentration 

Serum Free Media 

Advanced DMEM/F12 Thermo Fisher Scientific  

N2 Supplement Life Technologies Australia Pty 

Ltd 

1x 

Epidermal Growth Factor Life Technologies Australia Pty 

Ltd 

20ng/ml 

Fibroblast Growth Factor Life Technologies Australia Pty 

Ltd 

10ng/ml 

Penicillin Streptomycin Solution Sigma-Aldrich 1X 

L-gluatmine Sigma-Aldrich 1x 

10% Serum Media   

Advanced DMEM/F12 Thermo Fisher Scientific  

Foetal Bovine Serum Bovogen 10% 

Epidermal Growth Factor Life Technologies Australia Pty 

Ltd 

20ng/ml 
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Supplementary Table 2: Antibodies used in immunohistochemical analyses:   

Antibody Supplier Dilution 

Retrieval Time 

(min) 

CAM5.2 Leica 1:100 20 

CK-7 Leica 1:50 20 

CK-20 Leica 1:100 30 

E-Cadherin Leica 1:25 20 

HER-2 Leica 1:100 20 

Ki67 Dako 1:40 20 

Leukocyte Common Antibody  

(CD45) Dako 1:500 20 

VIM Dako 1:500 20 

CDX-2 Dako 1:50 30 

CD56 Leica 1:1 20 

CHROM Leica 1:200 20 

Synapatophysin Leica 1:100 20 

Urokinase Plasminogen Activator 

Receptor Dako 1:100 60 

N-Cadherin Sigma-Aldrich 1:100 60 
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Supplementary Table 3: RNA quality indicators for nanostring analysis 

Sample # Sample name 

 

RNA concentration 

(ng/µl) 

A260/280 

1 Pt 41 FFPE (primary tumour, JI) 34.8 2.05 

2 Pt 20 FFPE (metastatic deposit, RF) 128.1 1.66 

3 JIASC  (early passage) 431.8 2.07 

4 JICTC (early passage) 365.1 2.06 

5 RFCTC (early passage) 536.7 1.9 

6 RFCTC hypoxic, late passage (p33) 1973 2.1 

7 RFCTC normoxic, late passage (p33) 1348 2.09 

8 RFCTC C spheroid (early floating?) 248 1.8 

9 RFDH mouse xenograft(DHM1) 1384 2.12 

10 RFCTCM  (post mouse xenograft 

culture, early passage) 

1517 2.09 

11 JICTC mouse xenograft  1399 2.12 

12 JIASC mouse xenograft 303 2.03 
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Supplementary Table 4: Patient samples used for CTC culture 
Patient 
Number 

CTC count by the 
Isoflux System in 
7.5ml blood 
sample 

Patient blood 
volume used 
for CTC 
culture (ml) 

CTC enrichment cocktail Long Term CTC 
culture 
established 

1 150 7.5 CD45 only  
2 0 7.5 CD45 only  
3 38 7.5 CD45 only  
4 27 7.5 CD45 only  
5 12 7.5 CD45 only  
6 4 7.5 CD45 only  
7 2 7.5 CD45 only  
8 26 7.5 CD45 only  
9 49 7.5 CD45 only  
10 18 7.5 CD45 only  
11 18 7.5 CD45 only  
12 67 7.5 CD45 only  
13 62 7.5 CD45 only  
14 8 7.5 CD45 only  
15 1 7.5 CD45 only  
16 3 7.5 CD45 only  
17 4 15 CD45 only  
18 2 15 CD45 only  
19 13 15 CD45 and anti CD36  
20 3 15 CD45 and anti CD36 Yes (RFCTC) 
21 15 15 CD45 and anti CD36  
22 NA* 15 CD45 and anti CD36  
23 0 15 CD45 and anti CD36  
24 118 7.5 CD45 and anti CD36  
25 26 15 CD45 and anti CD36  
26 5 7.5 CD45 and anti CD36  
27 19 15 CD45 and anti CD36  
28 7 15 CD45 and anti CD36  
29 1 15 CD45 and anti CD36  
30 1 7.5 CD45 and anti CD36  
31 6 15 CD45 and anti CD36  
32 5 15 CD45 and anti CD36  
33 16 15 CD45 and anti CD36  
34 15 15 CD45 and anti CD36  
35 14 15 CD45 and anti CD36  
36 1 15 CD45 and anti CD36  
37 2 15 CD45 and anti CD36  
38 137 15 CD45 and anti CD36  
39 77 15 CD45 and anti CD36  
40 12 15 CD45 and anti CD36  
41 109 15 CD45 and anti CD36 Yes (JICTC) 
*CTC enumeration unable to be performed due to specimen clotting 



164 
 

Supplementary Figure 1: Differential RNA expression between cell line and corresponding mouse 

xenograft. We did not find a significant difference in expression for any genes (all results p<0.10). 

 
 

 

 



165 
 

 

 

 

 

 

 

 

 

 

Chapter 6 

 

 

Clinical biomarkers in locoregional colon 

cancer 
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Abstract 

 

Background/Aim: Right sided colon cancer (RsCC) is proposed to be a distinct disease entity to left 

sided colon cancer (LsCC). We seek to confirm primary tumour location as an independent prognostic 

factor in locoregional colorectal cancer.  

Methods: All patients with stage I – III primary adenocarcinoma of colon were identified from the 

New South Wales (NSW) clinical cancer registry (2006 – 2013).  Primary tumour location (RsCC vs 

LsCC) survival analyses were conducted using the Kaplan-Meier method, and adjusted hazard ratios 

for 5-year all-cause mortality (OS) and 5-year cancer specific mortality (CSS) were obtained using 

Cox proportional hazards regression.  

Results:  We identified 9509 patients including 5051 patients with RsCC and 4458 with LsCC.  

Patients with RsCC were more likely to be older, female, have a higher Charlson comorbidity index, 

and have worse tumour prognostic factors.  In univariate analysis of all stages combined, those 

patients with RsCC had a worse overall survival (OS, HR 1.20 95%CI 1.11 – 1.29, p<0.0001), 

although this was not significant in the multivariate analysis (HR 0.96 95%CI 0.89 – 1.04, p=0.35).  

Stage I patients with RsCC had a trend to improved OS (multivariate HR 0.84 95%CI 0.69 – 1.01, 

p=0.07) and a significantly improved CSS (multivariate HR 0.51 95%CI 0.35 – 0.75, p=0.0006). In 

stage II patients with RsCC there was a significantly improved OS (multivariate HR 0.85 95%CI 0.75 

– 0.98, p=0.02) and CSS (multivariate HR 0.59 95%CI 0.45 – 0.78, p=0.0002) compared to LsCC. In 

stage III patients, those with RsCC had a worse OS (multivariate HR 1.13 95%CI 1.01 – 1.26, p = 

0.032) and a trend to worse CSS (multivariate HR 1.12 95%CI 0.94 – 1.33, p=0.22). 

Conclusions: Primary tumour location is an important prognostic factor in locoregional colon cancer 

with an effect that varies by stage. RsCC is associated with lower all-cause mortality in stage II, and 

higher all-cause mortality in stage III. 
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6.1.1 Background  

Colorectal (CRC) is a common and lethal malignancy, projected to account for 13% of all new cancer 

cases diagnosed in Australia in 2015, and 10% of Australian cancer deaths1. In recent years there has 

been increasing interest in identifying the differences between right sided and left sided colon cancer, 

and the potential for using this clinical marker as a surrogate marker of tumour biology, with the 

intent of improved personalisation of systemic treatments.   

 

There is a growing body of evidence to suggest that right sided colon cancers (RsCC) follow a 

different disease process compared to left sided tumours (LsCC).  The proximal and distal colons are 

physiologically separate, arising from distinct embryological origins, with differences in tumour 

genetics, histology, presentation, and clinical features2-4. Patients with RsCC are older, more likely to 

be female, have more comorbidities, with poorer tumour histopathological features5-8.  

 

Despite this, there is ongoing debate whether primary tumour location is an independent prognostic 

factor in colon cancer.  Most, but not all studies have found poorer survival with RsCC7-11.  A recent 

meta-analysis found a statistically significant worse overall survival in patients with RsCC, although 

there was significant heterogeneity seen due the spectrum of included study designs, disease stage, 

and limited information about treatment received by patients12.  Tumour stage may play a role, with a 

large Surveillance, Epidemiology, and End Results (SEER) program study showing worse overall 

survival in Stage III RsCC patients, but not in Stage I or II 7, although these finding have been 

recently challenged by a propensity score matched analysis of the SEER database, which showed a 

better prognosis in RsCC patients9.  

 

This current study aims to use a prospectively collected database of Australian patients to determine 

whether primary tumour location is an independent prognostic factor in locoregional colon cancer, 

and compare our findings to the literature.  

 

6.1.2 Methods 

6.1.2.1 Patient Cohort 

The New South Wales (NSW) clinical cancer registry contains demographic and clinical data for 

patients diagnosed or treated for cancer in NSW, covering approximately 30% of the Australian 

population.  Data is collected from pathological laboratories, hospitals and oncology departments 

under mandatory notification of new cancer cases irrespective of treatment.  

 

We identified all patients with Stage I, II or III colorectal cancer in NSW from Jan 2006 to 2013 

(n=9509) as per third edition of the International Classification of Diseases for Oncology (ICD-O-3)13. 
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The registry also contained adjuvant chemotherapy treatment details for a more limited group of 

patients with stage II and III disease (n=4102).  

 

Mortality data, including cause of death, was obtained with linkage to the NSW registry of Births, 

Deaths and Marriages (BDM)  by the Centre for Health Record Linkage (CHeReL)14. The censor data 

for survival data was 1st December 2014. Primary tumour location was defined right sided (caecum to 

transverse colon) or left sided (splenic flexure to rectosigmoid). Patients with rectal cancer were 

excluded from analysis due to the different treatment paradigm to colon cancer in locoregional 

disease. No data was available for cause of death in 935 patients (10.1%) which were therefore 

excluded from the cancer specific death analyses. Patients were deemed to have died as a result of 

colon cancer only if the underlying cause of death, rather than an associated cause of death, was coded 

as C18-20. 

 

Comorbidity data was obtained by CHeReL linkage of the clinical cancer registry data to the 

Admitted Patient Data Collection (APDC). The APDC contains all admitted patient services provided 

by New South Wales Public Hospitals, Public Psychiatric Hospitals, Public Multi-Purpose Services, 

Private Hospitals, and Private Day Procedures Centres. Comorbidities of each patient were quantified 

using the Charlson comorbidity index which predicts mortality from a range of 22 comorbid 

conditions16. ICD-10 codes were extracted from admissions prior to diagnosis, then translated into a 

Charlson comorbidity index (modified for cancer) using methods previously described15,16.   

 

All data linkage was performed by the Centre for Health Record Linkage, with only de-identified 

information provided to the researchers. The data sources used for this study required ethical and data 

custodian approval to access, link (by an independent and approved authority) and release for 

research. Approval for this project was provided by the NSW Population & Health Services Research 

Ethics Committee (approval HREC/13/CIPHS/39).  

 

6.1.2.2 Statistical analysis 

Our primary outcome was  all-cause 5-year overall survival (OS) stratified by stage, defined as death 

within 5 years of primary diagnosis of colon cancer on basis of dates recorded in the cancer registry 

and BDM databases. The secondary outcome was cancer specific 5 year survival (CSS) stratified by 

stage, as per cause of death encoded on BDM data. Median values for OS and CSS-OS and 

corresponding 95% CI were calculated using Kaplan-Meier methods.  Unadjusted and multivariable 

Cox proportional hazards regression analyses were used to estimate the association between tumour 

location and survival and to calculate corresponding hazard ratios (HRs) and 95% confidence 

intervals (CIs). The following variables were included in the multivariate model: age, sex, Charlson 
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Comorbidity Index, TNM stage, year of diagnosis, grade, and adjuvant treatment (receipt and type of 

adjuvant treatment performed in subset of patients only).  All statistical analyses were performed 

using SAS 9.2 software (SAS Institute, Inc., Cary, NC).  

 

6.1.3 Results 

6.1.3.1 Patient Characteristics (n=9509) 

The characteristics of the NSW cohort is summarised in Table 1. The mean follow up was 46 months 

(interquartile range 27 to 71months). At the end of 5 years of follow up, 2686 (28.2%) patients had 

died, with 913 reported deaths (34.0% of deaths) due to colon cancer.  22% of patients had stage I 

disease, 39% stage II, and 39% had Stage III.  There were slightly more RsCC (53%) than LsCC 

(47%).  Patients with RsCC were older (61% vs 47% older than 70 years) , more likely to be female 

(54% vs 42% female), had higher Charlson comorbidity indices (CCI, 40% vs 34% CCI ≥ 1), and had 

worse prognostic features including higher TNM stage (79% vs 76% stage II/III), and higher grade 

tumour (23% vs 11% poorly differentiated). 
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Table 1: Patient Characteristics (n=9509) 
Characteristic All Patients (%) Right sided 

tumour (%) 
Left sided 

tumour (%) 
P value 

TNM stage I 2104 (22) 1055 (21) 1049 (24) <0.0001 
 II 3684 (39) 2059 (41) 1625 (36)  
 III 3721 (39) 1937 (38) 1784 (40)  
T stage 1 1526 (16) 715 (14) 811 (18) <0.0001 
 2 1030 (11) 558 (11) 472 (11)  
 3 5075 (53) 2741 (54) 2334 (52)  
 4 1868 (20) 1031 (20) 837 (19)  
N Stage 0 5788 (61) 3114 (62) 2674 (60) 0.06 
 1 3065 (32) 1576 (31) 1489 (33)  
 2 656 (7) 361 (7) 295 (7)  
Grade Well differentiated 1244 (13) 635 (13) 609 (14) <0.0001 
 Mod. differentiated 6648 (70) 3278 (65) 3370 (76)  
 Poorly Differentiated 1617 (17) 1138 (23) 479 (11)  
Age group ≤60 1925 (20) 798 (16) 1127 (25) <0.0001 
 61– 70 2423 (25) 1189 (24) 1234 (28)  
 71 – 80 2814 (30) 1600 (32) 1214 (27)  
 >80 2347 (25) 1464 (29) 883 (20)  
Sex Male 4913 (52) 2317 (46) 2596 (58) <0.0001 
 Female 4596 (48) 2734 (54) 1862 (42)  
Charlson 
Comorbidity 
Index 

0 5957 (63) 3027 (60) 2930 (66) <0.0001 
1 – 2 5083 (22) 1172 (23) 911 (20)  
3 – 4 1023 (11) 596 (12) 427 (10)  
5 446 (5) 256 (5) 190 (4)  

Adjuvant 
Chemotherapy 

None 1775 (19) 955 (46) 820 (40) 0.0002 
Fluorouracil based 1098 (12) 553 (27) 545 (27)  
Oxaliplatin doublet 1233 (13) 568 (27) 665 (33)  

 Unknown* 5403 2975  2428  
Year Diagnosed 2006 – 2009 5018 (53) 2644 (52) 2374 (53) 0.38 
 2010 – 2013 4491 (47) 2407 (48) 2084 (47)  
Totals  9509 5051 (53) 4458 (47)  

*not included in multivariate analysis in chemotherapy cohort. 
 

 

6.1.3.2 5 year all-cause mortality by primary tumour location. 

 

The observed 5 year OS for patients with RsCC was 66% (95% CI 65 - 67%) compared to 70% (95% 

CI 69 – 72%) for LsCC.   Unadjusted survival analysis demonstrated a higher mortality with RsCC in 

all stages combined (Figure 1, univariate HR 1.20 95%CI 1.11 – 1.29, p<0.0001). When stratified by 

stage there was significant difference in OS seen only in stage III, with a higher mortality seen in 

RsCC (Figure 1, HR 1.46 95%CI 1.31 – 1.63, p<0.0001) (Figure 1).  
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Figure 1: 5 year all-cause mortality by primary tumour location n= 9509 patients with 2686 deaths 

(Stage I = 2104 patients with 440 deaths, Stage II = 3684 patients with 883 deaths, Stage III = 3721 

patients with 1363 deaths).  

 

After adjusting for sex, age, comorbidities, stage, grade, and year of diagnosis there was no significant 

difference in OS between RsCC and LsCC in patients from all stages (multivariate HR 0.96 95%CI 

0.89 – 1.04 p=0.35) (Table 2).  When the multivariate analysis was stratified by stage, patients with 

RsCC had a trend to improved survival in stage I (HR 0.84 95% CI 0.69– 1.01, p=0.069), a 

statistically significant improved survival in stage II (HR 0.85 95%CI 0.75 – 0.98, p=0.02), but a 

shorter survival in stage III (HR 1.13 95%CI 1.01 – 1.26, p=0.03) (see Table 3.) 
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Table 2. Multivariate model for overall survival for NSW cohort (n=9509). 
Characteristic Multivariate  

HR (95% CI) 
Sided Left 1 
 Right 0.96 (0.89 – 1.04) 
Age ≤60 1 
 61– 70 1.34 (1.15 – 1.56) 
 71 – 80 2.23 (1.93 – 2.56) 
 >80 3.97 (3.46 – 4.56) 
Grade Well differentiated 1 
 Moderately differentiated 1.22 (1.06 – 1.39) 
 Poorly Differentiated 1.87 (1.60 – 2.17) 
TNM stage I 1 
 II 1.05 (0.96 – 1.21) 
 III 2.00 (1.80 – 2.24) 
Sex Male 1 
 Female 0.90 (0.83 – 0.97) 
Charlson Comorbidity Index 0 1 
 1 – 2 1.64 (1.49 – 1.79) 
 3 – 4 1.81 (1.62 – 2.03) 
 5 3.02 (2.63 – 3.46) 
Year Diagnosed 2006 – 2009 1 
 2010 - 2013 0.98 (0.90 – 1.06) 
HR – Hazard Ratio; CI – confidence interval. 
 
 
 
Table 3. Univariate and multivariate Hazard Ratios for NSW cohort (n=9509) stratified by stage. 

Statistically significant values in bold.  

*following variables were used in the multivariate analysis: age, sex, year diagnosed, Charlson 

Comorbidity Index, TNM stage, grade.  

 

 

 

  Overall Survival HR (95% CI) Cancer Specific Survival HR (95% CI) 

  Univariate Multivariate* Univariate Multivariate* 

All Patients Left Sided  

Right Sided 

1 

1.20 (1.11 – 1.29) 

1 

0.96 (0.89 – 1.04) 

1 

1.03 (0.91 – 1.18) 

1 

0.84 (0.73 – 0.96) 

Stage I  

(n=2104) 

Left Sided  

Right Sided 

1 

1.03 (0.91 – 1.18) 

1 

0.84 (0.69 – 1.01) 

1 

0.66 (0.45 – 0.95) 

1 

0.51 (0.35 – 0.75) 

Stage II 

(n=3684) 

Left Sided  

Right Sided 

1 

1.002 (0.88 – 1.14) 

1 

0.85 (0.75 – 0.98) 

1 

0.68 (0.52 – 0.88) 

1 

0.59 (0.45 – 0.78) 

Stage III 

(n=3721) 

Left Sided  

Right Sided 

1 

1.46 (1.31 – 1.63) 

1 

1.13 (1.01 – 1.26) 

1 

1.43 (1.21 – 1.69) 

1 

1.12 (0.94 – 1.33) 
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6.1.3.3 Cancer specific survival (CSS) primary tumour location 

The 5 year cancer specific survival (CSS) was similar for RsCC (89%; 95%CI 88 – 90%) and LsCC 

(89%; 95%CI 87-90%). Unadjusted CSS analysis did not show a significant difference between RsCC 

and LsCC in all stages combined (Figure 2, univariate HR 1.03 95%CI 0.91 – 1.18, p=0.64). When 

stratified by stage, there was a significantly improved CSS seen with RsCC in stage I (HR 0.66 

95%CI 0.45 – 0.95, p=0.024) and stage II (HR 0.68 95%CI 0.52 – 0.88 p=0.0032), but a significantly 

poorer survival for stage III patients (HR 1.43 95%CI 1.21 – 1.66, p<0.0001) (Figure 2, Table 3). 

 
Figure 2: 5 year cancer specific mortality by primary tumour location n= 9509 patients with 2686 

deaths (Stage I = 2104 patients with 116 deaths, Stage II = 3684 patients with 224 deaths, Stage III = 

3721 patients with 573 deaths). 

 

In the multivariate analysis, after adjusting for sex, age, comorbidities, stage, grade, and year of 

diagnosis, patients with RsCC had a statistically significant improved CSS in all stages combined (HR 

0.84, 95%CI 0.73 – 0.96, p=0.011), and for stage I (HR 0.51 95%CI 0.35 – 0.75, p=0.0006) and stage 

II (HR 0.59 95% CI 0.45 -0.78, p=0.0002) patients, but a trend to worse survival in stage III (HR 1.12 

95%CI 0.94 – 1.33, p=0.22) (Table 3). 
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6.1.3.4 Effect of adjuvant chemotherapy 

Adjuvant treatment details were available for 1631 (44%) of patients with stage II and 2441 (66%) of 

patients with stage III disease (4102 patients total). Most patients in stage II disease did not receive 

adjuvant chemotherapy (72%), with only a minority receiving fluorouracil monotherapy (24%) or an 

oxaliplatin doublet combination (usually FOLFOX, 5%). In contrast, the majority of patients with 

stage III disease received adjuvant chemotherapy (75%), with 28% treated with fluorouracil 

monotherapy, and 47% with an oxaliplatin/ fluorouracil doublet.  Higher TNM-substage was 

associated with treatment with oxaliplatin doublet within both stage II (p<0.0001) and III (p=0.0001). 

Consistent with current practice no patients received adjuvant treatment with monoclonal antibodies.  

Patients with RsCC were less likely to receive adjuvant chemotherapy (p=0.0002, Table 1) despite 

higher risk tumour features.  Adjuvant chemotherapy improved survival in both RsCC (univariate OS 

HR 0.68; 95%CI 0.58 – 0.80) and LsCC (univariate OS HR 0.48; 95%CI 0.40 – 0.58, supplementary 

figures 1 and 2). 

 

Inclusion of the adjuvant chemotherapy regimen into the multivariate model did not alter the effect of 

primary tumour location, although the results for RsCC in stage II disease became non-significant 

(multivariate OS HR 0.86 95%CI 0.69 – 1.09 p=0.19; multivariate CSS HR 0.67 95%CI 0.43 – 1.04, 

p=0.07, table 4). Patients with RsCC in stage III colon cancer continued to have a significantly 

inferior OS compared to LsCC even after adjustment for all above factors including receipt and type 

of adjuvant chemotherapy (multivariate OS HR 1.29 95%CI 1.11 – 1.50 p=0.0012; multivariate CSS 

HR 1.16 95%CI 0.92 – 1.47, p=0.22, table 4). When analyses were restricted to only those stage III 

patients who received adjuvant oxaliplatin doublet chemotherapy (n=1233), RsCC remained 

associated with a poorer OS (univariate OS HR 1.8 95%CI 1.4 – 2.4, p<0.0001).  
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Table 4. Multivariate model for overall survival for chemotherapy cohort (n=4102). 

Characteristic Stage II (n=1631) Stage III (n=2441) 
 
 

Multivariate 
HR (95% CI) 

Multivariate 
HR (95% CI) 

Sided Left 1 1 
 Right 0.86 (0.68 – 1.09) 1.29 (1.11 – 1.50) 
Age ≤60 1 1 
 61– 70 1.90 (1.20 – 2.99) 1.21 (0.94 – 1.54) 
 71 – 80 2.97 (1.92 – 4.58) 1.81 (1.43 – 2.30) 
 >80 5.92 (3.82 – 9.19) 2.00 (1.54 – 2.60) 
Grade Well/mod differentiated 1 1 
 Poorly Differentiated 1.43 (1.08 – 1.90) 1.49 (1.26 – 1.75) 
TNM stage IIIa 1 1 
 IIIb 2.20 (1.71 – 2.82)* 1.79 (1.33 – 2.43) 
 IIIc - 3.86 (2.84 – 5.24) 
Sex Male 1 1 
 Female 0.85 (0.68 – 1.07) 0.94 (0.82 – 1.10) 
CCI 0 1 1 

1 – 2 1.42 (1.09 – 1.52) 1.15 (0.96 – 1.38) 
3 – 4 1.60 (1.12 – 2.28) 1.20 (0.94 – 1.53) 
5 2.31 (1.45 – 3.69) 1.83 (1.36 – 2.46) 

Year Diagnosed 2006 – 2009 1 1 
 2010 - 2013 0.99 (0.79 – 1.26) 1.00 (0.86 – 1.17) 
Adjuvant 
Chemotherapy 

Nil 1 1 
Fluorouracil monotherapy 0.79 (0.51 – 1.10)** 0.48 (0.40 – 0.57) 
Oxaliplatin doublet - 0.38 (0.27 – 0.42) 

* IIa vs IIb/IIc, ** chemotherapy vs no chemotherapy 

HR – Hazard Ratio; CI – confidence interval; CCI – Charlson Comorbity index.  

