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Abstract Abstract 
Executive Summary: Thirty-four years ago, an unprecedented thinning of stratospheric ozone was 
reported over Antarctica.The risk of a consequent increase in exposure to solar UV-B radiation (UV-B; 
wavelengths 280-315 nm) raised concerns about potentially disastrous effects on human health and the 
Earth's environment. In response, the international community mobilised and worked together to 
understand the causes and find a solution to this dramatic change in the Earth's atmosphere. In 1985, the 
Vienna Convention for the Protection of the Ozone Layer was signed, which provided the framework for 
the Montreal Protocol on Substances that Deplete the Ozone Layer, signed in 1987. In these international 
agreements, the United Nations recognised the fundamental importance of stopping and reversing ozone 
depletion and preventing its damaging effects. The Montreal Protocol, with its subsequent Amendments 
and Adjustments, was negotiated to control the consumption and production of anthropogenic ozone-
depleting substances. The Parties to the Montreal Protocol base their decisions on scientific, 
environmental, technical, and economic information provided by three Assessment Panels ... 
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Fig. 1 Linkages between the effects of depletion of stratospheric ozone, climate change, and implications for 

environment and human health 
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Thirty-four years ago, an unprecedented thinning of stratospheric ozone was reported 

over Antarctica.
21

 The risk of a consequent increase in exposure to solar UV-B radiation 

(UV-B; wavelengths 280–315 nm) raised concerns about potentially disastrous effects on 

human health and the Earth’s environment. In response, the international community 

mobilised and worked together to understand the causes and find a solution to this dramatic 

change in the Earth’s atmosphere. In 1985, the Vienna Convention for the Protection of the 

Ozone Layer was signed, which provided the framework for the Montreal Protocol on 

Substances that Deplete the Ozone Layer, signed in 1987.  In these international agreements, 

the United Nations recognised the fundamental importance of stopping and reversing ozone 

depletion and preventing its damaging effects. The Montreal Protocol, with its subsequent 

Amendments and Adjustments, was negotiated to control the consumption and production of 

anthropogenic ozone-depleting substances. The Parties to the Montreal Protocol base their 

decisions on scientific, environmental, technical, and economic information provided by 

three Assessment Panels (Box 1). 

The implementation of the Montreal Protocol has successfully prevented the global depletion 

of the stratospheric ozone layer.
94

 Concentrations of ozone depleting substances have been 

declining in the stratosphere since the late 1990s. While significant seasonal ozone depletion 

over Antarctica has occurred annually since the 1980s (called the “ozone hole”), there have 

been small, but significant, trends toward higher amounts of total column ozone in Antarctica 

in spring over the period 2001-2013. Global mean total ozone has been projected to recover 

to pre-1980s levels by about the middle of the 21
st
 century, assuming full compliance to the 

Montreal Protocol.
94

. 

Many of the chemical compounds controlled by the Montreal Protocol are not only ozone 

depleting substances but also potent greenhouse gases.
53

 Modeling studies indicate that, in the 

absence of the Montreal Protocol, global mean temperatures would have risen by more than 

2C by 2070, due to the warming effects from ozone-depleting substances alone.
25

 

Furthermore, the adoption of the Kigali Amendment to the Montreal Protocol in 2016 limits 

the production and consumption of hydrofluorocarbons, powerful greenhouse gases that are 

used as substitutes to ozone-depleting substances.
64

 This amendment has further broadened 

and strengthened the scope of the Montreal Protocol, creating an effective international treaty 

that not only addresses stratospheric ozone depletion, but is doing more to protect global 

climate than any other human actions to date.
11, 60, 83, 96

   

Stratospheric ozone depletion, the Montreal Protocol, and the 
Environmental Effects Assessment Panel 

BOX 1. The Environmental Effects Assessment Panel  

The Environmental Effects Assessment Panel is one of the three Assessment Panels 
established by the Montreal Protocol to assess various aspects of stratospheric ozone 
depletion. These three Panels have complementary charges. The Scientific Assessment 
Panel assesses the status of the depletion of the ozone layer and relevant atmospheric 
science issues. The Technology and Economic Assessment Panel provides technical and 
economic information on alternative technologies to replace ozone depleting substances. The 
Environmental Effects Assessment Panel (EEAP) assesses the full range of potential effects 
of stratospheric ozone depletion, in conjunction with climate change, on UV radiation at the 
Earth’s surface and consequent effects on human health, aquatic and terrestrial ecosystems, 
biogeochemical (e.g., carbon, nitrogen, metals, contaminants) cycles, air quality, and 
materials for construction and other uses. Forty-three scientists from eighteen countries 
contributed to the 2018 EEAP Quadrennial Assessment.  
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One of the important reasons for the success of the Montreal Protocol has been its foundation 

on high quality science, which not only improves our understanding of the causes and 

mechanisms of ozone depletion, but also of the potential environmental effects of these 

atmospheric changes. The Environmental Effects Assessment Panel (EEAP) is specifically 

charged with providing assessments of the state of the science on the environmental effects of 

ozone depletion and consequent changes in UV radiation as well as interactions with global 

climate change (Box 1). Because of the direct involvement of the Montreal Protocol in 

mitigating climate change, as well as the strong physical and biological linkages that exist 

between the effects of stratospheric ozone depletion and climate change, the Environmental 

Effects Assessment Panel necessarily addresses the consequences of ozone depletion in the 

context of a changing global climate.  

This Executive Summary presents key findings from the most recent EEAP Quadrennial 

Assessment and considers the significant societal implications of environmental effects.  The 

multiple ways by which the Montreal Protocol is contributing to environmental sustainability 

and human health and well-being are highlighted, together with their contribution to, and 

consistency with, many of the United Nations Sustainable Development Goals (Box 2). 

 

BOX 2. The United Nations Sustainable Development Goals (SDGs) addressed by 
the 2018 Quadrennial Assessment of the Environmental Effects Assessment Panel  

 

Our findings address the following UN Sustainable Development Goals (SDG):  2. Zero hunger, 3. 
Good health and well-being, 6. Clean water and sanitation, 7. Affordable and clean energy, 9. 
Industry, innovation and infrastructure, 11. Sustainable cities and communities, 12. Responsible 
consumption and production, 13. Climate action, 14. Life below water, 15. Life on land. More 
information on these SDGs can be found at: https://www.un.org/sustainabledevelopment/sustainable-
development-goals/  

https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
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In-depth information on stratospheric ozone depletion and its environmental effects can be 

found in the full Assessments published by the Ozone Secretariat of the United Nations 

Environment Programme (https://ozone.unep.org) and elsewhere (Photochemical & 

Photobiological Sciences journal).
2, 6, 10, 46, 75, 90, 93

 By focusing on the interacting effects of 

stratospheric ozone dynamics, UV radiation, and climate change, the report from the 

Environmental Effects Assessment Panel complements that of the Intergovernmental Panel 

on Climate Change (https://www.ipcc.ch; summarised in ref.
59

) to provide a comprehensive 

assessment of the environmental effects of these global changes in the Earth’s atmosphere. 

 

KEY FINDINGS AND HIGHLIGHTS 

Depletion of stratospheric ozone leads to increased UV-B radiation at the Earth’s 

surface (Chapter 1).  However, because of the success of the Montreal Protocol,
94

 present-day 

increases in UV-B radiation due to stratospheric ozone depletion have been negligible in the 

tropics, small (5-10%) at mid-latitudes (30-60°), and large only in polar regions. With the 

predicted recovery of stratospheric ozone over the next several decades, the clear-sky 

noontime UV Indexa is expected to decrease at all latitudes outside the tropics, with the 

greatest decreases over Antarctica (Chapter 1 and refs
6, 52

) New projections of the UV Index 

for the end of the 21
st
 century relative to the current decade suggest a decrease by 35% over 

Antarctica, and up to 6% over mid-latitudes (Chapter 1 and refs
6, 52

 These future projections 

are, however, uncertain because stratospheric ozone levels will be controlled not only by 

decreasing ozone depleting substances, but also by climate change due to increases in 

greenhouse gases for the rest of the 21
st
 century. 

Future changes in surface solar UV radiation of all wavelengths will depend on changes in 

clouds, aerosols, and surface reflectivity (e.g., from snow and ice cover) (Fig. 2). Climate 

change is altering cloud cover, with some regions becoming cloudier and others less cloudy.
73

 

Increased cloud cover generally tends to reduce UV radiation at the Earth’s surface, but 

effects vary, for example, with the type of clouds.
40

 Aerosols (solid and liquid particles 

suspended in the atmosphere (Chapter 6) reduce and scatter UV radiation. The type and 

amounts of aerosols in the atmosphere are affected by the emissions of air pollutants, 

volcanic activity, as well as the frequency and extent of wildfires and dust storms, and many 

other factors that are being affected by climate change (Chapters 1, 5, and refs
6, 75, 91

). In 

heavily polluted areas (e.g., in southern and eastern Asia), expected improvements in air 

quality are predicted to result in levels of UV radiation increasing towards pre-industrial 

levels (i.e., before the occurrence of extensive aerosol pollution), with the extent of changes 

contingent on curtailing the emissions of air pollutants.  

High surface reflectance from snow or ice cover can enhance incident surface UV radiation 

because some of the reflected UV radiation is scattered back to the surface by air molecules, 

aerosols, and clouds in the atmosphere.
35

 However, climate change-driven reductions in ice 

or snow cover in polar regions and mountains reduce the reflection of UV radiation from the 

Earth’s surface and thus may reduce above-ground UV radiation in these regions (Chapter 1).  

                                                 
a
 UV Index is an international standard measure of the strength of sunburn-producing UV radiation at a 

particular place and time. 

1 Stratospheric ozone, climate change, and UV radiation at the Earth’s 
surface 

https://ozone.unep.org/
https://www.ipcc.ch/
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1.1  Exposure to UV radiation and effects of climate change on exposure 

The effect of UV radiation on organisms (including humans), natural organic matter, 

contaminants and materials depends on their exposure to the radiation (Fig. 2). This is 

determined by several factors besides stratospheric ozone depletion, including the effects of 

global climate change (Chapters 1 and 5, and refs
6, 75, 92

). Unlike stratospheric ozone 

depletion, these climate change-driven effects modify exposure not just to UV-B radiation 

but also to solar radiation in the ultraviolet-A (UV-A; 315-400 nm) and visible (400-700 nm) 

parts of the solar spectrum. These changes are important as many of the environmental and 

health effects caused by exposure to UV-B radiation are also influenced, to varying degrees, 

by UV-A and visible radiation (Chapters 2, 3, and 4). 