 

6.1.4 Discussion: 

There are well established differences in patient demographics, tumour factors and clinical 

presentation between RsCC and LsCC7,9,10,17,18. However it remains uncertain whether primary tumour 

location is an independent prognostic factor in locoregional colon cancer.  

 

The strongest evidence comes from a recent meta-analysis of 66 studies including 1,437,846 patients 

which showed LsCC is associated with a significantly reduced risk of death compared to RsCC (HR 

0.82; 95%CI 0.79 – 0.84, P<0.01)12. This study included all stages of colon cancer and found that, 

based on meta-regression, the effect of primary tumour location was independent of stage, race, year 

of study, and quality of study.  

 

It is important to consider the limitations of the above meta-analysis. Firstly, there was significant 

heterogeneity seen in the results (I2=93%), which is likely due to the variety of included study 



178 
 

designs, differing multivariate covariates from source studies, and patient populations, with the 

estimate derived from overall populations with no stratification by stage.  

 

Secondly, while most of the included studies controlled for tumour factors (such as stage and grade), 

and patient demographic factors (eg., age, sex), only three studies included a comorbidity index in the 

multivariate model7,17,19, and only 21% (14 of 66 studies) included performance status.  RsCC is more 

likely to occur in older patients who have more associated comorbidities17, and the substantial 

imbalances in the baseline characteristics between LsCC and RsCC patients in these trials may be an 

unmeasured confounder which explains the improved survival with LsCC.  This issue has been 

directly addressed by Warschkow et al who, in order to minimise confounding, used propensity score 

matching to analyse survival in RsCC versus LsCC in 91,416 patients with stage I-III colon cancer 

from the SEER database. These authors showed that RsCC had a better OS (HR 0.89, p<0.001) and 

CSS (HR 0.71, p<0.001) in stage I and II, but a similar prognosis in stage III (OS HR 0.99, p = 0.49; 

CSS HR 1.04, p=0.129). 

 

Our current study, using a large series of Australian patients from a prospectively collected database, 

and controlling for patient factors (including comorbidities), tumour factors, and adjuvant 

chemotherapy, confirmed previous studies showing that RsCCs are more likely to have a more 

advanced stage (p<0.0001) and grade (p<0.0001), and occur in older patients  (p<0.0001) with more 

comorbidities (p<0.0001). Despite higher risk tumour features, patients with RsCC are less likely to 

receive adjuvant chemotherapy (p<0.0001) or oxaliplatin doublet chemotherapy (p=0.0002).  

In the survival analysis, patients with RsCC have a lower all-cause mortality in stage II (HR 0.85, 

p=0.02), but a higher mortality in stage III (HR 1.13, p=0.032).  Moreover, patients with RsCC had an 

improved 5-year CSS in Stage I (HR 0.51,p=0.0006) and Stage II (HR 0.59, p=0.0002), and a trend to 

inferior CSS in Stage III.  

 

As adjuvant chemotherapy  has been shown to have a larger benefit in RsCC than LsCC20, we 

subsequently undertook further multivariate analysis in a subset of patients with known adjuvant 

chemotherapy protocols to validate our findings. Adjuvant chemotherapy improved survival in both 

RsCC and LsCC.  We found incorporation of adjuvant chemotherapy into the multivariate model did 

not alter the effect of primary tumour location.  Although definitive conclusions were limited in stage 

II as chemotherapy regimens where only available in 44% of patients, there were similar hazard ratios 

showing improved OS and CSS with RsCC  (multivariate HR 0.86 and 0.67 respectively), although 

statistically non-significant in the chemotherapy cohort.  In stage III, where chemotherapy data was 

available for the majority of patients (66%), the results of multivariate analysis was very similar to 

overall cohort, with a significantly higher all-cause mortality with RsCC (HR 1.29, p = 0.0012) and 

trend to higher cancer specific mortality (HR 1.16, p=0.21).  
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Our findings are consistent with the results of Wiess et al 7, a large multivariate retrospective analysis 

of 53,801 patients from the SEER database linked to Medicare data, and controlled for comorbidities 

using Hierarchical Condition Categories risk score.  Similar to our findings, in multivariate analysis, 

patients with RsCC had a non-significant trend to lower mortality in stage I (HR 0.95, p=0.21), a 

lower mortality in stage II (HR 0.92, p<0.0001), but a higher mortality in stage III (HR 1.12, 

p<0.001), and a non-significant difference in mortality overall (HR 1.01, p=0.60).  This stage 

dependant effect, with an improved survival in RsCC in stage II, but higher mortality in stage III, has 

been reported by multiple other series8-10,18,21.  

 

The cause of the demonstrated inconsistent effect of primary tumour location by stage is unclear.  Our 

study, and the quoted literature, are retrospective analyses of large population databases, and are 

susceptible to the inherent bias of confounding associated with this study design.  However an 

alternative explanation to consider is the increasingly described differences in tumour biology 

between RsCC and LsCC.  RsCCs are more likely to have adverse histological features (such as 

advanced T stage, higher grade, or lymophvascular invasion) and mucinous histology2,22-24.  Perhaps 

more importantly, there are also marked differences in the molecular profile between these tumours25. 

RsCC has a higher rate of BRAF mutations and high microsatellite instability (MSI-H), both which 

have established prognostic importance, with MSI-H tumours shown to have a favourable prognosis, 

and BRAF a strong poor prognostic marker in non-MSI-H but not in MSI-H tumours22,23,26,27. In 

addition even within MSI-H tumours there are known differences in prognosis, with hereditary MSI-

H colon cancers shown to have a better survival than sporadic cases28. It is important to note that these 

biomarkers are not uniformly distributed by stage, with MSI-H tumours associated with lower stage 

(21% in stage II vs 14% stage III and 4% stage IV), and BRAF mutant tumours more likely to occur 

at a higher stage22,29,30. Furthermore, previous studies have shown a differential effect of adjuvant 

chemotherapy in between molecular subtypes. There is a reduced benefit with fluorouracil based 

chemotherapy in MSI-H tumours, but preserved efficacy of oxaliplatin in MSI-H stage III colon 

cancer patients31,32.  Although our study demonstrated a persistent effect of primary tumour location 

even when OS analysis was restricted to those patients who received adjuvant oxaliplatin doublet 

chemotherapy, it is important to note that fewer patients with RsCC received oxaliplatin as part of the 

adjuvant treatment. 

 

Therefore, in the absence of both family history and molecular profiles in these population series, it is 

reasonable to hypothesise that some of the observed survival difference in stage II and III may be due 

to unequal distribution of these biomarkers. However, emerging evidence suggests that primary 

tumour location may be a clinical surrogate for further, yet unidentified, predictive biomarkers as 

highlighted by the recent data from the FIRE3 and CALGB/SWOG 80405 trials, which suggests a 

reduced benefit to anti-EGFR treatment in RsCC independent of currently identified biomarkers 33.  
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Recent retrospective analyses of these studies suggested that primary tumour site may impact the 

benefit of the EGFR monoclonal antibodies in patients with RAS wild type metastatic colorectal 

cancer. While the addition of EGFR antibodies to chemotherapy improved clinical outcomes in LsCC 

compared to the anti vascular endothelial growth factor (VEGF) antibody bevacizumab, the opposite 

was seen in LsCC. This intriguing result has prompted investigation for additional predictive 

biomarkers informed by primary tumour location.  A limitation of our study is the lack of associated 

molecular data which is a potential source of unmeasured confounding to the results. 

 

6.1.5 Conclusion 

This population based study provides further evidence that primary tumour location is an important 

independent clinical prognostic factor in stage II and III colon cancer with immediate implications for 

clinical practice and trial design. This clinical biomarker is likely acting as a surrogate for as yet 

unidentified molecular factors. Further studies with associated tumour molecular profiles are required 

to clarify the underlying biological differences between RsCC and LsCC 
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6.1.6 Supplementary Material 

 

Supplementary Figure 1:Effect of adjuvant chemotherapy on overall survival in patients with right 

sided colon cancer (n=2076).  

 
 

 

Supplementary Figure 2: Effect of adjuvant chemotherapy on overall survival in patients with left 

sided colon cancer (n=2030).  
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Abstract 

MicroAbstract: Due to poor representation in trials, the optimum adjuvant regimen for elderly patients 

with stage III colon cancer is uncertain. We employed data from a cancer registry to show a survival 

benefit with addition of oxaliplatin to fluoropyrimidine in patients ≥ 70 years.  We note an increased 

rate of hospital admissions and early chemotherapy cessation in elderly patients on oxaliplatin. 

Background: Colon cancer is common in the elderly, but due to under-representation in clinical trials, 

the benefit of standard therapies is uncertain in this age group.  We aimed to clarify the efficacy and 

complications of adjuvant oxaliplatin and fluoropyrimidine chemotherapy for patients 70 years and 

older with stage III colon cancer. 

 

Patients and Methods: All patients with stage III colon adenocarcinoma were identified from an 

Australian cancer registry (2006 – 2013). Multivariable Cox hazard regression was used to determine 

prognostic factors for all-cause mortality. Chemotherapy complications were quantified using 

discontinuation rates, hospital admissions, and mortality for 12 months after starting chemotherapy 

 

Results: 2164 patients fulfilled our inclusion criteria including 1080 (49.9%) ≥70 years. Patients ≥70 

years were less likely to receive adjuvant chemotherapy (60.7% vs 89.6%) or oxaliplatin doublet 

chemotherapy (18.8% vs 71.2%).  Older patients receiving oxaliplatin were more likely to cease 

treatment early (18.7% vs 7.6%), and require hospital admission (67.0% vs 53.5%). The addition of 

oxaliplatin provided an overall survival benefit for patients <70 years (HR 0.44 95% CI 0.3 – 0.6, 

p<0.0001), and for patients ≥70 years (HR 0.64 95%CI 0.5 – 0.9, p=0.005).   

 

Conclusions: Despite a modestly increased rate of hospital admission and early chemotherapy 

cessation, we demonstrate a persistent survival benefit for the addition of oxaliplatin to a 

fluoropyrimidine as adjuvant treatment for stage III colon cancer in elderly patients. 
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6.2.1  Introduction 

Colon cancer is a common and lethal malignancy, with about 100,000 new cases diagnosed annually 

in the United States34. It is a disease related to aging, with almost 40% of colon cancer diagnosed in 

patients >75 years35-37.  

 

Surgical resection is the only curative treatment for locoregional disease, although many patients will 

develop disease recurrence due to micrometastases present at surgery. In resected stage III colon 

cancer, standard treatment includes adjuvant doublet chemotherapy with oxaliplatin and a 

fluoropyrimidine38, following the results of several large phase III randomised control trials which 

showed a 30% reduction in disease recurrence and 22% reduction in risk of death with the addition of 

oxaliplatin to fluoropyrimidine alone39-41.  

 

Elderly patients appear to gain a similar benefit to fluoropyrimidine based adjuvant chemotherapy 

compared to younger patients42. However as only a minority of patients in clinical trials are older than 

70 years, the efficacy and safety of adjuvant chemotherapy with an oxaliplatin doublet in elderly 

patients is unclear. For example, in the ACCENT database which includes individual patient data 

from 14500 participants in 18 fluoropyrimidine - based adjuvant trials, only 18% are older than 70 

years43.  

 

Currently available trial data is conflicting. Subgroup analyses from the pivotal phase III MOSAIC 

and NSABO-07 trials show a survival benefit only in patients <70 years39,40. Similarly, there was no 

disease-free survival (DFS) or overall survival (OS) improvement with the addition of oxaliplatin in 

the 2575 patients ≥70 years in the ACCENT database43. In contrast however, pooled individual patient 

data from 904 patients ≥70 years from the NSABP C-08, XELOXA, X-ACT, and AVANT studies 

showed an attenuated, but statistically significant benefit to the addition of oxaliplatin, including those 

with comorbidities 44.  

 

Similarly, retrospective patient series demonstrate contrasting results. While the largest series, drawn 

from multiple USA databases including the SEER database, found a statistically significant benefit to 

adjuvant oxaliplatin in elderly patients (70-74 years old) and those with comorbidities45, this was less 

clear in patients >7546 and was not seen in other, smaller studies47,48.  

 

As a consequence of these uncertainties, current guidelines recommend discussing incorporation of 

oxaliplatin with patients over 70 years based on individual circumstances, although fluoropyrimidine 

monotherapy is an appropriate choice for adjuvant therapy in the elderly38,49. 
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The current study employs data from an Australian cancer registry to investigate the comparative 

effectiveness of the addition of oxaliplatin to fluoropyrimidine monotherapy as adjuvant treatment for 

stage III colon cancer in a “real world population” of patients older than 70. 

 

6.2.2 Patients and Methods: 

6.2.2.1 Patient Cohort 

The New South Wales (NSW) clinical cancer registry contains demographic and clinical data for 

patients diagnosed or treated for cancer in NSW, covering approximately 30% of the Australian 

population.  Data is collected from pathological laboratories, hospitals and oncology departments 

under mandatory notification of new cancer cases.  We included all patients ≥18 years with colon 

cancer as per third edition of the International Classification of Diseases for Oncology (ICD-O-3)13.  

We identified 2220 patients with stage III colon cancer with complete files including adjuvant 

chemotherapy details. Fifty-six patients were excluded due to death within 30 days of surgery (n=23) 

or delay starting chemotherapy past 120 days (n=33) (final sample n=2164). 

 

Date of death was obtained with linkage to the NSW registry of Births, Deaths and Marriages (BDM) 

by the Centre for Health Record Linkage (CHeReL) 14. The censor date for survival data was 1st 

December 2014.  

 

Comorbidity data and admissions during chemotherapy were obtained by CHeReL linkage of the 

clinical cancer registry data to the Admitted Patient Data Collection (APDC). The APDC contains all 

admitted patient services provided by New South Wales Public Hospitals,  Public Multi-Purpose 

Services, Private Hospitals, and Private Day Procedures Centres. Comorbidities of each patient were 

quantified using the Charlson comorbidity index which predicts mortality from a range of 22 

comorbid conditions16. ICD-10 codes were extracted from admissions prior to diagnosis, then 

translated into a Charlson comorbidity index (modified for cancer) using methods previously 

described15,16.   

For quantification of chemotherapy complications, all admissions for 12 months following initiation 

of chemotherapy were included apart from admissions for vascular implantation, chemotherapy, 

routine surgery follow-up, and dialysis (ICD-10 codes Z45.2, Z51, Z48.815, Z49 respectively). 

Admissions for febrile neutropenia were identified using neutropenia (ICD10 D70) with fever and/or 

sepsis (ICD10 R50.8, R50.9, A419) and/or infection (ICD10 Chapter A, B) as previously described 

for Australian patients50. 

 

Linkage and use of the data from the New South Wales (NSW) clinical cancer registry, the NSW 

registry of Births, Deaths and Marriages (BDM), Admitted Patient Data Collection (APDC) was 
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approved by the NSW Population & Health Services Research Ethics Committee (approval 

HREC/13/CIPHS/39). 

 

6.2.2.2 Statistical analysis 

Our primary outcome was all-cause mortality, on the basis of dates recorded in the cancer registry and 

BDM databases. Median values for OS and corresponding 95% CI were calculated using Kaplan-

Meier methods.  To determine the impact of age, two separate cox proportional hazard models were 

used to compare the effect of combination chemotherapy regimens on OS for patients ≥70 years and 

<70 years. This age cut-off was used for consistency with previous publications and international 

guidelines.  The following variables were included in the multivariate model: age, sex, Charlson 

Comorbidity Index (CCI), TNM stage, primary tumor location (defined as right sided - caecum to 

transverse colon, or left sided - splenic flexure to rectosigmoid), year of diagnosis, grade, and 

adjuvant treatment.   

 

Our secondary objectives were complications of adjuvant chemotherapy by age group, as measured 

by number and length of admissions for 12 months after starting treatment, and 12 month landmark 

mortality, and treatment discontinuation rate by chemotherapy regimen. The number of admissions 

was compared using ChiSq, and mean duration of each admission by the t-test.  All statistical analyses 

were performed using SAS 9.2 software (SAS Institute, Inc., Cary, NC).  

 

6.2.3 Results: 

6.2.3.1 Patient Characteristics (n=2164) and impact of age on receipt of chemotherapy 

The characteristics of patients are summarised in Table 5. Approximately half the patients were ≥70 

years (49.9%). Patients ≥70 were more likely to have right sided primary tumors (54.6% versus 

42.7%) and poorly differentiated histology (24.3% versus 18.3%) but, despite these higher risk 

features, were less likely to receive adjuvant chemotherapy (60.7% versus 89.6%) or oxaliplatin 

doublet chemotherapy (18.8% vs 71.2%).   Patients ≥80 years (n=371) were even less likely to receive 

chemotherapy; only 29.4% received adjuvant fluoropyrimidine monotherapy and 3.0% received 

oxaliplatin doublet. Increasing TNM stage was significantly associated with receipt of oxaliplatin 

chemotherapy patients <70 years (p=0.0006) but not in those ≥70 years (p = 0.08).  
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Table 5: Patient Characteristics 
 All Patients 

n=2164  
(%) 

Pts < 70 years 
n=1084 (50.1%) 

Pts ≥ 70 years 
n=1080 
(49.9%) 

P value 

TNM stage     
IIIa 272 (12.6) 141 (13.0) 131 (12.1) 0.81 
IIIb 1284 (59.3) 638 (59.9) 646 (59.8)  
IIIc 608 (28.1) 305 (28.1) 303 (28.1)  

Charlson Comordibity Index     
0 1485 (68.6) 831 (76.7) 654 (60.6) <0.0001 

1-2 403 (18.6) 165 (15.2) 238 (22.1)  
3-4 195 (9.0) 63 (5.8) 132 (12.2)  

5 or more 81 (3.7) 25 (2.3) 56 (5.2)  
Primary Tumour Location     

Right 1053 (48.7) 463 (42.7) 590 (54.6) <0.0001 
Left 1111 (51.3) 621 (57.3) 490 (45.4)  

Age group     
<60 513 (23.7) 513 (47.3)   

60– 69 571 (26.4) 571 (52.7)   
70 – 79 709 (32.8)  709 (65.7)  
>=80 371 (17.1)  371 (34.3)  
Sex     

Male 1125 (52.0) 577 (53.2) 548 (50.8) 0.25 
Female 1039 (48.0) 507 (46.8) 532 (49.3)  
Grade     

Well differentiated 220 (10.2) 112 (10.3) 108 (10.0) 0.0028 
Moderately differentiated 1484 (68.6) 774 (71.4) 710 (65.7)  

Poorly differentiated 460 (21.3) 198 (18.3) 262 (24.3)  
Year Diagnosed     

2009 – 2009 1096 (50.7) 570 (52.6) 526 (48.7) 0.07 
2010 – 2013 1068 (49.4) 514 (47.4) 554 (51.3)  

Adjuvant Chemotherapy     
None 538 (24.9) 113 (10.4) 425 (39.4) <0.0001 

Fluoropyrimidine monotherapy 651 (30.1) 199 (18.4) 452 (41.8)  
Oxaliplatin doublet 975 (45.0) 772 (71.2) 203 (18.8)  
 
 

Patients ≥70 years were more likely to have a higher CCI than younger patients (39.4% versus 23.3% 

with CCI >0). Increasing CCI was associated with decreased administration of adjuvant chemotherapy 

and oxaliplatin doublet treatments in all patients (p<0000.1), patients <70 years (p=0.04) and patients 

≥70 years (p<0.0001).  

 

While the majority of patients on fluoropyrimidine monotherapy received oral capecitabine rather 

than intravenous fluorouracil (83.9% versus 16.1%), only a minority patients treated with oxaliplatin 

doublet chemotherapy had oral capecitabine (CAPOX) rather than intravenous fluorouracil 

(FOLFOX) (13.7% versus 86.3%). There was a similar pattern of use patients ≥70 years and < 70 

years.  
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6.2.3.2 Complications of chemotherapy 

Chemotherapy complications were quantified with hospital admissions for 12 months following 

initiation of adjuvant chemotherapy, and 12 month landmark mortality.  

In patients who received fluoropyrimidine monotherapy, there was no significant difference in 

proportion of patients <70 years admitted to hospital compared to those ≥70 years (49.7% versus 

49.8%, p=0.59), or mean duration of admissions (5.92 days versus 5.59, p=0.66).  In contrast, patients 

≥70 years who received oxaliplatin were more likely to be admitted to hospital (67.0% vs 53.5%, p = 

0.0006) and require multiple admissions (37.4% required ≥2 admissions vs 25.5%, p=0.0008) than 

younger patients on oxaliplatin. There was a non-significant trend to longer admissions (mean length 

of admission 6.1 days vs 4.8, p=0.09).  

 

In patients ≥70 years, those treated with oxaliplatin were more likely to be admitted to hospital 

(67.0% vs 49.6%, p<0.0001) and require multiple admissions (37.4% ≥2 admissions vs 26.1%, 

p=0.003) than those on fluoropyrimidine monotherapy. While there was no significant difference in 

admissions for febrile neutropenia between age groups for patients on oxaliplatin (6.9% vs 4.7%, 

p=0.19), patients ≥ 70 years on oxaliplatin were more likely to be admitted for febrile neutropenia 

than those on fluoropyrimidine monotherapy (6.9% vs 1.8%, p=0.0008). 

 

Patients ≥70 years were also less likely to complete adjuvant oxaliplatin doublet chemotherapy than 

those <70 years, defined as receiving <3 months of treatment (18.7% versus 7.6%, p<0.0001).  There 

was no difference in completion rates between age groups for patients on fluoropyrimidine alone 

(p=0.33). 

 

Patients ≥70 years who received adjuvant oxaliplatin doublet chemotherapy had a significantly poorer 

12 month landmark OS than younger patients (5.9% vs 1.7%, p =0.0006). This difference between 

age groups was not seen in patients who received fluoropyrimidine monotherapy (8.6% vs 4.5%, 

p=0.06). Within patients ≥70 years, there was no significant difference in 12 month OS between those 

who received fluoropyrimidine monotherapy compared to oxaliplatin doublet (8.6% vs 5.9%, p 

=0.23). 

 

6.2.3.3 Efficacy of adjuvant chemotherapy in the elderly 

In all patients who received adjuvant chemotherapy (n=1626), oxaliplatin doublet chemotherapy 

improved OS compared to fluoropyrimidine alone (multivariate HR 0.54 95%CI 0.43 – 0.70, 

p<0.0001, Table 6, Figure 3).  Increasing age, comorbidity score, TNM stage, poorly differentiated 

grade, and right sided primary tumor location were all significantly associated with poorer OS in both 

univariate and multivariate analyses.  Use of capecitabine, rather than 5-fluorouracil, was not 
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significantly associated with OS in either the fluoropyrimidine monotherapy (p=0.82) or oxaliplatin 

doublet (p=0.48) treatment groups. 

 

Table 6: Univariate and multivariate analyses for overall survival in all patients who received 
adjuvant chemotherapy (n=1626) 

Characteristic Univariate HR 
(95%CI) 

P value Multivariate 
(95%CI) 

P value 

Age  =<60 1 <0.0001 1 0.010 
 60 – <70 1.0 (0.97 – 1.3)  0.97 (0.7 – 1.3)  
 70 – 80 2.3 (1.8 – 2.9)  1.4 (1.1 – 1.9)  
 >80 3.7 (3.0 – 4.8)  1.7 (1.1 – 2.4)  
Sex Male 1 0.49 1 0.43 
 Female 1.05 (0.91– 1.2)  0.9 (0.8 – 1.1)  
TNM IIIa 1 <0.0001 1 <0.0001 
 IIIb 1.5 (1.1 – 2.0)  2.3 (1.4 – 3.8)  
 IIIc 3.0 (2.2 – 4.0)  5.3 (3.2 – 8.6)  
Grade Well/mod differentiated 1 <0.0001 1 <0.0001 
 Poorly differentiated 1.8 (1.6 – 2.2)  1.6 (1.3 – 2.0)  
Primary tumor 
location 

Right 1 <0.0001 1 0.0008 
Left 0.65 (0.56 – 0.75)  0.7 (0.57 – 0.86)  

Charlson 
Comorbidity 
index 

0 1 <0.0001 1 0.0004 
1-3 1.3 (1.1 – 1.6)  0.8 (0.6 – 1.1)  
4 or more 2.9 (2.3 – 3.7)  1.8 (1.22 – 2.6)  

Year 
Diagnosed 

2009 – 2009 1 0.79 1 0.83 
2010 – 2013 0.98 (0.83– 1.2)  1.0 (0.9 – 1.1)  

Adjuvant 
Chemotherapy 

Fluoropyrimidine only 1 <0.0001 1 <0.0001 
Oxaliplatin doublet 0.50 (0.41– 0.61)  0.54 (0.43–0.70)  

HR – Hazard Ratio; CI – confidence interval; 
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Figure 3: All-cause mortality by adjuvant chemotherapy regimen for all patients (n=1626)  

When stratified by age, the addition of adjuvant oxaliplatin demonstrated an OS benefit in patients 

<70 years (HR 0.56 95% CI 0.41 – 0.77, p=0.0003) and ≥70 years (HR 0.72 95% CI 0.53 – 0.98, p = 

0.037) which remained significant in multivariate analysis (Table 7 and Figure 4). Sex and year of 

diagnosis were not significant in univariate analysis and were therefore not included in the final 

model. 

 

Table 7.  Univariate and multivariate analyses for overall survival stratified by age  

Characteristic Pts < 70 years (n=971) Pts ≥ 70 years (n=655) 
  Univariate HR 

(95% CI) 
Multivariate 

(95% CI) 
P 

value 
Univariate HR 

(95% CI) 
Multivariate 

 
P value 

TNM IIIa 1 1 <0.000
1 

1 1 <0.0001 

 IIIb 1.6 (0.9– 2.9) 1.7 (0.9 – 3.3)  1.5 (1.04 - 2.0) 3.0 (1.4 – 6.4)  
 IIIc 4.1 (2.3 – 7.1) 4.4 (2.3 – 8.2)  2.7 (1.9 – 3.9) 6.4 (3.0 – 13.9)  
Grade Well/mod 

differentiated 
1 1 0.0007 1 1 0.01 

 Poorly 
differentiated 

2.0 (1.5 – 2.7) 1.7 (1.3 – 2.5)  1.6 (1.4 – 2.0) 1.5 (1.1 – 2.0)  

Primary 
tumor 
location 

Right 1 1 <0.000
1 

1 1 0.39 

Left 0.6 (0.5 – 0.8) 0.5 (0.4 – 0.7)  0.80 (0.6– 0.9) 0.9 (0.7 – 1.2)  
Charlson 
Comorbi
dity 
index 

0 1 1 0.01 1 1 0.01 
1-3 0.8 (0.6 – 1.2) 0.6 (0.4 – 1.0)  1.2 (1.01– 1.5) 0.9 (0.6 – 1.2)  
4 or more 2.4 (1.4 – 3.9) 1.8 (0.9 – 3.3)  2.4 (1.8 – 3.2) 1.9 (1.2 – 3.1)  

Adjuvant 
Chemoth
erapy 
Regimen 

Fluoropyrimidi
ne only 

1 1 <0.000
1 

1 1 0.005 

Oxaliplatin 
doublet 

0.6 (0.4– 0.8) 0.4 (0.3 – 0.6)  0.7 (0.5– 0.9) 0.6 (0.5 – 0.8)  
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Figure 4: All cause mortality by adjuvant chemotherapy regimen stratified by patient age at diagnosis  

 

Oxaliplatin doublet chemotherapy was associated with a preserved OS benefit in patients with 

significant comorbidity (patients with CCI≥2, univariate HR 0.40 95% CI 0.29 – 0.61, p<0.0001), 

including patients<70 (HR 0.38 95% CI 0.16 – 0.94, p=0.02), but not in patients ≥70 years (HR 0.67, 

p=0.28). Exploratory subgroup analysis demonstrated a diminishing OS benefit to oxaliplatin with 

increasing age, with the hazard ratio becoming approaching 1 (no benefit) for more elderly patients 

(Figure 5). 

 

 
Figure 5: Unadjusted hazard ratio for overall survival benefit to oxaliplatin chemotherapy stratified 

by age. The circle on each bar represents the HR for that age group, and the bar shows the 

95% confidence interval (CI). 
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6.2.4 Discussion 

Colon cancer is more common in the elderly, since 67 is the median age at diagnosis, and almost 40% 

of patients are ≥75 years old36,37. Despite this, the pivotal phase III trials which demonstrated the 

improved OS with adjuvant oxaliplatin chemotherapy in stage III colon cancer included a only small 

minority of patients older than 70, and consequently were unable to show a benefit to oxaliplatin in 

this population36,51. As a result of this, Australian guidelines recommend fluoropyrimidine 

monotherapy as the most appropriate adjuvant chemotherapy regimen in elderly patients, although 

European Guidelines recommend a more individualised approach52,53 

 

The principle finding of the current study is a statistically significant improved OS with adjuvant 

oxaliplatin doublet chemotherapy compared to fluoropyrimidine monotherapy in patients ≥70 years 

with stage III colon cancer (HR 0.72, p=0.037). This difference remained significant in multivariate 

analysis which included a comorbidity index (multivariate HR 0.64, p=0.005).  

 

There is no consensus in the literature regarding the benefit of adjuvant oxaliplatin for elderly 

patients. Neither DFS nor OS was significantly improved in the small minority of elderly patients in 

the MOSAIC or NSABP-07 trials, or ACCENT database39,40,43 In contrast, pooled individual patient 

data from four other randomised trials, which included comorbidities as a covariate, demonstrated 

improved DFS and OS with oxaliplatin 44. Similarly, there are disparate results seen in “real world” 

patient series.  Analysis of the SEER database showed a persistent benefit to adjuvant oxaliplatin in 

patients >70, although with inconsistent results in patients older than 75, and in those with significant 

comorbidities45,46 . Other results from smaller retrospective series are conflicting47,54. One common 

criticism of all the above studies, as well as the current work, is the omission of an assessment for 

medical frailty, an important and distinct entity to comorbidity55.  

 

It is important to highlight that the elderly patients who received oxaliplatin chemotherapy in the 

current study are likely to represent a highly selected subgroup. This is supported by the observed 

high completion rate of adjuvant oxaliplatin doublet chemotherapy in patients ≥70 years, although we 

note that data regarding chemotherapy dosing, dose reductions, and delays, which may provide further 

insight, are not available.  Consistent with other published series, we found increasing age was 

associated with decreased receipt of any adjuvant chemotherapy and oxaliplatin doublet 

chemotherapy, with only 18.8% of patients ≥70 years, and 3% ≥ 80 years, receiving oxaliplatin46,47,56.  

Similarly, increasing level of comorbidity, quantified by the CCI, was also associated with decreased 

receipt oxaliplatin (p<0.0001), with most of the elderly patients who received oxaliplatin (86.2%) 

having minimal comorbidities (CCI <2).  
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Despite presumed patient selection for oxaliplatin doublet therapy, hospital admissions were modestly 

increased in elderly patients compared to younger patients. Elderly patients who received oxaliplatin 

doublet chemotherapy more likely to be admitted to hospital, require multiple admissions to hospital, 

or require admissions for febrile neutropenia. These observations were not seen in patients receiving 

fluoropyrimidine monotherapy, consistent with current literature which shows increased toxicity in 

the elderly from doublet chemotherapy, but not fluoropyriminde monotherapy42,44,47,57,58. We 

acknowledge that the hospital admission data do not reflect all toxicity, as at least some complications 

are likely to have been managed out of hospital. It also important to highlight we did not find a 

significant difference in 12 month landmark OS between chemotherapy regimens in elderly patients. 

The decision to proceed with adjuvant chemotherapy in an elderly patient is complicated and depends 

on many patient health and social factors. Patients age, comorbidities, and perceived minimal benefit 

are the predominant reasons for withholding adjuvant chemotherapy in elderly patients59. While the 

average life expectancy of an otherwise healthy 70-year old male and female is approximately 8 years 

and 14 years, respectively38, many elderly patients have significant comorbidities that could shorten 

survival.  While we used the 70yrs age cut-off in our primary analysis for consistency with other 

publications, our exploratory subgroup analyses demonstrated, as expected, a diminishing benefit to 

adjuvant oxaliplatin with increasing age.  Moreover, while the benefit for adjuvant oxaliplatin 

increases with time in younger patients, in older patients it decreases, so by three years after surgery 

the competing mortality risks eliminate the benefit of doublet adjuvant chemotherapy43.  The recently 

presented data from the IDEA collaboration supports a risk adapted approach to duration of adjuvant 

chemotherapy, with a shorter duration of adjuvant chemotherapy  in lower risk disease to reduce 

treatment associated toxicities60. These data, along with our study, support the role of individualised 

treatment approach, rather than strict age cut-offs, when determining the optimal adjuvant strategy for 

elderly patients.   

There are limitations to the current study. Firstly, we analysed an observational database and 

acknowledge important unmeasured confounders and selection bias between treatment groups. 

Secondly, there was no data available regarding chemotherapy dosing, dose reductions, or treatment 

delays, for any patients. However while it is likely that most of the elderly patients received dose 

modifications to improve tolerability61, we still found an OS benefit.  

 

6.2.5 Conclusion 

Our study demonstrates a survival benefit to adjuvant chemotherapy with an oxaliplatin doublet over 

fluoropyrimidine alone for patients ≥70 years with stage III colon cancer. However, we also found 

evidence of modestly increased hospital admission rates with doublet treatment. The potential for 

survival benefit must be weighed against the increased risk of toxicities in this population, as well as 

individual patient life-expectancies, based on co-morbidities and other factors.  
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Chapter 7 

 

 

Discussion 
 

 

 

This chapter contains an overview of this thesis. The principle findings of each of the previous 

chapters are presented, followed by a discussion of the clinical and research implications, and future 

directions for research. 
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7.1 Summary of principle findings 

 

7.1.1 The urokinase plasminogen activation system, in particular uPAR,  is a clinically relevant 

biomarker in all stages of gastroesophageal cancer  

 

Chapter 2 presented the first systematic review and meta-analysis of urokinase plasminogen activator 

(uPA), urokinase plasminogen activator receptor (uPAR), plasminogen activator inhibitor-1 (PAI-

1/SerpinE1) and plasminogen activator inhibitor-2 (PAI-2/SerpinB2) expression in primary 

oesophageal, gastro-oesophageal junction, and gastric adenocarcinomas. The meta-analysis of 

clinicopathological associations, overall survival (OS) and recurrence free survival (RFS) provided 

strong evidence that higher expression of uPA, uPAR or PAI-1 is significantly associated with high 

risk clinicopathological features and poorer prognosis. High uPA expression was associated with a 

shorter RFS (HR 1.90, p=0.01) and OS (HR 2.21, p<0.0001). High uPAR expression was associated 

with poorer OS (HR 2.21 p<0.0001). High PAI-1 expression was associated with shorter RFS (HR 

1.96 p=0.03) and OS (HR 1.84, p<0.0001). There was no significant association between PAI-2 

expression and OS, although data was limited. Thus uPA, uPAR and PAI-1 are proven to be novel 

and clinically relevant biomarkers in resected gastro-esophageal cancer and, as such, have the 

potential to be developed as prognostic and/or therapeutic targets.  

 

In Chapter 3 uPAR expression was shown to be significantly associated with expression of cancer 

stem cell (CSC) makers. Tumours expressing CD44 and ALDH1 were more likely to have high 

expression of uPAR (p = 0.02 and 0.03 respectively). These results agree with previous work in other 

tumours showing co-expression of CSC markers and uPAR, and provide further evidence 

demonstrating the importance of uPAR expression on CSCs. Strong similarities between the uPAR 

positive phenotype and CSCs were also noted, including invasive potential, drug resistance, and 

poorer prognosis. 

 

These findings are extended in Chapter 3 appendix, where, for the first time, evidence is provided 

that expression of uPAR is an independent prognostic factor of metastatic gastroesophageal cancer. 

High expression of uPAR on cancer cells at the invasive edge of metastatic deposits was associated 

with a shorter OS in multivariate analysis (HR 1.5 95%CI 1.1 - 2.1, p<0.0001). These findings 

validate the use of uPAR as a prognostic biomarker across all stages of gastroesophageal cancer.  

 

Despite the above results, the study detailed in Chapter 4 appendix shows that uPAR expression 

does not improve the standard CK+/CD45-/DAPI+ phenotype for EpCAM selected CTCs. Only a 

weak association between tumour tissue and CTC uPAR expression was found, and there was no 

association between % uPAR positive CTCs and tumour stage. Most importantly, % uPAR+ CTCs 
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did not have any significant association with OS. These negative results are likely attributable to the 

isolation method employed in the study rather than a true depiction of the role of uPAR expression on 

CTCs. The CTCs were isolated using EpCAM immunomagnetic separation, which restricted analyses 

to high EpCAM expressing CTCs only, thereby omitting CTCs which have downregulated EpCAM 

as part of EMT or due to an  EMT/CSC phenotype. 

  

7.1.1.1 Significance of findings and future directions 

 

These results provide level 1 evidence for the uPA system as an independent prognostic factor in 

primary gastroesophageal cancer, a finding which has immediate clinical applicability. 

 

In addition, these results provide an improved understanding of the molecular underpinnings of 

gastroesophageal cancers which is fundamental for the development of improved molecularly targeted 

therapeutics. There is an increasing interest in the uPA system, particularly uPAR, as both a 

biomarker and treatment target in solid tumours. Local and international research groups continue to 

develop agents directed at the uPA system with promising pre-clinical results 1-3. The co-expression of 

uPAR and CSC markers provide a strong rationale for anti-uPAR therapies as a novel approach to 

target the CSC sub-populations. In addition, promising results from early clinical trials suggest 

radiolabelled uPAR as an improved imaging modality for cancer diagnosis, staging, and risk 

stratification 4. 

 

Despite the results of the CTC study, there remains a compelling rationale for uPAR to be considered 

as a strong candidate marker to improve CTC selection, particularly for isolating EpCAM negative 

CTCs with the capacity to invade the extracellular matrix and establish metastasis. Future work 

should therefore employ alternative methods to isolate CTCs such as targeting EMT/CSC markers for 

isolation, physical properties or negative selection (alternative methods comprehensively reviewed by 

Alix-Panabieres et al 5).  It is important to note that the widespread expression of uPAR on activated 

leukocytes, as would be expected in a pro-inflammatory state such as advanced malignancy, may limit 

the specificity of positive selection of CTCs using uPAR 6. 
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7.1.2 Expression of the cancer stem cell marker CD44 is an independent prognostic factor in 

metastatic gastroesophageal cancer 

 

Chapter 3 provided the first evidence that expression of CSC markers on metastatic disease is an 

independent prognostic biomarker in gastroesophageal cancer. This IHC study, using deposits of 

metastatic gastroesophageal cancer from 36 patients, found a significant association between OS and 

expression of CD44 (HR 2.9 95%CI 1.3 – 6.9, p=0.008) and ALDH1 (HR 2.4 95% CI 1.01 – 5.7, 

p=0.04) in univariate analysis. In multivariate analyses, after controlling for tumour grade, ECOG 

performance status, and treatment received, CD44 remained an independent predictor of poorer OS 

(HR 2.5 95%CI 1.1 – 6.2, p=0.04). The result for ALDH1 was not significant in multivariate analyses, 

but it is important to note the limitations of the small sample size.  

 

There was no increased expression of CSC markers in tumours of patients who had received 

chemotherapy. Although this result appears contradictory to the well described chemoresistance of 

CSC, it is consistent with modern refinements to the CSC theory, which describe a fluid CSC 

population regulated by the tumour-cell environment, rather than a rigid hierarchical structure 7,8. 

Following enrichment after chemotherapy, the CSCs reconstitute the differentiated bulk of the tumour 

mass. As all samples were taken at clinical progression, we posit there was sufficient time for the 

equilibrium between the CSC and bulk of tumour to be restored.  

 

7.1.2.1 Significance of findings and future directions 

 

These results provide the first evidence that  CD44 CSC marker expression is an important biomarker 

in metastatic gastroesophageal cancer, and provide further support to the key role of CSCs in the 

molecular pathogenesis of gastroesophageal cancer.  It is important to note the small sample size 

employed in the study, which necessitates further validation using a larger cohort in the future.  

 

As addressed in Section 1.2.2, there is a growing evidence base to support the incorporation of CSC 

targeting in the treatment of cancer. Our results, which are the first to confirm and quantify CSC 

expression in metastatic gastroesophageal cancer, provide additional validity to the ongoing 

development of clinical trials of CSC directed treatment in metastatic cancers.  We eagerly await the 

results of numerous trials for CSC targeted agents in gastroesophageal cancer (summarised by Bekaii-

Saab et al 9).  
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7.1.3 Cryopreservation of CTCs is valid strategy for enumeration and biomarker detection in 

gastroesophageal cancer 

 

Chapter 4 details a robust protocol for the cryopreservation and thawing of the patient samples for 

CTC isolation and characterisation after long term storage. This study was conducted in two phases; 

firstly, the reliability of our protocol was confirmed with only a minor loss of CTCs observed between 

matched cryopreserved and fresh samples collected at the same blood draw. Secondly, a larger cohort 

of cryopreserved specimens was used to validate our method by demonstrating the prognostic 

association of CTC enumeration from cryopreserved specimens. In addition, the ability to extensively 

characterise CTCs isolated from cryopreserved specimens was shown by staining for a novel 

biomarker, uPAR, on the thawed CTCs.  

 

7.1.3.1 Significance of findings and future directions 

 

A persisting challenge to the field of circulating tumour cell (CTC) research has been the requirement 

for prompt analysis of samples at specialised centres. This has presented significant logistical 

challenges to researchers, compounded by the significant expertise, time and laboratory resources 

required for CTC analysis.  Our results demonstrate the feasibility and validity of cryopreservation of 

CTCs, which has wide ranging and significant impacts on both research and clinical care.   

Cryopreservation has the potential to dramatically increase the number and range of studies using 

CTC analysis. It will assist with the wider incorporation of CTC collection and analysis in 

biobanking, retrospective studies, and large international clinical trials, by facilitating specimen 

storage, bulk transporting, and batch processing. It may also help to develop diagnostic settings that 

can service even remote patients with diagnostic CTC data potentially relevant for their disease 

management.  
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7.1.4 Circulating tumour cell culture provides an accurate in vitro model for the study of 

metastasis 

 

Chapter 5 details the establishment and characterisation of two novel CTC cell lines from patients 

with gastroesophageal cancer. These two cell lines demonstrate distinct genotypic and phenotypic 

profiles providing a unique insight into disparate pathobiological mechanisms in metastatic 

gastroesophageal cancers. One of these cell lines (RFCTC), established from a patient with high grade 

neuroendocrine tumour, exhibited strong expression of neuroendocrine markers (chromogranin 

A+/synaptophysin+/CD56+) but no EpCAM expression and only weak cytokeratin staining.  The 

other cell line (JICTC), derived from a patient with a distal gastric adenocarcinoma, displayed a 

strong CK+/EpCAM+/CD44+ phenotype. Both cell lines demonstrated rapid tumour growth in 

immunodeficient mice.  

 

7.1.4.1 Significance of findings and future directions 

 

These newly established CTC cell lines are highly significant for the following key reasons: 

 

They are first CTC cell lines described in metastatic gastroesophageal cancer, and one of the few CTC 

cell lines described worldwide. Moreover, RFCTC is one of only several high grade gastrointestinal 

neuroendocrine cell lines. Both these cell lines provide a valuable addition to the limited worldwide 

resources to facilitate ongoing research into metastasis formation and high throughput drug testing. 

 

The cell lines provide further evidence to support CTC culture as a feasible and clinically relevant 

laboratory technique. CTC culture continues to be characterised by modest success rates. This was 

consistent with our experience; 2/23 (8%) patient samples successfully developed long term CTC 

cultures. However, these CTC cultures were established without highly specialised laboratory 

equipment, and have been maintained without the need for highly defined culture media. Our results 

support the broad application of CTC culture as a laboratory technique, although further protocol 

refinements are needed to improve culture success rates. 

 

Our results highlight the increasingly recognised limitations of EpCAM selection as an isolation 

method for CTCs, by demonstrating highly tumourigenic cell lines established form EpCAM+ and 

EpCAM- CTCs. Isolation techniques which do not include EpCAM- CTCs are likely to miss 

biologically relevant subpopulation of cells. The optimal technique for isolating and defining CTCs 

continues to be a rapidly evolving field.  

 

As targeted treatments become more ubiquitous, there is an urgent need to develop improved methods 
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for personalising treatment through preclinical modelling.  Ex vivo culturing of CTCs provide a 

critical tool to study cancer metastases, in addition to providing an ideal platform for the 

individualised preclinical testing for functional drug and radiotherapy testing. While other developing 

liquid biopsy techniques, such as ctDNA provide dynamic molecular data on tumour progression and 

resistance, CTC culture has the additional benefit of providing viable tumour cells for functional 

testing.  The long term promise of ex vivo CTC culture is the development of a rapid preclinical “drug 

avatar” model for the optimisation of individual treatments, providing assistance for clinical decision 

making in real time. While low success rates and delays in confirming successful cultures are key 

ongoing challenges to this goal, our success provides assurance that this paradigm is achievable.  

 

7.1.5 Primary tumour location is an independent prognostic factor in locoregional colon cancer 

 

The prognostic role of primary tumour location in locoregional colon cancer remains a hotly debated 

and highly relevant topic. Chapter 6.1 used multivariable cox hazard regression on a prospectively 

collected database, the New South Wales clinical cancer registry, to demonstrate that primary tumour 

location is an independent prognostic indicator in stage II (HR 0.85, p=0.02) and III (HR 1.13, 

p=0.032) colon cancer.  

 

This study, using the most comprehensive population based database available in the literature, had 

several important distinguishing features from previously published work which reduce bias and 

validate the findings;  

 

Firstly, by linking the cancer registry with a second prospectively collected database, the admitted 

patient database, a clinically validated measure of comorbidity – the “Charlson Comorbidity Index”- 

was able to be generated for each individual patient. This provides a much more detailed view of 

participant’s comorbidities than any other published study, minimising the impact of selection bias in 

the results.  

 

Secondly, by linkage to a third prospectively collected database, the births, deaths and marriage 

registry, an accurate date and cause of death was obtained for each patient, allowing a hazard 

regression models of both overall survival and cancer specific survival. The inclusion of cancer 

specific survival provided confirmation of our primary OS results. 

 

Thirdly, the details of adjuvant chemotherapy, including regimen, was included for a subset of 

patients (including the majority of patients with stage III disease).  Primary tumour location is known 

to be a significant factor on chemotherapy effect in colon cancer, and inclusion of the chemotherapy 

regimen reduced the confounding seen in most other reported series. 
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7.1.5.1 Significance of findings and future directions 

 

The results contribute to a growing body of evidence demonstrating that primary tumour location is an 

important prognostic factor in colon cancer. Due to the strengths discussed above, this study provides 

the most robust population-level data to support primary tumour location as an independent 

prognostic factor in early stage colon cancer. Moreover, these results have immediate clinical 

applicability. The included study population was a modern cohort of Australian patients managed 

with currently employed treatments, and the results therefore can be directly applied to routine clinical 

care. 

  

The observed difference in prognosis between LsCC and RsCC is postulated to be due to differences 

in tumour biology. While some differences in the molecular profile between LsCC and RsCC, such as 

BRAF mutations and microsatellite instability, are well described, ongoing research is urgently 

needed to further characterise and compare molecular profiles of LsCC and RsCC.  Primary tumour 

location may be a clinical surrogate for further, yet unidentified, predictive biomarkers as highlighted 

by the recent data from the FIRE3 and CALGB/SWOG 80405 trials, which suggests a reduced benefit 

to anti-EGFR treatment in RsCC independent of currently identified biomarkers 10.   These results 

support the inclusion of primary tumour location as a stratification factor in clinical trials for all stages 

in colon cancer.  