For human health, behaviour is an important regulator of exposure to UV radiation. The 

exposure of individuals to UV radiation varies from one-tenth to ten times the average for the 

population,
26

 depending on the time people spend indoors vs outdoors and under shade 

structures. The exposure of the skin or eyes further depends on the use of sun protection such 

as clothing or sunglasses. Warming temperatures and changing precipitation as a result of 

climate change will alter human behaviours in relation to sun exposure,
95

 but the direction 

and magnitude of effect is likely to be highly variable across the globe. The dose of UV 

radiation to biological structures in the skin is mediated by skin pigmentation, with darker 

skin providing significant protection against skin cancers. If humans are displaced, for 

example, due to climate-change induced sea-level rise,
70

 (e.g., darker-skinned people moving 

from low to higher latitudes) they will encounter conditions of UV radiation that may be 

different to those to which they are accustomed.  

Vegetation cover modifies the amount of sunlight reaching many terrestrial organisms e.g.,
63

 

and shading influences the exposure of construction materials to UV radiation. Modifications 

 

Fig. 2 Linkages between stratospheric ozone depletion, UV radiation, and climate change, including 

environmental effects and potential consequences for human well-being, food and water security, and the 

sustainability of ecosystems (solid lines), with important feedback effects driven by human action (double-

arrow solid lines) and other processes (dashed lines). 
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of that cover, for example, as a result of drought, fire, and pest-induced die-back of forest 

canopies induced by climate change will have profound effects on the exposure of terrestrial 

organisms to UV radiation.e.g.,
63

 In addition, shifts in the seasonal timing of critical life cycle 

events such as plant flowering, spring bud-burst in trees, and animal emergence and 

breeding
15, 22, 77

 will change exposure to UV radiation as UV radiation naturally varies with 

season.  

As plants and animals move poleward,
22

 into higher elevations,
72

 or deeper into lakes, and 

oceans
81

 in response to climate change, they are exposed to conditions of UV radiation that 

may be different to those to which they are adapted. Furthermore, reductions in ice or snow 

cover in polar regions as a result of global warming will increase the exposure to UV 

radiation of soils and aquatic ecosystems that would previously have been below the snow or 

ice.
35

 

The penetration of UV radiation into aquatic ecosystems depends on the transparency of 

water, the amount of dissolved organic matter, and ice cover.
89, 91

. Increases in extreme 

weather events that increase the input of dissolved organic matter and sediments into coastal 

and inland waters can reduce water clarity, reducing exposure of aquatic ecosystems to UV 

radiation.
89, 91

 Reductions in the thickness and duration of snow and ice cover and global 

changes in the depth of the warmer, surface mixed layers of lakes and oceans, are altering the 

levels of exposure of aquatic organisms to UV radiation (Chapter 4). Previously, climate 

change was expected to increase exposure to UV radiation by causing shallower mixed 

layers, but new data show deeper mixed layers in lakes and oceans in some regions and 

shallower mixed layers in others (Chapter 4). 

These climate change-driven effects can result in either increases or decreases in exposures to 

solar UV radiation, depending on location, time of year, individual species, and other 

circumstances.  Changes in exposure and sensitivity to solar UV radiation, driven by ongoing 

changes in stratospheric ozone and climate, have the potential to affect humans, life on Earth 

and the environment, including materials used in infrastructure and for other purposes, with 

consequences for the health and well-being of people and ecosystem sustainability.  Some of 

these effects are highlighted below. These findings, together with others described in the 

current Quadrennial Assessment of 2018, address 11 of the 17 United Nations Sustainable 

Development Goals (Box 2). 

 

 

2.1 Effects on human health  

 Higher exposure to UV radiation increases the incidence of skin cancers and other 

UV-induced human diseases, such as cataracts and photosensitivity disorders (Chapter 2).  

Increases in the incidence of skin cancer over the last century appear largely attributable to 

changes in behaviour that increase exposure to UV radiation; these changes highlight how 

susceptible human populations are to higher exposure to UV radiation, as would have 

occurred with uncontrolled depletion of stratospheric ozone.  Skin cancer is the most 

common cancer in many developed countries with predominantly light-skinned populations 

(Chapter 2). For example, there are over 90,000 new skin cancers compared with ca 3000 

new cases of colorectal cancer in New Zealand each year. Skin cancer is also the most 

expensive cancer in many of these countries (Chapter 2). The estimated cost of treating 

cutaneous malignant melanoma in the USA was estimated at ca USD 457 million in 2011 and 

predicted to increase to ca USD 1.6 billion in 2030.
28

 Exposure to UV radiation accounts for 

60-96% of the risk of developing cutaneous malignant melanoma in light-skinned 

2 Consequences of changing exposure to UV radiation on humans and 
the environment 



Executive Summary 

EEAP 2018 Quadrennial Assessment vii 

populations. It is estimated that ca 168,000 new melanomas in 2012 were attributable to 

‘excess’ exposure to UV radiation (above that of a historical population with minimal 

exposure), as a result of population changes in lifestyle, from sun avoidance to sun-seeking 

behaviour.
4
 Modelling studies show that implementation of the Montreal Protocol has 

avoided devastating effects on human health, including large increases in skin cancer 

incidence in light-skinned populations, resulting from high levels of UV radiation (e.g., UVI 

> 40 in the tropics by 2065.
54

) (Box 3). 