 

7.1.6 Adjuvant chemotherapy has a preserved OS benefit in the elderly; A comprehensive clinical 

assessment, rather than age alone, should be used when deciding adjuvant chemotherapy 

regimens in colon cancer. 

 

Despite recent progress in immunotherapy and targeted agents, chemotherapy is the only adjuvant 

treatment shown to improve survival in stage III colon cancer. However, due to poor representation in 

clinical trials, the optimum adjuvant treatment is unknown in elderly patients, presenting a daily 

clinical dilemma to medical oncologists. Chapter 6.2 provides a critical new source of evidence for 

this contentious issue. A large, prospectively collected, comprehensive, cancer registry dataset linked 

to governmental hospital data was used to quantify adjuvant chemotherapy rates and regimen choice 

for elderly patients. Multivariable cox hazard regression models demonstrated a persistent survival 

benefit to adjuvant oxaliplatin doublet chemotherapy for stage III colon cancer in the elderly, although 

at a cost of increased toxicity in this age group, demonstrated by an increase in chemotherapy 

discontinuation rates and hospital admissions.  
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7.1.6.1 Significance of findings and future directions 

 

This study is the first population-level data series to incorporate comorbidities into multivariate 

models, and explore the toxicities associated with treatment using hospital admission data, providing a 

uniquely comprehensive analysis of benefits and risks of adjuvant oxaliplatin doublet chemotherapy 

in the elderly patient. The results support an individualised treatment approach, rather than strict age 

cut-offs, when determining the optimal adjuvant strategy for elderly patients.   

 

These results remain limited by the observational design of the study, and the potential for 

unmeasured confounders and selection bias between treatment groups. The currently recruiting 

PRODIGE34 clinical trial, which randomises elderly patients to adjuvant oxaliplatin doublet or 

fluoropyrimidine monotherapy, aims to provide a definitive answer to this question 11. 

 

 

 

7.2 Conclusions 

 

Despite recent progress, gastrointestinal cancers remain highly lethal diseases and the predominate 

cause of cancer related deaths worldwide. Ongoing research is required to build on recent successes to 

improve the care and lives of patients with these cancers. Not only are new biomarkers and targets 

desperately needed, but also the optimisation of existing treatments to maximise benefits to patients. 

We continue to work with hope to shape a future where patients with early stage disease are cured, 

and the majority of patients with metastatic gastrointestinal cancer have long term survival and a good 

quality of life. 
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ABSTRACT
Background: The urokinase plasminogen activation (uPA) system is a crucial 

pathway for tumour invasion and establishment of metastasis. Although there is good 
evidence that uPA system expression is a clinically relevant biomarker in some solid 
tumours, its role in gastroesophageal cancer is uncertain. 

Results: We identified 22 studies encompassing 1966 patients which fulfilled 
the inclusion criteria. uPA, uPAR, or PAI-1 expression is significantly associated 
with high risk clinicopathological features. High uPA expression is associated with a 
shorter RFS (HR 1.90 95% 1.16–3.11, p = 0.01) and OS (HR 2.21 95% CI 1.74–2.80, 
p < 0.0001). High uPAR expression is associated with poorer OS (HR 2.21 95%CI 
1.82–2.69, p < 0.0001). High PAI-1 expression is associated with shorter RFS (HR 
1.96 96% CI 1.07–3.58, p = 0.03) and OS (HR 1.84 95%CI 1.28–2.64, p < 0.0001). 
There was no significant association between PAI-2 expression and OS (HR 0.97 
95%CI 0.48–1.94, p < 0.92) although data was limited. 

Materials and Methods: We undertook a systematic review evaluating expression 
of uPA, urokinase plasminogen activator receptor (uPAR), plasminogen activator 
inhibitor-1 (PAI-1/SerpinE1) and plasminogen activator inhibitor-2 (PAI-2/SerpinB2) 
on primary oesophageal, gastro-oesophageal junction, and gastric adenocarcinomas. 
We performed a meta-analysis of clinicopathological associations, overall survival 
(OS) and recurrence free survival (RFS). 

Conclusions: We conclude that the uPA system is a clinically relevant biomarker 
in primary gastroesophageal cancer, with higher expression of uPA, uPAR and PAI-1  
associated with higher risk disease and poorer prognosis. This also highlights the 
potential utility of the uPA system as a therapeutic target for improved treatment 
strategies.

Research Paper



Oncotarget23100www.impactjournals.com/oncotarget

INTRODUCTION

Gastroesophageal cancer is a common and lethal 
malignancy, marked by modest response to systemic 
therapies [1]. A deeper understanding of molecular events 
characterising carcinogenesis, invasion, progression and 
metastasis is central for the development of novel therapies.

The uPA system

A key process in the development and progression 
of cancer, including establishment of metastatic disease, 
is the invasion of malignant cells into normal tissue. The 
plasminogen activation system, particularly the urokinase-
type plasminogen activator (uPA) system, is critical for 
tumour-associated proteolysis to breakdown extracellular 
matrix (ECM) and basement membranes barriers [2]. The 
uPA system has a defined role in tissue degradation and 
extravascular fibrinolysis, and is responsible for most of 
the activated plasminogen associated with cancer invasion 
and metastasis [2, 3] (Figure 1).

The uPA protein is secreted as a zymogen and 
activated on high affinity binding to its specific cell 
surface receptor uPAR. Once activated, uPA catalyses the 
activation of co-localised plasminogen to plasmin, which 
in turn directly degrades components of the ECM, and 
promotes further degradation and tissue remodelling by 
activating pro-metalloproteinases and by releasing, thus 
activating, latent growth factors from the ECM [4]. 

The uPA receptor (uPAR) is anchored to the plasma 
membrane, localising the uPA system to the cell surface 

[5]. High expression of uPAR on the invasive front of 
tumours facilitates invasion and other roles in cellular 
migration and angiogenesis [6]. uPAR expression may 
be a suitable marker for the onset of invasion of both 
gastro-intestinal and breast cancer as it is expressed only 
on invasive carcinomas, not premalignant states such as 
Barrett’s oesophagus [7].

Urokinase-type plasminogen activator is efficiently 
inhibited by two subtypes of serpin (serine proteinase 
inhibitor) family members, plasminogen activator 
inhibitor-1 (PAI-1/SerpinE1) and –2 (PAI-2 /SerpinB2). 
Both form a covalent complex with uPA/uPAR leading 
to internalisation of the entire complex [8] . Although 
believed to have a physiological role as an inhibitor of 
the uPA system, PAI-1 has a paradoxical protumourgenic 
role, increasing tumour invasion and angiogenesis, and 
correlated with poor prognosis [9]. The role of PAI-2 in 
cancer is less clear. Although both PAIs mediate uPA/
uPAR endocytosis, the uPA-PAI-2 complex interacts with 
endocytosis receptors with different binding kinetics to 
those of uPA:PAI-1 and without stimulating intracellular 
signalling events over and above that of uPA binding to 
uPAR [10]. 

While the uPA system is expressed on both cancer 
cells and the supporting stroma, higher expression is 
seen on tumour cells, and is postulated that the tumour 
cell specific uPA/uPAR explains the aggressive biology 
exhibited by these cancers, and is more relevant for 
prognostic outcomes [11–14].  Expression of the uPA 
system has been shown to be an important prognostic 
marker in a variety of cancers including breast cancer 

Figure 1: The uPA system. Schematic representation of the urokinase plasminogen activation (uPA) system. The membrane bound 
urokinase receptor (uPAR) binds circulating inactive pro-uPA, facilitating the activation of pro-uPA to uPA which subsequently converts 
co-localised plasminogen to plasmin that can directly degrade components of the extracellular matrix (ECM) and activate pro-matrix 
metalloproteases (MMP) to further break down ECM. Plasminogen activator inhibitors 1 or 2 (PAI-1, PAI-2) are efficient endogenous 
inhibitors of uPA.
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[15], lung cancer [16], and colorectal cancer [17], with the 
combination of uPA and PAI-1 expression recommended 
to be incorporated into routine clinical care of node 
negative breast cancer [18]. 

In this study we aim to perform a comprehensive 
systematic review of expression of the uPA system 
encompassing uPA, uPAR, PAI-1, and PAI-2 in primary, 
resectable gastro-oesophageal cancer, and undertake 
meta-analyses of prognostic outcomes (recurrence free 
survival and overall survival), and association with 
relevant clinicopathological variables. To the best of our 
knowledge, this is the first meta-analysis to examine and 
compare the expression of these key components of uPA 
system in primary gastro-oesophageal cancer.

RESULTS

Included studies

The trial flow is provided in Figure 2. We identified 
267 reports matching criteria for inclusion in the study, 
of which 109 were selected for abstract review, and 60 
subsequently for full text review. Forty one studies 
(including 2689 patients) fulfilled criteria for inclusion 
in the systematic review, with 22 studies (1966 patients) 
providing sufficient data for inclusion in the formal 
quantitative meta-analysis: 19 studies were excluded 
for the following reasons: 12 studies did not examine 
prognostic or clinicopathological associations, 3 reports 
were matched case control studies, and 4 studies reported 
insufficient published data to derive a HR.

The characteristics of the included studies are 
summarized in Supplementary Table 1. Eighteen studies 
evaluated uPA system expression in gastric cancer (1732 
patients), one study included oesophageal, junctional and 
gastric cancers (39 patients), and two studies examined 
oesophageal cancer only (105 patients). Expression of the 
uPA system was assessed using immunohistochemistry (IHC, 
12 studies, 1273 patients), enzyme-linked immunosorbent 
assay (ELISA, 5 studies, 344 patients), reverse transcription 
polymerase chain reaction (RT-PCR, 3 studies, 153 patients), 
or in-situ hybridisation (ISH, one study, 105 patients). 

Hazard ratios directly extracted for 3 studies 
[7, 11, 22]. The multivariate HR was used when univariate 
value was not provided [22]. When only subgroup outcome 
data (tumour core or peripheral zone) were available, the 
results for peripheral “invasion” zone were used [7, 11]. 
Hazard ratios were estimated for the remaining studies 
using published data. 4 studies reported a “non-statistically 
significant OS” result for uPA system expression, but did not 
publish sufficient data for inclusion in meta-analysis [23–26]. 

Bias risk

The risk of bias summary is summarized in Figure 3. 
Only 4 studies [22, 27–29] were deemed low risk in all bias 
domains. Fourteen studies did not clearly define the study 

population [7, 12, 13, 30–40] and 11 studies did not report 
completeness of followup [7, 12, 13, 30–33, 36, 38, 39, 41]. 
Most studies adequately reported method of measurement of 
the uPA system, although 5 studies did not report whether 
there was a second independent reviewer or blinding to 
clinical information [13, 35, 39, 40, 42]. The followup 
protocol was underreported in 14 studies [7, 11–13, 30–
36, 38–40], although this is unlikely to bias the results for 
overall survival analyses. Most studies did not report details 
of the surgical, medical, or radiation treatments received by 
patients, and were Urokinase plasminogen activator (uPA). 

Urokinase plasminogen activator (uPA)

uPA expression rates

Expression of uPA was evaluated in 13 studies (1254 
patients). The mean expression of uPA was 52.8%, but had 
a large range (from 23% to 91%). There was no significant 
difference in mean expression for IHC (60.7%) and ELISA 
(45.6%) (p = 0.10).
uPA and clinicopathological associations

uPA expression is significantly associated with poorer 
clinicopathological features in resected gastroesophageal 
cancer including: Advanced T stage (T3/4 vs T1/2) (OR 
2.79 95% CI 1.80–4.32, p < 0.0001), nodal metastases 
(OR 2.30 95% CI 1.63–3.51, p < 0.0001), liver 
metastases (OR 6.77 95% CI 2.70–16.96, p < 0.0001), 
peritoneal metastases(OR 2.09 95% CI 1.29–3.36, p = 
0.003), lymphatic invasion (OR 2.28 95% CI 1.31–3.97,  
p = 0.0003), and vascular invasion (OR = 2.43 95% 
CI 1.53–3.86, p = 0.0002) (5 studies, 522 patients, 
Supplementary Figure 1). There is no significant association 
with histology (poorly differentiated vs well differentiated).
uPA expression and prognosis

uPA expression was significantly associated with 
a worse RFS (3 studies, 467 participants, HR 1.90 95%  
1.16–3.11, p = 0.01) (see Supplementary Figure 2). There was 
no significant difference in RFS seen between studies using 
IHC (HR 1.77) or ELISA (HR 2.36) to assess uPA expression 
(test for subgroup differences Chi2 = 0.37, p = 0.54).

uPA expression is significantly associated with 
poorer OS (12 studies, 1094 participants, HR 2.21 95% 
CI 1.74–2.80, p < 0.0001) (see Figure 4). There was no 
significant difference in OS between studies which used 
IHC (HR 1.94) or ELISA (HR = 2.99) to assess uPA 
expression (p = 0.38). Sensitivity analysis showed similar 
results when analysis was restricted to gastric cancer only 
(HR 2.07, p < 0.00001). 

Urokinase plasminogen activator receptor (uPAR) 

uPAR expression rates

Twelve studies (1127 patients) evaluated uPAR 
expression, with mean uPAR expression of 56.8% (range 
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14–90%), with similar mean expressions seen in IHC 
(56.8%) and ELISA/RT-PCR (56.7%).

uPAR expression and clinicopathological associations

uPAR expression on primary resected 
gastroesophageal cancer is significantly associated with 
poorer clinicopathological features including: advanced 
TMN stage (stage III/IV vs I/II, OR 3.41 91% CI 1.55–7.53,  
p = 0.002), advanced T stage (OR 2.33 95% CI 1.53 
to 3.56, p < 0.0001), nodal metastases (OR 2.52 95% 
CI 1.70–3.72, p < 0.0001), liver metastases (OR 2.53 95% 
CI 1.25–5.13, p = 0.010), peritoneal metastases (OR 3.15 
95% CI 1.87–5.28, p < 0.0001), lymphatic invasion 
(OR 2.82 95% CI 1.74–4.59, p < 0.0001) and vascular 
invasion (OR 3.85 95% CI 2.53–5.88, p < 0.0001) (six 
studies, 589 patients, Supplementary Figure 3). There is 
no significant association seen with histology (p = 0.6). 

uPAR expression and prognosis

Only one study provided data for uPAR expression 
and RFS [42], showing a shorter RFS with uPAR 
expression (203 patients, HR 2.69, p = 0.03).

uPAR expression is associated with poorer OS 
(11 studies, 1036 patients, HR 2.19 95% CI 1.80–2.66,  
p < 0.0001) (Figure 5). There was no significant difference 
in OS seen between studies which used IHC (HR 2.13), 
ISH (HR 2.34), ELISA (HR 2.19), or RT-PCR (2.66) to 
assess uPAR expression (p = 0.96). 

Plasminogen activator inhibitor-1 (PAI-1)

PAI-1 expression rate

Twelve studies (1031 patients) examined PAI-1 
expression. Mean PAI-1 expression was 53.3%, with no 

Figure 2: Study selection flow diagram. HR –hazard ratio; OS–overall survival; RFS–recurrence free survival.
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statically significant difference in expression between IHC 
(61.8%) and RT-PCR/ELISA (44.7%) (p = 0.1).
PAI-1 expression and clinicopathological variables

PAI-1 expression on primary resected gastroesophageal 
cancer is significantly associated with poorer 
clinicopathological features including: advanced T stage (OR 
2.59 95% CI 1.61 to 4.18,  p < 0.0001), nodal metastases (OR 
2.03 95% CI 1.27–3.22, p < 0.003), lymphatic invasion (OR 
2.09 95% CI 1.31–3.34, p < 0.004) and vascular invasion 
(OR 1.90 95% CI 1.20–3.03, p < 0.007) (three studies, 317 
patients, Supplementary Figure 4). There was no significant 
association of PAI-1 expression with presence of liver 
metastases (OR 0.52, p = 0.18), peritoneal metastases (OR 
1.38, p = 0.31), or histology (OR 0.93, p = 0.74). 

PAI-1 expression and prognosis

PAI-1 expression is associated with shorter RFS 
(3 studies, 467 patients, HR 1.96 96% CI 1.07–3.58, p = 
0.03) (Supplementary Figure 5). There was no significant 
difference in RFS between studies which used IHC or 
ELISA to detect PAI-1 expression (p = 0.86)

PAI-1 expression is significantly associated with a 
shorter OS (10 studies, 839 participants, HR 1.84 95%CI 
1.28–2.64, p < 0.0001, Figure 6). Pre-specified subgroup 
analysis showed a significant difference between studies 
which assessed PAI-1 expression using IHC (HR 1.20,  

p = 0.47) and ELISA (HR 2.94, p < 0.0001) or RT-PCR 
(HR 2.83, p < 0.0001) (p = 0.02). 

Plasminogen activator inhibitor-2 (PAI-2)

PAI-2 expression rate

Two studies (145 participants) assessed PAI-2  
expression (all using IHC) (refer to Supplementary 
Table 1). Mean expression was 57.5%. 
PAI-2 expression and clinicopathological variables

There were no studies with sufficient data analyzing 
PAI-2 expression and clinicopathological variables for 
inclusion in the meta-analysis. 
PAI-2 expression and prognosis

No studies published data on PAI-2 expression 
and RFS. There was no significant association of PAI-2 
expression and OS (2 studies, 145 participants, HR 0.97 
95%CI 0.48–1.94, p < 0.92, Supplementary Figure 6). 

Publication bias

Examination of the funnel plots for the OS analysis 
for uPA, uPAR and PAI-1 showed asymmetrical plots for 
all analyses, suggesting absence of smaller negative trials 
(example plot for uPA provided in Supplementary Figure 7). 

Figure 3: Risk of bias summary. For each bias domain: green = “low risk” means that sufficient data was available to allow assessment 
of quality and fulfilled criteria for each domain, and accordingly is deemed low risk of bias. Orange = “unclear risk” means that insufficient 
data was presented to adequately assess the quality of the domain and accordingly the study has potentially high risk of bias. There were 
no studies deemed high risk of bias. 
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DISCUSSION

This meta-analysis confirms the clinical utility of the 
uPA system as a biomarker in resected gastro-oesophageal 
adenocarcinoma. 

There is good evidence that high expression of 
uPA, uPAR, and PAI-1 is associated with most high 
risk clinicopathological features, including advanced 
T stage, presence of nodal and distant metastases, and 
lymphovascular invasion, in primary gastro-oesophageal 
adenocarcinoma. This supports the central role of the uPA 
system in tumour invasion and metastasis. In contrast, 
there was no significant association of expression found 
with poorly differentiated histology, consistent with 
previously published work which shows that epithelial cell 
uPA system expression is higher in malignant than benign 
tissue, but decreases as tumour becomes more poorly 
differentiated, with a corresponding increase in stromal 
expression [43]. 

We also demonstrated that uPA, uPAR, and PAI-1 
expression is associated with poorer prognosis in resected 
gastro-oesophageal cancer, with both a shorter RFS and 
OS in tumours which expressed these markers. However 

this result should be interpreted with caution due to the 
following important limitations in our study. 

Firstly, only four of the included studies were 
deemed low risk for all bias domains as assessed by the 
QUIPS tool. In particular, most studies did not report 
the treatments patients received which is an important 
potential source of confounding for RFS and OS analyses. 
Additionally, tumours with higher risk clinicopathologic 
features could reasonably be expected to be more likely 
to have received neoadjuvant treatment prior to surgery, 
which may in turn have impacted on the expression of the 
uPA system. Despite this, it should be noted that similar 
results were seen in studies deemed low and high risk of 
study confounding, and heterogeneity was low in both 
the uPA and uPAR OS meta-analyses (I2 = 31% and 0% 
respectively, see Figures 4 and 5). 

Secondly, there is evidence of underreporting of non-
significant results. This is demonstrated by both the funnel 
plot, as well the selective reporting of only statistically 
positive findings from included studies. This important bias 
will cause an overestimation of the effect of expression. 

Thirdly, as demonstrated above, tumours that 
expressed uPA, uPAR and PAI-1 had higher risk features, 

Figure 4: Pooled estimate of hazard ratio (HR) for uPA expression and overall survival (OS). Pooled estimate of hazard 
ratio (HR) for overall survival. The square on each bar represents the HR for an individual trial, and the bar shows the 95% confidence 
interval (CI). The diamond represents a pooled estimate with the centre of the diamond giving the HR estimate, and the extremes of the 
diamond representing the 95% CI. 24.
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and would be expected to recur or progress sooner than 
tumours that did not. The apparent difference in prognostic 
outcomes may be due to unequal baseline characteristics 
of the included participants. 

We did not show a significant difference in the 
prognostic outcomes between studies which used a tumour 
cell specific technique (e.g. IHC) compared to whole 
tissue lysates (e.g. RT-PCR, ELISA) for uPA and uPAR. 
This is consistent with other studies which have shown 
correlation between IHC score and median ELISA value, 
and supports the cancer cells as a major source of uPA and 
uPAR expression in the tumour tissue [44]. 

In contrast, there was a significant different in the 
expression methodology subgroups in the analysis for 
PAI-1 and OS (p = 0.02), with a non-significant outcome 
seen in studies using IHC (HR 1.20, p = 0.47), compared 
to significant results with ELISA (HR 2.94, p < 0.0001) 

and RT-PCR (HR 2.83, p = 0.0007). This highlights the 
importance of the stromal production of PAI-1 within the 
tumour microenvironment [9], as only methods that took into 
account both stromal and tumour PAI-1 showed statistically 
significant prognostic outcomes. It has been postulated that 
in contrast to uPAR, fibroblasts and endothelial cells provide 
the major source of PAI-1 within the tumour tissue [45]. It 
is possible that the PAI-1 detected on the tumour cells by 
IHC may be explained by internalization and accumulation 
of stromal produced uPA-PAI-1 complexes mediated by 
tumour uPAR [46]. No IHC studies examined the association 
between stromal PAI-1 expression and prognostic outcomes 
in gastro-oesophageal cancer. 

All IHC study results used in the meta-analysis 
were restricted to tumour cell expression only. Similar to 
other cancers, uPA system expression was highest at the 
invasive front of the tumour [7, 11, 12, 31]. Only four 

Figure 5: Pooled estimate of hazard ratio (HR) for uPAR expression and overall survival (OS).
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studies reported stromal expression of the uPA system 
[7, 11, 12, 42]. Results were conflicting, with only one study 
showing a significant association of OS with macrophage 
uPAR expression on the invading zone at the periphery of 
the tumour [7]. In colorectal cancer, high uPAR expression 
on macrophages in the tumour core, rather than the 
periphery, is an independent predictor of poor prognosis 
[47]. These studies suggest an important supporting role 
of the tumour associated macrophages within the tumour 
microenvironment. The contrasting pattern of high uPAR 
expression (core versus peripheral) may be due to differing 
phenotypes of the subpopulations of tumour preventing (M1 
macrophages) and tumour promoting (M2 macrophages) 
macrophages within the heterogeneous tumour bulk [48] 
. Further work is required to elucidate the biology of the 
stroma in gastrointestinal cancers. 

We were unable to show any significant associations 
with PAI-2 expression with either clinicopathological 
features or prognostic outcomes, as available data was 
much more limited. Similarly only 3 studies examined 
oesophageal cancer, which limits applicability of our results 
to this subgroup. Sensitivity analysis did not show a different 
result when oesophageal cancer was excluded from analysis. 

In conclusion, expression of the uPA system is 
a clinically relevant biomarker in gastroesophageal 
cancer. There is good evidence to support the association 
of uPA, uPAR, and PAI-1 expression and high risk 
clinicopathological features. While we found a statistically 
significant association between uPAR, uPAR and PAI-1 
expression and poorer prognosis, our results are tempered 
by methodical limitations discussed above. Our findings 
also highlight the potential utility of the uPA system as a 
therapeutic target for improved treatment strategies.

MATERIALS AND METHODS

Methods are reported according to Preferred 
Reporting for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [19].

Study eligibility/selection criteria

We included all studies which examined the 
following components of the urokinase plasminogen 
activation system uPA, uPAR, PAI-1 or PAI-2, in resected 
primary esophageal, gastroesophageal junction, or 

Figure 6: Pooled estimate of hazard ratio (HR) for PAI-1 expression and overall survival (OS).
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gastric adenocarcinomas. Other tumour pathologies were 
excluded. A ll methods of assessing expression, including 
reverse transcription polymerase chain reaction (RT-
PCR), enzyme-linked immunosorbent assay (ELISA), 
in-situ hybridization (ISH), and immunohistochemistry 
(IHC) were included. For inclusion in the meta-
analysis, studies were required to report the association 
of the following outcomes with uPA system expression: 
overall survival (OS), recurrence-free survival (RFS), or 
clinicopathological variables.

Two authors (DB, JC) independently performed the 
search and screened the studies. The primary outcome was 
OS; secondary outcomes were RFS, and correlation of 
clinicopathological variables with uPA system expression. 

Study search strategy

We searched the following databases in February 
2015 for all trials fulfilling the above criteria: Medline 
(1950–present); EMBASE (1966–present); Cochrane 
Central Register of Controlled Trials, and Cochrane 
Database of Systematic Reviews; PubMed. 

To maximize sensitivity the following search terms 
were used: Stomach Neoplasms (MESH) OR Esophageal 
neoplasms (MESH) OR Gastrointestinal neoplasms 
(MESH) OR Gastric cancer.mp OR Gastric carcinoma.
mp OR esophageal cancer.mp OR oesophageal cancer.
mp OR gastroesophageal cancer.mp AND Receptors, 
urokinase plasminogen activator (MESH) OR Urokinase-
type plasminogen activator (MESH) OR Plasminogen 
activator inhibitor 1 (MESH) OR Plasminogen activator 
inhibitor.mp OR PAI-1.mp OR PAI-2.mp OR Urokinase* 
plasminogen.mp OR uPA*.mp. Reference lists of included 
studies and review articles were hand searched. The search 
was restricted to studies published in English. 

Data collection

Study data was independently collected by two 
authors (DB, JC) using standardized electronic data 
collection forms. The following was collected for each 
study: patient number, primary tumour location (gastric/
oesophageal/COJ), cancer stage, treatment received by 
patient; uPA components assessed (uPA, uPAR, PAI- 1, 
PAI-2) and method, patient followup; outcomes (OS 
or RFS), clinicopathological correlations (including 
TMN stage, tumour grade, lymphatic invasion, vascular 
invasion). For studies which used IHC, expression analysis 
was restricted to tumour cells only (stromal expression 
was not included in the meta-analysis).

Assessment of bias within studies

All studies included in the meta-analyses were 
assessed for bias using the Quality In Prognosis Studies 
(QUIPS) tool which assesses for potential sources of bias 
in six domains namely: study participation; study attrition 

and loss to followup; prognostic factor measurement; 
outcome measurement; study confounding; and statistical 
analysis and reporting [20].

Statistical analysis

We extracted the hazard ratio (HR) and their 
95% confidence intervals (CI) for time-to-event 
outcomes including RFS and OS. If both univariate and 
multivariate HR were published the univariate results 
were preferentially used. Where no HR was provided in 
published data, it was estimated from available results or 
Kaplan-Meier survival curves using previously described 
methods [21]. 

HRs were synthesized using the generic inverse 
variance method and a random effect model using 
RevMan5.1 analysis software. Statistical heterogeneity 
was assessed using the I2 statistic. We performed pre-
specified subgroup analysis for overall survival for: 
primary location (gastric or oesophageal), cancer cell 
specific expression (using IHC) compared to whole cell 
lysis (using RT-PCR/ELISA). 

Clinicopathological associations were summarized 
using odds ratios (OR) derived from published results. 
This analysis was limited to studies using IHC, as other 
methods presented expression results as means, rather than 
percentage of patients expressing. Expression rates were 
described with mean and range, and compared using the 
student’s t-test. 
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Abstract
AIM
To demonstrate the feasibility of cryopreservation 
of peripheral blood mononuclear cells (PBMCs) for 
prognostic circulating tumor cell (CTC) detection in 
gastroesophageal cancer.

METHODS
Using 7.5 mL blood samples collected in EDTA tubes 
from patients with gastroesopheagal adenocarcinoma, 
CTCs were isolated by epithelial cell adhesion molecule 
based immunomagnetic capture using the IsoFlux 
platform. Paired specimens taken during the same 
blood draw (n  = 15) were used to compare number 
of CTCs isolated from fresh and cryopreserved PBMCs. 
Blood samples were processed within 24 h to recover 
the PBMC fraction, with PBMCs used for fresh analysis 
immediately processed for CTC isolation. Cryopre-
servation of PBMCs lasted from 2 wk to 25.2 mo 
(median 14.6 mo). CTCs isolated from pre-treatment 
cryopreserved PBMCs (n  = 43) were examined for 
associations with clinicopathological variables and 
survival outcomes.

RESULTS
While there was a significant trend to a decrease in 
CTC numbers associated with cryopreserved specimens 
(mean number of CTCs 34.4 vs  51.5, P  = 0.04), this 
was predominately in samples with a total CTC count 
of > 50, with low CTC count samples less affected (P 
= 0.06). There was no significant association between 
the duration of cryopreservation and number of CTCs. 
In cryopreserved PBMCs from patient samples prior 
to treatment, a high CTC count (> 17) was associated 
with poorer overall survival (OS) (n  = 43, HR = 4.4, 
95%CI: 1.7-11.7, P  = 0.0013). In multivariate analysis, 
after controlling for sex, age, stage, ECOG performance 
status, and primary tumor location, a high CTC count 
remained significantly associated with a poorer OS (HR 
= 3.7, 95%CI: 1.2-12.4, P  = 0.03). 

CONCLUSION
PBMC cryopreservation for delayed CTC isolation is a 
valid strategy to assist with sample collection, trans-
porting and processing.

Key words: Cryopreservation; Circulating tumor cells; 
Liquid biopsy; Gastroesophageal cancer; Gastric cancer

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This study demonstrates a novel and robust 
protocol for the cryopreservation and thawing of patient 
blood samples, demonstrating reliable circulating tumor 
cell isolation and characterisation after the long term 
storage of patient samples. Using the largest patient 
cohort reported to date, we validated our method by 
confirming the independent prognostic association of 

circulating tumor cell (CTC) enumeration from cryopre-
served peripheral blood mononuclear cells. Cryopre-
servation may assist with the wider incorporation of 
CTC collection and analysis in biobanking, retrospec-
tive studies, and large international clinical trials, by 
facilitating specimen storage, bulk transporting, and 
batch processing.

Brungs D, Lynch D, Luk AW, Minaei E, Ranson M, Aghmesheh 
M, Vine KL, Carolan M, Jaber M, de Souza P, Becker TM. 
Cryopreservation for delayed circulating tumor cell isolation 
is a valid strategy for prognostic association of circulating 
tumor cells in gastroesophageal cancer. World J Gastroenterol 
2018; 24(7): 810-818  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v24/i7/810.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i7.810

INTRODUCTION
Circulating tumor cell (CTC) analysis continues to be a 
rapidly developing field in oncology, offering a promising 
tool to both prognosticate and guide managements for 
patients[1]. Despite recent advancements in the field, 
one persisting challenge to the widespread adoption 
of CTC analysis for translational clinical trials or routine 
clinical care is the limited time frame considered 
best for blood processing and CTC isolation. Usually 
fresh blood is processed for CTCs within 24 h after 
blood draw, requiring prompt transfer to specialised 
centres for CTC isolation and analysis, which offers 
significant logistical challenges[2]. To overcome this 
issue, some studies use blood collection tubes that 
contain fixatives. Fixation of blood samples can allow 
CTC processing delayed by several days which has 
proven very useful for some CTC analyses[3,4]. However, 
fixatives may interfere with down-stream molecular 
analyses that require isolation of nucleic acids[5]. An 
alternative is the use of cryopreservation protocols for 
peripheral blood mononuclear cells (PBMCs) to allow 
delayed CTC isolation from these cells followed by CTC 
analysis. Cryopreservation should overcome fixation 
related analysis limitations and allow far more flexible 
time frames for batched CTC processing. However, a 
defined, robust cryopreservation protocol that is proven 
to enable analysis of the same or at least a relevant 
proportion of CTCs to that found in fresh samples, 
needs to be adopted and confirmation is needed 
whether cryopreserved CTCs can still predict disease 
outcome.

The advantage of cryopreservation of PBMCs is that 
it requires only minimal local processing, possible in 
most diagnostic settings, as well as feasible cryostorage 
and frozen transport of PBMC samples.

While there are a large number of approaches used 
to isolate and identify circulating tumor cells (recently 
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reviewed by van der Toom et al[6]), the best established 
and most widely used is the CellSearchTM system 
(Menarini-Silicon Biosystems), which uses positive 
immunomagnetic isolation of epithelial cell adhesion 
molecule (EpCAM, an epithelial cell marker) expressing 
cells followed by cytokeratin (CK), CD45, and DAPI 
staining[2]. The CTCs are then identified with automated 
immunofluorescence microscopy, defined by an EpCAM/
CK/DAPI positive and CD45 negative phenotype. Cell 
Search CTC counts have shown to be prognostic in 
large patient series in a variety of cancers[7-9], including 
gastroesophageal cancer[10-12], but the instrument offers 
limited sensitivity in resectable gastroesophageal cancer, 
with CTCs detected in less than 15% of patients[10,13]. 
The IsoFlux system (Fluxion) uses a similar definition 
of CTCs to CellSearch (EpCAM/CK/DAPI positive, 
CD45 negative phenotype), but has shown a greater 
sensitivity for CTC detection[14-16]. This platform uses 
EpCAM targeted immunomagnetic isolation of CTCs 
within a microfluidic setting, improving isolation of CTCs 
with lower EpCAM expression, minimising leukocyte 
contamination, and allowing downstream applications 
including staining, enumeration, or sequencing, as 
shown for fresh blood samples[16].

Here, we use a viable method of PBMC cryopre-
servation that allows subsequent isolation and immu-
nocytochemical analysis of CTCs. We demonstrate 
the feasibility of PBMC cryopreservation for delayed 
CTC isolation using paired cryopreserved and freshly 
processed blood samples drawn at the same time 
from patients with gastroesophageal adenocarcinoma. 
Importantly, we also provide data confirming that 
cryopreserved CTCs remain clinically applicable as a 
circulating prognostic marker for overall survival (OS).

MATERIALS AND METHODS
Patient population
Blood samples were collected from patients with 
histologically confirmed distal oesophageal, gastroe-
sophageal junction, or gastric adenocarcinomas treated 
at Wollongong Hospital, Australia. Blood samples were 
collected in 7.5 mL EDTA Vacutainer tubes (Sarstedt 
AG & Co.) and maintained at room temperature until 
processing.

In the initial cohort (Cohort 1) to confirm the feasi-
bility of cryopreservation, 15 patients with gastroe-
sophageal carcinomas had 2 specimens taken during 
the one blood draw, one processed within 24 h (“fresh” 
specimen), and one cryopreserved with delayed CTC 
isolation and analysis (“cryopreserved” specimen). Pre-
treatment blood samples were cryopreserved from a 
second, larger cohort of patients for correlation with 
clinical outcomes (Cohort 2). The study was approved 
by South Western Sydney Local Health District Human 
Research Ethics Committee (Project Number 15/072). 
A written informed consent was obtained from each 

participant before sample collection.

Sample preparation
Blood samples were processed within 24 h to recover 
the PBMC fraction using 50 mL SepMate tubes and 
Lymphoprep according to manufacturer’s instructions 
(Stemcell Technologies, Vancouver, BC, Canada).

PBMCs used for fresh analysis were resuspended in 
Isoflux Binding Buffer and immediately processed for 
CTC isolation (see below).

PBMCs for cryopreservation were well resuspended 
in 1 mL of diluted plasma (the supernatant of the 
PBMC preparation from the matching patient) with the 
addition of 7.5% final DMSO, and stored at -80 ℃ until 
further processing. Cryopreserved samples were thawed 
according to the protocol from Fluxion Biosciences, San 
Francisco, California, United States[17]. In brief, warmed 
(37 ℃) thawing buffer, consisting of RPMI 1640 with 
10% Fetal Bovine Serum (FBS, Bovogen Biologicals, 
Australia) and 50 Unit/mL Benzonase (Sigma-Aldrich, 
Germany), was added to thawed samples, washed once 
in thawing buffer, and resuspended in IsoFlux Binding 
Buffer with 5% FBS. 

Circulating tumor cell isolation, staining, and imaging
As per the Fluxion protocol, immunomagnetic beads 
preconjugated with anti-EpCAM antibodies (CTC 
Enrichment Kit; Fluxion Biosciences Inc) were added 
to PBMCs suspended in IsoFlux Binding Buffer, and 
incubated for 90 min at 4 ℃ with passive mixing on a 
rotator. Samples were then loaded into the sample well 
of the microfluidic cartridge and underwent immuno-
magnetic isolation of CTCs with the IsoFlux using the 
standard protocol (Fluxion Biosciences Inc).

Recovered CTCs were blocked with a final concen-
tration of 1.2 µg/µL mouse IgG in binding buffer (Jackson 
ImmunoResearch, Baltimore, PA, United States) for 
30 min, washed and fixed in fixing solution (Fluxion 
Biosciences Inc). The CTCs were then blocked in 10% 
FBS in binding buffer for 15 min, then underwent immu-
nofluorence staining for anti-CD45 antibody conjugated 
to Alexa Fluor 647 (Biolegend, Clone HI30). The 
CTCs were also stained for urokinase plasminogen 
activator receptor (uPAR, CD87), a key receptor in the 
plasminogen activator system and clinically relevant 
biomarker in primary gastroesophageal cancer[18], using 
anti-uPAR antibody conjugated to AF594 (ThermoFischer, 
Clone R4). After permeabilization with 0.1% Triton 
X-100, cells were probed with anti-cytokeratin antibody 
conjugated to FITC (Sigma-Aldrich, Clone PCK-26). CTCs 
were finally stained with Hoechst and mounted using 
Isoflux mounting media to 24-well glass bottom plates 
(MoBioTec, Goettingen, Germany) for imaging. 

Imaging was performed with an inverted epifluo-
rescence microscope (Leica DMi8, Leica Microsystems 
Pty Ltd) using the Leica Application Suite. Cells were 
considered CTCs if they were CK positive, CD45 
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similar to fresh samples (Figure 1). There was a 
significant difference between CTC numbers isolated 
from the cryopreserved samples compared to fresh 
samples (mean number of CTCs 34.4 cryopreserved vs 
51.5 fresh, P = 0.04, Figure 2), however this difference 
was predominately attributable to a larger fall in CTC 
numbers in samples with very high CTC counts (> 50 
CTCs in the fresh specimen). There was no significant 
difference in CTC count between cryopreserved and 
fresh samples for specimens with CTC count less than 
50 (n = 11 patients, mean number of CTCs 10.7 vs 
16.3, P = 0.06). Thus CTC loss by cryopreservation in 
patient samples with low CTC counts appears relatively 
minor (mean proportion of CTCs lost in cryopreserved 
samples = 23.95%).

Cryopreserved circulating tumor cell and clinical 
outcomes (cohort 2)
A larger cohort of 43 gastroesophageal cancer 
patients (cohort 2) was analyzed to validate whether 
detectable CTC counts post cryopreservation correlated 
to disease outcomes. All patient samples were taken 
prior to treatment commencement and had undergone 
cryopreservation before CTC isolation. Cohort 2 included 
the 10 treatment naive patients from cohort 1. Patient 
characteristics of cohort 2 are summarised in Table 1. 
Twenty-four patients had resectable disease (Stage 
Ⅱ or Ⅲ). Post CTC evaluation, 11 of these patients 
received neoadjuvant chemoradiotherapy prior to 
resection (CROSS regimen), 3 received perioperative 
chemotherapy (MAGIC regimen), and 10 had surgery 
alone. Nineteen patients had metastatic disease (stage 
Ⅳ). Most of these patients received chemotherapy 
(7 patients: platinum and capecitabine doublet, 3 
patients: anthracycline, capecitabine, and platinum 
triplet, 1 patient: irinotecan or paclitaxel monotherapy), 
immunotherapy (2 patients), and 6 patients received no 
active systemic treatments. 

CTCs were detected in 42/43 patients (95.5%), 

negative, nucleated and morphologically intact. The 
proportion of uPAR positive CTCs was recorded.  

Statistical analysis
The CTC recovery from matched cryopreserved and 
fresh samples were compared with the paired t-test. 
Correlation between cryopreservation time and CTC 
number was described with a Pearson correlation 
coefficient, and the Fisher exact test and t-test were 
used to compare the status of CTCs with categorical 
clinicopathologic factors. 

For survival analyses, in the absence of established 
cut-offs for prognostic CTC numbers, the median CTC 
count (17) was used as the discriminator between high 
and low CTC counts. Survival analyses are conducted 
using Kaplan-Meier methods, with median survival 
reported. Unadjusted and multivariable Cox proportional 
hazards regression analyses were used to estimate the 
association between CTC counts and survival, and to 
calculate corresponding hazard ratios (HRs) and 95% 
confidence intervals (CIs). The following variables were 
included in the multivariate model: age, sex, ECOG, 
TNM stage, primary tumor location, and CTC count. 
All statistical analyses were performed using SAS 9.2 
software (SAS Institute, Inc., Cary, NC, United States). 

RESULTS
Matched fresh and cryopreserved specimens (cohort 1)
Matching parallel blood samples, collected from 15 
gastroesophageal cancer patients (10 patients had 
blood taken prior to treatment, 5 patients were already 
on treatment), that had either been cryopreserved 
before CTC processing or were processed fresh, were 
compared. Cryopreservation of PBMCs lasted from 2 wk 
to 25.2 mo (median 14.6 mo). There was no significant 
correlation between cryopreservation time and CTC 
number (Pearson r -0.25, P = 0.09). CTCs isolated 
from cryopreserved samples appeared morphologically 

DAPI

Fresh

CK CD45 uPAR Merged

Cryopreserved 20 µm

Figure 1  Representative images of circulating tumor cell isolation from fresh and cryopreserved samples demonstrating preservation of leukocyte and 
circulating tumor cell morphology. The fresh sample demonstrates a nucleated CK+/CD45- CTC which is uPAR negative, as well as a CK-/CD45+ leukocyte. The 
cryopreserved sample shows a uPAR positive CTC. CTC: Circulating tumor cell.
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with a median CTC of 17 (interquartile range 8-38). 
Patients with metastatic disease had a higher number 
of CTCs than those with resectable disease (Figure 3, 
mean CTC count 53.8 vs 15.8, P = 0.0013).

Currently there are no established cut-offs for 
prognostic CTC numbers detected using the IsoFlux 
in gastroesophageal adenocarcinoma. Therefore we 
opted to divide our patients by their CTC counts, above 
versus equal or lower than the median CTC count, 
to test for any correlation with clinical outcomes. 
Patients with a high CTC count (> 17) had a poorer 
OS than those with a lower CTC count (≤ 17) (Figure 
4, median OS 2.8 mo vs 23.2 mo, HR = 4.4, 95%CI: 

1.7-11.7, P = 0.0013). In multivariate analysis, after 
controlling for sex, age, stage, ECOG performance 
status, and primary tumor location, a high CTC count 
remained an independent prognostic factor associated 
with poor OS (Table 2, HR = 3.7, 95%CI: 1.2-12.4, 
P = 0.03). This association was stronger when the 
analysis was restricted to patients with metastatic 
disease (n = 19, HR = 5.5, 95%CI: 1.2-25.5, P = 0.01), 
but not observed in patients with resectable disease 
(n = 24, P = 0.39), although a high CTC count (> 17) 
was associated with a non-significant trend to shorter 
recurrence free survival in these patients (HR = 3.1, 
95%CI: 0.8-12.6, P = 0.09). 

Most patients had some uPAR positive CTCs (40/43, 
93.0%), however the proportion of uPAR positive CTCs 
was similar between patients with localised and meta-
static disease (mean proportion uPAR positive CTCs 
48.8% vs 47.7% respectively, P = 0.89), and there was 
no association with survival outcomes (Supplementary 

Table 1  Characteristics of patients in cohort 2 n  (%)

CTC count

All patients Low (CTC ≤ 17) High (CTC > 17)

n  = 43 n  = 23 n  = 20
Age
   Mean (range) 64 (39-89) 65 (39-89) 64 (48-83)
Sex
   Male 32 (74.4) 15 (65.2) 20 (85.0)
   Female 11 (25.6) 8 (34.8) 3 (15.0)
ECOG
   0-1 36 (83.7) 22 (95.6) 14 (70.0)
   2-4 7 (16.3) 1 (4.3) 6 (30.0)
Primary tumor location
   Distal oesophageal 12 (27.9) 8 (34.8) 4 (20.0)
   Gastroesophageal junction 14 (32.6) 4 (17.4) 10 (50.0)
   Gastric 17 (37.5) 11 (47.8) 6 (30.0)
Stage
   Ⅱ 18 (41.9) 13 (56.5) 5 (25.0)
   Ⅲ 6 (14.0) 4 (17.4) 2 (10.0)
   Ⅳ 19 (44.2) 6 (26.1) 13 (65.0)

CTC: Circulating tumor cell; ECOG: Eastern cooperative oncology group performance status.

Fresh       Cryopreserved

250

200

150

100

50

0

CT
C 

co
un

t

Figure 2  Circulating tumor cell enumeration by processing method. 
Mean number of CTCs isolated in the fresh specimens were higher than in the 
matched cryopreserved sample (mean difference in CTCs 17.1 95%CI: 0.7-33.6, 
P = 0.043). This difference was mostly driven by larger falls in CTC counts in 
samples with high numbers of CTCs (> 50 CTCs in fresh samples), with no 
significant difference in CTC counts for samples with less than 50 CTC in the 
fresh specimen (P = 0.06).
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Figure 3  Circulating tumor cell count by stage. CTC processing post 
cryopreservation produced a higher mean CTC count in metastatic patients 
compared to the resectable patients (mean CTC in metastatic 53.8 vs 
resectable 15.8, P = 0.0013). CTC: Circulating tumor cell.
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Figure 1, median OS 17.0 mo vs 12.8 mo, P = 0.6).

DISCUSSION
In this study we report the reliable isolation, immuno-
cytochemical identification, and enumeration of gastroe-
sophageal cancer CTCs from cryopreserved PBMCs 
using the IsoFlux platform. The included cohort is the 
largest reported study analysing cryopreservation of 
patient PBMCs for CTC detection. Our data confirms 
that CTCs isolated from cryopreserved samples remain 
an independent prognostic factor associated with OS.

The timely processing of patient samples for CTC 
isolation, usually is recommended within 24 h for most 
isolation methods[19], presenting significant logistical 
challenges for researchers and prohibits inclusion of 
patients from remote areas into clinical trials that would 
rely on CTCs as outcome measures. This is mainly be-
cause current methods of CTC analysis require signifi-
cant expertise, instrumentation, time and laboratory 
resources, usually performed in specialised research 
centres. Protocols using isolation of CTCs from cryop-
reserved specimens would require some basic proces-
sing and cryopreservation at the site of blood draw, but 
offer many advantages, including the ability to biobank 
patient samples for prolonged periods of time before 

central processing. This would be a huge benefit for 
larger scale clinical trials as it would allow inclusion of 
geographically separated sites. 

Previous work has shown that the immunochemical 
properties of CK, EpCAM and CD45, central to the 
isolation and identification of CTCs, are not affected 
by cryopreservation and thawing[20,21]. In agreement, 
our results demonstrate a similar morphological and 
immunofluorescent profile between cryopreserved 
and fresh CTCs and leukocytes, suggesting current 
techniques are suitable for cryopreserved samples. 
This approach is further supported by other work 
showing close concordance in genetic alterations seen 
on paired fresh and frozen CTCs[21].

Our results also show that enumeration of CTCs 
isolated from cryopreserved PMBCs is a valid prognostic 
biomarker in gastroesophageal cancer. Patients with 
metastatic disease had a significantly higher number 
of CTCs than those with resectable disease (mean CTC 
count 53.8 vs 15.8, P = 0.0013). Moreover, patients 
with a high CTC count (> 17) had a much poorer OS 
than those with a lower CTC count (≤ 17) (HR = 4.4, 
P = 0.0013). High CTC count remained significant in 
the multivariate analysis as an independent predictor 
of poorer OS (HR = 3.7, P = 0.03), after controlling for 
age, ECOG, sex, stage and primary tumour location, 
particularly when analysis was restricted to patients with 
metastatic disease only (HR = 5.5, P = 0.01). These 
results are concordant with other studies which confirm 
CTC enumeration as an important prognostic factor in 
gastroesophageal cancer[10-12]. 