Exposure to UV radiation contributes to the development of cataract, the leading cause of 

vision impairment globally (12.6 million blind and 52.6 million visually impaired due to 

cataract in 2015).
23

 Particularly in low-income countries – often with high ambient UV 

BOX 3. Environmental effects in the ‘world avoided’ 

This assessment focusses largely on the environmental effects of changes in stratospheric ozone 
that have occurred, and are predicted to occur, due to the effective implementation of the Montreal 
Protocol and its Amendments.  At present, lack of relevant research has prevented us from more 
fully assessing the health and environmental impacts that would have resulted if the stratospheric 
ozone layer had not been protected by actions of the Montreal protocol. However, it is worth noting 
that current understanding of this ‘world avoided’, provides the context for the effects observed 
with the successful implementation of the Montreal Protocol. 

Several modelling studies reported changes in the stratospheric ozone layer that would have 
occurred without the Montreal Protocol, i.e., in a ‘world avoided’ scenario (for example,

55
). All point 

to progressive loss of stratospheric ozone that would have accelerated over time and extended to 
affect the entire planet by the second half of this century. This collapse in global stratospheric 
ozone would have resulted in UV Index values above the current extreme of 25 becoming 
common-place over almost all inhabited areas of the planet, and as high as 40 in the tropics, 
nearly five times the UV Index that is currently considered ‘extreme’ by the World Health 
Organization. Illustrated below is the comparison of the predicted UV Index (UVI; left) with that of 
the ‘world avoided’ (right) (from ref.

54
). 

 

Combining these models of stratospheric ozone and UV radiation with understanding of the links 
between exposure to excessive UV radiation and the risk of skin cancers has allowed some 
quantitative estimates of the incidence of skin cancer in the ‘world avoided’. Although different 
studies have considered different time-scales and/or different geographical regions, the successful 
implementation of the Montreal Protocol has prevented many millions of cases of skin cancers. For 
example, a report by the United States Environment Protection Agency,

82
 showed that when 

compared with a situation of no policy controls, full implementation of the Montreal Protocol and its 
Amendments has avoided more than 250 million cases of skin cancer in the USA alone. The same 
report estimates that the Montreal Protocol will have prevented more than 45 million cases of 
cataracts in the USA. Substantial gaps in our knowledge currently limit our ability to quantitatively 
assess the full range of human and environmental benefits of the successful implementation of the 
Montreal Protocol.  
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radiation – access to cataract surgery may be limited, making this not only a major health 

concern but a major source of loss of livelihood and economic damage. The role of exposure 

to UV vs visible radiation in age-related macular degeneration remains unclear. Nevertheless, 

in aging populations worldwide, this is a major cause of visual impairment that currently has 

limited treatment options. Understanding risk factors and thus potential prevention is of 

critical importance (Chapter 2).  

Concern about high levels of UV-B radiation because of stratospheric ozone depletion was an 

important driver for the development of programs for sun protection in many countries. These 

programs focus on promoting changes in people’s behaviour, supported by structural and 

policy-level interventions.
68

 Sun protection programs have been shown to be highly cost-

effective in preventing skin cancers.
27

 Behavioural strategies need to be informed by the real-

time level of ambient UV radiation (provided by the UVI) and include controlling time 

outdoors together with using clothing, hats, sunscreen and sunglasses to reduce exposure to 

UV radiation. Behavioural changes can be facilitated by providing shade in public spaces 

such as parks, swimming pools, and schools, and improving access to sunscreen.
68

 

Exposure to UV radiation also has benefits for human health. For example, exposure of the 

skin to UV radiation results in the production of vitamin D and is the major source of this 

vitamin for much of the world’s population. Vitamin D is critical to healthy bones, 

particularly during infancy and childhood. There is also growing evidence of a range of other 

benefits of exposure to UV radiation through both vitamin D and non-vitamin D pathways; 

for example, for systemic autoimmune diseases (such as multiple sclerosis),
45

 in the 

prevention of myopia (short sightedness; Chapter 2), and reducing non-cancer mortality.
43

 

Recent research suggests that the benefits for reduced mortality may be substantial.
44

 

Gaps in our knowledge prevent calculations of the amount of UV radiation necessary to 

balance the risks with benefits, particularly as this likely varies according to age, sex, skin 

type, and location. Projected changes in climate will alter the balance of risks vs benefits for 

human populations living in different regions. For example, lower ambient UV-B radiation at 

high latitudes will increase the risk of vitamin D deficiency where this risk is already 

substantial. Conversely, warmer temperatures may encourage people in cooler regions to 

spend more time outdoors, increasing exposure to not just UV-B radiation, but all 

wavelengths of solar radiation, and related risks of skin cancer and cataract (Chapter 2).  