Given our previous findings that the uPA system is a 
clinically relevant biomarker in primary gastroesophageal 
cancer[18], we undertook and successfully probed for 
uPAR expression in CTCs derived from cryopreserved 
and fresh samples. We previously have shown that 
higher expression of uPA, uPAR and PAI-1 in the 
primary tumour is associated with higher risk disease 
and poorer prognosis. However, in this study, there 
was no correlation between CTC uPAR expression with 
disease parameters. This suggests that the selection of 
epithelial (EpCAM-positive) CTCs might have affected 
any correlation of uPAR with patient outcome, as 
CTCs that present mesenchymal phenotypes, such as 

Table 2  Univariate and multivariate analysis for overall survival for cohort 2 (n  = 43)

Univariate Multivariate

Factor HR (95%CI) P  value HR (95%CI) P  value
CTC count (high vs low) 4.4 (1.7-11.7) 0.001 3.7 (1.2-12.4) 0.03
Age (≥ 65 vs <65 yr old) 0.7 (0.3-1.8) 0.46 1.0 (0.9-1.1) 0.76
ECOG (2-4 vs 0-1) 7.2 (2.2-23.7) 0.0002 2.3 (0.5-10.1) 0.14
Sex (male vs female) 1.2 (0.4-3.8) 0.7 0.7 (0.2-2.1) 0.49
Stage (Ⅳ vs Ⅱ-Ⅲ) 10.0 (3.3-30.8) < 0.0001 9.9 (2.9-33.8) 0.0003
Primary tumor location (gastric vs oesophageal/GOJ) 0.3 (0.1-1.01) 0.05 0.4 (0.2-1.6) 0.22

Significant values are italicised. In both univariate and multivariate analysis, a high CTC count (> 17) remained statistically significant as an independent 
factor associated with poorer overall survival. CTC: Circulating tumor cell; ECOG: Eastern cooperative oncology group performance status; GOJ: 
Gastroesophageal junction.
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Figure 4  Overall survival by circulating tumor cell count. Patients with > 
17 CTCs isolated from cryopreserved specimens had a poorer overall survival 
compared to those with ≤ 17 CTCs (median OS 2.8 mo vs 23.2 mo, HR = 4.4, 
95%CI: 1.7-11.7, P = 0.0013). OS: Overall survival; CTC: Circulating tumor cell.
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uPAR expressing cells, can escape standard methods 
of isolation reliant on epithelial markers[22]. Indeed 
Vishnoi et al[23]. has previously reported the isolation 
of subsets of EpCAM-negative, uPAR and integrin β1 
positive breast cancer CTCs, which further supports the 
concept of CTC heterogeneity[23]. Ultimately, we have 
successfully stained for a novel biomarker, uPAR, which 
further supports our cryopreservation method as a valid 
CTC isolation approach. 

One important concern with cryopreservation is the 
potential for loss of CTCs due to cell loss during freezing, 
storage, or thawing. In a study by Nejlund et al[20], tumor 
cell recovery from cryopreserved spiked tumor cells in 
normal controls was variable, with up to a 40% tumor 
cell loss. However in clinical samples using matched 
fresh and cryopreserved specimens from the same 
patient, there was no consistent loss of CTCs, with the 
variation in CTC enumeration similar to those seen in 
paired fresh samples in other studies[2,20]. Friedlander 
et al[21] found that cryopreservation of PBMCs had no 
significant effect on the cell recovery from patients with 
metastatic prostate cancer. We noted a small loss of 
CTCs associated with cryopreservation, however this 
was predominately in samples with large numbers 
of CTCs (> 50), where loss of some CTCs is more 
acceptable than samples with low CTC counts. We 
noted samples with high numbers of CTCs were more 
prone to cell clumping despite benzonase. This is 
normally due to the release of viscous DNA from cell 
lysis on thawing, leading to aggregates which prevent 
accurate CTC counting. We speculate that the higher 
disease burden in these patients, coupled with a 
corresponding systemic inflammatory response, lead 
to poorer cell integrity within the PBMCs of high CTC-
count samples. Some loss of CTCs in these samples 
will have little impact for prognostic and down-stream 
biomarker analysis purposes. There was no significant 
loss of CTCs in samples were the total CTC count was 
≤ 50 (P = 0.06).

Similar to previously published work, we found that 
the duration of cryopreservation was not correlated 
with number of isolated CTCs[20]. Moreover, we were 
able to isolate CTCs from specimens stored at -80 ℃ 
for over two years, suggesting cryopreservation is a 
suitable approach for long term projects that involve 
biobanking of patient samples.

Even when using cryopreservation prior to CTC 
isolation, we found higher numbers of CTCs (median 
CTC count 17) and a higher number of patient samples 
with CTCs (98%) compared to other studies using 
EpCAM based CTC capture in gastroesophageal 
cancer[10-12,24]. The correlation of CTC numbers with 
disease progression implies that the CTCs we identified 
are indeed disease related. Increased CTC counts 
are consistent with the higher reported sensitivity 
of the IsoFlux system compared to other platforms, 
particularly in isolating CTCs with a lower expression of 
EpCAM[14-16]. Our results confirm, in the largest cohort 

of patients reported to date, that a high CTC count (> 
17) in cryopreserved specimen was an independent 
prognostic factor associated with poorer OS (HR = 
3.7). As expected from the minimal CTC loss during 
cryopreservation, these data indicate that indeed 
our method is suitable for delayed and centralised 
CTC analysis which could help recruiting patients for 
major clinical trials. In this setting it would be advanta-
geous compared to fixation of blood which allows 
CTC processing delayed by only several days rather 
than long term biobanking. We are currently testing if 
cryopreservation is also able to overcome limitations 
associated with using fixative for molecular down-
stream analysis of CTCs that involves nucleic acid 
extraction[4,5].

In conclusion, we have tested a robust PBMC cryopre-
servation protocol that allows successful CTC isolation 
even 2 years post freezing. Cryopreservation of CTCs is 
feasible, with a small loss of tumor cells predominantly 
in samples with a high CTC load. Enumeration of CTCs 
from cryopreserved samples remained a clinically im-
portant prognostic biomarker. Cryopreservation may 
assist with the wider incorporation of CTC collection 
and analysis in biobanking, retrospective studies, and 
large international clinical trials, by facilitating specimen 
storage, bulk transporting, and batch processing. It 
may also help to develop diagnostic settings that can 
service even remote patients with diagnostic CTC data 
potentially relevant for their disease management.

ARTICLE HIGHLIGHTS
Research background
A persisting challenge to the field of circulating tumor cell (CTC) research is the 
requirement for prompt analysis of samples at specialised centres. This has 
presented significant logistical challenges to researchers, compounded by the 
significant expertise, time and laboratory resources required for CTC analysis.

Research motivation
Current methods to overcome this issue, such as fixation of blood samples, 
extend the time for CTC processing for several days, but may interfere with 
downstream molecular analyses.

Cryopreservation of patient samples permits the wider incorporation of 
CTC collection and analysis in biobanking, retrospective studies, and large 
international clinical trials, by facilitating specimen storage, bulk transporting, 
and batch processing. However, up to now, there has been little research in 
how cryopreservation affects CTC recovery, and whether cryopreservation 
retains predictive value of CTCs.

Research objectives
The primary objective of our study was to investigate the feasibility and reliability 
of delayed CTC isolation from cryopreserved peripheral blood mononuclear 
cells (PBMCs) layer. This was determined by percentage of CTC loss during 
cryopreservation and thawing, and clinical validity of CTC enumeration from 
cryopreserved samples. 

Research methods
CTCs were isolated from 7.5 mL blood samples collected from patients with 
gastroesophageal adenocarcinoma using EpCAM based immunomagnetic 
capture with the IsoFlux platform. CTC loss with cryopreservation was 
determined by comparing CTC enumeration from matched cryopreserved 
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and freshly processed blood samples collected during the same blood draw. 
CTCs isolated from pre-treatment cryopreserved PBMCs were examined for 
association with clinicopathological variables and survival outcomes. 

Research results
We found a minor loss of tumor cells in matched cryopreserved and freshly 
processed samples, mostly in samples with high CTC counts. A high CTC 
count isolated from cryopreserved PBMCs remained a statistically significant 
independent prognostic factor in gastroesophageal cancer.  

Research conclusions
Our study demonstrates a feasible and robust protocol facilitating CTC isolation 
from cryopreserved PBMCs even after 2 years post freezing. Our results have 
immediate applicability in the design and conduct of translational studies, 
as it facilitates incorporation of CTC analysis in large international trials and 
biobanking projects. 

Research perspectives
There is an increasing variety of techniques used for CTC isolation described 
in the literature. While the current work confirms the reliability of CTC isolation 
from cryopreserved samples using immunomagnetic separation, further work 
needs to be undertaken to confirm its suitability for other isolation approaches.   
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Sidedness is prognostic in locoregional
colon cancer: an analysis of 9509 Australian
patients
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Abstract

Background/Aim: Right sided colon cancer (RsCC) is proposed to be a distinct disease entity to left sided colon
cancer (LsCC). We seek to confirm primary tumour location as an independent prognostic factor in locoregional
colorectal cancer.

Methods: All patients with stage I – III primary adenocarcinoma of colon were identified from the New South
Wales (NSW) clinical cancer registry (2006–2013). Primary tumour location (RsCC vs LsCC) survival analyses were
conducted using the Kaplan-Meier method, and adjusted hazard ratios for 5-year all-cause mortality (OS) and
5-year cancer specific mortality (CSS) were obtained using Cox proportional hazards regression.

Results: We identified 9509 patients including 5051 patients with RsCC and 4458 with LsCC. Patients with RsCC
were more likely to be older, female, have a higher Charlson comorbidity index, and have worse tumour prognostic
factors. In univariate analysis of all stages combined, those patients with RsCC had a worse overall survival (OS, HR
1.20 95% CI 1.11–1.29, p < 0.0001), although this was not significant in the multivariate analysis (HR 0.96 95% CI 0.
89–1.04, p = 0.35). Stage I patients with RsCC had a trend to improved OS (multivariate HR 0.84 95% CI 0.69–1.01,
p = 0.07) and a significantly improved CSS (multivariate HR 0.51 95% CI 0.35–0.75, p = 0.0006). In stage II patients
with RsCC there was a significantly improved OS (multivariate HR 0.85 95% CI 0.75–0.98, p = 0.02) and CSS (multivariate HR
0.59 95% CI 0.45–0.78, p = 0.0002) compared to LsCC. In stage III patients, those with RsCC had a worse OS (multivariate HR
1.13 95% CI 1.01–1.26, p = 0.032) and a trend to worse CSS (multivariate HR 1.12 95% CI 0.94–1.33, p = 0.22).

Conclusions: Primary tumour location is an important prognostic factor in locoregional colon cancer with an effect that
varies by stage. RsCC is associated with lower all-cause mortality in stage II, and higher all-cause mortality in stage III.

Keywords: Colonic neoplasms/mortality, Colonic neoplasms/pathology, Neoplasm staging

Background
Colorectal (CRC) is a common and lethal malignancy,
projected to account for 13% of all new cancer cases
diagnosed in Australia in 2015, and 10% of Australian
cancer deaths [1]. In recent years there has been increas-
ing interest in identifying the differences between right
sided and left sided colon cancer, and the potential for
using this clinical marker as a surrogate marker of

tumour biology, with the intent of improved personalisa-
tion of systemic treatments.
There is a growing body of evidence to suggest that

right sided colon cancers (RsCC) follow a different dis-
ease process compared to left sided tumours (LsCC).
The proximal and distal colons are physiologically separ-
ate, arising from distinct embryological origins, with dif-
ferences in tumour genetics, histology, presentation, and
clinical features [2–4]. Patients with RsCC are older,
more likely to be female, have more comorbidities, with
poorer tumour histopathological features [5–8].
Despite this, there is ongoing debate whether primary

tumour location is an independent prognostic factor in
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colon cancer. Most, but not all studies have found
poorer survival with RsCC [7–11]. A recent meta-
analysis found a statistically significant worse overall
survival in patients with RsCC, although there was sig-
nificant heterogeneity seen due the spectrum of included
study designs, disease stage, and limited information
about treatment received by patients [12]. Tumour stage
may play a role, with a large Surveillance, Epidemiology,
and End Results (SEER) program study showing worse
overall survival in Stage III RsCC patients, but not in
Stage I or II [7], although these finding have been re-
cently challenged by a propensity score matched analysis
of the SEER database, which showed a better prognosis
in RsCC patients [9].
This current study aims to use a prospectively col-

lected database of Australian patients to determine
whether primary tumour location is an independent
prognostic factor in locoregional colon cancer, and com-
pare our findings to the literature.

Methods
Patient cohort
The New South Wales (NSW) clinical cancer registry
contains demographic and clinical data for patients diag-
nosed or treated for cancer in NSW, covering approxi-
mately 30% of the Australian population. Data is
collected from pathological laboratories, hospitals and
oncology departments under mandatory notification of
new cancer cases irrespective of treatment.
We identified all patients with Stage I, II or III colo-

rectal cancer in NSW from Jan 2006 to 2013 (n = 9509)
as per third edition of the International Classification of
Diseases for Oncology (ICD-O-3) [13]. The registry also
contained adjuvant chemotherapy treatment details for a
more limited group of patients with stage II and III dis-
ease (n = 4102).
Mortality data, including cause of death, was obtained

with linkage to the NSW registry of Births, Deaths and
Marriages (BDM) by the Centre for Health Record Link-
age (CHeReL) [14]. The censor data for survival data
was 1st December 2014. Primary tumour location was
defined right sided (caecum to transverse colon) or left
sided (splenic flexure to rectosigmoid). Patients with rec-
tal cancer were excluded from analysis due to the differ-
ent treatment paradigm to colon cancer in locoregional
disease. No data was available for cause of death in 935
patients (10.1%) which were therefore excluded from the
cancer specific death analyses. Patients were deemed to
have died as a result of colon cancer only if the under-
lying cause of death, rather than an associated cause of
death, was coded as C18–20.
Comorbidity data was obtained by CHeReL linkage of

the clinical cancer registry data to the Admitted Patient
Data Collection (APDC). The APDC contains all admitted

patient services provided by New South Wales Public
Hospitals, Public Psychiatric Hospitals, Public Multi-
Purpose Services, Private Hospitals, and Private Day
Procedures Centres. Comorbidities of each patient were
quantified using the Charlson comorbidity index which
predicts mortality from a range of 22 comorbid conditions
[16]. ICD-10 codes were extracted from admissions prior
to diagnosis, then translated into a Charlson comorbidity
index (modified for cancer) using methods previously de-
scribed [15, 16].
All data linkage was performed by the Centre for

Health Record Linkage, with only de-identified informa-
tion provided to the researchers. The data sources used
for this study required ethical and data custodian ap-
proval to access, link (by an independent and approved
authority) and release for research. Approval for this
project was provided by the NSW Population & Health
Services Research Ethics Committee (approval HREC/
13/CIPHS/39).

Statistical analysis
Our primary outcome was all-cause 5-year overall sur-
vival (OS) stratified by stage, defined as death within
5 years of primary diagnosis of colon cancer on basis of
dates recorded in the cancer registry and BDM data-
bases. The secondary outcome was cancer specific 5 year
survival (CSS) stratified by stage, as per cause of death
encoded on BDM data. Median values for OS and CSS-
OS and corresponding 95% CI were calculated using
Kaplan-Meier methods. Unadjusted and multivariable
Cox proportional hazards regression analyses were used
to estimate the association between tumour location and
survival and to calculate corresponding hazard ratios
(HRs) and 95% confidence intervals (CIs). The following
variables were included in the multivariate model: age,
sex, Charlson Comorbidity Index, TNM stage, year of
diagnosis, grade, and adjuvant treatment (receipt and
type of adjuvant treatment performed in subset of pa-
tients only). All statistical analyses were performed using
SAS 9.2 software (SAS Institute, Inc., Cary, NC).

Results
Patient characteristics (n = 9509)
The characteristics of the NSW cohort is summarised in
Table 1. The mean follow up was 46 months (interquar-
tile range 27 to 71 months). At the end of 5 years of
follow up, 2686 (28.2%) patients had died, with 913 re-
ported deaths (34.0% of deaths) due to colon cancer.
22% of patients had stage I disease, 39% stage II, and
39% had Stage III. There were slightly more RsCC (53%)
than LsCC (47%). Patients with RsCC were older (61%
vs 47% older than 70 years), more likely to be female
(54% vs 42% female), had higher Charlson comorbidity
indices (CCI, 40% vs 34% CCI ≥ 1), and had worse
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prognostic features including higher TNM stage (79% vs
76% stage II/III), and higher grade tumour (23% vs 11%
poorly differentiated).

5 year all-cause mortality by primary tumour location
The observed 5 year OS for patients with RsCC was
66% (95% CI 65–67%) compared to 70% (95% CI 69–
72%) for LsCC. Unadjusted survival analysis demon-
strated a higher mortality with RsCC in all stages
combined (Fig. 1, univariate HR 1.20 95% CI 1.11–
1.29, p < 0.0001). When stratified by stage there was
significant difference in OS seen only in stage III,
with a higher mortality seen in RsCC (Fig. 1, HR 1.46
95% CI 1.31–1.63, p < 0.0001) (Fig. 1).

After adjusting for sex, age, comorbidities, stage,
grade, and year of diagnosis there was no significant dif-
ference in OS between RsCC and LsCC in patients from
all stages (multivariate HR 0.96 95% CI 0.89–1.04
p = 0.35) (Table 2). When the multivariate analysis was
stratified by stage, patients with RsCC had a trend to im-
proved survival in stage I (HR 0.84 95% CI 0.69–1.01,
p = 0.069), a statistically significant improved survival in
stage II (HR 0.85 95% CI 0.75–0.98, p = 0.02), but a
shorter survival in stage III (HR 1.13 95% CI 1.01–1.26,
p = 0.03) (see Table 3.)

Cancer specific survival (CSS) primary tumour location
The 5 year cancer specific survival (CSS) was similar for
RsCC (89%; 95% CI 88–90%) and LsCC (89%; 95% CI

Table 1 Patient characteristics (n = 9509)

Characteristic All Patients (%) Right sided tumour (%) Left sided tumour (%) P value

TNM stage I 2104 (22) 1055 (21) 1049 (24) <0.0001

II 3684 (39) 2059 (41) 1625 (36)

III 3721 (39) 1937 (38) 1784 (40)

T stage 1 1526 (16) 715 (14) 811 (18) <0.0001

2 1030 (11) 558 (11) 472 (11)

3 5075 (53) 2741 (54) 2334 (52)

4 1868 (20) 1031 (20) 837 (19)

N Stage 0 5788 (61) 3114 (62) 2674 (60) 0.06

1 3065 (32) 1576 (31) 1489 (33)

2 656 (7) 361 (7) 295 (7)

Grade Well differentiated 1244 (13) 635 (13) 609 (14) <0.0001

Mod. differentiated 6648 (70) 3278 (65) 3370 (76)

Poorly Differentiated 1617 (17) 1138 (23) 479 (11)

Age group ≤60 1925 (20) 798 (16) 1127 (25) <0.0001

61–70 2423 (25) 1189 (24) 1234 (28)

71–80 2814 (30) 1600 (32) 1214 (27)

>80 2347 (25) 1464 (29) 883 (20)

Sex Male 4913 (52) 2317 (46) 2596 (58) <0.0001

Female 4596 (48) 2734 (54) 1862 (42)

Charlson Comorbidity Index 0 5957 (63) 3027 (60) 2930 (66) <0.0001

1–2 5083 (22) 1172 (23) 911 (20)

3–4 1023 (11) 596 (12) 427 (10)

5 446 (5) 256 (5) 190 (4)

Adjuvant Chemotherapy None 1775 (19) 955 (46) 820 (40) 0.0002

Fluorouracil based 1098 (12) 553 (27) 545 (27)

Oxaliplatin doublet 1233 (13) 568 (27) 665 (33)

Unknowna 5403 2975 2428

Year Diagnosed 2006–2009 5018 (53) 2644 (52) 2374 (53) 0.38

2010–2013 4491 (47) 2407 (48) 2084 (47)

Totals 9509 5051 (53) 4458 (47)
aNot included in multivariate analysis in chemotherapy cohort
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87–90%). Unadjusted CSS analysis did not show a sig-
nificant difference between RsCC and LsCC in all stages
combined (Fig. 2, univariate HR 1.03 95% CI 0.91–1.18,
p = 0.64). When stratified by stage, there was a signifi-
cantly improved CSS seen with RsCC in stage I (HR 0.66
95% CI 0.45–0.95, p = 0.024) and stage II (HR 0.68 95%
CI 0.52–0.88 p = 0.0032), but a significantly poorer sur-
vival for stage III patients (HR 1.43 95% CI 1.21–1.66,
p < 0.0001) (Fig. 2, Table 3).
In the multivariate analysis, after adjusting for sex, age,

comorbidities, stage, grade, and year of diagnosis, patients
with RsCC had a statistically significant improved CSS in
all stages combined (HR 0.84, 95% CI 0.73–0.96, p = 0.011),
and for stage I (HR 0.51 95% CI 0.35–0.75, p = 0.0006) and
stage II (HR 0.59 95% CI 0.45–0.78, p = 0.0002) patients,
but a trend to worse survival in stage III (HR 1.12 95% CI
0.94–1.33, p = 0.22) (Table 3).

Effect of adjuvant chemotherapy
Adjuvant treatment details were available for 1631 (44%)
of patients with stage II and 2441 (66%) of patients with
stage III disease (4102 patients total). Most patients in
stage II disease did not receive adjuvant chemotherapy
(72%), with only a minority receiving fluorouracil mono-
therapy (24%) or an oxaliplatin doublet combination
(usually FOLFOX, 5%). In contrast, the majority of patients
with stage III disease received adjuvant chemotherapy

Fig. 1 5 year all-cause mortality by primary tumour location n = 9509 patients with 2686 deaths (Stage I = 2104 patients with 440 deaths, Stage
II = 3684 patients with 883 deaths, Stage III = 3721 patients with 1363 deaths)

Table 2 Multivariate model for overall survival for NSW cohort
(n = 9509)

Characteristic Multivariate
HR (95% CI)

Sided Left 1

Right 0.96 (0.89–1.04)

Age ≤60 1

61–70 1.34 (1.15–1.56)

71–80 2.23 (1.93–2.56)

>80 3.97 (3.46–4.56)

Grade Well differentiated 1

Moderately differentiated 1.22 (1.06–1.39)

Poorly Differentiated 1.87 (1.60–2.17)

TNM stage I 1

II 1.05 (0.96–1.21)

III 2.00 (1.80–2.24)

Sex Male 1

Female 0.90 (0.83–0.97)

Charlson Comorbidity
Index

0 1

1–2 1.64 (1.49–1.79)

3–4 1.81 (1.62–2.03)

5 3.02 (2.63–3.46)

Year Diagnosed 2006–2009 1

2010–2013 0.98 (0.90–1.06)

HR Hazard Ratio, CI confidence interval
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(75%), with 28% treated with fluorouracil monotherapy,
and 47% with an oxaliplatin/ fluorouracil doublet. Higher
TNM-substage was associated with treatment with oxali-
platin doublet within both stage II (p < 0.0001) and III
(p = 0.0001). Consistent with current practice no patients
received adjuvant treatment with monoclonal antibodies.
Patients with RsCC were less likely to receive adjuvant

chemotherapy (p = 0.0002, Table 1) despite higher risk
tumour features. Adjuvant chemotherapy improved survival
in both RsCC (univariate OS HR 0.68; 95% CI 0.58–0.80)
and LsCC (univariate OS HR 0.48; 95% CI 0.40–0.58,
Additional file 1: Figure S1 and Additional file 2: Figure S2.

Inclusion of the adjuvant chemotherapy regimen into
the multivariate model did not alter the effect of primary
tumour location, although the results for RsCC in stage
II disease became non-significant (multivariate OS HR
0.86 95% CI 0.69–1.09 p = 0.19; multivariate CSS HR
0.67 95% CI 0.43–1.04, p = 0.07, Table 4). Patients with
RsCC in stage III colon cancer continued to have a sig-
nificantly inferior OS compared to LsCC even after ad-
justment for all above factors including receipt and type
of adjuvant chemotherapy (multivariate OS HR 1.29 95%
CI 1.11–1.50 p = 0.0012; multivariate CSS HR 1.16 95%
CI 0.92–1.47, p = 0.22, Table 4). When analyses were

Table 3 Univariate and multivariate Hazard Ratios for NSW cohort (n = 9509) stratified by stage. Statistically significant values in bold

Overall Survival HR (95% CI) Cancer Specific Survival HR (95% CI)

Univariate Multivariatea Univariate Multivariatea

All Patients Left Sided 1 1 1 1

Right Sided 1.20 (1.11–1.29) 0.96 (0.89–1.04) 1.03 (0.91–1.18) 0.84 (0.73–0.96)

Stage I (n = 2104) Left Sided 1 1 1 1

Right Sided 1.03 (0.91–1.18) 0.84 (0.69–1.01) 0.66 (0.45–0.95) 0.51 (0.35–0.75)

Stage II (n = 3684) Left Sided 1 1 1 1

Right Sided 1.002 (0.88–1.14) 0.85 (0.75–0.98) 0.68 (0.52–0.88) 0.59 (0.45–0.78)

Stage III (n = 3721) Left Sided 1 1 1 1

Right Sided 1.46 (1.31–1.63) 1.13 (1.01–1.26) 1.43 (1.21–1.69) 1.12 (0.94–1.33)
aFollowing variables were used in the multivariate analysis: age, sex, year diagnosed, Charlson Comorbidity Index, TNM stage, grade

Fig. 2 5 year cancer specific mortality by primary tumour location n = 9509 patients with 2686 deaths (Stage I = 2104 patients with 116 deaths,
Stage II = 3684 patients with 224 deaths, Stage III = 3721 patients with 573 deaths)
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restricted to only those stage III patients who received
adjuvant oxaliplatin doublet chemotherapy (n = 1233),
RsCC remained associated with a poorer OS (univariate
OS HR 1.8 95% CI 1.4–2.4, p < 0.0001).

Discussion
There are well established differences in patient
demographics, tumour factors and clinical presenta-
tion between RsCC and LsCC [7, 9, 10, 17, 18]. How-
ever it remains uncertain whether primary tumour
location is an independent prognostic factor in locor-
egional colon cancer.
The strongest evidence comes from a recent meta-

analysis of 66 studies including 1,437,846 patients which
showed LsCC is associated with a significantly reduced
risk of death compared to RsCC (HR 0.82; 95% CI 0.79–
0.84, P < 0.01) [12]. This study included all stages of

colon cancer and found that, based on meta-regression,
the effect of primary tumour location was independent
of stage, race, year of study, and quality of study.
It is important to consider the limitations of the above

meta-analysis. Firstly, there was significant heterogeneity
seen in the results (I2 = 93%), which is likely due to the
variety of included study designs, differing multivariate
covariates from source studies, and patient populations,
with the estimate derived from overall populations with
no stratification by stage.
Secondly, while most of the included studies con-

trolled for tumour factors (such as stage and grade), and
patient demographic factors (eg., age, sex), only three
studies included a comorbidity index in the multivariate
model [7, 17, 19], and only 21% (14 of 66 studies) in-
cluded performance status. RsCC is more likely to occur
in older patients who have more associated comorbidi-
ties [17], and the substantial imbalances in the baseline
characteristics between LsCC and RsCC patients in
these trials may be an unmeasured confounder which
explains the improved survival with LsCC. This issue
has been directly addressed by Warschkow et al. [9]
who, in order to minimise confounding, used propensity
score matching to analyse survival in RsCC versus LsCC
in 91,416 patients with stage I-III colon cancer from the
SEER database. These authors showed that RsCC had a
better OS (HR 0.89, p < 0.001) and CSS (HR 0.71,
p < 0.001) in stage I and II, but a similar prognosis in
stage III (OS HR 0.99, p = 0.49; CSS HR 1.04,
p = 0.129).
Our current study, using a large series of Australian

patients from a prospectively collected database, and
controlling for patient factors (including comorbidities),
tumour factors, and adjuvant chemotherapy, confirmed
previous studies showing that RsCCs are more likely to
have a more advanced stage (p < 0.0001) and grade
(p < 0.0001), and occur in older patients (p < 0.0001)
with more comorbidities (p < 0.0001). Despite higher
risk tumour features, patients with RsCC are less likely
to receive adjuvant chemotherapy (p < 0.0001) or oxali-
platin doublet chemotherapy (p = 0.0002).
In the survival analysis, patients with RsCC have a lower

all-cause mortality in stage II (HR 0.85, p = 0.02), but a
higher mortality in stage III (HR 1.13, p = 0.032). More-
over, patients with RsCC had an improved 5-year CSS in
Stage I (HR 0.51,p = 0.0006) and Stage II (HR 0.59,
p = 0.0002), and a trend to inferior CSS in Stage III.
As adjuvant chemotherapy has been shown to have a

larger benefit in RsCC than LsCC [20], we subsequently
undertook further multivariate analysis in a subset of pa-
tients with known adjuvant chemotherapy protocols to
validate our findings. Adjuvant chemotherapy improved
survival in both RsCC and LsCC. We found incorpor-
ation of adjuvant chemotherapy into the multivariate

Table 4 Multivariate model for overall survival for chemotherapy
cohort (n = 4102)

Characteristic Stage II
(n = 1631)

Stage III
(n = 2441)

Multivariate Multivariate

HR (95% CI) HR (95% CI)

Sided Left 1 1

Right 0.86 (0.68–1.09) 1.29 (1.11–1.50)

Age ≤60 1 1

61–70 1.90 (1.20–2.99) 1.21 (0.94–1.54)

71–80 2.97 (1.92–4.58) 1.81 (1.43–2.30)

>80 5.92 (3.82–9.19) 2.00 (1.54–2.60)

Grade Well/mod
differentiated

1 1

Poorly
Differentiated

1.43 (1.08–1.90) 1.49 (1.26–1.75)

TNM stage IIIa 1 1

IIIb 2.20 (1.71–2.82)a 1.79 (1.33–2.43)

IIIc - 3.86 (2.84–5.24)

Sex Male 1 1

Female 0.85 (0.68–1.07) 0.94 (0.82–1.10)

CCI 0 1 1

1–2 1.42 (1.09–1.52) 1.15 (0.96–1.38)

3–4 1.60 (1.12–2.28) 1.20 (0.94–1.53)

5 2.31 (1.45–3.69) 1.83 (1.36–2.46)

Year Diagnosed 2006–2009 1 1

2010–2013 0.99 (0.79–1.26) 1.00 (0.86–1.17)

Adjuvant
Chemotherapy

Nil 1 1

Fluorouracil
monotherapy

0.79 (0.51–1.10)b 0.48 (0.40–0.57)

Oxaliplatin
doublet

- 0.38 (0.27–0.42)

HR Hazard Ratio, CI confidence interval, CCI Charlson Comorbity index
aIIa vs IIb/IIc, bchemotherapy vs no chemotherapy
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model did not alter the effect of primary tumour loca-
tion. Although definitive conclusions were limited in
stage II as chemotherapy regimens where only available
in 44% of patients, there were similar hazard ratios
showing improved OS and CSS with RsCC (multivariate
HR 0.86 and 0.67 respectively), although statistically
non-significant in the chemotherapy cohort. In stage III,
where chemotherapy data was available for the major-
ity of patients (66%), the results of multivariate
analysis was very similar to overall cohort, with a sig-
nificantly higher all-cause mortality with RsCC (HR
1.29, p = 0.0012) and trend to higher cancer specific
mortality (HR 1.16, p = 0.21).
Our findings are consistent with the results of Wiess

et al. [7], a large multivariate retrospective analysis of
53,801 patients from the SEER database linked to
Medicare data, and controlled for comorbidities using
Hierarchical Condition Categories risk score. Similar to
our findings, in multivariate analysis, patients with RsCC
had a non-significant trend to lower mortality in stage I
(HR 0.95, p = 0.21), a lower mortality in stage II (HR
0.92, p < 0.0001), but a higher mortality in stage III (HR
1.12, p < 0.001), and a non-significant difference in mor-
tality overall (HR 1.01, p = 0.60). This stage dependant
effect, with an improved survival in RsCC in stage II,
but higher mortality in stage III, has been reported by
multiple other series [8–10, 18, 21].
The cause of the demonstrated inconsistent effect of

primary tumour location by stage is unclear. Our study,
and the quoted literature, are retrospective analyses of
large population databases, and are susceptible to the in-
herent bias of confounding associated with this study de-
sign. However an alternative explanation to consider is
the increasingly described differences in tumour biology
between RsCC and LsCC. RsCCs are more likely to have
adverse histological features (such as advanced T stage,
higher grade, or lymophvascular invasion) and mucinous
histology [2, 22–24]. Perhaps more importantly, there
are also marked differences in the molecular profile be-
tween these tumours [25]. RsCC has a higher rate of
BRAF mutations and high microsatellite instability
(MSI-H), both which have established prognostic
importance, with MSI-H tumours shown to have a
favourable prognosis, and BRAF a strong poor prognos-
tic marker in non-MSI-H but not in MSI-H tumours
[22, 23, 26, 27]. In addition even within MSI-H tumours
there are known differences in prognosis, with hereditary
MSI-H colon cancers shown to have a better survival
than sporadic cases [28]. It is important to note that
these biomarkers are not uniformly distributed by stage,
with MSI-H tumours associated with lower stage (21%
in stage II vs 14% stage III and 4% stage IV), and BRAF
mutant tumours more likely to occur at a higher stage
[22, 29, 30]. Furthermore, previous studies have shown a

differential effect of adjuvant chemotherapy in between
molecular subtypes. There is a reduced benefit with fluo-
rouracil based chemotherapy in MSI-H tumours, but
preserved efficacy of oxaliplatin in MSI-H stage III colon
cancer patients [31, 32]. Although our study demon-
strated a persistent effect of primary tumour location
even when OS analysis was restricted to those patients
who received adjuvant oxaliplatin doublet chemotherapy,
it is important to note that fewer patients with RsCC re-
ceived oxaliplatin as part of the adjuvant treatment.
Therefore, in the absence of both family history and

molecular profiles in these population series, it is rea-
sonable to hypothesise that some of the observed sur-
vival difference in stage II and III may be due to unequal
distribution of these biomarkers. However, emerging evi-
dence suggests that primary tumour location may be a
clinical surrogate for further, yet unidentified, predictive
biomarkers as highlighted by the recent data from the
FIRE3 and CALGB/SWOG 80405 trials, which suggests
a reduced benefit to anti-EGFR treatment in RsCC inde-
pendent of currently identified biomarkers [33]. A limi-
tation of our study is the lack of associated molecular
data which is a potential source of unmeasured con-
founding to the results.

Conclusion
This population based study provides further evidence
that primary tumour location is an important independ-
ent clinical prognostic factor in stage II and III colon
cancer with immediate implications for clinical practice
and trial design. This clinical biomarker is likely acting
as a surrogate for as yet unidentified molecular factors.
Further studies with associated tumour molecular pro-
files are required to clarify the underlying biological dif-
ferences between RsCC and LsCC.

Additional files

Additional file 1: Figure S1. Effect of adjuvant chemotherapy on overall
survival in patients with right sided colon cancer. Description: Overall survival
in patients with right sided colon cancer by receipt of adjuvant chemotherapy
(n = 2076). (TIFF 40 kb)

Additional file 2: Figure S2. Effect of adjuvant chemotherapy on overall
survival in patients with left sided colon cancer. Description: Overall survival in
patients with left sided colon cancer by receipt of adjuvant chemotherapy
(n = 2030). (TIFF 40 kb)

Abbreviations
CSS: Cancer specific survival; HR 95% CI: Hazard ratios and 95% confidence
intervals; LsCC: Left sided colon cancer; MSI-H: High microsatellite instability;
NSW: New South Wales; OS: Overall survival; RsCC: Right sided colon cancer

Acknowledgements
We would like to acknowledge the NSW Ministry of Health and Cancer Institute
NSW for providing access to population health data, and the NSW Centre for
Health Record Linkage (CHEREL) for linking the data sets.

Brungs et al. BMC Cancer  (2017) 17:251 Page 7 of 9

dx.doi.org/10.1186/s12885-017-3255-z
dx.doi.org/10.1186/s12885-017-3255-z


Funding
The Centre for Oncology Education and Research Translation (CONCERT)
Translational Cancer Research Centre provides support for DB.

Availability of data and materials
The datasets generated and/or analysed during the current study are not
publicly available as it contains de-identified patient data.

Authors’ contributions
Conception and design: DB, MR, MA, PdS, PC. Acquisition of data: EH, JR, TT,
MA, PdS. Analysis of data: DB. Interpretation of data: DB, MA, PdS, WN, WC,
MC, PC, MR. All authors contributed to manscuript drafing or revising. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
All data linkage was performed by the Centre for Health Record Linkage,
with only de-identified information provided to the researchers. While pa-
tient consent was not required for this study as only de-identified data was
provided, the data sources used for this study required ethical and data cus-
todian approval to access, link (by an independent and approved authority)
and release for research. Approval for this project was provided by the NSW
Population & Health Services Research Ethics Committee (approval HREC/13/
CIPHS/39). Site specific approval was given by the Area Health Services that
entered data into clinical cancer registry: South East Sydney Illawarra Area
Health Service; Sydney West Area Health Service; North Sydney Central Coast
Area Health Service; Hunter New England Area Health Service; North Coast
Area Health Service; South Western Sydney Area Health Service.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Illawarra Health and Medical Research Institute, University of Wollongong,
Wollongong, NSW, Australia. 2School of Biological Sciences, University of
Wollongong, Wollongong, NSW, Australia. 3Illawarra Cancer Centre,
Wollongong Hospital, Wollongong, NSW, Australia. 4CONCERT-Translational
Cancer Research Centre, Sydney, NSW, Australia. 5Medical Oncology
Department, Liverpool Hospital, Sydney, NSW, Australia. 6Ingham Institute for
Applied Medical Research, Liverpool Hospital, Sydney, NSW, Australia. 7School
of Medicine, Western Sydney University, Sydney, NSW, Australia. 8South
Western Medical School, University of New South Wales, Sydney, NSW,
Australia.

Received: 23 January 2017 Accepted: 1 April 2017

References
1. AIHW. Cancer in Australia: an overview 2014. Cancer series no 90. 2014;CAN 88.
2. Gervaz P, Bucher P, Morel P. Two colons-two cancers: paradigm shift and

clinical implications. J Surg Oncol. 2004;88:261–6.
3. Bufill JA. Colorectal cancer: evidence for distinct genetic categories based

on proximal or distal tumor location. Ann Intern Med. 1990;113:779–88.
4. Birkenkamp-Demtroder K, Olesen SH, Sorensen FB, Laurberg S, Laiho P, Aaltonen

LA, et al. Differential gene expression in colon cancer of the caecum versus the
sigmoid and rectosigmoid. Gut. 2005;54:374–84.

5. Hansen IO, Jess P. Possible better long-term survival in left versus right-sided
colon cancer - a systematic review. Dan Med J. 2012;59:A4444.

6. Bilimoria KY, Palis B, Stewart AK, Bentrem DJ, Freel AC, Sigurdson ER, et al.
Impact of tumor location on nodal evaluation for colon cancer. Dis Colon
Rectum. 2008;51:154–61.

7. Weiss JM, Pfau PR, O'Connor ES, King J, LoConte N, Kennedy G, et al.
Mortality by stage for right- versus left-sided colon cancer: analysis of
surveillance, epidemiology, and end results–Medicare data. J Clin Oncol.
2011;29:4401–9.

8. Benedix F, Kube R, Meyer F, Schmidt U, Gastinger I, Lippert H. Comparison of 17,641
patients with right- and left-sided colon cancer: differences in epidemiology,
perioperative course, histology, and survival. Dis Colon Rectum. 2010;53:57–64.

9. Warschkow R, Sulz MC, Marti L, Tarantino I, Schmied BM, Cerny T, et al.
Better survival in right-sided versus left-sided stage I - III colon cancer patients.
BMC Cancer. 2016;16:554.

10. Meguid RA, Slidell MB, Wolfgang CL, Chang DC, Ahuja N. Is there a difference
in survival between right- versus left-sided colon cancers? Ann Surg Oncol.
2008;15:2388–94.

11. Suttie SA, Shaikh I, Mullen R, Amin AI, Daniel T, Yalamarthi S. Outcome of
right- and left-sided colonic and rectal cancer following surgical resection.
Colorectal Dis. 2011;13:884–9.

12. Petrelli F, Tomasello G, Borgonovo K, Ghidini M, Turati L, Dallera P et al.
Prognostic survival associated with left-sided vs right-sided Colon cancer: a
systematic review and meta-analysis. JAMA Oncol. 2016;3:211–9.

13. Fritz A PC, Jack A, Shanmugaratnam K, Sobin L, Parkin DM, et al.: International
classification of disease for oncology. Geneva: World Health Organization; 2000.

14. Irvine KA, Moore EA. Linkage of routinely collected data in practice: the
Centre for Health Record Linkage. Public Health Res Pract. 2015;25:e2541548.

15. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
prognostic comorbidity in longitudinal studies: development and validation.
J Chronic Dis. 1987;40:373–83.

16. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New
ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality.
J Clin Epidemiol. 2004;57:1288–94.

17. Jess P, Hansen IO, Gamborg M, Jess T. A nationwide Danish cohort study
challenging the categorisation into right-sided and left-sided colon cancer.
BMJ Open. 2013;3

18. Wray CM, Ziogas A, Hinojosa MW, Le H, Stamos MJ, Zell JA. Tumor subsite
location within the colon is prognostic for survival after colon cancer diagnosis.
Dis Colon Rectum. 2009;52:1359–66.

19. Lykke J, Roikjaer O, Jess P. The relation between lymph node status and
survival in stage I-III colon cancer: results from a prospective nationwide
cohort study. Colorectal Dis. 2013;15:559–65.

20. Elsaleh H, Joseph D, Grieu F, Zeps N, Spry N, Iacopetta B. Association of
tumour site and sex with survival benefit from adjuvant chemotherapy in
colorectal cancer. Lancet. 2000;355:1745–50.

21. Bhangu A, Kiran RP, Slesser A, Fitzgerald JE, Brown G, Tekkis P. Survival after
resection of colorectal cancer based on anatomical segment of involvement.
Ann Surg Oncol. 2013;20:4161–8.

22. Seppala TT, Bohm JP, Friman M, Lahtinen L, Vayrynen VM, Liipo TK, et al.
Combination of microsatellite instability and BRAF mutation status for
subtyping colorectal cancer. Br J Cancer. 2015;112:1966–75.

23. Lee DW, Han SW, Lee HJ, Rhee YY, Bae JM, Cho NY, et al. Prognostic implication of
mucinous histology in colorectal cancer patients treated with adjuvant FOLFOX
chemotherapy. Br J Cancer. 2013;108:1978–84.

24. Distler P, Holt PR. Are right- and left-sided colon neoplasms distinct tumors?
Dig Dis. 1997;15:302–311.

25. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The
consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

26. Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH, et al. Impact of BRAF
mutation and microsatellite instability on the pattern of metastatic spread
and prognosis in metastatic colorectal cancer. Cancer. 2011;117:4623–32.

27. Gonsalves WI, Mahoney MR, Sargent DJ, Nelson GD, Alberts SR, Sinicrope FA
et al. Patient and tumor characteristics and BRAF and KRAS mutations in
colon cancer, NCCTG/alliance N0147. J Natl Cancer Inst. 2014;106:dju228.

28. Sankila R, Aaltonen LA, Jarvinen HJ, Mecklin JP. Better survival rates in
patients with MLH1-associated hereditary colorectal cancer.
Gastroenterology. 1996;110:682–7.

29. Hutchins G, Southward K, Handley K, Magill L, Beaumont C, Stahlschmidt J,
et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting
recurrence and benefits from chemotherapy in colorectal cancer. J Clin
Oncol. 2011;29:1261–70.

30. Oh BY, Huh JW, Park YA, Cho YB, Yun SH, Kim HC, et al. Prognostic factors
in sporadic colon cancer with high-level microsatellite instability. Surgery.
2016;159:1372–81.

31. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al.
Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-
based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–57.

32. Andre T, de Gramont A, Vernerey D, Chibaudel B, Bonnetain F, Tijeras-
Raballand A et al. Adjuvant fluorouracil, Leucovorin, and Oxaliplatin in stage

Brungs et al. BMC Cancer  (2017) 17:251 Page 8 of 9



II to III Colon cancer: updated 10-year survival and outcomes according to
BRAF mutation and mismatch repair status of the MOSAIC study. J Clin
Oncol. 2015;33:4176-4187.

33. Heinemann V, Modest DP, Weikersthal LFv, Thomas Decker AK, Ursula
Vehling-Kaiser S-EA-B, Tobias Heintges, Christian A. Lerchenmuller, Christoph
Kahl, Gernot Seipelt, Frank Kullmann, Martina Stauch, Werner Scheithauer,
Swantje Held, Clemens Albrecht Giessen, Andreas Jung, Thomas Kirchner,
Sebastian Stintzing. Gender and tumor location as predictors for efficacy:
Influence on endpoints in first-line treatment with FOLFIRI in combination
with cetuximab or bevacizumab in the AIO KRK 0306 (FIRE3) trial. J Clin
Oncol. 2014;32:5s.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Brungs et al. BMC Cancer  (2017) 17:251 Page 9 of 9



Original Study

Safety and Efficacy of Oxaliplatin Doublet
Adjuvant Chemotherapy in Elderly Patients With

Stage III Colon Cancer
Daniel Brungs,1,2,3,4 Morteza Aghmesheh,1,3,4 Paul de Souza,4,5,6,7,8

Martin Carolan,1,3,4 Philip Clingan,1,3 June Rose,3 Marie Ranson1,2,4

Abstract
Owing to poor representation in trials, the optimum adjuvant regimen for elderly patients with stage III colon
cancer is uncertain. We employed data from a cancer registry to show a survival benefit with the addition of
oxaliplatin to fluoropyrimidine in patients ‡ 70 years. We note an increased rate of hospital admissions and
early chemotherapy cessation in elderly patients on oxaliplatin.
Background: Colon cancer is common in the elderly, but owing to under representation in clinical trials, the benefit of
standard therapies is uncertain in this age group. We aimed to clarify the efficacy and complications of adjuvant
oxaliplatin and fluoropyrimidine chemotherapy for patients 70 years and older with stage III colon cancer. Patients and
Methods: All patients with stage III colon adenocarcinoma were identified from an Australian cancer registry
(2006-2013). Multivariable Cox hazard regression was used to determine prognostic factors for all-cause mortality.
Chemotherapy complications were quantified using discontinuation rates, hospital admissions, and mortality for 12
months after starting chemotherapy. Results: A total of 2164 patients fulfilled our inclusion criteria, including 1080
(49.9%) patients � 70 years. Patients � 70 years were less likely to receive adjuvant chemotherapy (60.7% vs.
89.6%) or oxaliplatin doublet chemotherapy (18.8% vs. 71.2%). Older patients receiving oxaliplatin were more likely
to cease treatment early (18.7% vs. 7.6%) and require hospital admission (67.0% vs. 53.5%). The addition of
oxaliplatin provided an overall survival benefit for patients < 70 years (hazard ratio, 0.44; 95% confidence interval,
0.3-0.6; P < .0001) and for patients � 70 years (hazard ratio, 0.64; 95% confidence interval, 0.5-0.9; P ¼ .005).
Conclusions: Despite a modestly increased rate of hospital admission and early chemotherapy cessation, we
demonstrate a persistent survival benefit for the addition of oxaliplatin to a fluoropyrimidine as adjuvant treatment
for stage III colon cancer in elderly patients.