2.2 Effects on air quality 

UV radiation drives photochemical reactions of many emitted chemical compounds, 

generating secondary pollutants, including ground-level ozone and some types of particulate 

pollutants. Future recovery of stratospheric ozone and climate may change ground-level 

ozone via decreases in UV radiation and increases in downward transport of stratospheric 

ozone (Chapter 6), with important consequences for human health and the environment. 

Modelling studies for the USA indicate that reductions in UV radiation due to stratospheric 

ozone recovery will lead to decreased ground-level ozone in some urban areas but slight 

increases elsewhere.
30

 

Changes in UV radiation and climate can have major impacts on human health by affecting 

air quality (Chapter 6). A number of recent international assessments have concluded that 

poor air quality is a significant global health issue and is estimated to be the largest cause of 

deaths globally due to an environmental factor; for example, exposure to fine particulate 

matter (PM2.5) caused 4.2 million deaths in 2015.
14

 Because large populations are already 

affected by poor air quality, even small relative changes in UV radiation can have significant 

consequences for public health. 
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2.3  Effects on agriculture and food production 

There is little evidence to suggest that modest increases in solar UV radiation have 

any substantial negative effect on crop yield and plant productivity (Chapter 3). How food 

production would have been impacted by large increases in solar UV radiation in the absence 

of the Montreal Protocol is unclear. One analysis, based on data from a number of field 

studies conducted in regions where stratospheric ozone depletion is most pronounced (i.e., 

high latitudes), concluded that a 20% increase in UV radiation equivalent to a 10% reduction 

in stratospheric ozone would reduce plant production by only about 6% (i.e., a 1% reduction 

in growth for every 3% increase in UV radiation).
7
 To what extent this relationship would 

hold for levels of UV radiation > 2-fold higher than present (i.e., the “world avoided” 

scenario (Box 3)) is uncertain and represents an important knowledge gap. 

It is likely that by contributing to the mitigation of climate change through phasing out of the 

ozone depleting substances and some of their substitutes that increase global warming, the 

Montreal Protocol has reduced the vulnerability of agricultural crops to rising temperatures, 

drought, and extreme weather events.
3
 It is now clear that ozone depletion in the southern 

hemisphere is altering regional atmospheric circulation patterns in this part of the globe
94

 

which, in turn, affect weather conditions, sea surface temperatures, ocean currents, and the 

frequency of wildfires.
13, 31, 38, 41, 58

 At a regional scale, increases in rainfall in the southern 

hemisphere, driven by stratospheric ozone depletion and climate change, have been linked to 

increases in agricultural productivity in South America (Box 4); however, these beneficial 

effects may reverse as the stratospheric ozone ‘hole’ recovers. In the northern hemisphere, 

similar, but smaller, effects of stratospheric ozone depletion on climate may be occurring 

(Chapter 1), but there are no reports as yet linking these changes to environmental effects. 

Climate change factors including drought, high temperatures, and rising carbon dioxide levels 

can modify how UV radiation affects crop plants, but effects are complex and often 

contingent on growth conditions. In some cases these factors can increase sensitivity to UV 

radiation (e.g., elevated carbon dioxide can weaken defenses against UV radiation in maize.
87

 

In other cases, exposure to UV radiation can alter the effects of climate change, such as 

increasing the tolerances of crop plants to drought.
67

 Reduced UV radiation resulting from the 

recovery of stratospheric ozone may lead to increases in ground-level ozone in rural areas 

that could negatively affect crop yields (Chapter 6). Understanding these, and other, UV-

climate change interactions can inform growers and breeders as to relevant agricultural 

practices for maintaining crop yields in the face of evolving environmental change. 

Climate change factors including drought, high temperatures, and rising carbon dioxide levels 

can modify how UV radiation affects crop plants, but effects are complex and often 

contingent on growth conditions. In some cases these factors can increase sensitivity to UV 

radiation (e.g., elevated carbon dioxide can weaken defenses against UV radiation in maize.
87

 

In other cases, exposure to UV radiation can alter the effects of climate change, such as 

increasing the tolerances of crop plants to drought.
67

 Reduced UV radiation resulting from the 

recovery of stratospheric ozone may lead to increases in ground-level ozone in rural areas 

that could negatively affect crop yields (Chapter 6). Understanding these, and other, UV-

climate change interactions can inform growers and breeders as to relevant agricultural 

practices for maintaining crop yields in the face of evolving environmental change. 

 

 

 

BOX 4.  Environmental effects of ozone-driven climate change in the southern 
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hemisphere. 

 

Stratospheric ozone depletion and increases in greenhouse 
gases have both had measurable impacts on southern 
hemisphere climate, moving the winds and associated 
latitudinal bands of high and low rainfall further south (A). As 
a result, aquatic and terrestrial ecosystems, including 
agriculture, have been affected in several ways (B). For 
instance, the productivity of the Southern Ocean is changing, 
decreasing over much of the ocean, but increasing in other 
areas with corresponding changes in carbon dioxide uptake 
from the atmosphere. 

 

Arrows indicate direction of effects on biodiversity, up = positive, down = negative effects, two-way 
arrows indicate changed biodiversity. 

On land, changing rainfall patterns have resulted in increased agricultural productivity in some 
regions and drought conditions in others (C). Drier conditions have resulted in increasing salinity in 
lakes and changed lake fauna in East Antarctica and the eastern Andes. 

Arrows indicate direction of effects on biodiversity, up = positive, down = negative effects, two-way 
arrows indicate changed biodiversity. 

UV radiation can also have beneficial effects on plants and these effects are often mediated 

by specific photoreceptors that act to regulate plant growth and development.
34

 These non-

damaging effects include alterations in plant chemistry that then lead to changes in the 

nutritional quality of food
74

 and plant resistance against pests and pathogens.
20

 Consequently, 

decreases in exposure to UV radiation as a result of changes in stratospheric ozone and 

climate or changing agricultural practices (e.g., planting dates or sowing densities), may 

reduce plant defenses and thereby affect food security in ways other than just the direct 



Executive Summary 

EEAP 2018 Quadrennial Assessment xi 

effects on yield.
8
 For certain vegetable crops, UV radiation is increasingly being used to 

manipulate plant hardiness, food quality and pest resistance.
85

  

2.4  Effects on water quality and fisheries 

Changes in exposure to UV radiation and mixing depths are altering the fundamental 

structure of aquatic ecosystems and consequently their ecosystem services (e.g., water 

quality, fisheries productivity) in regionally-specific ways. The larvae of many commercially 

important fish species are clear-bodied and sensitive to damage induced by UV radiation. 

This sensitivity, combined with the distribution of these larvae in surface waters with high 

exposure to UV radiation, has the potential to reduce the survival of first-year fish and 

subsequent harvest potential for fisheries.
32

 In contrast, reductions in the transparency of 

clear-water lakes to UV radiation may increase the potential for invasions of UV-sensitive 

warm-water species that can negatively affect native species.
79

  

Heavy precipitation and melting of glaciers and permafrost associated with climate change 

are increasing the concentration and colour of UV-absorbing dissolved organic matter and 

particulates (Chapters 4 and 5). This is leading to the “browning” of many inland and coastal 

waters, with consequent loss of the valuable ecosystem service in which solar UV radiation 

disinfects surface waters of parasites and pathogens.
89

 Region-specific increases in the 

frequency and duration of droughts have the opposite effect, increasing water clarity and 

enhancing solar disinfection, as well as altering the depth distribution of plankton that 

provides critical food resources for fish.
81, 91

 

2.5  Effects on biogeochemical cycles, climate system feedbacks, and biodiversity  

Changes in stratospheric ozone and climate affect biogeochemical cycles driven by 

sunlight and, in turn, greenhouse gases and water quality. Exposure to solar UV and visible 

radiation can accelerate the decomposition of natural organic matter (NOM, e.g., terrestrial 

plant litter, aquatic detritus, and dissolved organic matter), and the transformation of 

contaminants (see section 2.6). Photodegradation of NOM results in the emission of 

greenhouse gases including carbon dioxide and nitrous oxide.
5, 17

 Increases in droughts, 

wildfires, and thawing of permafrost soils driven by climate change have the potential to 

increase photodegradation (for example,
1
), thereby fueling a positive feedback on global 

warming; however, the scale of this effect remains an important knowledge gap (Chapter 5).  

Species of aquatic and terrestrial organisms differ in their tolerances to UV radiation and 

these differences can lead to alterations in the composition and diversity of ecological 

communities under conditions of elevated UV radiation (Chapters 3 and 4). UV radiation also 

modifies herbivory and predator-prey interactions, which then alter trophic interactions, 

energy transfer, and the food webs in ecosystems.
42

 Presently, ozone-driven changes in 

regional climate in the southern hemisphere
3, 13, 31, 38, 39, 41, 58, 65

 are threatening the habitat and 

survival of a number of species that grow in the unique high-elevation woodlands of the 

South American Altiplano
19

 as well as for mosses and other plant communities in 

Antarctica,
66

 but enhancing reproductive success of some marine birds and mammals (ref.
86

, 

Box 4). To what extent the Montreal Protocol has specifically contributed to the maintenance 

of biodiversity in ecosystems is unknown, but losses in species diversity in aquatic 

ecosystems are known to be linked to high exposure to UV radiation and can cause declines 

in the health and stability of ecosystems and the services they provide to humans.
91

  

2.6  Effects on contaminants and materials  

Escalating releases of contaminants into the environment combined with changes in 

climate and stratospheric ozone impact human health and terrestrial and aquatic ecosystems. 
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UV radiation is one of the key factors that influences the biogeochemical cycling of 

contaminants and their degradation via direct and indirect photoreactions. However, effects 

of climate change, such as heavy precipitation events or droughts also have large impacts on 

the photodegradation of contaminants by decreasing or increasing their exposure to solar UV 

radiation. Moreover, increased or decreased runoff of coloured dissolved organic matter 

affects the balance between direct and indirect photoreactions in aquatic ecosystems (Chapter 

5). These effects of climate change depend on local conditions, posing challenges for 

prediction and management of contaminant effects on human health and the environment.    

Exposure to UV-B radiation plays a critical role in altering the toxicity of contaminants 

(Chapters 4 and 5). Exposure to UV radiation increases the toxicity of contaminants such as 

pesticides and polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms such as fish 

and amphibians. In contrast, exposure to UV-B radiation transforms the most toxic form of 

methylmercury to forms that are less toxic, reducing the accumulation of mercury in fish. 