Clinical Colorectal Cancer, Vol. 17, No. 3, e549-55 ª 2018 Elsevier Inc. All rights reserved.
Keywords: Aged, Age groups, Colonic neoplasms, Comorbidity, Medical record linkage

Introduction
Colon cancer is a common and lethal malignancy, with about

100,000 new cases diagnosed annually in the United States.1 It is a
disease related to aging, with almost 40% of colon cancer diagnosed
in patients > 75 years.2-4

Surgical resection is the only curative treatment for locoregional
disease, although many patients will develop disease recurrence
owing to micrometastases present at surgery. In resected stage III
colon cancer, standard treatment includes adjuvant doublet
chemotherapy with oxaliplatin and a fluoropyrimidine,5 following
the results of several large phase III randomized controlled trials that
showed a 30% reduction in disease recurrence and 22% reduction
in risk of death with the addition of oxaliplatin to fluoropyrimidine
alone.6-8
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Elderly patients appear to gain a similar benefit to
fluoropyrimidine-based adjuvant chemotherapy compared with
younger patients.9 However, as only a minority of patients in
clinical trials are older than 70 years, the efficacy and safety of
adjuvant chemotherapy with an oxaliplatin doublet in elderly
patients is unclear. For example, in the Adjuvant Colon Cancer End
Points (ACCENT) database, which includes individual patient data
from 14,500 participants in 18 fluoropyrimidine-based adjuvant
trials, only 18% are older than 70 years.10

Currently available trial data is conflicting. Subgroup analyses
from the pivotal phase III MOASIC and NSABO-07 trials show a
survival benefit only in patients < 70 years.6,7 Similarly, there was
no disease-free survival (DFS) or overall survival (OS) improvement
with the addition of oxaliplatin in the 2575 patients � 70 years in
the ACCENT database.10 In contrast, however, pooled individual
patient data from 904 patients � 70 years from the NSABP C-08,
XELOXA, X-ACT, and AVANT studies showed an attenuated but

statistically significant benefit to the addition of oxaliplatin,
including those with comorbidities.11

Similarly, retrospective patient series demonstrate contrasting
results. Although the largest series, drawn from multiple United
States databases including the Surveillance, Epidemiology, and End
Results (SEER) database, found a statistically significant benefit to
adjuvant oxaliplatin in elderly patients (70-74 years old) and those
with comorbidities,12 this was less clear in patients > 75 years13 and
was not seen in other, smaller studies.14,15

As a consequence of these uncertainties, current guidelines
recommend discussing the incorporation of oxaliplatin with patients
over 70 years based on individual circumstances, although fluo-
ropyrimidine monotherapy is an appropriate choice for adjuvant
therapy in the elderly.5,16

The current study employs data from an Australian cancer reg-
istry to investigate the comparative effectiveness of the addition of
oxaliplatin to fluoropyrimidine monotherapy as adjuvant treatment

Table 1 Patient Characteristics

All Patients,
n [ 2164 (%)

Patients < 70 Years,
n [ 1084 (50.1%)

Patients ‡ 70 Years,
n [ 1080 (49.9%) P Value

TNM stage

IIIa 272 (12.6) 141 (13.0) 131 (12.1) .81

IIIb 1284 (59.3) 638 (59.9) 646 (59.8)

IIIc 608 (28.1) 305 (28.1) 303 (28.1)

Charlson comordibity index

0 1485 (68.6) 831 (76.7) 654 (60.6) < .0001

1-2 403 (18.6) 165 (15.2) 238 (22.1)

3-4 195 (9.0) 63 (5.8) 132 (12.2)

5 or more 81 (3.7) 25 (2.3) 56 (5.2)

Primary tumor location

Right 1053 (48.7) 463 (42.7) 590 (54.6) < .0001

Left 1111 (51.3) 621 (57.3) 490 (45.4)

Age group, y

< 60 513 (23.7) 513 (47.3)

60-69 571 (26.4) 571 (52.7)

70-79 709 (32.8) 709 (65.7)

� 80 371 (17.1) 371 (34.3)

Gender

Male 1125 (52.0) 577 (53.2) 548 (50.8) .25

Female 1039 (48.0) 507 (46.8) 532 (49.3)

Grade

Well-differentiated 220 (10.2) 112 (10.3) 108 (10.0) .0028

Moderately differentiated 1484 (68.6) 774 (71.4) 710 (65.7)

Poorly differentiated 460 (21.3) 198 (18.3) 262 (24.3)

Year diagnosed

2006-2009 1096 (50.7) 570 (52.6) 526 (48.7) .07

2010-2013 1068 (49.4) 514 (47.4) 554 (51.3)

Adjuvant chemotherapy

None 538 (24.9) 113 (10.4) 425 (39.4) < .0001

Fluoropyrimidine monotherapy 651 (30.1) 199 (18.4) 452 (41.8)

Oxaliplatin doublet 975 (45.0) 772 (71.2) 203 (18.8)
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for stage III colon cancer in a “real world population” of patients
older than 70 years.

Patients and Methods
Patient Cohort

The New South Wales (NSW) clinical cancer registry contains
demographic and clinical data for patients diagnosed or treated for
cancer in NSW, covering approximately 30% of the Australian
population. Data is collected from pathologic laboratories, hospitals,
and oncology departments under mandatory notification of new
cancer cases. We included all patients � 18 years with colon cancer
as per the third edition of the International Classification of Diseases
for Oncology (ICD-O-3).17 We identified 2220 patients with stage
III colon cancer with complete files including adjuvant chemo-
therapy details. Fifty-six patients were excluded owing to death
within 30 days of surgery (n ¼ 23) or delay starting chemotherapy
past 120 days (n ¼ 33) (final sample, n ¼ 2164).

Date of death was obtained with linkage to the NSW registry of
Births, Deaths, and Marriages (BDM) by the Centre for Health
Record Linkage (CHeReL).18 The censor date for survival data was
December 1, 2014.

Comorbidity data and admissions during chemotherapy were
obtained by CHeReL linkage of the clinical cancer registry data to
the Admitted Patient Data Collection (APDC). The APDC
contains all admitted patient services provided by NSW Public
Hospitals, Public Multi-Purpose Services, Private Hospitals, and
Private Day Procedures Centers. Comorbidities of each patient were
quantified using the Charlson Comorbidity Index (CCI), which
predicts mortality from a range of 22 comorbid conditions.16

ICD-10 codes were extracted from admissions prior to diagnosis,
then translated into a CCI (modified for cancer) using methods
previously described.19,20

For quantification of chemotherapy complications, all admissions
for 12 months following initiation of chemotherapy were included
apart from admissions for vascular implantation, chemotherapy,
routine surgery follow-up, and dialysis (ICD-10 codes Z45.2, Z51,
Z48.815, and Z49, respectively). Admissions for febrile neutropenia
were identified using neutropenia (ICD-10 D70) with fever and/or
sepsis (ICD-10 R50.8, R50.9, A419) and/or infection (ICD-10
Chapter A, B) as previously described for Australian patients.21

Linkage and use of the data from the NSW clinical cancer
registry, the NSW registry of BDM, and APDC was approved by

Table 2 Univariate and Multivariate Analyses for Overall Survival in all Patients Who Received Adjuvant Chemotherapy (N [ 1626)

Characteristic Univariate HR (95% CI) P Value Multivariate (95% CI) P Value

Age, y

� 60 1 < .0001 1 .010

60 to < 70 1.0 (0.97-1.3) 0.97 (0.7-1.3)

70-80 2.3 (1.8-2.9) 1.4 (1.1-1.9)

> 80 3.7 (3.0-4.8) 1.7 (1.1-2.4)

Gender

Male 1 .49 1 .43

Female 1.05 (0.91-1.2) 0.9 (0.8-1.1)

TNM

IIIa 1 < .0001 1 < .0001

IIIb 1.5 (1.1-2.0) 2.3 (1.4-3.8)

IIIc 3.0 (2.2-4.0) 5.3 (3.2-8.6)

Grade

Well/moderately differentiated 1 < .0001 1 < .0001

Poorly differentiated 1.8 (1.6-2.2) 1.6 (1.3-2.0)

Primary tumor location

Right 1 < .0001 1 .0008

Left 0.65 (0.56-0.75) 0.7 (0.57-0.86)

Charlson comorbidity index

0 1 < .0001 1 .0004

1-3 1.3 (1.1-1.6) 0.8 (0.6-1.1)

4 or more 2.9 (2.3-3.7) 1.8 (1.22-2.6)

Year diagnosed

2009 1 .79 1 .83

2010-2013 0.98 (0.83-1.2) 1.0 (0.9-1.1)

Adjuvant chemotherapy

Fluoropyrimidine only 1 < .0001 1 < .0001

Oxaliplatin doublet 0.50 (0.41-0.61) 0.54 (0.43-0.70)

Abbreviations: CI ¼ confidence interval; HR ¼ hazard ratio.
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the NSW Population and Health Services Research Ethics Com-
mittee (approval HREC/13/CIPHS/39).

Statistical Analysis
Our primary outcome was all-cause mortality, on the basis of

dates recorded in the cancer registry and BDM databases. Median
values for OS and corresponding 95% confidence interval (CI) were
calculated using Kaplan-Meier methods. To determine the impact
of age, 2 separate Cox proportional hazard models were used to
compare the effect of combination chemotherapy regimens on OS
for patients � 70 years and< 70 years. This age cut-off was used for
consistency with previous publications and international guidelines.
The following variables were included in the multivariate model:
age, gender, CCI, TNM stage, primary tumor location (defined as
right-sided [cecum to transverse colon] or left-sided [splenic flexure
to rectosigmoid]), year of diagnosis, grade, and adjuvant treatment.

Our secondary objectives were complications of adjuvant
chemotherapy by age group, as measured by number and length of
admissions for 12 months after starting treatment, 12-month
landmark mortality, and treatment discontinuation rate by
chemotherapy regimen. The number of admissions was compared
using the c2 test, and the mean duration of each admission by the
t test. All statistical analyses were performed using SAS 9.2 software
(SAS Institute, Inc, Cary, NC).

Results
Patient Characteristics (n ¼ 2164) and Impact of Age on
Receipt of Chemotherapy

The characteristics of patients are summarized in Table 1.
Approximately one-half (49.9%) of the patients were � 70 years.
Patients � 70 years were more likely to have right-sided primary tu-
mors (54.6% vs. 42.7%) and poorly differentiated histology (24.3%
vs. 18.3%), but despite these higher risk features, were less likely to
receive adjuvant chemotherapy (60.7% vs. 89.6%) or oxaliplatin
doublet chemotherapy (18.8% vs. 71.2%). Patients � 80 years
(n¼ 371) were even less likely to receive chemotherapy; only 29.4%
received adjuvant fluoropyrimidine monotherapy and 3.0% received
oxaliplatin doublet. Increasing TNM stage was significantly associ-
ated with receipt of oxaliplatin chemotherapy in patients < 70 years
(P ¼ .0006) but not in those � 70 years (P ¼ .08).

Patients � 70 years were more likely to have a higher CCI than
younger patients (39.4% vs. 23.3% with CCI > 0). Increasing CCI
was associated with decreased administration of adjuvant

chemotherapy and oxaliplatin doublet treatments in all patients
(P < .001), patients < 70 years (P ¼ .04), and patients � 70 years
(P < .0001).

Although the majority of patients on fluoropyrimidine mono-
therapy received oral capecitabine rather than intravenous
fluorouracil (83.9% vs. 16.1%), only a minority of patients treated
with oxaliplatin doublet chemotherapy had oral capecitabine
(CAPOX) rather than intravenous fluorouracil (FOLFOX) (13.7%
vs. 86.3%). There was a similar pattern of use in patients � 70 years
and < 70 years.

Complications of Chemotherapy
Chemotherapy complications were quantified with hospital ad-

missions for 12 months following initiation of adjuvant chemo-
therapy and 12-month landmark mortality.

In patients who received fluoropyrimidine monotherapy, there
was no significant difference in proportion of patients < 70 years
admitted to hospital compared with those � 70 years (49.7% vs.
49.8%; P ¼ .59) or the mean duration of admissions (5.92 vs. 5.59
days; P ¼ .66). In contrast, patients � 70 years who received
oxaliplatin were more likely to be admitted to hospital (67.0% vs.
53.5%; P ¼ .0006) and require multiple admissions (37.4%
required � 2 admissions vs. 25.5%; P ¼ .0008) than younger pa-
tients on oxaliplatin. There was a nonsignificant trend to longer
admissions (mean length of admission, 6.1 vs. 4.8 days; P ¼ .09).

In patients � 70 years, those treated with oxaliplatin were more
likely to be admitted to hospital (67.0% vs. 49.6%; P < .0001) and
require multiple admissions (37.4% � 2 admissions vs. 26.1%;
P ¼ .003) than those on fluoropyrimidine monotherapy. Although
there was no significant difference in admissions for febrile neu-
tropenia between age groups for patients on oxaliplatin (6.9% vs.
4.7%; P ¼ .19), patients � 70 years on oxaliplatin were more likely
to be admitted for febrile neutropenia than those on fluoropyr-
imidine monotherapy (6.9% vs. 1.8%; P ¼ .0008).

Patients � 70 years were also less likely to complete adjuvant
oxaliplatin doublet chemotherapy than those < 70 years, defined as
receiving < 3 months of treatment (18.7% vs. 7.6%; P < .0001).
There was no difference in completion rates between age groups for
patients on fluoropyrimidine alone (P ¼ .33).

Patients � 70 years who received adjuvant oxaliplatin doublet
chemotherapy had a significantly poorer 12-month landmark OS
than younger patients (5.9% vs. 1.7%; P ¼ .0006). This difference
between age groups was not seen in patients who received fluo-
ropyrimidine monotherapy (8.6% vs. 4.5%; P ¼ .06). Within
patients � 70 years, there was no significant difference in 12-month
OS between those who received fluoropyrimidine monotherapy
compared with those who received oxaliplatin doublet (8.6% vs.
5.9%; P ¼ .23).

Efficacy of Adjuvant Chemotherapy in the Elderly
In all patients who received adjuvant chemotherapy (n ¼ 1626),

oxaliplatin doublet chemotherapy improved OS compared with
fluoropyrimidine alone (multivariate hazard ratio [HR], 0.54; 95%
CI, 0.43-0.70; P < .0001) (Table 2, Figure 1). Increasing age,
comorbidity score, TNM stage, poorly differentiated grade, and
right-sided primary tumor location were all significantly associated
with poorer OS in both univariate and multivariate analyses. Use of

Figure 1 All-Cause Mortality by Adjuvant Chemotherapy
Regimen for all Patients (n [ 1626)
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capecitabine, rather than 5-fluorouracil, was not significantly
associated with OS in either the fluoropyrimidine monotherapy
(P ¼ .82) or oxaliplatin doublet (P ¼ .48) treatment groups.

When stratified by age, the addition of adjuvant oxaliplatin
demonstrated an OS benefit in patients < 70 years (HR, 0.56; 95%
CI, 0.41-0.77; P ¼ .0003) and � 70 years (HR, 0.72; 95% CI,
0.53-0.98; P ¼ .037), which remained significant in multivariate
analysis (Table 3, Figure 2). Gender and year of diagnosis were not
significant in univariate analysis and were therefore not included in
the final model.

Oxaliplatin doublet chemotherapy was associated with a pre-
served OS benefit in patients with significant comorbidity (patients
with CCI � 2, univariate HR, 0.40; 95% CI, 0.29-0.61;
P < .0001), including patients < 70 years (HR, 0.38; 95% CI,
0.16-0.94; P ¼ .02), but not in patients � 70 years (HR, 0.67;
P ¼ .28). Exploratory subgroup analysis demonstrated a dimin-
ishing OS benefit to oxaliplatin with increasing age, with the HR
approaching 1 (no benefit) for more elderly patients (Figure 3).

Discussion
Colon cancer is more common in the elderly, because 67 is the

median age at diagnosis, and almost 40% of patients are � 75 years
old.3,4 Despite this, the pivotal phase III trials that demonstrated the
improved OS with adjuvant oxaliplatin chemotherapy in stage III
colon cancer included a only small minority of patients older than
70 years, and consequently were unable to show a benefit to
oxaliplatin in this population.3,22

The principle finding of the current study is a statistically
significant improved OS with adjuvant oxaliplatin doublet chemo-
therapy compared with fluoropyrimidine monotherapy in
patients � 70 years with stage III colon cancer (HR, 0.72;

P ¼ .037). This difference remained significant in multivariate
analysis, which included a comorbidity index (multivariate HR,
0.64; P ¼ .005).

There is no consensus in the literature regarding the benefit of
adjuvant oxaliplatin for elderly patients. Neither DFS nor OS was
significantly improved in the small minority of elderly patients in
the MOSAIC or NSABP-07 trials, or in the ACCENT data-
base.6,7,10 In contrast, pooled individual patient data from 4 other
randomized trials, which included comorbidities as a covariate,
demonstrated improved DFS and OS with oxaliplatin.11 Similarly,
there are disparate results seen in “real-world” patient series. Anal-
ysis of the SEER database showed a persistent benefit to adjuvant
oxaliplatin in patients > 70, although with inconsistent results in
patients older than 75, and in those with significant comorbid-
ities.12,13 Other results from smaller retrospective series are con-
flicting.14,23 One common criticism of all the above studies, as well
as the current work, is the omission of an assessment for medical
frailty, an important and distinct entity to comorbidity.24

Table 3 Univariate and Multivariate Analyses for Overall Survival Stratified by Age

Characteristic

Patients < 70 Years (n [ 971) Patients ‡ 70 Years (n [ 655)

Univariate HR
(95% CI)

Multivariate
(95% CI) P Value

Univariate HR
(95% CI) Multivariate P Value

TNM

IIIa 1 1 < .0001 1 1 < .0001

IIIb 1.6 (0.9e 2.9) 1.7 (0.9-3.3) 1.5 (1.04- 2.0) 3.0 (1.4-6.4)

IIIc 4.1 (2.3-7.1) 4.4 (2.3-8.2) 2.7 (1.9-3.9) 6.4 (3.0-13.9)

Grade

Well/moderately differentiated 1 1 .0007 1 1 .01

Poorly differentiated 2.0 (1.5-2.7) 1.7 (1.3-2.5) 1.6 (1.4-2.0) 1.5 (1.1-2.0)

Primary tumor location

Right 1 1 < .0001 1 1 .39

Left 0.6 (0.5-0.8) 0.5 (0.4-0.7) 0.80 (0.6-0.9) 0.9 (0.7-1.2)

Charlson comorbidity index

0 1 1 .01 1 1 .01

1-3 0.8 (0.6-1.2) 0.6 (0.4-1.0) 1.2 (1.01-1.5) 0.9 (0.6-1.2)

4 or more 2.4 (1.4-3.9) 1.8 (0.9-3.3) 2.4 (1.8-3.2) 1.9 (1.2-3.1)

Adjuvant chemotherapy regimen

Fluoropyrimidine only 1 1 < .0001 1 1 .005

Oxaliplatin doublet 0.6 (0.4-0.8) 0.4 (0.3-0.6) 0.7 (0.5-0.9) 0.6 (0.5-0.8)

Abbreviations: CI ¼ confidence interval; HR ¼ hazard ratio.

Figure 2 All-Cause Mortality by Adjuvant Chemotherapy
Regimen Stratified by Patient Age at Diagnosis
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It is important to highlight that the elderly patients who received
oxaliplatin chemotherapy in the current study are likely to represent
a highly selected subgroup. This is supported by the observed high
completion rate of adjuvant oxaliplatin doublet chemotherapy in
patients � 70 years, although we note that data regarding chemo-
therapy dosing, dose reductions, and delays, which may provide
further insight, are not available. Consistent with other published
series, we found increasing age was associated with decreased receipt
of any adjuvant chemotherapy and oxaliplatin doublet chemo-
therapy, with only 18.8% of patients � 70 years, and 3% � 80
years, receiving oxaliplatin.13,14,25 Similarly, increasing level of
comorbidity, quantified by the CCI, was also associated with
decreased receipt of oxaliplatin (P < .0001), with most of the
elderly patients who received oxaliplatin (86.2%) having minimal
comorbidities (CCI < 2).

Despite presumed patient selection for oxaliplatin doublet ther-
apy, hospital admissions were modestly increased in elderly patients
compared with younger patients. Elderly patients who received
oxaliplatin doublet chemotherapy were more likely to be admitted
to hospital, require multiple admissions to hospital, or require
admissions for febrile neutropenia. These observations were not
seen in patients receiving fluoropyrimidine monotherapy, consistent
with current literature that shows increased toxicity in the elderly
from doublet chemotherapy, but not fluoropyriminde mono-
therapy.9,11,14,26,27 We acknowledge that the hospital admission
data do not reflect all toxicity, as at least some complications are
likely to have been managed out of hospital. It also important to
highlight we did not find a significant difference in 12-month
landmark OS between chemotherapy regimens in elderly patients.

The decision to proceed with adjuvant chemotherapy in an
elderly patient is complicated and depends on many patient health
and social factors. The patient’s age, comorbidities, and perceived
minimal benefit are the predominant reasons for withholding
adjuvant chemotherapy in elderly patients.28 Although the average
life expectancy of an otherwise healthy 70-year-old male and female

is approximately 8 years and 14 years, respectively,5 many elderly
patients have significant comorbidities that could shorten survival.
Although we used the 70-year age cut-off in our primary analysis for
consistency with other publications, our exploratory subgroup an-
alyses demonstrated, as expected, a diminishing benefit to adjuvant
oxaliplatin with increasing age. Moreover, although the benefit for
adjuvant oxaliplatin increases with time in younger patients, in older
patients it decreases, so by 3 years after surgery, the competing
mortality risks eliminate the benefit of doublet adjuvant chemo-
therapy.10 The recently presented data from the IDEA collaboration
supports a risk-adapted approach to duration of adjuvant
chemotherapy, with a shorter duration of adjuvant chemotherapy in
lower risk disease to reduce treatment-associated toxicities.29 These
data, along with our study, support the role of an individualized
treatment approach, rather than strict age cut-offs, when deter-
mining the optimal adjuvant strategy for elderly patients.

There are limitations to the current study. First, we analyzed an
observational database and acknowledge important unmeasured
confounders and selection bias between treatment groups. Second,
there was no data available regarding chemotherapy dosing, dose
reductions, or treatment delays, for any patients. However, although
it is likely that most of the elderly patients received dose modifi-
cations to improve tolerability,30 we still found an OS benefit.

Conclusion
Our study demonstrates a survival benefit to adjuvant chemo-

therapy with an oxaliplatin doublet over fluoropyrimidine alone for
patients � 70 years with stage III colon cancer. However, we also
found evidence of modestly increased hospital admission rates with
doublet treatment. The potential for survival benefit must be
weighed against the increased risk of toxicities in this population, as
well as individual patient life-expectancies, based on comorbidities
and other factors.

Clinical Practice Points
� The optimum adjuvant chemotherapy regimen for elderly
patients with stage III colon cancer is unknown, with conflicting
results from clinical trials and population studies.

� Data from an Australian cancer registry (n ¼ 2164) was inter-
rogated to examine the utilization, safety, and efficacy of adju-
vant chemotherapy in elderly patients with stage III colon cancer.

� Patients � 70 years are less likely to receive any adjuvant
chemotherapy than younger patients (61% vs. 90%) or oxali-
platin doublet adjuvant chemotherapy (19% vs. 71%).

� Addition of oxaliplatin to fluoropyrimidine as adjuvant chemo-
therapy improves survival in patients � 70 years (HR, 0.64;
P ¼ .005). This benefit remained significant in the multivariate
analysis after adjusting for age, comorbidity, TNM stage, grade,
and primary tumor location (multivariate HR, 0.72; P ¼ .037).
The survival benefit appears to reduce with increasing age.

� Patients � 70 years who received oxaliplatin chemotherapy are
more likely to be admitted to the hospital or cease treatment
early, reflecting increased toxicity in this population.

� Adjuvant oxaliplatin should be considered in elderly patients
with stage III colon cancer. Rather than use strict age cut-offs, we
recommend a comprehensive geriatric assessment of elderly

Figure 3 Unadjusted Hazard Ratio for Overall Survival Benefit
to Oxaliplatin Chemotherapy Stratified by Age. The
Circle on Each Bar Represents the Hazard Ratio for
That Age Group, and the Bar Shows the 95%
Confidence Interval

Abbreviation: CI ¼ confidence interval.
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patients, followed by a detailed discussion of the risks and ben-
efits of adjuvant treatment, to permit optimal individualization
of treatment for each patient.
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