However, potential long-term increases in dissolved organic matter will decrease underwater 

exposure to UV radiation in inland waters in some regions, such as southern Norway. This 

may then contribute to the already observed increases in methylmercury in fish that would 

likely occur as a consequence of reduced water transparency to UV radiation.
62

 Solar 

radiation also plays a major role in the degradation of many organic pollutants and water-

borne pathogens (Chapter 5). This process of photodegradation by solar UV radiation may be 

affected by changes in stratospheric ozone, but other factors such as dissolved organic matter 

are more important in regulating underwater UV radiation and so have a greater effect on 

photodegradation (Chapter 5). Advances in modeling approaches are allowing improved 

quantification of the effects of global changes on the fate of aquatic pollutants.  

Sunscreens are in widespread use, including in cosmetics, as part of the suite of approaches to 

sun protection for humans. However, it is now recognised that sunscreens wash into coastal 

waters, with potential effects on aquatic ecosystems. The toxicity of artificial sunscreens to 

corals,
78

 sea urchins,
16

 fish,
24

 and other aquatic organisms, has led the state of Hawaii, USA, 

to pass legislation banning the use of some sunscreens, and the European Union to consider 

similar legislation.
88

 

Microplastics (plastic particles < 5mm) are now ubiquitous in the world’s oceans and pose an 

emerging serious threat to marine ecosystems with many organisms now known to ingest 

them.
12

 Microplastics are formed by the UV-induced degradation and breakdown of plastic 

products and rubbish exposed to sunlight. Microplastic pollutants occur in up to 20% or more 

of fish marketed globally for human consumption.
80

 Although the toxicity of microplastics 

and smaller nanoplastics is unknown, higher temperatures and levels of UV radiation 

accelerate the fragmentation of plastics, potentially threatening food security.  

Exposure to solar UV radiation damages the functional integrity and shortens the service 

lifetimes of organic materials used in construction, such as plastics and wood that are 

routinely exposed, e.g., in roofing and pipelines (Chapter 7). Until very recently, plastics used 

in packaging and building were selected and optimised on the basis of durability and 

performance (Chapter 7). However, the present focus on increased sustainability, for 

example, the trend towards ‘green buildings’, now requires such choices to be 

environmentally acceptable as well. This includes the increased use of wood, which is 

renewable, carbon-neutral and low in embodied energy, in place of plastics, where 

appropriate.  Some of these materials are vulnerable to accelerated aging under exposure to 

UV radiation.  Current efforts are moving forward to identify and develop novel, safer, 

effective, and ‘greener’ additives (colourants, plasticisers, and stabilisers) for plastic 
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materials and wood coatings.  Harsher weathering climates, as predicted due to climate 

change, would require even more effort along this direction.  

Trifluoracetic acid (TFA), a substance regulated under the Montreal Protocol, is produced 

naturally and commercially. There are multiple anthropogenic sources that will release 

trifluoroacetic acid (TFA) into the environment. Sources relevant to the Montreal Protocol 

include the substitutes for CFCs, the HCFCs, HFCs, and HFOs. These chemicals are known 

to degrade to TFA in the atmosphere (Fig. 3; Box 5) but contribute to only a slight increase in 

TFA concentrations in surface water. This is not expected to pose a risk to humans or the 

environment.
71

 

 

 

 

Fig. 3 Trifluoracetic acid (TFA) formed from HFCs and HFOs in the atmosphere will rapidly partition from 

air to water in the atmosphere. It will combine with cations in soil and surface water and accumulate in 

endorheic water bodies (salt lakes) and the oceans (modified from ref.
71

, with permission). 

BOX 5. The environmental effects of replacements for ozone depleting substances 

One of the advantages of chlorofluorocarbons (CFCs) was that they were inert in the lower 
atmosphere and had no direct impact on air quality. Their replacements have been specifically 
chosen to be less stable, and since these compounds are directly relevant to the implementation 
of the Montreal Protocol, their impacts on air and environmental quality need to be considered. 
Focusing on refrigeration, these replacements include hydrofluorocarbons (HFCs) and 
hydrofluoroolefins (HFOs), hydrocarbons and ammonia.  
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The Montreal Protocol has been successful in preventing the global depletion of 

stratospheric ozone and consequently large-scale increases in solar UV-B radiation and has 

therefore prevented major adverse impacts on human health and the environment (Box 3). 

We remain confident in our qualitative predictions of the effects on human health and the 

environment that have been avoided largely because the Montreal Protocol has successfully 

controlled stratospheric ozone depletion. However, quantification of many of the benefits 

deriving from the success of the Montreal Protocol remains a major challenge, and the future 

trends in UV radiation exposure remain uncertain considering climate change and the extent 

of human response. 

3 Conclusions and knowledge gaps  

BOX 5. Continued 

HFCs and HFOs 

Trifluoracetic acid (TFA) is a persistent substance that is formed in the atmosphere from several 
HCFCs, HFCs, and HFOs. There are also many other sources of TFA in the environment, but 
since they are unregulated, there are virtually no data on global production and release to the 
environment.

69
 HFCs degrade slowly in the atmosphere (1-100 years) and so become globally 

distributed. By contrast, HFO-1234yf degrades to TFA rapidly (days - weeks). As a result, 
breakdown will occur closer to the regions where HFO-1234yf is released.  This potential results 
in localised, higher concentrations of TFA in surface waters than from HFCs.

36, 47, 84
 Even so, there 

is no evidence to date to suggest that these local depositions of TFA will result in risks to the 
environment, especially when eventual dilution occurs in the oceans.  

Estimates of production of TFA in China, the USA, and Europe
84

 and assuming no dilution, would 
be several orders of magnitude less than the chronic “no observable effect concentration” (NOEC) 
of 10,000,000 ng L

-1
 for TFA-Na salt from a microcosm study.

29
  

Overall, there is no new evidence that contradicts the conclusion of our previous Assessments 
that exposure to current and projected concentrations of salts of TFA in surface waters present a 
minimal risk to the health of humans and the environment. A recent review of this topic 

56
 reached 

a similar conclusion.  

 

Hydrocarbons  

The release of hydrocarbons (such as propane and n-butane) used as ODS replacements will add 
to the burden of hydrocarbons in the atmosphere, and potentially increase the concentration of 
ground-level ozone.  

There are few estimates of the effects of emissions of hydrocarbon refrigerants on air quality in 
the refereed literature. One recent assessment for three cities in the USA

37
 highlights current 

uncertainty, providing a “worst case” increase in tropospheric ozone of around 13 μg m
-3

, but a 
realistic estimate of 0.3 μg m

-3
.  These figures compare with a current annual peak tropospheric 

ozone concentration greater than 120 μg m
-3

(Chapter 6). 

 

Ammonia  

Ammonia in the atmosphere reacts with several compounds to produce aerosols and hence 
increase concentrations of particulate air pollutants (PM2.5).  However, full replacement of current 
emissions of CFCs, HCFCs, and HFCs by ammonia (estimated to total 170,000 tonnes per 
annum: G. Velders, personal. comm., Feb. 2018; (Chapter 6) is small compared to estimated 
annual ammonia emissions from agriculture (34,500,000 tonnes,

9
) or from industrial and 

residential activities (8,500,000 tonnes,
49

). 
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Unexpected increases in emissions of CFC-11 that were recently reported
51

 are currently 

expected to have only small effects on stratospheric ozone depletion,
94

 and therefore also on 

human health or the environment.  However, were such unexpected emissions to persist and 

increase in the future, or new threats emerge, effects on human health and the environment 

could be substantial. New threats might include “geoengineering” activities proposed to 

combat the warming caused by greenhouse gases,
33

 which could have consequences for UV 

radiation reaching the Earth’s surface. In particular, proposals to inject sulfuric aerosols into 

the stratosphere to reduce solar radiation at the Earth’s surface
18

 would likely have important 

side effects for stratospheric ozone and UV radiation. Sulfate aerosols could accelerate 

stratospheric ozone loss if substantial amounts of ODSs remain in the atmosphere. The 

combined changes in absorption by ozone and scattering by sulfate would have spectrally 

complex consequences for the transmission of UV radiation to ground-level, and the ratio of 

direct to diffuse UV radiation would be systematically larger.
48, 57, 76

 

Meeting the challenge of improved quantification of the environmental effects of future 

changes in stratospheric ozone requires addressing several significant gaps in current 

knowledge. First, we need a better understanding of the relative effectiveness of different 

wavelengths of solar radiation (i.e. the biological spectral weighting functions) in altering the 

fundamental responses of a diversity of organisms. This would allow better attribution of 

changes to exposure, specifically to UV-B radiation (and thus related to stratospheric ozone 

depletion), rather than to solar radiation more generally. Second, we need a better 

understanding of dose-response relationships across the breadth of effects on human health 

and the environment. Taken together, these would support improved scaling and modeling of 

the effects of stratospheric ozone depletion and climate change on living organisms and their 

ecosystems, and materials such as plastics, wood structures, and clothing. 

As a result of shifting geographic ranges (including migration of humans and other species 

that is induced by climate change) and changes in seasonal timing of life-cycle events due to 

climate change, it is apparent that many organisms, including human populations, will 

experience different and interactive combinations of UV radiation and other environmental 

factors. These environmental changes will occur together with alterations in community 

structure,
61

 which will then indirectly affect growth, reproduction, and survival.  How 

humans and ecosystems respond to changes in UV radiation against this backdrop of 

simultaneous, multi-factor environmental change remains a major knowledge gap. 

Quantifying these effects is extremely challenging, where many of the outcomes are 

contingent on human behaviour and societal responses that are difficult to predict. 

The focus of concern regarding elevated exposure to UV radiation has historically been on 

human health. Beyond the importance of terrestrial and aquatic ecosystems in providing 

critical ‘ecosystem services’ for human well-being, environmental sustainability and the 

maintenance of biodiversity are critical to maintaining a healthy planet.
50

 The topics covered 

by the Environmental Effects Assessment Panel embrace some of the complexity and inter-

relatedness of our living planet, while the success of the Montreal Protocol demonstrates that 

globally united and successful action on complex environmental issues is possible. 
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